xref: /freebsd/sys/powerpc/fpu/fpu_mul.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*	$NetBSD: fpu_mul.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
41  */
42 
43 /*
44  * Perform an FPU multiply (return x * y).
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/types.h>
51 #include <sys/systm.h>
52 
53 #include <machine/fpu.h>
54 #include <machine/reg.h>
55 
56 #include <powerpc/fpu/fpu_arith.h>
57 #include <powerpc/fpu/fpu_emu.h>
58 
59 /*
60  * The multiplication algorithm for normal numbers is as follows:
61  *
62  * The fraction of the product is built in the usual stepwise fashion.
63  * Each step consists of shifting the accumulator right one bit
64  * (maintaining any guard bits) and, if the next bit in y is set,
65  * adding the multiplicand (x) to the accumulator.  Then, in any case,
66  * we advance one bit leftward in y.  Algorithmically:
67  *
68  *	A = 0;
69  *	for (bit = 0; bit < FP_NMANT; bit++) {
70  *		sticky |= A & 1, A >>= 1;
71  *		if (Y & (1 << bit))
72  *			A += X;
73  *	}
74  *
75  * (X and Y here represent the mantissas of x and y respectively.)
76  * The resultant accumulator (A) is the product's mantissa.  It may
77  * be as large as 11.11111... in binary and hence may need to be
78  * shifted right, but at most one bit.
79  *
80  * Since we do not have efficient multiword arithmetic, we code the
81  * accumulator as four separate words, just like any other mantissa.
82  * We use local variables in the hope that this is faster than memory.
83  * We keep x->fp_mant in locals for the same reason.
84  *
85  * In the algorithm above, the bits in y are inspected one at a time.
86  * We will pick them up 32 at a time and then deal with those 32, one
87  * at a time.  Note, however, that we know several things about y:
88  *
89  *    - the guard and round bits at the bottom are sure to be zero;
90  *
91  *    - often many low bits are zero (y is often from a single or double
92  *	precision source);
93  *
94  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
95  *
96  * We can also test for 32-zero-bits swiftly.  In this case, the center
97  * part of the loop---setting sticky, shifting A, and not adding---will
98  * run 32 times without adding X to A.  We can do a 32-bit shift faster
99  * by simply moving words.  Since zeros are common, we optimize this case.
100  * Furthermore, since A is initially zero, we can omit the shift as well
101  * until we reach a nonzero word.
102  */
103 struct fpn *
104 fpu_mul(struct fpemu *fe)
105 {
106 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
107 	u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
108 	int sticky;
109 	FPU_DECL_CARRY;
110 
111 	/*
112 	 * Put the `heavier' operand on the right (see fpu_emu.h).
113 	 * Then we will have one of the following cases, taken in the
114 	 * following order:
115 	 *
116 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
117 	 *	The result is y.
118 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
119 	 *    case was taken care of earlier).
120 	 *	If x = 0, the result is NaN.  Otherwise the result
121 	 *	is y, with its sign reversed if x is negative.
122 	 *  - x = 0.  Implied: y is 0 or number.
123 	 *	The result is 0 (with XORed sign as usual).
124 	 *  - other.  Implied: both x and y are numbers.
125 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
126 	 */
127 	DPRINTF(FPE_REG, ("fpu_mul:\n"));
128 	DUMPFPN(FPE_REG, x);
129 	DUMPFPN(FPE_REG, y);
130 	DPRINTF(FPE_REG, ("=>\n"));
131 
132 	ORDER(x, y);
133 	if (ISNAN(y)) {
134 		y->fp_sign ^= x->fp_sign;
135 		fe->fe_cx |= FPSCR_VXSNAN;
136 		DUMPFPN(FPE_REG, y);
137 		return (y);
138 	}
139 	if (ISINF(y)) {
140 		if (ISZERO(x)) {
141 			fe->fe_cx |= FPSCR_VXIMZ;
142 			return (fpu_newnan(fe));
143 		}
144 		y->fp_sign ^= x->fp_sign;
145 			DUMPFPN(FPE_REG, y);
146 		return (y);
147 	}
148 	if (ISZERO(x)) {
149 		x->fp_sign ^= y->fp_sign;
150 		DUMPFPN(FPE_REG, x);
151 		return (x);
152 	}
153 
154 	/*
155 	 * Setup.  In the code below, the mask `m' will hold the current
156 	 * mantissa byte from y.  The variable `bit' denotes the bit
157 	 * within m.  We also define some macros to deal with everything.
158 	 */
159 	x3 = x->fp_mant[3];
160 	x2 = x->fp_mant[2];
161 	x1 = x->fp_mant[1];
162 	x0 = x->fp_mant[0];
163 	sticky = a3 = a2 = a1 = a0 = 0;
164 
165 #define	ADD	/* A += X */ \
166 	FPU_ADDS(a3, a3, x3); \
167 	FPU_ADDCS(a2, a2, x2); \
168 	FPU_ADDCS(a1, a1, x1); \
169 	FPU_ADDC(a0, a0, x0)
170 
171 #define	SHR1	/* A >>= 1, with sticky */ \
172 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
173 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
174 
175 #define	SHR32	/* A >>= 32, with sticky */ \
176 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
177 
178 #define	STEP	/* each 1-bit step of the multiplication */ \
179 	SHR1; if (bit & m) { ADD; }; bit <<= 1
180 
181 	/*
182 	 * We are ready to begin.  The multiply loop runs once for each
183 	 * of the four 32-bit words.  Some words, however, are special.
184 	 * As noted above, the low order bits of Y are often zero.  Even
185 	 * if not, the first loop can certainly skip the guard bits.
186 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
187 	 * so we stop the loop when we move past that bit.
188 	 */
189 	if ((m = y->fp_mant[3]) == 0) {
190 		/* SHR32; */			/* unneeded since A==0 */
191 	} else {
192 		bit = 1 << FP_NG;
193 		do {
194 			STEP;
195 		} while (bit != 0);
196 	}
197 	if ((m = y->fp_mant[2]) == 0) {
198 		SHR32;
199 	} else {
200 		bit = 1;
201 		do {
202 			STEP;
203 		} while (bit != 0);
204 	}
205 	if ((m = y->fp_mant[1]) == 0) {
206 		SHR32;
207 	} else {
208 		bit = 1;
209 		do {
210 			STEP;
211 		} while (bit != 0);
212 	}
213 	m = y->fp_mant[0];		/* definitely != 0 */
214 	bit = 1;
215 	do {
216 		STEP;
217 	} while (bit <= m);
218 
219 	/*
220 	 * Done with mantissa calculation.  Get exponent and handle
221 	 * 11.111...1 case, then put result in place.  We reuse x since
222 	 * it already has the right class (FP_NUM).
223 	 */
224 	m = x->fp_exp + y->fp_exp;
225 	if (a0 >= FP_2) {
226 		SHR1;
227 		m++;
228 	}
229 	x->fp_sign ^= y->fp_sign;
230 	x->fp_exp = m;
231 	x->fp_sticky = sticky;
232 	x->fp_mant[3] = a3;
233 	x->fp_mant[2] = a2;
234 	x->fp_mant[1] = a1;
235 	x->fp_mant[0] = a0;
236 
237 	DUMPFPN(FPE_REG, x);
238 	return (x);
239 }
240