xref: /freebsd/sys/powerpc/fpu/fpu_mul.c (revision fdafd315ad0d0f28a11b9fb4476a9ab059c62b92)
17e76048aSMarcel Moolenaar /*	$NetBSD: fpu_mul.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
27e76048aSMarcel Moolenaar 
37e76048aSMarcel Moolenaar /*
4*51369649SPedro F. Giffuni  * SPDX-License-Identifier: BSD-3-Clause
5*51369649SPedro F. Giffuni  *
67e76048aSMarcel Moolenaar  * Copyright (c) 1992, 1993
77e76048aSMarcel Moolenaar  *	The Regents of the University of California.  All rights reserved.
87e76048aSMarcel Moolenaar  *
97e76048aSMarcel Moolenaar  * This software was developed by the Computer Systems Engineering group
107e76048aSMarcel Moolenaar  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
117e76048aSMarcel Moolenaar  * contributed to Berkeley.
127e76048aSMarcel Moolenaar  *
137e76048aSMarcel Moolenaar  * All advertising materials mentioning features or use of this software
147e76048aSMarcel Moolenaar  * must display the following acknowledgement:
157e76048aSMarcel Moolenaar  *	This product includes software developed by the University of
167e76048aSMarcel Moolenaar  *	California, Lawrence Berkeley Laboratory.
177e76048aSMarcel Moolenaar  *
187e76048aSMarcel Moolenaar  * Redistribution and use in source and binary forms, with or without
197e76048aSMarcel Moolenaar  * modification, are permitted provided that the following conditions
207e76048aSMarcel Moolenaar  * are met:
217e76048aSMarcel Moolenaar  * 1. Redistributions of source code must retain the above copyright
227e76048aSMarcel Moolenaar  *    notice, this list of conditions and the following disclaimer.
237e76048aSMarcel Moolenaar  * 2. Redistributions in binary form must reproduce the above copyright
247e76048aSMarcel Moolenaar  *    notice, this list of conditions and the following disclaimer in the
257e76048aSMarcel Moolenaar  *    documentation and/or other materials provided with the distribution.
267e76048aSMarcel Moolenaar  * 3. Neither the name of the University nor the names of its contributors
277e76048aSMarcel Moolenaar  *    may be used to endorse or promote products derived from this software
287e76048aSMarcel Moolenaar  *    without specific prior written permission.
297e76048aSMarcel Moolenaar  *
307e76048aSMarcel Moolenaar  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
317e76048aSMarcel Moolenaar  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
327e76048aSMarcel Moolenaar  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
337e76048aSMarcel Moolenaar  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
347e76048aSMarcel Moolenaar  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
357e76048aSMarcel Moolenaar  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
367e76048aSMarcel Moolenaar  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
377e76048aSMarcel Moolenaar  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
387e76048aSMarcel Moolenaar  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
397e76048aSMarcel Moolenaar  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
407e76048aSMarcel Moolenaar  * SUCH DAMAGE.
417e76048aSMarcel Moolenaar  */
427e76048aSMarcel Moolenaar 
437e76048aSMarcel Moolenaar /*
447e76048aSMarcel Moolenaar  * Perform an FPU multiply (return x * y).
457e76048aSMarcel Moolenaar  */
467e76048aSMarcel Moolenaar 
477e76048aSMarcel Moolenaar #include <sys/types.h>
482aa95aceSPeter Grehan #include <sys/systm.h>
497e76048aSMarcel Moolenaar 
507e76048aSMarcel Moolenaar #include <machine/fpu.h>
517e76048aSMarcel Moolenaar 
527e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h>
537e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h>
547e76048aSMarcel Moolenaar 
557e76048aSMarcel Moolenaar /*
567e76048aSMarcel Moolenaar  * The multiplication algorithm for normal numbers is as follows:
577e76048aSMarcel Moolenaar  *
587e76048aSMarcel Moolenaar  * The fraction of the product is built in the usual stepwise fashion.
597e76048aSMarcel Moolenaar  * Each step consists of shifting the accumulator right one bit
607e76048aSMarcel Moolenaar  * (maintaining any guard bits) and, if the next bit in y is set,
617e76048aSMarcel Moolenaar  * adding the multiplicand (x) to the accumulator.  Then, in any case,
627e76048aSMarcel Moolenaar  * we advance one bit leftward in y.  Algorithmically:
637e76048aSMarcel Moolenaar  *
647e76048aSMarcel Moolenaar  *	A = 0;
657e76048aSMarcel Moolenaar  *	for (bit = 0; bit < FP_NMANT; bit++) {
667e76048aSMarcel Moolenaar  *		sticky |= A & 1, A >>= 1;
677e76048aSMarcel Moolenaar  *		if (Y & (1 << bit))
687e76048aSMarcel Moolenaar  *			A += X;
697e76048aSMarcel Moolenaar  *	}
707e76048aSMarcel Moolenaar  *
717e76048aSMarcel Moolenaar  * (X and Y here represent the mantissas of x and y respectively.)
727e76048aSMarcel Moolenaar  * The resultant accumulator (A) is the product's mantissa.  It may
737e76048aSMarcel Moolenaar  * be as large as 11.11111... in binary and hence may need to be
747e76048aSMarcel Moolenaar  * shifted right, but at most one bit.
757e76048aSMarcel Moolenaar  *
767e76048aSMarcel Moolenaar  * Since we do not have efficient multiword arithmetic, we code the
777e76048aSMarcel Moolenaar  * accumulator as four separate words, just like any other mantissa.
787e76048aSMarcel Moolenaar  * We use local variables in the hope that this is faster than memory.
797e76048aSMarcel Moolenaar  * We keep x->fp_mant in locals for the same reason.
807e76048aSMarcel Moolenaar  *
817e76048aSMarcel Moolenaar  * In the algorithm above, the bits in y are inspected one at a time.
827e76048aSMarcel Moolenaar  * We will pick them up 32 at a time and then deal with those 32, one
837e76048aSMarcel Moolenaar  * at a time.  Note, however, that we know several things about y:
847e76048aSMarcel Moolenaar  *
857e76048aSMarcel Moolenaar  *    - the guard and round bits at the bottom are sure to be zero;
867e76048aSMarcel Moolenaar  *
877e76048aSMarcel Moolenaar  *    - often many low bits are zero (y is often from a single or double
887e76048aSMarcel Moolenaar  *	precision source);
897e76048aSMarcel Moolenaar  *
907e76048aSMarcel Moolenaar  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
917e76048aSMarcel Moolenaar  *
927e76048aSMarcel Moolenaar  * We can also test for 32-zero-bits swiftly.  In this case, the center
937e76048aSMarcel Moolenaar  * part of the loop---setting sticky, shifting A, and not adding---will
947e76048aSMarcel Moolenaar  * run 32 times without adding X to A.  We can do a 32-bit shift faster
957e76048aSMarcel Moolenaar  * by simply moving words.  Since zeros are common, we optimize this case.
967e76048aSMarcel Moolenaar  * Furthermore, since A is initially zero, we can omit the shift as well
977e76048aSMarcel Moolenaar  * until we reach a nonzero word.
987e76048aSMarcel Moolenaar  */
997e76048aSMarcel Moolenaar struct fpn *
fpu_mul(struct fpemu * fe)1007e76048aSMarcel Moolenaar fpu_mul(struct fpemu *fe)
1017e76048aSMarcel Moolenaar {
1027e76048aSMarcel Moolenaar 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
1037e76048aSMarcel Moolenaar 	u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
1047e76048aSMarcel Moolenaar 	int sticky;
1057e76048aSMarcel Moolenaar 	FPU_DECL_CARRY;
1067e76048aSMarcel Moolenaar 
1077e76048aSMarcel Moolenaar 	/*
1087e76048aSMarcel Moolenaar 	 * Put the `heavier' operand on the right (see fpu_emu.h).
1097e76048aSMarcel Moolenaar 	 * Then we will have one of the following cases, taken in the
1107e76048aSMarcel Moolenaar 	 * following order:
1117e76048aSMarcel Moolenaar 	 *
1127e76048aSMarcel Moolenaar 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
1137e76048aSMarcel Moolenaar 	 *	The result is y.
1147e76048aSMarcel Moolenaar 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
1157e76048aSMarcel Moolenaar 	 *    case was taken care of earlier).
1167e76048aSMarcel Moolenaar 	 *	If x = 0, the result is NaN.  Otherwise the result
1177e76048aSMarcel Moolenaar 	 *	is y, with its sign reversed if x is negative.
1187e76048aSMarcel Moolenaar 	 *  - x = 0.  Implied: y is 0 or number.
1197e76048aSMarcel Moolenaar 	 *	The result is 0 (with XORed sign as usual).
1207e76048aSMarcel Moolenaar 	 *  - other.  Implied: both x and y are numbers.
1217e76048aSMarcel Moolenaar 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
1227e76048aSMarcel Moolenaar 	 */
1237e76048aSMarcel Moolenaar 	DPRINTF(FPE_REG, ("fpu_mul:\n"));
1247e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, x);
1257e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, y);
1267e76048aSMarcel Moolenaar 	DPRINTF(FPE_REG, ("=>\n"));
1277e76048aSMarcel Moolenaar 
1287e76048aSMarcel Moolenaar 	ORDER(x, y);
1297e76048aSMarcel Moolenaar 	if (ISNAN(y)) {
1307e76048aSMarcel Moolenaar 		y->fp_sign ^= x->fp_sign;
1317e76048aSMarcel Moolenaar 		fe->fe_cx |= FPSCR_VXSNAN;
1327e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, y);
1337e76048aSMarcel Moolenaar 		return (y);
1347e76048aSMarcel Moolenaar 	}
1357e76048aSMarcel Moolenaar 	if (ISINF(y)) {
1367e76048aSMarcel Moolenaar 		if (ISZERO(x)) {
1377e76048aSMarcel Moolenaar 			fe->fe_cx |= FPSCR_VXIMZ;
1387e76048aSMarcel Moolenaar 			return (fpu_newnan(fe));
1397e76048aSMarcel Moolenaar 		}
1407e76048aSMarcel Moolenaar 		y->fp_sign ^= x->fp_sign;
1417e76048aSMarcel Moolenaar 			DUMPFPN(FPE_REG, y);
1427e76048aSMarcel Moolenaar 		return (y);
1437e76048aSMarcel Moolenaar 	}
1447e76048aSMarcel Moolenaar 	if (ISZERO(x)) {
1457e76048aSMarcel Moolenaar 		x->fp_sign ^= y->fp_sign;
1467e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
1477e76048aSMarcel Moolenaar 		return (x);
1487e76048aSMarcel Moolenaar 	}
1497e76048aSMarcel Moolenaar 
1507e76048aSMarcel Moolenaar 	/*
1517e76048aSMarcel Moolenaar 	 * Setup.  In the code below, the mask `m' will hold the current
1527e76048aSMarcel Moolenaar 	 * mantissa byte from y.  The variable `bit' denotes the bit
1537e76048aSMarcel Moolenaar 	 * within m.  We also define some macros to deal with everything.
1547e76048aSMarcel Moolenaar 	 */
1557e76048aSMarcel Moolenaar 	x3 = x->fp_mant[3];
1567e76048aSMarcel Moolenaar 	x2 = x->fp_mant[2];
1577e76048aSMarcel Moolenaar 	x1 = x->fp_mant[1];
1587e76048aSMarcel Moolenaar 	x0 = x->fp_mant[0];
1597e76048aSMarcel Moolenaar 	sticky = a3 = a2 = a1 = a0 = 0;
1607e76048aSMarcel Moolenaar 
1617e76048aSMarcel Moolenaar #define	ADD	/* A += X */ \
1627e76048aSMarcel Moolenaar 	FPU_ADDS(a3, a3, x3); \
1637e76048aSMarcel Moolenaar 	FPU_ADDCS(a2, a2, x2); \
1647e76048aSMarcel Moolenaar 	FPU_ADDCS(a1, a1, x1); \
1657e76048aSMarcel Moolenaar 	FPU_ADDC(a0, a0, x0)
1667e76048aSMarcel Moolenaar 
1677e76048aSMarcel Moolenaar #define	SHR1	/* A >>= 1, with sticky */ \
1687e76048aSMarcel Moolenaar 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
1697e76048aSMarcel Moolenaar 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
1707e76048aSMarcel Moolenaar 
1717e76048aSMarcel Moolenaar #define	SHR32	/* A >>= 32, with sticky */ \
1727e76048aSMarcel Moolenaar 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
1737e76048aSMarcel Moolenaar 
1747e76048aSMarcel Moolenaar #define	STEP	/* each 1-bit step of the multiplication */ \
1757e76048aSMarcel Moolenaar 	SHR1; if (bit & m) { ADD; }; bit <<= 1
1767e76048aSMarcel Moolenaar 
1777e76048aSMarcel Moolenaar 	/*
1787e76048aSMarcel Moolenaar 	 * We are ready to begin.  The multiply loop runs once for each
1797e76048aSMarcel Moolenaar 	 * of the four 32-bit words.  Some words, however, are special.
1807e76048aSMarcel Moolenaar 	 * As noted above, the low order bits of Y are often zero.  Even
1817e76048aSMarcel Moolenaar 	 * if not, the first loop can certainly skip the guard bits.
1827e76048aSMarcel Moolenaar 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
1837e76048aSMarcel Moolenaar 	 * so we stop the loop when we move past that bit.
1847e76048aSMarcel Moolenaar 	 */
1857e76048aSMarcel Moolenaar 	if ((m = y->fp_mant[3]) == 0) {
1867e76048aSMarcel Moolenaar 		/* SHR32; */			/* unneeded since A==0 */
1877e76048aSMarcel Moolenaar 	} else {
1887e76048aSMarcel Moolenaar 		bit = 1 << FP_NG;
1897e76048aSMarcel Moolenaar 		do {
1907e76048aSMarcel Moolenaar 			STEP;
1917e76048aSMarcel Moolenaar 		} while (bit != 0);
1927e76048aSMarcel Moolenaar 	}
1937e76048aSMarcel Moolenaar 	if ((m = y->fp_mant[2]) == 0) {
1947e76048aSMarcel Moolenaar 		SHR32;
1957e76048aSMarcel Moolenaar 	} else {
1967e76048aSMarcel Moolenaar 		bit = 1;
1977e76048aSMarcel Moolenaar 		do {
1987e76048aSMarcel Moolenaar 			STEP;
1997e76048aSMarcel Moolenaar 		} while (bit != 0);
2007e76048aSMarcel Moolenaar 	}
2017e76048aSMarcel Moolenaar 	if ((m = y->fp_mant[1]) == 0) {
2027e76048aSMarcel Moolenaar 		SHR32;
2037e76048aSMarcel Moolenaar 	} else {
2047e76048aSMarcel Moolenaar 		bit = 1;
2057e76048aSMarcel Moolenaar 		do {
2067e76048aSMarcel Moolenaar 			STEP;
2077e76048aSMarcel Moolenaar 		} while (bit != 0);
2087e76048aSMarcel Moolenaar 	}
2097e76048aSMarcel Moolenaar 	m = y->fp_mant[0];		/* definitely != 0 */
2107e76048aSMarcel Moolenaar 	bit = 1;
2117e76048aSMarcel Moolenaar 	do {
2127e76048aSMarcel Moolenaar 		STEP;
2137e76048aSMarcel Moolenaar 	} while (bit <= m);
2147e76048aSMarcel Moolenaar 
2157e76048aSMarcel Moolenaar 	/*
2167e76048aSMarcel Moolenaar 	 * Done with mantissa calculation.  Get exponent and handle
2177e76048aSMarcel Moolenaar 	 * 11.111...1 case, then put result in place.  We reuse x since
2187e76048aSMarcel Moolenaar 	 * it already has the right class (FP_NUM).
2197e76048aSMarcel Moolenaar 	 */
2207e76048aSMarcel Moolenaar 	m = x->fp_exp + y->fp_exp;
2217e76048aSMarcel Moolenaar 	if (a0 >= FP_2) {
2227e76048aSMarcel Moolenaar 		SHR1;
2237e76048aSMarcel Moolenaar 		m++;
2247e76048aSMarcel Moolenaar 	}
2257e76048aSMarcel Moolenaar 	x->fp_sign ^= y->fp_sign;
2267e76048aSMarcel Moolenaar 	x->fp_exp = m;
2277e76048aSMarcel Moolenaar 	x->fp_sticky = sticky;
2287e76048aSMarcel Moolenaar 	x->fp_mant[3] = a3;
2297e76048aSMarcel Moolenaar 	x->fp_mant[2] = a2;
2307e76048aSMarcel Moolenaar 	x->fp_mant[1] = a1;
2317e76048aSMarcel Moolenaar 	x->fp_mant[0] = a0;
2327e76048aSMarcel Moolenaar 
2337e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, x);
2347e76048aSMarcel Moolenaar 	return (x);
2357e76048aSMarcel Moolenaar }
236