17e76048aSMarcel Moolenaar /* $NetBSD: fpu_mul.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
27e76048aSMarcel Moolenaar
37e76048aSMarcel Moolenaar /*
4*51369649SPedro F. Giffuni * SPDX-License-Identifier: BSD-3-Clause
5*51369649SPedro F. Giffuni *
67e76048aSMarcel Moolenaar * Copyright (c) 1992, 1993
77e76048aSMarcel Moolenaar * The Regents of the University of California. All rights reserved.
87e76048aSMarcel Moolenaar *
97e76048aSMarcel Moolenaar * This software was developed by the Computer Systems Engineering group
107e76048aSMarcel Moolenaar * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
117e76048aSMarcel Moolenaar * contributed to Berkeley.
127e76048aSMarcel Moolenaar *
137e76048aSMarcel Moolenaar * All advertising materials mentioning features or use of this software
147e76048aSMarcel Moolenaar * must display the following acknowledgement:
157e76048aSMarcel Moolenaar * This product includes software developed by the University of
167e76048aSMarcel Moolenaar * California, Lawrence Berkeley Laboratory.
177e76048aSMarcel Moolenaar *
187e76048aSMarcel Moolenaar * Redistribution and use in source and binary forms, with or without
197e76048aSMarcel Moolenaar * modification, are permitted provided that the following conditions
207e76048aSMarcel Moolenaar * are met:
217e76048aSMarcel Moolenaar * 1. Redistributions of source code must retain the above copyright
227e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer.
237e76048aSMarcel Moolenaar * 2. Redistributions in binary form must reproduce the above copyright
247e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer in the
257e76048aSMarcel Moolenaar * documentation and/or other materials provided with the distribution.
267e76048aSMarcel Moolenaar * 3. Neither the name of the University nor the names of its contributors
277e76048aSMarcel Moolenaar * may be used to endorse or promote products derived from this software
287e76048aSMarcel Moolenaar * without specific prior written permission.
297e76048aSMarcel Moolenaar *
307e76048aSMarcel Moolenaar * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
317e76048aSMarcel Moolenaar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
327e76048aSMarcel Moolenaar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
337e76048aSMarcel Moolenaar * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
347e76048aSMarcel Moolenaar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
357e76048aSMarcel Moolenaar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
367e76048aSMarcel Moolenaar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
377e76048aSMarcel Moolenaar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
387e76048aSMarcel Moolenaar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
397e76048aSMarcel Moolenaar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
407e76048aSMarcel Moolenaar * SUCH DAMAGE.
417e76048aSMarcel Moolenaar */
427e76048aSMarcel Moolenaar
437e76048aSMarcel Moolenaar /*
447e76048aSMarcel Moolenaar * Perform an FPU multiply (return x * y).
457e76048aSMarcel Moolenaar */
467e76048aSMarcel Moolenaar
477e76048aSMarcel Moolenaar #include <sys/types.h>
482aa95aceSPeter Grehan #include <sys/systm.h>
497e76048aSMarcel Moolenaar
507e76048aSMarcel Moolenaar #include <machine/fpu.h>
517e76048aSMarcel Moolenaar
527e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h>
537e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h>
547e76048aSMarcel Moolenaar
557e76048aSMarcel Moolenaar /*
567e76048aSMarcel Moolenaar * The multiplication algorithm for normal numbers is as follows:
577e76048aSMarcel Moolenaar *
587e76048aSMarcel Moolenaar * The fraction of the product is built in the usual stepwise fashion.
597e76048aSMarcel Moolenaar * Each step consists of shifting the accumulator right one bit
607e76048aSMarcel Moolenaar * (maintaining any guard bits) and, if the next bit in y is set,
617e76048aSMarcel Moolenaar * adding the multiplicand (x) to the accumulator. Then, in any case,
627e76048aSMarcel Moolenaar * we advance one bit leftward in y. Algorithmically:
637e76048aSMarcel Moolenaar *
647e76048aSMarcel Moolenaar * A = 0;
657e76048aSMarcel Moolenaar * for (bit = 0; bit < FP_NMANT; bit++) {
667e76048aSMarcel Moolenaar * sticky |= A & 1, A >>= 1;
677e76048aSMarcel Moolenaar * if (Y & (1 << bit))
687e76048aSMarcel Moolenaar * A += X;
697e76048aSMarcel Moolenaar * }
707e76048aSMarcel Moolenaar *
717e76048aSMarcel Moolenaar * (X and Y here represent the mantissas of x and y respectively.)
727e76048aSMarcel Moolenaar * The resultant accumulator (A) is the product's mantissa. It may
737e76048aSMarcel Moolenaar * be as large as 11.11111... in binary and hence may need to be
747e76048aSMarcel Moolenaar * shifted right, but at most one bit.
757e76048aSMarcel Moolenaar *
767e76048aSMarcel Moolenaar * Since we do not have efficient multiword arithmetic, we code the
777e76048aSMarcel Moolenaar * accumulator as four separate words, just like any other mantissa.
787e76048aSMarcel Moolenaar * We use local variables in the hope that this is faster than memory.
797e76048aSMarcel Moolenaar * We keep x->fp_mant in locals for the same reason.
807e76048aSMarcel Moolenaar *
817e76048aSMarcel Moolenaar * In the algorithm above, the bits in y are inspected one at a time.
827e76048aSMarcel Moolenaar * We will pick them up 32 at a time and then deal with those 32, one
837e76048aSMarcel Moolenaar * at a time. Note, however, that we know several things about y:
847e76048aSMarcel Moolenaar *
857e76048aSMarcel Moolenaar * - the guard and round bits at the bottom are sure to be zero;
867e76048aSMarcel Moolenaar *
877e76048aSMarcel Moolenaar * - often many low bits are zero (y is often from a single or double
887e76048aSMarcel Moolenaar * precision source);
897e76048aSMarcel Moolenaar *
907e76048aSMarcel Moolenaar * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
917e76048aSMarcel Moolenaar *
927e76048aSMarcel Moolenaar * We can also test for 32-zero-bits swiftly. In this case, the center
937e76048aSMarcel Moolenaar * part of the loop---setting sticky, shifting A, and not adding---will
947e76048aSMarcel Moolenaar * run 32 times without adding X to A. We can do a 32-bit shift faster
957e76048aSMarcel Moolenaar * by simply moving words. Since zeros are common, we optimize this case.
967e76048aSMarcel Moolenaar * Furthermore, since A is initially zero, we can omit the shift as well
977e76048aSMarcel Moolenaar * until we reach a nonzero word.
987e76048aSMarcel Moolenaar */
997e76048aSMarcel Moolenaar struct fpn *
fpu_mul(struct fpemu * fe)1007e76048aSMarcel Moolenaar fpu_mul(struct fpemu *fe)
1017e76048aSMarcel Moolenaar {
1027e76048aSMarcel Moolenaar struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
1037e76048aSMarcel Moolenaar u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
1047e76048aSMarcel Moolenaar int sticky;
1057e76048aSMarcel Moolenaar FPU_DECL_CARRY;
1067e76048aSMarcel Moolenaar
1077e76048aSMarcel Moolenaar /*
1087e76048aSMarcel Moolenaar * Put the `heavier' operand on the right (see fpu_emu.h).
1097e76048aSMarcel Moolenaar * Then we will have one of the following cases, taken in the
1107e76048aSMarcel Moolenaar * following order:
1117e76048aSMarcel Moolenaar *
1127e76048aSMarcel Moolenaar * - y = NaN. Implied: if only one is a signalling NaN, y is.
1137e76048aSMarcel Moolenaar * The result is y.
1147e76048aSMarcel Moolenaar * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN
1157e76048aSMarcel Moolenaar * case was taken care of earlier).
1167e76048aSMarcel Moolenaar * If x = 0, the result is NaN. Otherwise the result
1177e76048aSMarcel Moolenaar * is y, with its sign reversed if x is negative.
1187e76048aSMarcel Moolenaar * - x = 0. Implied: y is 0 or number.
1197e76048aSMarcel Moolenaar * The result is 0 (with XORed sign as usual).
1207e76048aSMarcel Moolenaar * - other. Implied: both x and y are numbers.
1217e76048aSMarcel Moolenaar * The result is x * y (XOR sign, multiply bits, add exponents).
1227e76048aSMarcel Moolenaar */
1237e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("fpu_mul:\n"));
1247e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
1257e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y);
1267e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("=>\n"));
1277e76048aSMarcel Moolenaar
1287e76048aSMarcel Moolenaar ORDER(x, y);
1297e76048aSMarcel Moolenaar if (ISNAN(y)) {
1307e76048aSMarcel Moolenaar y->fp_sign ^= x->fp_sign;
1317e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSNAN;
1327e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y);
1337e76048aSMarcel Moolenaar return (y);
1347e76048aSMarcel Moolenaar }
1357e76048aSMarcel Moolenaar if (ISINF(y)) {
1367e76048aSMarcel Moolenaar if (ISZERO(x)) {
1377e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXIMZ;
1387e76048aSMarcel Moolenaar return (fpu_newnan(fe));
1397e76048aSMarcel Moolenaar }
1407e76048aSMarcel Moolenaar y->fp_sign ^= x->fp_sign;
1417e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y);
1427e76048aSMarcel Moolenaar return (y);
1437e76048aSMarcel Moolenaar }
1447e76048aSMarcel Moolenaar if (ISZERO(x)) {
1457e76048aSMarcel Moolenaar x->fp_sign ^= y->fp_sign;
1467e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
1477e76048aSMarcel Moolenaar return (x);
1487e76048aSMarcel Moolenaar }
1497e76048aSMarcel Moolenaar
1507e76048aSMarcel Moolenaar /*
1517e76048aSMarcel Moolenaar * Setup. In the code below, the mask `m' will hold the current
1527e76048aSMarcel Moolenaar * mantissa byte from y. The variable `bit' denotes the bit
1537e76048aSMarcel Moolenaar * within m. We also define some macros to deal with everything.
1547e76048aSMarcel Moolenaar */
1557e76048aSMarcel Moolenaar x3 = x->fp_mant[3];
1567e76048aSMarcel Moolenaar x2 = x->fp_mant[2];
1577e76048aSMarcel Moolenaar x1 = x->fp_mant[1];
1587e76048aSMarcel Moolenaar x0 = x->fp_mant[0];
1597e76048aSMarcel Moolenaar sticky = a3 = a2 = a1 = a0 = 0;
1607e76048aSMarcel Moolenaar
1617e76048aSMarcel Moolenaar #define ADD /* A += X */ \
1627e76048aSMarcel Moolenaar FPU_ADDS(a3, a3, x3); \
1637e76048aSMarcel Moolenaar FPU_ADDCS(a2, a2, x2); \
1647e76048aSMarcel Moolenaar FPU_ADDCS(a1, a1, x1); \
1657e76048aSMarcel Moolenaar FPU_ADDC(a0, a0, x0)
1667e76048aSMarcel Moolenaar
1677e76048aSMarcel Moolenaar #define SHR1 /* A >>= 1, with sticky */ \
1687e76048aSMarcel Moolenaar sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
1697e76048aSMarcel Moolenaar a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
1707e76048aSMarcel Moolenaar
1717e76048aSMarcel Moolenaar #define SHR32 /* A >>= 32, with sticky */ \
1727e76048aSMarcel Moolenaar sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
1737e76048aSMarcel Moolenaar
1747e76048aSMarcel Moolenaar #define STEP /* each 1-bit step of the multiplication */ \
1757e76048aSMarcel Moolenaar SHR1; if (bit & m) { ADD; }; bit <<= 1
1767e76048aSMarcel Moolenaar
1777e76048aSMarcel Moolenaar /*
1787e76048aSMarcel Moolenaar * We are ready to begin. The multiply loop runs once for each
1797e76048aSMarcel Moolenaar * of the four 32-bit words. Some words, however, are special.
1807e76048aSMarcel Moolenaar * As noted above, the low order bits of Y are often zero. Even
1817e76048aSMarcel Moolenaar * if not, the first loop can certainly skip the guard bits.
1827e76048aSMarcel Moolenaar * The last word of y has its highest 1-bit in position FP_NMANT-1,
1837e76048aSMarcel Moolenaar * so we stop the loop when we move past that bit.
1847e76048aSMarcel Moolenaar */
1857e76048aSMarcel Moolenaar if ((m = y->fp_mant[3]) == 0) {
1867e76048aSMarcel Moolenaar /* SHR32; */ /* unneeded since A==0 */
1877e76048aSMarcel Moolenaar } else {
1887e76048aSMarcel Moolenaar bit = 1 << FP_NG;
1897e76048aSMarcel Moolenaar do {
1907e76048aSMarcel Moolenaar STEP;
1917e76048aSMarcel Moolenaar } while (bit != 0);
1927e76048aSMarcel Moolenaar }
1937e76048aSMarcel Moolenaar if ((m = y->fp_mant[2]) == 0) {
1947e76048aSMarcel Moolenaar SHR32;
1957e76048aSMarcel Moolenaar } else {
1967e76048aSMarcel Moolenaar bit = 1;
1977e76048aSMarcel Moolenaar do {
1987e76048aSMarcel Moolenaar STEP;
1997e76048aSMarcel Moolenaar } while (bit != 0);
2007e76048aSMarcel Moolenaar }
2017e76048aSMarcel Moolenaar if ((m = y->fp_mant[1]) == 0) {
2027e76048aSMarcel Moolenaar SHR32;
2037e76048aSMarcel Moolenaar } else {
2047e76048aSMarcel Moolenaar bit = 1;
2057e76048aSMarcel Moolenaar do {
2067e76048aSMarcel Moolenaar STEP;
2077e76048aSMarcel Moolenaar } while (bit != 0);
2087e76048aSMarcel Moolenaar }
2097e76048aSMarcel Moolenaar m = y->fp_mant[0]; /* definitely != 0 */
2107e76048aSMarcel Moolenaar bit = 1;
2117e76048aSMarcel Moolenaar do {
2127e76048aSMarcel Moolenaar STEP;
2137e76048aSMarcel Moolenaar } while (bit <= m);
2147e76048aSMarcel Moolenaar
2157e76048aSMarcel Moolenaar /*
2167e76048aSMarcel Moolenaar * Done with mantissa calculation. Get exponent and handle
2177e76048aSMarcel Moolenaar * 11.111...1 case, then put result in place. We reuse x since
2187e76048aSMarcel Moolenaar * it already has the right class (FP_NUM).
2197e76048aSMarcel Moolenaar */
2207e76048aSMarcel Moolenaar m = x->fp_exp + y->fp_exp;
2217e76048aSMarcel Moolenaar if (a0 >= FP_2) {
2227e76048aSMarcel Moolenaar SHR1;
2237e76048aSMarcel Moolenaar m++;
2247e76048aSMarcel Moolenaar }
2257e76048aSMarcel Moolenaar x->fp_sign ^= y->fp_sign;
2267e76048aSMarcel Moolenaar x->fp_exp = m;
2277e76048aSMarcel Moolenaar x->fp_sticky = sticky;
2287e76048aSMarcel Moolenaar x->fp_mant[3] = a3;
2297e76048aSMarcel Moolenaar x->fp_mant[2] = a2;
2307e76048aSMarcel Moolenaar x->fp_mant[1] = a1;
2317e76048aSMarcel Moolenaar x->fp_mant[0] = a0;
2327e76048aSMarcel Moolenaar
2337e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2347e76048aSMarcel Moolenaar return (x);
2357e76048aSMarcel Moolenaar }
236