17e76048aSMarcel Moolenaar /* $NetBSD: fpu_mul.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ 27e76048aSMarcel Moolenaar 37e76048aSMarcel Moolenaar /* 47e76048aSMarcel Moolenaar * Copyright (c) 1992, 1993 57e76048aSMarcel Moolenaar * The Regents of the University of California. All rights reserved. 67e76048aSMarcel Moolenaar * 77e76048aSMarcel Moolenaar * This software was developed by the Computer Systems Engineering group 87e76048aSMarcel Moolenaar * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 97e76048aSMarcel Moolenaar * contributed to Berkeley. 107e76048aSMarcel Moolenaar * 117e76048aSMarcel Moolenaar * All advertising materials mentioning features or use of this software 127e76048aSMarcel Moolenaar * must display the following acknowledgement: 137e76048aSMarcel Moolenaar * This product includes software developed by the University of 147e76048aSMarcel Moolenaar * California, Lawrence Berkeley Laboratory. 157e76048aSMarcel Moolenaar * 167e76048aSMarcel Moolenaar * Redistribution and use in source and binary forms, with or without 177e76048aSMarcel Moolenaar * modification, are permitted provided that the following conditions 187e76048aSMarcel Moolenaar * are met: 197e76048aSMarcel Moolenaar * 1. Redistributions of source code must retain the above copyright 207e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer. 217e76048aSMarcel Moolenaar * 2. Redistributions in binary form must reproduce the above copyright 227e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer in the 237e76048aSMarcel Moolenaar * documentation and/or other materials provided with the distribution. 247e76048aSMarcel Moolenaar * 3. Neither the name of the University nor the names of its contributors 257e76048aSMarcel Moolenaar * may be used to endorse or promote products derived from this software 267e76048aSMarcel Moolenaar * without specific prior written permission. 277e76048aSMarcel Moolenaar * 287e76048aSMarcel Moolenaar * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 297e76048aSMarcel Moolenaar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 307e76048aSMarcel Moolenaar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 317e76048aSMarcel Moolenaar * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 327e76048aSMarcel Moolenaar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 337e76048aSMarcel Moolenaar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 347e76048aSMarcel Moolenaar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 357e76048aSMarcel Moolenaar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 367e76048aSMarcel Moolenaar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 377e76048aSMarcel Moolenaar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 387e76048aSMarcel Moolenaar * SUCH DAMAGE. 397e76048aSMarcel Moolenaar * 407e76048aSMarcel Moolenaar * @(#)fpu_mul.c 8.1 (Berkeley) 6/11/93 417e76048aSMarcel Moolenaar */ 427e76048aSMarcel Moolenaar 437e76048aSMarcel Moolenaar /* 447e76048aSMarcel Moolenaar * Perform an FPU multiply (return x * y). 457e76048aSMarcel Moolenaar */ 467e76048aSMarcel Moolenaar 477e76048aSMarcel Moolenaar #include <sys/cdefs.h> 487e76048aSMarcel Moolenaar __FBSDID("$FreeBSD$"); 497e76048aSMarcel Moolenaar 507e76048aSMarcel Moolenaar #include <sys/systm.h> 517e76048aSMarcel Moolenaar #include <sys/types.h> 527e76048aSMarcel Moolenaar 537e76048aSMarcel Moolenaar #include <machine/fpu.h> 547e76048aSMarcel Moolenaar #include <machine/reg.h> 557e76048aSMarcel Moolenaar 567e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h> 577e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h> 587e76048aSMarcel Moolenaar 597e76048aSMarcel Moolenaar /* 607e76048aSMarcel Moolenaar * The multiplication algorithm for normal numbers is as follows: 617e76048aSMarcel Moolenaar * 627e76048aSMarcel Moolenaar * The fraction of the product is built in the usual stepwise fashion. 637e76048aSMarcel Moolenaar * Each step consists of shifting the accumulator right one bit 647e76048aSMarcel Moolenaar * (maintaining any guard bits) and, if the next bit in y is set, 657e76048aSMarcel Moolenaar * adding the multiplicand (x) to the accumulator. Then, in any case, 667e76048aSMarcel Moolenaar * we advance one bit leftward in y. Algorithmically: 677e76048aSMarcel Moolenaar * 687e76048aSMarcel Moolenaar * A = 0; 697e76048aSMarcel Moolenaar * for (bit = 0; bit < FP_NMANT; bit++) { 707e76048aSMarcel Moolenaar * sticky |= A & 1, A >>= 1; 717e76048aSMarcel Moolenaar * if (Y & (1 << bit)) 727e76048aSMarcel Moolenaar * A += X; 737e76048aSMarcel Moolenaar * } 747e76048aSMarcel Moolenaar * 757e76048aSMarcel Moolenaar * (X and Y here represent the mantissas of x and y respectively.) 767e76048aSMarcel Moolenaar * The resultant accumulator (A) is the product's mantissa. It may 777e76048aSMarcel Moolenaar * be as large as 11.11111... in binary and hence may need to be 787e76048aSMarcel Moolenaar * shifted right, but at most one bit. 797e76048aSMarcel Moolenaar * 807e76048aSMarcel Moolenaar * Since we do not have efficient multiword arithmetic, we code the 817e76048aSMarcel Moolenaar * accumulator as four separate words, just like any other mantissa. 827e76048aSMarcel Moolenaar * We use local variables in the hope that this is faster than memory. 837e76048aSMarcel Moolenaar * We keep x->fp_mant in locals for the same reason. 847e76048aSMarcel Moolenaar * 857e76048aSMarcel Moolenaar * In the algorithm above, the bits in y are inspected one at a time. 867e76048aSMarcel Moolenaar * We will pick them up 32 at a time and then deal with those 32, one 877e76048aSMarcel Moolenaar * at a time. Note, however, that we know several things about y: 887e76048aSMarcel Moolenaar * 897e76048aSMarcel Moolenaar * - the guard and round bits at the bottom are sure to be zero; 907e76048aSMarcel Moolenaar * 917e76048aSMarcel Moolenaar * - often many low bits are zero (y is often from a single or double 927e76048aSMarcel Moolenaar * precision source); 937e76048aSMarcel Moolenaar * 947e76048aSMarcel Moolenaar * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word. 957e76048aSMarcel Moolenaar * 967e76048aSMarcel Moolenaar * We can also test for 32-zero-bits swiftly. In this case, the center 977e76048aSMarcel Moolenaar * part of the loop---setting sticky, shifting A, and not adding---will 987e76048aSMarcel Moolenaar * run 32 times without adding X to A. We can do a 32-bit shift faster 997e76048aSMarcel Moolenaar * by simply moving words. Since zeros are common, we optimize this case. 1007e76048aSMarcel Moolenaar * Furthermore, since A is initially zero, we can omit the shift as well 1017e76048aSMarcel Moolenaar * until we reach a nonzero word. 1027e76048aSMarcel Moolenaar */ 1037e76048aSMarcel Moolenaar struct fpn * 1047e76048aSMarcel Moolenaar fpu_mul(struct fpemu *fe) 1057e76048aSMarcel Moolenaar { 1067e76048aSMarcel Moolenaar struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 1077e76048aSMarcel Moolenaar u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m; 1087e76048aSMarcel Moolenaar int sticky; 1097e76048aSMarcel Moolenaar FPU_DECL_CARRY; 1107e76048aSMarcel Moolenaar 1117e76048aSMarcel Moolenaar /* 1127e76048aSMarcel Moolenaar * Put the `heavier' operand on the right (see fpu_emu.h). 1137e76048aSMarcel Moolenaar * Then we will have one of the following cases, taken in the 1147e76048aSMarcel Moolenaar * following order: 1157e76048aSMarcel Moolenaar * 1167e76048aSMarcel Moolenaar * - y = NaN. Implied: if only one is a signalling NaN, y is. 1177e76048aSMarcel Moolenaar * The result is y. 1187e76048aSMarcel Moolenaar * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN 1197e76048aSMarcel Moolenaar * case was taken care of earlier). 1207e76048aSMarcel Moolenaar * If x = 0, the result is NaN. Otherwise the result 1217e76048aSMarcel Moolenaar * is y, with its sign reversed if x is negative. 1227e76048aSMarcel Moolenaar * - x = 0. Implied: y is 0 or number. 1237e76048aSMarcel Moolenaar * The result is 0 (with XORed sign as usual). 1247e76048aSMarcel Moolenaar * - other. Implied: both x and y are numbers. 1257e76048aSMarcel Moolenaar * The result is x * y (XOR sign, multiply bits, add exponents). 1267e76048aSMarcel Moolenaar */ 1277e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("fpu_mul:\n")); 1287e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 1297e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y); 1307e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("=>\n")); 1317e76048aSMarcel Moolenaar 1327e76048aSMarcel Moolenaar ORDER(x, y); 1337e76048aSMarcel Moolenaar if (ISNAN(y)) { 1347e76048aSMarcel Moolenaar y->fp_sign ^= x->fp_sign; 1357e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSNAN; 1367e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y); 1377e76048aSMarcel Moolenaar return (y); 1387e76048aSMarcel Moolenaar } 1397e76048aSMarcel Moolenaar if (ISINF(y)) { 1407e76048aSMarcel Moolenaar if (ISZERO(x)) { 1417e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXIMZ; 1427e76048aSMarcel Moolenaar return (fpu_newnan(fe)); 1437e76048aSMarcel Moolenaar } 1447e76048aSMarcel Moolenaar y->fp_sign ^= x->fp_sign; 1457e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y); 1467e76048aSMarcel Moolenaar return (y); 1477e76048aSMarcel Moolenaar } 1487e76048aSMarcel Moolenaar if (ISZERO(x)) { 1497e76048aSMarcel Moolenaar x->fp_sign ^= y->fp_sign; 1507e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 1517e76048aSMarcel Moolenaar return (x); 1527e76048aSMarcel Moolenaar } 1537e76048aSMarcel Moolenaar 1547e76048aSMarcel Moolenaar /* 1557e76048aSMarcel Moolenaar * Setup. In the code below, the mask `m' will hold the current 1567e76048aSMarcel Moolenaar * mantissa byte from y. The variable `bit' denotes the bit 1577e76048aSMarcel Moolenaar * within m. We also define some macros to deal with everything. 1587e76048aSMarcel Moolenaar */ 1597e76048aSMarcel Moolenaar x3 = x->fp_mant[3]; 1607e76048aSMarcel Moolenaar x2 = x->fp_mant[2]; 1617e76048aSMarcel Moolenaar x1 = x->fp_mant[1]; 1627e76048aSMarcel Moolenaar x0 = x->fp_mant[0]; 1637e76048aSMarcel Moolenaar sticky = a3 = a2 = a1 = a0 = 0; 1647e76048aSMarcel Moolenaar 1657e76048aSMarcel Moolenaar #define ADD /* A += X */ \ 1667e76048aSMarcel Moolenaar FPU_ADDS(a3, a3, x3); \ 1677e76048aSMarcel Moolenaar FPU_ADDCS(a2, a2, x2); \ 1687e76048aSMarcel Moolenaar FPU_ADDCS(a1, a1, x1); \ 1697e76048aSMarcel Moolenaar FPU_ADDC(a0, a0, x0) 1707e76048aSMarcel Moolenaar 1717e76048aSMarcel Moolenaar #define SHR1 /* A >>= 1, with sticky */ \ 1727e76048aSMarcel Moolenaar sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \ 1737e76048aSMarcel Moolenaar a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1 1747e76048aSMarcel Moolenaar 1757e76048aSMarcel Moolenaar #define SHR32 /* A >>= 32, with sticky */ \ 1767e76048aSMarcel Moolenaar sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0 1777e76048aSMarcel Moolenaar 1787e76048aSMarcel Moolenaar #define STEP /* each 1-bit step of the multiplication */ \ 1797e76048aSMarcel Moolenaar SHR1; if (bit & m) { ADD; }; bit <<= 1 1807e76048aSMarcel Moolenaar 1817e76048aSMarcel Moolenaar /* 1827e76048aSMarcel Moolenaar * We are ready to begin. The multiply loop runs once for each 1837e76048aSMarcel Moolenaar * of the four 32-bit words. Some words, however, are special. 1847e76048aSMarcel Moolenaar * As noted above, the low order bits of Y are often zero. Even 1857e76048aSMarcel Moolenaar * if not, the first loop can certainly skip the guard bits. 1867e76048aSMarcel Moolenaar * The last word of y has its highest 1-bit in position FP_NMANT-1, 1877e76048aSMarcel Moolenaar * so we stop the loop when we move past that bit. 1887e76048aSMarcel Moolenaar */ 1897e76048aSMarcel Moolenaar if ((m = y->fp_mant[3]) == 0) { 1907e76048aSMarcel Moolenaar /* SHR32; */ /* unneeded since A==0 */ 1917e76048aSMarcel Moolenaar } else { 1927e76048aSMarcel Moolenaar bit = 1 << FP_NG; 1937e76048aSMarcel Moolenaar do { 1947e76048aSMarcel Moolenaar STEP; 1957e76048aSMarcel Moolenaar } while (bit != 0); 1967e76048aSMarcel Moolenaar } 1977e76048aSMarcel Moolenaar if ((m = y->fp_mant[2]) == 0) { 1987e76048aSMarcel Moolenaar SHR32; 1997e76048aSMarcel Moolenaar } else { 2007e76048aSMarcel Moolenaar bit = 1; 2017e76048aSMarcel Moolenaar do { 2027e76048aSMarcel Moolenaar STEP; 2037e76048aSMarcel Moolenaar } while (bit != 0); 2047e76048aSMarcel Moolenaar } 2057e76048aSMarcel Moolenaar if ((m = y->fp_mant[1]) == 0) { 2067e76048aSMarcel Moolenaar SHR32; 2077e76048aSMarcel Moolenaar } else { 2087e76048aSMarcel Moolenaar bit = 1; 2097e76048aSMarcel Moolenaar do { 2107e76048aSMarcel Moolenaar STEP; 2117e76048aSMarcel Moolenaar } while (bit != 0); 2127e76048aSMarcel Moolenaar } 2137e76048aSMarcel Moolenaar m = y->fp_mant[0]; /* definitely != 0 */ 2147e76048aSMarcel Moolenaar bit = 1; 2157e76048aSMarcel Moolenaar do { 2167e76048aSMarcel Moolenaar STEP; 2177e76048aSMarcel Moolenaar } while (bit <= m); 2187e76048aSMarcel Moolenaar 2197e76048aSMarcel Moolenaar /* 2207e76048aSMarcel Moolenaar * Done with mantissa calculation. Get exponent and handle 2217e76048aSMarcel Moolenaar * 11.111...1 case, then put result in place. We reuse x since 2227e76048aSMarcel Moolenaar * it already has the right class (FP_NUM). 2237e76048aSMarcel Moolenaar */ 2247e76048aSMarcel Moolenaar m = x->fp_exp + y->fp_exp; 2257e76048aSMarcel Moolenaar if (a0 >= FP_2) { 2267e76048aSMarcel Moolenaar SHR1; 2277e76048aSMarcel Moolenaar m++; 2287e76048aSMarcel Moolenaar } 2297e76048aSMarcel Moolenaar x->fp_sign ^= y->fp_sign; 2307e76048aSMarcel Moolenaar x->fp_exp = m; 2317e76048aSMarcel Moolenaar x->fp_sticky = sticky; 2327e76048aSMarcel Moolenaar x->fp_mant[3] = a3; 2337e76048aSMarcel Moolenaar x->fp_mant[2] = a2; 2347e76048aSMarcel Moolenaar x->fp_mant[1] = a1; 2357e76048aSMarcel Moolenaar x->fp_mant[0] = a0; 2367e76048aSMarcel Moolenaar 2377e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2387e76048aSMarcel Moolenaar return (x); 2397e76048aSMarcel Moolenaar } 240