17e76048aSMarcel Moolenaar /* $NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
27e76048aSMarcel Moolenaar
351369649SPedro F. Giffuni /*-
451369649SPedro F. Giffuni * SPDX-License-Identifier: BSD-3-Clause
551369649SPedro F. Giffuni *
67e76048aSMarcel Moolenaar * Copyright (c) 1992, 1993
77e76048aSMarcel Moolenaar * The Regents of the University of California. All rights reserved.
87e76048aSMarcel Moolenaar *
97e76048aSMarcel Moolenaar * This software was developed by the Computer Systems Engineering group
107e76048aSMarcel Moolenaar * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
117e76048aSMarcel Moolenaar * contributed to Berkeley.
127e76048aSMarcel Moolenaar *
137e76048aSMarcel Moolenaar * All advertising materials mentioning features or use of this software
147e76048aSMarcel Moolenaar * must display the following acknowledgement:
157e76048aSMarcel Moolenaar * This product includes software developed by the University of
167e76048aSMarcel Moolenaar * California, Lawrence Berkeley Laboratory.
177e76048aSMarcel Moolenaar *
187e76048aSMarcel Moolenaar * Redistribution and use in source and binary forms, with or without
197e76048aSMarcel Moolenaar * modification, are permitted provided that the following conditions
207e76048aSMarcel Moolenaar * are met:
217e76048aSMarcel Moolenaar * 1. Redistributions of source code must retain the above copyright
227e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer.
237e76048aSMarcel Moolenaar * 2. Redistributions in binary form must reproduce the above copyright
247e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer in the
257e76048aSMarcel Moolenaar * documentation and/or other materials provided with the distribution.
267e76048aSMarcel Moolenaar * 3. Neither the name of the University nor the names of its contributors
277e76048aSMarcel Moolenaar * may be used to endorse or promote products derived from this software
287e76048aSMarcel Moolenaar * without specific prior written permission.
297e76048aSMarcel Moolenaar *
307e76048aSMarcel Moolenaar * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
317e76048aSMarcel Moolenaar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
327e76048aSMarcel Moolenaar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
337e76048aSMarcel Moolenaar * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
347e76048aSMarcel Moolenaar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
357e76048aSMarcel Moolenaar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
367e76048aSMarcel Moolenaar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
377e76048aSMarcel Moolenaar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
387e76048aSMarcel Moolenaar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
397e76048aSMarcel Moolenaar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
407e76048aSMarcel Moolenaar * SUCH DAMAGE.
417e76048aSMarcel Moolenaar */
427e76048aSMarcel Moolenaar
437e76048aSMarcel Moolenaar /*
447e76048aSMarcel Moolenaar * Perform an FPU square root (return sqrt(x)).
457e76048aSMarcel Moolenaar */
467e76048aSMarcel Moolenaar
477e76048aSMarcel Moolenaar #include <sys/types.h>
482aa95aceSPeter Grehan #include <sys/systm.h>
497e76048aSMarcel Moolenaar
507e76048aSMarcel Moolenaar #include <machine/fpu.h>
517e76048aSMarcel Moolenaar
527e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h>
537e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h>
547e76048aSMarcel Moolenaar
557e76048aSMarcel Moolenaar /*
567e76048aSMarcel Moolenaar * Our task is to calculate the square root of a floating point number x0.
577e76048aSMarcel Moolenaar * This number x normally has the form:
587e76048aSMarcel Moolenaar *
597e76048aSMarcel Moolenaar * exp
607e76048aSMarcel Moolenaar * x = mant * 2 (where 1 <= mant < 2 and exp is an integer)
617e76048aSMarcel Moolenaar *
627e76048aSMarcel Moolenaar * This can be left as it stands, or the mantissa can be doubled and the
637e76048aSMarcel Moolenaar * exponent decremented:
647e76048aSMarcel Moolenaar *
657e76048aSMarcel Moolenaar * exp-1
667e76048aSMarcel Moolenaar * x = (2 * mant) * 2 (where 2 <= 2 * mant < 4)
677e76048aSMarcel Moolenaar *
687e76048aSMarcel Moolenaar * If the exponent `exp' is even, the square root of the number is best
697e76048aSMarcel Moolenaar * handled using the first form, and is by definition equal to:
707e76048aSMarcel Moolenaar *
717e76048aSMarcel Moolenaar * exp/2
727e76048aSMarcel Moolenaar * sqrt(x) = sqrt(mant) * 2
737e76048aSMarcel Moolenaar *
747e76048aSMarcel Moolenaar * If exp is odd, on the other hand, it is convenient to use the second
757e76048aSMarcel Moolenaar * form, giving:
767e76048aSMarcel Moolenaar *
777e76048aSMarcel Moolenaar * (exp-1)/2
787e76048aSMarcel Moolenaar * sqrt(x) = sqrt(2 * mant) * 2
797e76048aSMarcel Moolenaar *
807e76048aSMarcel Moolenaar * In the first case, we have
817e76048aSMarcel Moolenaar *
827e76048aSMarcel Moolenaar * 1 <= mant < 2
837e76048aSMarcel Moolenaar *
847e76048aSMarcel Moolenaar * and therefore
857e76048aSMarcel Moolenaar *
867e76048aSMarcel Moolenaar * sqrt(1) <= sqrt(mant) < sqrt(2)
877e76048aSMarcel Moolenaar *
887e76048aSMarcel Moolenaar * while in the second case we have
897e76048aSMarcel Moolenaar *
907e76048aSMarcel Moolenaar * 2 <= 2*mant < 4
917e76048aSMarcel Moolenaar *
927e76048aSMarcel Moolenaar * and therefore
937e76048aSMarcel Moolenaar *
947e76048aSMarcel Moolenaar * sqrt(2) <= sqrt(2*mant) < sqrt(4)
957e76048aSMarcel Moolenaar *
967e76048aSMarcel Moolenaar * so that in any case, we are sure that
977e76048aSMarcel Moolenaar *
987e76048aSMarcel Moolenaar * sqrt(1) <= sqrt(n * mant) < sqrt(4), n = 1 or 2
997e76048aSMarcel Moolenaar *
1007e76048aSMarcel Moolenaar * or
1017e76048aSMarcel Moolenaar *
1027e76048aSMarcel Moolenaar * 1 <= sqrt(n * mant) < 2, n = 1 or 2.
1037e76048aSMarcel Moolenaar *
1047e76048aSMarcel Moolenaar * This root is therefore a properly formed mantissa for a floating
1057e76048aSMarcel Moolenaar * point number. The exponent of sqrt(x) is either exp/2 or (exp-1)/2
1067e76048aSMarcel Moolenaar * as above. This leaves us with the problem of finding the square root
1077e76048aSMarcel Moolenaar * of a fixed-point number in the range [1..4).
1087e76048aSMarcel Moolenaar *
1097e76048aSMarcel Moolenaar * Though it may not be instantly obvious, the following square root
1107e76048aSMarcel Moolenaar * algorithm works for any integer x of an even number of bits, provided
1117e76048aSMarcel Moolenaar * that no overflows occur:
1127e76048aSMarcel Moolenaar *
1137e76048aSMarcel Moolenaar * let q = 0
1147e76048aSMarcel Moolenaar * for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
1157e76048aSMarcel Moolenaar * x *= 2 -- multiply by radix, for next digit
1167e76048aSMarcel Moolenaar * if x >= 2q + 2^k then -- if adding 2^k does not
1177e76048aSMarcel Moolenaar * x -= 2q + 2^k -- exceed the correct root,
1187e76048aSMarcel Moolenaar * q += 2^k -- add 2^k and adjust x
1197e76048aSMarcel Moolenaar * fi
1207e76048aSMarcel Moolenaar * done
1217e76048aSMarcel Moolenaar * sqrt = q / 2^(NBITS/2) -- (and any remainder is in x)
1227e76048aSMarcel Moolenaar *
1237e76048aSMarcel Moolenaar * If NBITS is odd (so that k is initially even), we can just add another
1247e76048aSMarcel Moolenaar * zero bit at the top of x. Doing so means that q is not going to acquire
1257e76048aSMarcel Moolenaar * a 1 bit in the first trip around the loop (since x0 < 2^NBITS). If the
1267e76048aSMarcel Moolenaar * final value in x is not needed, or can be off by a factor of 2, this is
1277e76048aSMarcel Moolenaar * equivalant to moving the `x *= 2' step to the bottom of the loop:
1287e76048aSMarcel Moolenaar *
1297e76048aSMarcel Moolenaar * for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
1307e76048aSMarcel Moolenaar *
1317e76048aSMarcel Moolenaar * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
1327e76048aSMarcel Moolenaar * (Since the algorithm is destructive on x, we will call x's initial
1337e76048aSMarcel Moolenaar * value, for which q is some power of two times its square root, x0.)
1347e76048aSMarcel Moolenaar *
1357e76048aSMarcel Moolenaar * If we insert a loop invariant y = 2q, we can then rewrite this using
1367e76048aSMarcel Moolenaar * C notation as:
1377e76048aSMarcel Moolenaar *
1387e76048aSMarcel Moolenaar * q = y = 0; x = x0;
1397e76048aSMarcel Moolenaar * for (k = NBITS; --k >= 0;) {
1407e76048aSMarcel Moolenaar * #if (NBITS is even)
1417e76048aSMarcel Moolenaar * x *= 2;
1427e76048aSMarcel Moolenaar * #endif
1437e76048aSMarcel Moolenaar * t = y + (1 << k);
1447e76048aSMarcel Moolenaar * if (x >= t) {
1457e76048aSMarcel Moolenaar * x -= t;
1467e76048aSMarcel Moolenaar * q += 1 << k;
1477e76048aSMarcel Moolenaar * y += 1 << (k + 1);
1487e76048aSMarcel Moolenaar * }
1497e76048aSMarcel Moolenaar * #if (NBITS is odd)
1507e76048aSMarcel Moolenaar * x *= 2;
1517e76048aSMarcel Moolenaar * #endif
1527e76048aSMarcel Moolenaar * }
1537e76048aSMarcel Moolenaar *
1547e76048aSMarcel Moolenaar * If x0 is fixed point, rather than an integer, we can simply alter the
1557e76048aSMarcel Moolenaar * scale factor between q and sqrt(x0). As it happens, we can easily arrange
1567e76048aSMarcel Moolenaar * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
1577e76048aSMarcel Moolenaar *
1587e76048aSMarcel Moolenaar * In our case, however, x0 (and therefore x, y, q, and t) are multiword
1597e76048aSMarcel Moolenaar * integers, which adds some complication. But note that q is built one
1607e76048aSMarcel Moolenaar * bit at a time, from the top down, and is not used itself in the loop
1617e76048aSMarcel Moolenaar * (we use 2q as held in y instead). This means we can build our answer
1627e76048aSMarcel Moolenaar * in an integer, one word at a time, which saves a bit of work. Also,
1637e76048aSMarcel Moolenaar * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
1647e76048aSMarcel Moolenaar * `new' bits in y and we can set them with an `or' operation rather than
1657e76048aSMarcel Moolenaar * a full-blown multiword add.
1667e76048aSMarcel Moolenaar *
1677e76048aSMarcel Moolenaar * We are almost done, except for one snag. We must prove that none of our
1687e76048aSMarcel Moolenaar * intermediate calculations can overflow. We know that x0 is in [1..4)
1697e76048aSMarcel Moolenaar * and therefore the square root in q will be in [1..2), but what about x,
1707e76048aSMarcel Moolenaar * y, and t?
1717e76048aSMarcel Moolenaar *
1727e76048aSMarcel Moolenaar * We know that y = 2q at the beginning of each loop. (The relation only
1737e76048aSMarcel Moolenaar * fails temporarily while y and q are being updated.) Since q < 2, y < 4.
1747e76048aSMarcel Moolenaar * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
1757e76048aSMarcel Moolenaar * Furthermore, we can prove with a bit of work that x never exceeds y by
1767e76048aSMarcel Moolenaar * more than 2, so that even after doubling, 0 <= x < 8. (This is left as
1777e76048aSMarcel Moolenaar * an exercise to the reader, mostly because I have become tired of working
1787e76048aSMarcel Moolenaar * on this comment.)
1797e76048aSMarcel Moolenaar *
1807e76048aSMarcel Moolenaar * If our floating point mantissas (which are of the form 1.frac) occupy
1817e76048aSMarcel Moolenaar * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
1827e76048aSMarcel Moolenaar * In fact, we want even one more bit (for a carry, to avoid compares), or
1837e76048aSMarcel Moolenaar * three extra. There is a comment in fpu_emu.h reminding maintainers of
1847e76048aSMarcel Moolenaar * this, so we have some justification in assuming it.
1857e76048aSMarcel Moolenaar */
1867e76048aSMarcel Moolenaar struct fpn *
fpu_sqrt(struct fpemu * fe)1877e76048aSMarcel Moolenaar fpu_sqrt(struct fpemu *fe)
1887e76048aSMarcel Moolenaar {
1897e76048aSMarcel Moolenaar struct fpn *x = &fe->fe_f1;
1907e76048aSMarcel Moolenaar u_int bit, q, tt;
1917e76048aSMarcel Moolenaar u_int x0, x1, x2, x3;
1927e76048aSMarcel Moolenaar u_int y0, y1, y2, y3;
1937e76048aSMarcel Moolenaar u_int d0, d1, d2, d3;
1947e76048aSMarcel Moolenaar int e;
1957e76048aSMarcel Moolenaar FPU_DECL_CARRY;
1967e76048aSMarcel Moolenaar
1977e76048aSMarcel Moolenaar /*
1987e76048aSMarcel Moolenaar * Take care of special cases first. In order:
1997e76048aSMarcel Moolenaar *
2007e76048aSMarcel Moolenaar * sqrt(NaN) = NaN
2017e76048aSMarcel Moolenaar * sqrt(+0) = +0
2027e76048aSMarcel Moolenaar * sqrt(-0) = -0
2037e76048aSMarcel Moolenaar * sqrt(x < 0) = NaN (including sqrt(-Inf))
2047e76048aSMarcel Moolenaar * sqrt(+Inf) = +Inf
2057e76048aSMarcel Moolenaar *
2067e76048aSMarcel Moolenaar * Then all that remains are numbers with mantissas in [1..2).
2077e76048aSMarcel Moolenaar */
2087e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("fpu_sqer:\n"));
2097e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2107e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("=>\n"));
2117e76048aSMarcel Moolenaar if (ISNAN(x)) {
2127e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSNAN;
2137e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2147e76048aSMarcel Moolenaar return (x);
2157e76048aSMarcel Moolenaar }
2167e76048aSMarcel Moolenaar if (ISZERO(x)) {
2177e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_ZX;
2187e76048aSMarcel Moolenaar x->fp_class = FPC_INF;
2197e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2207e76048aSMarcel Moolenaar return (x);
2217e76048aSMarcel Moolenaar }
2227e76048aSMarcel Moolenaar if (x->fp_sign) {
223bd326619SJustin Hibbits fe->fe_cx |= FPSCR_VXSQRT;
2247e76048aSMarcel Moolenaar return (fpu_newnan(fe));
2257e76048aSMarcel Moolenaar }
2267e76048aSMarcel Moolenaar if (ISINF(x)) {
227bd326619SJustin Hibbits DUMPFPN(FPE_REG, x);
228bd326619SJustin Hibbits return (x);
2297e76048aSMarcel Moolenaar }
2307e76048aSMarcel Moolenaar
2317e76048aSMarcel Moolenaar /*
2327e76048aSMarcel Moolenaar * Calculate result exponent. As noted above, this may involve
2337e76048aSMarcel Moolenaar * doubling the mantissa. We will also need to double x each
2347e76048aSMarcel Moolenaar * time around the loop, so we define a macro for this here, and
2357e76048aSMarcel Moolenaar * we break out the multiword mantissa.
2367e76048aSMarcel Moolenaar */
2377e76048aSMarcel Moolenaar #ifdef FPU_SHL1_BY_ADD
2387e76048aSMarcel Moolenaar #define DOUBLE_X { \
2397e76048aSMarcel Moolenaar FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
2407e76048aSMarcel Moolenaar FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
2417e76048aSMarcel Moolenaar }
2427e76048aSMarcel Moolenaar #else
2437e76048aSMarcel Moolenaar #define DOUBLE_X { \
2447e76048aSMarcel Moolenaar x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
2457e76048aSMarcel Moolenaar x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
2467e76048aSMarcel Moolenaar }
2477e76048aSMarcel Moolenaar #endif
2487e76048aSMarcel Moolenaar #if (FP_NMANT & 1) != 0
2497e76048aSMarcel Moolenaar # define ODD_DOUBLE DOUBLE_X
2507e76048aSMarcel Moolenaar # define EVEN_DOUBLE /* nothing */
2517e76048aSMarcel Moolenaar #else
2527e76048aSMarcel Moolenaar # define ODD_DOUBLE /* nothing */
2537e76048aSMarcel Moolenaar # define EVEN_DOUBLE DOUBLE_X
2547e76048aSMarcel Moolenaar #endif
2557e76048aSMarcel Moolenaar x0 = x->fp_mant[0];
2567e76048aSMarcel Moolenaar x1 = x->fp_mant[1];
2577e76048aSMarcel Moolenaar x2 = x->fp_mant[2];
2587e76048aSMarcel Moolenaar x3 = x->fp_mant[3];
2597e76048aSMarcel Moolenaar e = x->fp_exp;
2607e76048aSMarcel Moolenaar if (e & 1) /* exponent is odd; use sqrt(2mant) */
2617e76048aSMarcel Moolenaar DOUBLE_X;
2627e76048aSMarcel Moolenaar /* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
2637e76048aSMarcel Moolenaar x->fp_exp = e >> 1; /* calculates (e&1 ? (e-1)/2 : e/2 */
2647e76048aSMarcel Moolenaar
2657e76048aSMarcel Moolenaar /*
2667e76048aSMarcel Moolenaar * Now calculate the mantissa root. Since x is now in [1..4),
2677e76048aSMarcel Moolenaar * we know that the first trip around the loop will definitely
2687e76048aSMarcel Moolenaar * set the top bit in q, so we can do that manually and start
2697e76048aSMarcel Moolenaar * the loop at the next bit down instead. We must be sure to
2707e76048aSMarcel Moolenaar * double x correctly while doing the `known q=1.0'.
2717e76048aSMarcel Moolenaar *
2727e76048aSMarcel Moolenaar * We do this one mantissa-word at a time, as noted above, to
2737a22215cSEitan Adler * save work. To avoid `(1U << 31) << 1', we also do the top bit
2747e76048aSMarcel Moolenaar * outside of each per-word loop.
2757e76048aSMarcel Moolenaar *
2767e76048aSMarcel Moolenaar * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
2777e76048aSMarcel Moolenaar * t3 = y3, t? |= bit' for the appropriate word. Since the bit
2787e76048aSMarcel Moolenaar * is always a `new' one, this means that three of the `t?'s are
2797e76048aSMarcel Moolenaar * just the corresponding `y?'; we use `#define's here for this.
2807e76048aSMarcel Moolenaar * The variable `tt' holds the actual `t?' variable.
2817e76048aSMarcel Moolenaar */
2827e76048aSMarcel Moolenaar
2837e76048aSMarcel Moolenaar /* calculate q0 */
2847e76048aSMarcel Moolenaar #define t0 tt
2857e76048aSMarcel Moolenaar bit = FP_1;
2867e76048aSMarcel Moolenaar EVEN_DOUBLE;
2877e76048aSMarcel Moolenaar /* if (x >= (t0 = y0 | bit)) { */ /* always true */
2887e76048aSMarcel Moolenaar q = bit;
2897e76048aSMarcel Moolenaar x0 -= bit;
2907e76048aSMarcel Moolenaar y0 = bit << 1;
2917e76048aSMarcel Moolenaar /* } */
2927e76048aSMarcel Moolenaar ODD_DOUBLE;
2937e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) { /* for remaining bits in q0 */
2947e76048aSMarcel Moolenaar EVEN_DOUBLE;
2957e76048aSMarcel Moolenaar t0 = y0 | bit; /* t = y + bit */
2967e76048aSMarcel Moolenaar if (x0 >= t0) { /* if x >= t then */
2977e76048aSMarcel Moolenaar x0 -= t0; /* x -= t */
2987e76048aSMarcel Moolenaar q |= bit; /* q += bit */
2997e76048aSMarcel Moolenaar y0 |= bit << 1; /* y += bit << 1 */
3007e76048aSMarcel Moolenaar }
3017e76048aSMarcel Moolenaar ODD_DOUBLE;
3027e76048aSMarcel Moolenaar }
3037e76048aSMarcel Moolenaar x->fp_mant[0] = q;
3047e76048aSMarcel Moolenaar #undef t0
3057e76048aSMarcel Moolenaar
3067e76048aSMarcel Moolenaar /* calculate q1. note (y0&1)==0. */
3077e76048aSMarcel Moolenaar #define t0 y0
3087e76048aSMarcel Moolenaar #define t1 tt
3097e76048aSMarcel Moolenaar q = 0;
3107e76048aSMarcel Moolenaar y1 = 0;
3117e76048aSMarcel Moolenaar bit = 1 << 31;
3127e76048aSMarcel Moolenaar EVEN_DOUBLE;
3137e76048aSMarcel Moolenaar t1 = bit;
3147e76048aSMarcel Moolenaar FPU_SUBS(d1, x1, t1);
3157e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0); /* d = x - t */
3167e76048aSMarcel Moolenaar if ((int)d0 >= 0) { /* if d >= 0 (i.e., x >= t) then */
3177e76048aSMarcel Moolenaar x0 = d0, x1 = d1; /* x -= t */
3187e76048aSMarcel Moolenaar q = bit; /* q += bit */
3197e76048aSMarcel Moolenaar y0 |= 1; /* y += bit << 1 */
3207e76048aSMarcel Moolenaar }
3217e76048aSMarcel Moolenaar ODD_DOUBLE;
3227e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) { /* for remaining bits in q1 */
3237e76048aSMarcel Moolenaar EVEN_DOUBLE; /* as before */
3247e76048aSMarcel Moolenaar t1 = y1 | bit;
3257e76048aSMarcel Moolenaar FPU_SUBS(d1, x1, t1);
3267e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0);
3277e76048aSMarcel Moolenaar if ((int)d0 >= 0) {
3287e76048aSMarcel Moolenaar x0 = d0, x1 = d1;
3297e76048aSMarcel Moolenaar q |= bit;
3307e76048aSMarcel Moolenaar y1 |= bit << 1;
3317e76048aSMarcel Moolenaar }
3327e76048aSMarcel Moolenaar ODD_DOUBLE;
3337e76048aSMarcel Moolenaar }
3347e76048aSMarcel Moolenaar x->fp_mant[1] = q;
3357e76048aSMarcel Moolenaar #undef t1
3367e76048aSMarcel Moolenaar
3377e76048aSMarcel Moolenaar /* calculate q2. note (y1&1)==0; y0 (aka t0) is fixed. */
3387e76048aSMarcel Moolenaar #define t1 y1
3397e76048aSMarcel Moolenaar #define t2 tt
3407e76048aSMarcel Moolenaar q = 0;
3417e76048aSMarcel Moolenaar y2 = 0;
3427e76048aSMarcel Moolenaar bit = 1 << 31;
3437e76048aSMarcel Moolenaar EVEN_DOUBLE;
3447e76048aSMarcel Moolenaar t2 = bit;
3457e76048aSMarcel Moolenaar FPU_SUBS(d2, x2, t2);
3467e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1);
3477e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0);
3487e76048aSMarcel Moolenaar if ((int)d0 >= 0) {
3497e76048aSMarcel Moolenaar x0 = d0, x1 = d1, x2 = d2;
350*81dd9c5eSJustin Hibbits q = bit;
3517e76048aSMarcel Moolenaar y1 |= 1; /* now t1, y1 are set in concrete */
3527e76048aSMarcel Moolenaar }
3537e76048aSMarcel Moolenaar ODD_DOUBLE;
3547e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) {
3557e76048aSMarcel Moolenaar EVEN_DOUBLE;
3567e76048aSMarcel Moolenaar t2 = y2 | bit;
3577e76048aSMarcel Moolenaar FPU_SUBS(d2, x2, t2);
3587e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1);
3597e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0);
3607e76048aSMarcel Moolenaar if ((int)d0 >= 0) {
3617e76048aSMarcel Moolenaar x0 = d0, x1 = d1, x2 = d2;
3627e76048aSMarcel Moolenaar q |= bit;
3637e76048aSMarcel Moolenaar y2 |= bit << 1;
3647e76048aSMarcel Moolenaar }
3657e76048aSMarcel Moolenaar ODD_DOUBLE;
3667e76048aSMarcel Moolenaar }
3677e76048aSMarcel Moolenaar x->fp_mant[2] = q;
3687e76048aSMarcel Moolenaar #undef t2
3697e76048aSMarcel Moolenaar
3707e76048aSMarcel Moolenaar /* calculate q3. y0, t0, y1, t1 all fixed; y2, t2, almost done. */
3717e76048aSMarcel Moolenaar #define t2 y2
3727e76048aSMarcel Moolenaar #define t3 tt
3737e76048aSMarcel Moolenaar q = 0;
3747e76048aSMarcel Moolenaar y3 = 0;
3757e76048aSMarcel Moolenaar bit = 1 << 31;
3767e76048aSMarcel Moolenaar EVEN_DOUBLE;
3777e76048aSMarcel Moolenaar t3 = bit;
3787e76048aSMarcel Moolenaar FPU_SUBS(d3, x3, t3);
3797e76048aSMarcel Moolenaar FPU_SUBCS(d2, x2, t2);
3807e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1);
3817e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0);
3827e76048aSMarcel Moolenaar if ((int)d0 >= 0) {
383*81dd9c5eSJustin Hibbits x0 = d0, x1 = d1, x2 = d2; x3 = d3;
384*81dd9c5eSJustin Hibbits q = bit;
3857e76048aSMarcel Moolenaar y2 |= 1;
3867e76048aSMarcel Moolenaar }
387*81dd9c5eSJustin Hibbits ODD_DOUBLE;
3887e76048aSMarcel Moolenaar while ((bit >>= 1) != 0) {
3897e76048aSMarcel Moolenaar EVEN_DOUBLE;
3907e76048aSMarcel Moolenaar t3 = y3 | bit;
3917e76048aSMarcel Moolenaar FPU_SUBS(d3, x3, t3);
3927e76048aSMarcel Moolenaar FPU_SUBCS(d2, x2, t2);
3937e76048aSMarcel Moolenaar FPU_SUBCS(d1, x1, t1);
3947e76048aSMarcel Moolenaar FPU_SUBC(d0, x0, t0);
3957e76048aSMarcel Moolenaar if ((int)d0 >= 0) {
396*81dd9c5eSJustin Hibbits x0 = d0, x1 = d1, x2 = d2; x3 = d3;
3977e76048aSMarcel Moolenaar q |= bit;
3987e76048aSMarcel Moolenaar y3 |= bit << 1;
3997e76048aSMarcel Moolenaar }
4007e76048aSMarcel Moolenaar ODD_DOUBLE;
4017e76048aSMarcel Moolenaar }
4027e76048aSMarcel Moolenaar x->fp_mant[3] = q;
4037e76048aSMarcel Moolenaar
4047e76048aSMarcel Moolenaar /*
4057e76048aSMarcel Moolenaar * The result, which includes guard and round bits, is exact iff
4067e76048aSMarcel Moolenaar * x is now zero; any nonzero bits in x represent sticky bits.
4077e76048aSMarcel Moolenaar */
4087e76048aSMarcel Moolenaar x->fp_sticky = x0 | x1 | x2 | x3;
4097e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
4107e76048aSMarcel Moolenaar return (x);
4117e76048aSMarcel Moolenaar }
412