xref: /freebsd/sys/powerpc/fpu/fpu_sqrt.c (revision fdafd315ad0d0f28a11b9fb4476a9ab059c62b92)
17e76048aSMarcel Moolenaar /*	$NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
27e76048aSMarcel Moolenaar 
351369649SPedro F. Giffuni /*-
451369649SPedro F. Giffuni  * SPDX-License-Identifier: BSD-3-Clause
551369649SPedro F. Giffuni  *
67e76048aSMarcel Moolenaar  * Copyright (c) 1992, 1993
77e76048aSMarcel Moolenaar  *	The Regents of the University of California.  All rights reserved.
87e76048aSMarcel Moolenaar  *
97e76048aSMarcel Moolenaar  * This software was developed by the Computer Systems Engineering group
107e76048aSMarcel Moolenaar  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
117e76048aSMarcel Moolenaar  * contributed to Berkeley.
127e76048aSMarcel Moolenaar  *
137e76048aSMarcel Moolenaar  * All advertising materials mentioning features or use of this software
147e76048aSMarcel Moolenaar  * must display the following acknowledgement:
157e76048aSMarcel Moolenaar  *	This product includes software developed by the University of
167e76048aSMarcel Moolenaar  *	California, Lawrence Berkeley Laboratory.
177e76048aSMarcel Moolenaar  *
187e76048aSMarcel Moolenaar  * Redistribution and use in source and binary forms, with or without
197e76048aSMarcel Moolenaar  * modification, are permitted provided that the following conditions
207e76048aSMarcel Moolenaar  * are met:
217e76048aSMarcel Moolenaar  * 1. Redistributions of source code must retain the above copyright
227e76048aSMarcel Moolenaar  *    notice, this list of conditions and the following disclaimer.
237e76048aSMarcel Moolenaar  * 2. Redistributions in binary form must reproduce the above copyright
247e76048aSMarcel Moolenaar  *    notice, this list of conditions and the following disclaimer in the
257e76048aSMarcel Moolenaar  *    documentation and/or other materials provided with the distribution.
267e76048aSMarcel Moolenaar  * 3. Neither the name of the University nor the names of its contributors
277e76048aSMarcel Moolenaar  *    may be used to endorse or promote products derived from this software
287e76048aSMarcel Moolenaar  *    without specific prior written permission.
297e76048aSMarcel Moolenaar  *
307e76048aSMarcel Moolenaar  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
317e76048aSMarcel Moolenaar  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
327e76048aSMarcel Moolenaar  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
337e76048aSMarcel Moolenaar  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
347e76048aSMarcel Moolenaar  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
357e76048aSMarcel Moolenaar  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
367e76048aSMarcel Moolenaar  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
377e76048aSMarcel Moolenaar  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
387e76048aSMarcel Moolenaar  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
397e76048aSMarcel Moolenaar  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
407e76048aSMarcel Moolenaar  * SUCH DAMAGE.
417e76048aSMarcel Moolenaar  */
427e76048aSMarcel Moolenaar 
437e76048aSMarcel Moolenaar /*
447e76048aSMarcel Moolenaar  * Perform an FPU square root (return sqrt(x)).
457e76048aSMarcel Moolenaar  */
467e76048aSMarcel Moolenaar 
477e76048aSMarcel Moolenaar #include <sys/types.h>
482aa95aceSPeter Grehan #include <sys/systm.h>
497e76048aSMarcel Moolenaar 
507e76048aSMarcel Moolenaar #include <machine/fpu.h>
517e76048aSMarcel Moolenaar 
527e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h>
537e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h>
547e76048aSMarcel Moolenaar 
557e76048aSMarcel Moolenaar /*
567e76048aSMarcel Moolenaar  * Our task is to calculate the square root of a floating point number x0.
577e76048aSMarcel Moolenaar  * This number x normally has the form:
587e76048aSMarcel Moolenaar  *
597e76048aSMarcel Moolenaar  *		    exp
607e76048aSMarcel Moolenaar  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
617e76048aSMarcel Moolenaar  *
627e76048aSMarcel Moolenaar  * This can be left as it stands, or the mantissa can be doubled and the
637e76048aSMarcel Moolenaar  * exponent decremented:
647e76048aSMarcel Moolenaar  *
657e76048aSMarcel Moolenaar  *			  exp-1
667e76048aSMarcel Moolenaar  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
677e76048aSMarcel Moolenaar  *
687e76048aSMarcel Moolenaar  * If the exponent `exp' is even, the square root of the number is best
697e76048aSMarcel Moolenaar  * handled using the first form, and is by definition equal to:
707e76048aSMarcel Moolenaar  *
717e76048aSMarcel Moolenaar  *				exp/2
727e76048aSMarcel Moolenaar  *	sqrt(x) = sqrt(mant) * 2
737e76048aSMarcel Moolenaar  *
747e76048aSMarcel Moolenaar  * If exp is odd, on the other hand, it is convenient to use the second
757e76048aSMarcel Moolenaar  * form, giving:
767e76048aSMarcel Moolenaar  *
777e76048aSMarcel Moolenaar  *				    (exp-1)/2
787e76048aSMarcel Moolenaar  *	sqrt(x) = sqrt(2 * mant) * 2
797e76048aSMarcel Moolenaar  *
807e76048aSMarcel Moolenaar  * In the first case, we have
817e76048aSMarcel Moolenaar  *
827e76048aSMarcel Moolenaar  *	1 <= mant < 2
837e76048aSMarcel Moolenaar  *
847e76048aSMarcel Moolenaar  * and therefore
857e76048aSMarcel Moolenaar  *
867e76048aSMarcel Moolenaar  *	sqrt(1) <= sqrt(mant) < sqrt(2)
877e76048aSMarcel Moolenaar  *
887e76048aSMarcel Moolenaar  * while in the second case we have
897e76048aSMarcel Moolenaar  *
907e76048aSMarcel Moolenaar  *	2 <= 2*mant < 4
917e76048aSMarcel Moolenaar  *
927e76048aSMarcel Moolenaar  * and therefore
937e76048aSMarcel Moolenaar  *
947e76048aSMarcel Moolenaar  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
957e76048aSMarcel Moolenaar  *
967e76048aSMarcel Moolenaar  * so that in any case, we are sure that
977e76048aSMarcel Moolenaar  *
987e76048aSMarcel Moolenaar  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
997e76048aSMarcel Moolenaar  *
1007e76048aSMarcel Moolenaar  * or
1017e76048aSMarcel Moolenaar  *
1027e76048aSMarcel Moolenaar  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
1037e76048aSMarcel Moolenaar  *
1047e76048aSMarcel Moolenaar  * This root is therefore a properly formed mantissa for a floating
1057e76048aSMarcel Moolenaar  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
1067e76048aSMarcel Moolenaar  * as above.  This leaves us with the problem of finding the square root
1077e76048aSMarcel Moolenaar  * of a fixed-point number in the range [1..4).
1087e76048aSMarcel Moolenaar  *
1097e76048aSMarcel Moolenaar  * Though it may not be instantly obvious, the following square root
1107e76048aSMarcel Moolenaar  * algorithm works for any integer x of an even number of bits, provided
1117e76048aSMarcel Moolenaar  * that no overflows occur:
1127e76048aSMarcel Moolenaar  *
1137e76048aSMarcel Moolenaar  *	let q = 0
1147e76048aSMarcel Moolenaar  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
1157e76048aSMarcel Moolenaar  *		x *= 2			-- multiply by radix, for next digit
1167e76048aSMarcel Moolenaar  *		if x >= 2q + 2^k then	-- if adding 2^k does not
1177e76048aSMarcel Moolenaar  *			x -= 2q + 2^k	-- exceed the correct root,
1187e76048aSMarcel Moolenaar  *			q += 2^k	-- add 2^k and adjust x
1197e76048aSMarcel Moolenaar  *		fi
1207e76048aSMarcel Moolenaar  *	done
1217e76048aSMarcel Moolenaar  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
1227e76048aSMarcel Moolenaar  *
1237e76048aSMarcel Moolenaar  * If NBITS is odd (so that k is initially even), we can just add another
1247e76048aSMarcel Moolenaar  * zero bit at the top of x.  Doing so means that q is not going to acquire
1257e76048aSMarcel Moolenaar  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
1267e76048aSMarcel Moolenaar  * final value in x is not needed, or can be off by a factor of 2, this is
1277e76048aSMarcel Moolenaar  * equivalant to moving the `x *= 2' step to the bottom of the loop:
1287e76048aSMarcel Moolenaar  *
1297e76048aSMarcel Moolenaar  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
1307e76048aSMarcel Moolenaar  *
1317e76048aSMarcel Moolenaar  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
1327e76048aSMarcel Moolenaar  * (Since the algorithm is destructive on x, we will call x's initial
1337e76048aSMarcel Moolenaar  * value, for which q is some power of two times its square root, x0.)
1347e76048aSMarcel Moolenaar  *
1357e76048aSMarcel Moolenaar  * If we insert a loop invariant y = 2q, we can then rewrite this using
1367e76048aSMarcel Moolenaar  * C notation as:
1377e76048aSMarcel Moolenaar  *
1387e76048aSMarcel Moolenaar  *	q = y = 0; x = x0;
1397e76048aSMarcel Moolenaar  *	for (k = NBITS; --k >= 0;) {
1407e76048aSMarcel Moolenaar  * #if (NBITS is even)
1417e76048aSMarcel Moolenaar  *		x *= 2;
1427e76048aSMarcel Moolenaar  * #endif
1437e76048aSMarcel Moolenaar  *		t = y + (1 << k);
1447e76048aSMarcel Moolenaar  *		if (x >= t) {
1457e76048aSMarcel Moolenaar  *			x -= t;
1467e76048aSMarcel Moolenaar  *			q += 1 << k;
1477e76048aSMarcel Moolenaar  *			y += 1 << (k + 1);
1487e76048aSMarcel Moolenaar  *		}
1497e76048aSMarcel Moolenaar  * #if (NBITS is odd)
1507e76048aSMarcel Moolenaar  *		x *= 2;
1517e76048aSMarcel Moolenaar  * #endif
1527e76048aSMarcel Moolenaar  *	}
1537e76048aSMarcel Moolenaar  *
1547e76048aSMarcel Moolenaar  * If x0 is fixed point, rather than an integer, we can simply alter the
1557e76048aSMarcel Moolenaar  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
1567e76048aSMarcel Moolenaar  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
1577e76048aSMarcel Moolenaar  *
1587e76048aSMarcel Moolenaar  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
1597e76048aSMarcel Moolenaar  * integers, which adds some complication.  But note that q is built one
1607e76048aSMarcel Moolenaar  * bit at a time, from the top down, and is not used itself in the loop
1617e76048aSMarcel Moolenaar  * (we use 2q as held in y instead).  This means we can build our answer
1627e76048aSMarcel Moolenaar  * in an integer, one word at a time, which saves a bit of work.  Also,
1637e76048aSMarcel Moolenaar  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
1647e76048aSMarcel Moolenaar  * `new' bits in y and we can set them with an `or' operation rather than
1657e76048aSMarcel Moolenaar  * a full-blown multiword add.
1667e76048aSMarcel Moolenaar  *
1677e76048aSMarcel Moolenaar  * We are almost done, except for one snag.  We must prove that none of our
1687e76048aSMarcel Moolenaar  * intermediate calculations can overflow.  We know that x0 is in [1..4)
1697e76048aSMarcel Moolenaar  * and therefore the square root in q will be in [1..2), but what about x,
1707e76048aSMarcel Moolenaar  * y, and t?
1717e76048aSMarcel Moolenaar  *
1727e76048aSMarcel Moolenaar  * We know that y = 2q at the beginning of each loop.  (The relation only
1737e76048aSMarcel Moolenaar  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
1747e76048aSMarcel Moolenaar  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
1757e76048aSMarcel Moolenaar  * Furthermore, we can prove with a bit of work that x never exceeds y by
1767e76048aSMarcel Moolenaar  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
1777e76048aSMarcel Moolenaar  * an exercise to the reader, mostly because I have become tired of working
1787e76048aSMarcel Moolenaar  * on this comment.)
1797e76048aSMarcel Moolenaar  *
1807e76048aSMarcel Moolenaar  * If our floating point mantissas (which are of the form 1.frac) occupy
1817e76048aSMarcel Moolenaar  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
1827e76048aSMarcel Moolenaar  * In fact, we want even one more bit (for a carry, to avoid compares), or
1837e76048aSMarcel Moolenaar  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
1847e76048aSMarcel Moolenaar  * this, so we have some justification in assuming it.
1857e76048aSMarcel Moolenaar  */
1867e76048aSMarcel Moolenaar struct fpn *
fpu_sqrt(struct fpemu * fe)1877e76048aSMarcel Moolenaar fpu_sqrt(struct fpemu *fe)
1887e76048aSMarcel Moolenaar {
1897e76048aSMarcel Moolenaar 	struct fpn *x = &fe->fe_f1;
1907e76048aSMarcel Moolenaar 	u_int bit, q, tt;
1917e76048aSMarcel Moolenaar 	u_int x0, x1, x2, x3;
1927e76048aSMarcel Moolenaar 	u_int y0, y1, y2, y3;
1937e76048aSMarcel Moolenaar 	u_int d0, d1, d2, d3;
1947e76048aSMarcel Moolenaar 	int e;
1957e76048aSMarcel Moolenaar 	FPU_DECL_CARRY;
1967e76048aSMarcel Moolenaar 
1977e76048aSMarcel Moolenaar 	/*
1987e76048aSMarcel Moolenaar 	 * Take care of special cases first.  In order:
1997e76048aSMarcel Moolenaar 	 *
2007e76048aSMarcel Moolenaar 	 *	sqrt(NaN) = NaN
2017e76048aSMarcel Moolenaar 	 *	sqrt(+0) = +0
2027e76048aSMarcel Moolenaar 	 *	sqrt(-0) = -0
2037e76048aSMarcel Moolenaar 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
2047e76048aSMarcel Moolenaar 	 *	sqrt(+Inf) = +Inf
2057e76048aSMarcel Moolenaar 	 *
2067e76048aSMarcel Moolenaar 	 * Then all that remains are numbers with mantissas in [1..2).
2077e76048aSMarcel Moolenaar 	 */
2087e76048aSMarcel Moolenaar 	DPRINTF(FPE_REG, ("fpu_sqer:\n"));
2097e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, x);
2107e76048aSMarcel Moolenaar 	DPRINTF(FPE_REG, ("=>\n"));
2117e76048aSMarcel Moolenaar 	if (ISNAN(x)) {
2127e76048aSMarcel Moolenaar 		fe->fe_cx |= FPSCR_VXSNAN;
2137e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
2147e76048aSMarcel Moolenaar 		return (x);
2157e76048aSMarcel Moolenaar 	}
2167e76048aSMarcel Moolenaar 	if (ISZERO(x)) {
2177e76048aSMarcel Moolenaar 		fe->fe_cx |= FPSCR_ZX;
2187e76048aSMarcel Moolenaar 		x->fp_class = FPC_INF;
2197e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
2207e76048aSMarcel Moolenaar 		return (x);
2217e76048aSMarcel Moolenaar 	}
2227e76048aSMarcel Moolenaar 	if (x->fp_sign) {
223bd326619SJustin Hibbits 		fe->fe_cx |= FPSCR_VXSQRT;
2247e76048aSMarcel Moolenaar 		return (fpu_newnan(fe));
2257e76048aSMarcel Moolenaar 	}
2267e76048aSMarcel Moolenaar 	if (ISINF(x)) {
227bd326619SJustin Hibbits 		DUMPFPN(FPE_REG, x);
228bd326619SJustin Hibbits 		return (x);
2297e76048aSMarcel Moolenaar 	}
2307e76048aSMarcel Moolenaar 
2317e76048aSMarcel Moolenaar 	/*
2327e76048aSMarcel Moolenaar 	 * Calculate result exponent.  As noted above, this may involve
2337e76048aSMarcel Moolenaar 	 * doubling the mantissa.  We will also need to double x each
2347e76048aSMarcel Moolenaar 	 * time around the loop, so we define a macro for this here, and
2357e76048aSMarcel Moolenaar 	 * we break out the multiword mantissa.
2367e76048aSMarcel Moolenaar 	 */
2377e76048aSMarcel Moolenaar #ifdef FPU_SHL1_BY_ADD
2387e76048aSMarcel Moolenaar #define	DOUBLE_X { \
2397e76048aSMarcel Moolenaar 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
2407e76048aSMarcel Moolenaar 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
2417e76048aSMarcel Moolenaar }
2427e76048aSMarcel Moolenaar #else
2437e76048aSMarcel Moolenaar #define	DOUBLE_X { \
2447e76048aSMarcel Moolenaar 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
2457e76048aSMarcel Moolenaar 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
2467e76048aSMarcel Moolenaar }
2477e76048aSMarcel Moolenaar #endif
2487e76048aSMarcel Moolenaar #if (FP_NMANT & 1) != 0
2497e76048aSMarcel Moolenaar # define ODD_DOUBLE	DOUBLE_X
2507e76048aSMarcel Moolenaar # define EVEN_DOUBLE	/* nothing */
2517e76048aSMarcel Moolenaar #else
2527e76048aSMarcel Moolenaar # define ODD_DOUBLE	/* nothing */
2537e76048aSMarcel Moolenaar # define EVEN_DOUBLE	DOUBLE_X
2547e76048aSMarcel Moolenaar #endif
2557e76048aSMarcel Moolenaar 	x0 = x->fp_mant[0];
2567e76048aSMarcel Moolenaar 	x1 = x->fp_mant[1];
2577e76048aSMarcel Moolenaar 	x2 = x->fp_mant[2];
2587e76048aSMarcel Moolenaar 	x3 = x->fp_mant[3];
2597e76048aSMarcel Moolenaar 	e = x->fp_exp;
2607e76048aSMarcel Moolenaar 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
2617e76048aSMarcel Moolenaar 		DOUBLE_X;
2627e76048aSMarcel Moolenaar 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
2637e76048aSMarcel Moolenaar 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
2647e76048aSMarcel Moolenaar 
2657e76048aSMarcel Moolenaar 	/*
2667e76048aSMarcel Moolenaar 	 * Now calculate the mantissa root.  Since x is now in [1..4),
2677e76048aSMarcel Moolenaar 	 * we know that the first trip around the loop will definitely
2687e76048aSMarcel Moolenaar 	 * set the top bit in q, so we can do that manually and start
2697e76048aSMarcel Moolenaar 	 * the loop at the next bit down instead.  We must be sure to
2707e76048aSMarcel Moolenaar 	 * double x correctly while doing the `known q=1.0'.
2717e76048aSMarcel Moolenaar 	 *
2727e76048aSMarcel Moolenaar 	 * We do this one mantissa-word at a time, as noted above, to
2737a22215cSEitan Adler 	 * save work.  To avoid `(1U << 31) << 1', we also do the top bit
2747e76048aSMarcel Moolenaar 	 * outside of each per-word loop.
2757e76048aSMarcel Moolenaar 	 *
2767e76048aSMarcel Moolenaar 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
2777e76048aSMarcel Moolenaar 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
2787e76048aSMarcel Moolenaar 	 * is always a `new' one, this means that three of the `t?'s are
2797e76048aSMarcel Moolenaar 	 * just the corresponding `y?'; we use `#define's here for this.
2807e76048aSMarcel Moolenaar 	 * The variable `tt' holds the actual `t?' variable.
2817e76048aSMarcel Moolenaar 	 */
2827e76048aSMarcel Moolenaar 
2837e76048aSMarcel Moolenaar 	/* calculate q0 */
2847e76048aSMarcel Moolenaar #define	t0 tt
2857e76048aSMarcel Moolenaar 	bit = FP_1;
2867e76048aSMarcel Moolenaar 	EVEN_DOUBLE;
2877e76048aSMarcel Moolenaar 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
2887e76048aSMarcel Moolenaar 		q = bit;
2897e76048aSMarcel Moolenaar 		x0 -= bit;
2907e76048aSMarcel Moolenaar 		y0 = bit << 1;
2917e76048aSMarcel Moolenaar 	/* } */
2927e76048aSMarcel Moolenaar 	ODD_DOUBLE;
2937e76048aSMarcel Moolenaar 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
2947e76048aSMarcel Moolenaar 		EVEN_DOUBLE;
2957e76048aSMarcel Moolenaar 		t0 = y0 | bit;		/* t = y + bit */
2967e76048aSMarcel Moolenaar 		if (x0 >= t0) {		/* if x >= t then */
2977e76048aSMarcel Moolenaar 			x0 -= t0;	/*	x -= t */
2987e76048aSMarcel Moolenaar 			q |= bit;	/*	q += bit */
2997e76048aSMarcel Moolenaar 			y0 |= bit << 1;	/*	y += bit << 1 */
3007e76048aSMarcel Moolenaar 		}
3017e76048aSMarcel Moolenaar 		ODD_DOUBLE;
3027e76048aSMarcel Moolenaar 	}
3037e76048aSMarcel Moolenaar 	x->fp_mant[0] = q;
3047e76048aSMarcel Moolenaar #undef t0
3057e76048aSMarcel Moolenaar 
3067e76048aSMarcel Moolenaar 	/* calculate q1.  note (y0&1)==0. */
3077e76048aSMarcel Moolenaar #define t0 y0
3087e76048aSMarcel Moolenaar #define t1 tt
3097e76048aSMarcel Moolenaar 	q = 0;
3107e76048aSMarcel Moolenaar 	y1 = 0;
3117e76048aSMarcel Moolenaar 	bit = 1 << 31;
3127e76048aSMarcel Moolenaar 	EVEN_DOUBLE;
3137e76048aSMarcel Moolenaar 	t1 = bit;
3147e76048aSMarcel Moolenaar 	FPU_SUBS(d1, x1, t1);
3157e76048aSMarcel Moolenaar 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
3167e76048aSMarcel Moolenaar 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
3177e76048aSMarcel Moolenaar 		x0 = d0, x1 = d1;	/*	x -= t */
3187e76048aSMarcel Moolenaar 		q = bit;		/*	q += bit */
3197e76048aSMarcel Moolenaar 		y0 |= 1;		/*	y += bit << 1 */
3207e76048aSMarcel Moolenaar 	}
3217e76048aSMarcel Moolenaar 	ODD_DOUBLE;
3227e76048aSMarcel Moolenaar 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
3237e76048aSMarcel Moolenaar 		EVEN_DOUBLE;		/* as before */
3247e76048aSMarcel Moolenaar 		t1 = y1 | bit;
3257e76048aSMarcel Moolenaar 		FPU_SUBS(d1, x1, t1);
3267e76048aSMarcel Moolenaar 		FPU_SUBC(d0, x0, t0);
3277e76048aSMarcel Moolenaar 		if ((int)d0 >= 0) {
3287e76048aSMarcel Moolenaar 			x0 = d0, x1 = d1;
3297e76048aSMarcel Moolenaar 			q |= bit;
3307e76048aSMarcel Moolenaar 			y1 |= bit << 1;
3317e76048aSMarcel Moolenaar 		}
3327e76048aSMarcel Moolenaar 		ODD_DOUBLE;
3337e76048aSMarcel Moolenaar 	}
3347e76048aSMarcel Moolenaar 	x->fp_mant[1] = q;
3357e76048aSMarcel Moolenaar #undef t1
3367e76048aSMarcel Moolenaar 
3377e76048aSMarcel Moolenaar 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
3387e76048aSMarcel Moolenaar #define t1 y1
3397e76048aSMarcel Moolenaar #define t2 tt
3407e76048aSMarcel Moolenaar 	q = 0;
3417e76048aSMarcel Moolenaar 	y2 = 0;
3427e76048aSMarcel Moolenaar 	bit = 1 << 31;
3437e76048aSMarcel Moolenaar 	EVEN_DOUBLE;
3447e76048aSMarcel Moolenaar 	t2 = bit;
3457e76048aSMarcel Moolenaar 	FPU_SUBS(d2, x2, t2);
3467e76048aSMarcel Moolenaar 	FPU_SUBCS(d1, x1, t1);
3477e76048aSMarcel Moolenaar 	FPU_SUBC(d0, x0, t0);
3487e76048aSMarcel Moolenaar 	if ((int)d0 >= 0) {
3497e76048aSMarcel Moolenaar 		x0 = d0, x1 = d1, x2 = d2;
350*81dd9c5eSJustin Hibbits 		q = bit;
3517e76048aSMarcel Moolenaar 		y1 |= 1;		/* now t1, y1 are set in concrete */
3527e76048aSMarcel Moolenaar 	}
3537e76048aSMarcel Moolenaar 	ODD_DOUBLE;
3547e76048aSMarcel Moolenaar 	while ((bit >>= 1) != 0) {
3557e76048aSMarcel Moolenaar 		EVEN_DOUBLE;
3567e76048aSMarcel Moolenaar 		t2 = y2 | bit;
3577e76048aSMarcel Moolenaar 		FPU_SUBS(d2, x2, t2);
3587e76048aSMarcel Moolenaar 		FPU_SUBCS(d1, x1, t1);
3597e76048aSMarcel Moolenaar 		FPU_SUBC(d0, x0, t0);
3607e76048aSMarcel Moolenaar 		if ((int)d0 >= 0) {
3617e76048aSMarcel Moolenaar 			x0 = d0, x1 = d1, x2 = d2;
3627e76048aSMarcel Moolenaar 			q |= bit;
3637e76048aSMarcel Moolenaar 			y2 |= bit << 1;
3647e76048aSMarcel Moolenaar 		}
3657e76048aSMarcel Moolenaar 		ODD_DOUBLE;
3667e76048aSMarcel Moolenaar 	}
3677e76048aSMarcel Moolenaar 	x->fp_mant[2] = q;
3687e76048aSMarcel Moolenaar #undef t2
3697e76048aSMarcel Moolenaar 
3707e76048aSMarcel Moolenaar 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
3717e76048aSMarcel Moolenaar #define t2 y2
3727e76048aSMarcel Moolenaar #define t3 tt
3737e76048aSMarcel Moolenaar 	q = 0;
3747e76048aSMarcel Moolenaar 	y3 = 0;
3757e76048aSMarcel Moolenaar 	bit = 1 << 31;
3767e76048aSMarcel Moolenaar 	EVEN_DOUBLE;
3777e76048aSMarcel Moolenaar 	t3 = bit;
3787e76048aSMarcel Moolenaar 	FPU_SUBS(d3, x3, t3);
3797e76048aSMarcel Moolenaar 	FPU_SUBCS(d2, x2, t2);
3807e76048aSMarcel Moolenaar 	FPU_SUBCS(d1, x1, t1);
3817e76048aSMarcel Moolenaar 	FPU_SUBC(d0, x0, t0);
3827e76048aSMarcel Moolenaar 	if ((int)d0 >= 0) {
383*81dd9c5eSJustin Hibbits 		x0 = d0, x1 = d1, x2 = d2; x3 = d3;
384*81dd9c5eSJustin Hibbits 		q = bit;
3857e76048aSMarcel Moolenaar 		y2 |= 1;
3867e76048aSMarcel Moolenaar 	}
387*81dd9c5eSJustin Hibbits 	ODD_DOUBLE;
3887e76048aSMarcel Moolenaar 	while ((bit >>= 1) != 0) {
3897e76048aSMarcel Moolenaar 		EVEN_DOUBLE;
3907e76048aSMarcel Moolenaar 		t3 = y3 | bit;
3917e76048aSMarcel Moolenaar 		FPU_SUBS(d3, x3, t3);
3927e76048aSMarcel Moolenaar 		FPU_SUBCS(d2, x2, t2);
3937e76048aSMarcel Moolenaar 		FPU_SUBCS(d1, x1, t1);
3947e76048aSMarcel Moolenaar 		FPU_SUBC(d0, x0, t0);
3957e76048aSMarcel Moolenaar 		if ((int)d0 >= 0) {
396*81dd9c5eSJustin Hibbits 			x0 = d0, x1 = d1, x2 = d2; x3 = d3;
3977e76048aSMarcel Moolenaar 			q |= bit;
3987e76048aSMarcel Moolenaar 			y3 |= bit << 1;
3997e76048aSMarcel Moolenaar 		}
4007e76048aSMarcel Moolenaar 		ODD_DOUBLE;
4017e76048aSMarcel Moolenaar 	}
4027e76048aSMarcel Moolenaar 	x->fp_mant[3] = q;
4037e76048aSMarcel Moolenaar 
4047e76048aSMarcel Moolenaar 	/*
4057e76048aSMarcel Moolenaar 	 * The result, which includes guard and round bits, is exact iff
4067e76048aSMarcel Moolenaar 	 * x is now zero; any nonzero bits in x represent sticky bits.
4077e76048aSMarcel Moolenaar 	 */
4087e76048aSMarcel Moolenaar 	x->fp_sticky = x0 | x1 | x2 | x3;
4097e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, x);
4107e76048aSMarcel Moolenaar 	return (x);
4117e76048aSMarcel Moolenaar }
412