xref: /freebsd/sys/powerpc/fpu/fpu_implode.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*	$NetBSD: fpu_implode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
43  */
44 
45 /*
46  * FPU subroutines: `implode' internal format numbers into the machine's
47  * `packed binary' format.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include <sys/types.h>
54 #include <sys/systm.h>
55 
56 #include <machine/fpu.h>
57 #include <machine/ieee.h>
58 #include <machine/ieeefp.h>
59 #include <machine/reg.h>
60 
61 #include <powerpc/fpu/fpu_arith.h>
62 #include <powerpc/fpu/fpu_emu.h>
63 #include <powerpc/fpu/fpu_extern.h>
64 #include <powerpc/fpu/fpu_instr.h>
65 
66 static int round(struct fpemu *, struct fpn *);
67 static int toinf(struct fpemu *, int);
68 
69 /*
70  * Round a number (algorithm from Motorola MC68882 manual, modified for
71  * our internal format).  Set inexact exception if rounding is required.
72  * Return true iff we rounded up.
73  *
74  * After rounding, we discard the guard and round bits by shifting right
75  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
76  * This saves effort later.
77  *
78  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
79  * responsibility to fix this if necessary.
80  */
81 static int
82 round(struct fpemu *fe, struct fpn *fp)
83 {
84 	u_int m0, m1, m2, m3;
85 	int gr, s;
86 	FPU_DECL_CARRY;
87 
88 	m0 = fp->fp_mant[0];
89 	m1 = fp->fp_mant[1];
90 	m2 = fp->fp_mant[2];
91 	m3 = fp->fp_mant[3];
92 	gr = m3 & 3;
93 	s = fp->fp_sticky;
94 
95 	/* mant >>= FP_NG */
96 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
97 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
98 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
99 	m0 >>= FP_NG;
100 
101 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
102 		goto rounddown;
103 
104 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
105 
106 	/* Go to rounddown to round down; break to round up. */
107 	switch ((fe->fe_fpscr) & FPSCR_RN) {
108 	case FP_RN:
109 	default:
110 		/*
111 		 * Round only if guard is set (gr & 2).  If guard is set,
112 		 * but round & sticky both clear, then we want to round
113 		 * but have a tie, so round to even, i.e., add 1 iff odd.
114 		 */
115 		if ((gr & 2) == 0)
116 			goto rounddown;
117 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
118 			break;
119 		goto rounddown;
120 
121 	case FP_RZ:
122 		/* Round towards zero, i.e., down. */
123 		goto rounddown;
124 
125 	case FP_RM:
126 		/* Round towards -Inf: up if negative, down if positive. */
127 		if (fp->fp_sign)
128 			break;
129 		goto rounddown;
130 
131 	case FP_RP:
132 		/* Round towards +Inf: up if positive, down otherwise. */
133 		if (!fp->fp_sign)
134 			break;
135 		goto rounddown;
136 	}
137 
138 	/* Bump low bit of mantissa, with carry. */
139 	fe->fe_cx |= FPSCR_FR;
140 
141 	FPU_ADDS(m3, m3, 1);
142 	FPU_ADDCS(m2, m2, 0);
143 	FPU_ADDCS(m1, m1, 0);
144 	FPU_ADDC(m0, m0, 0);
145 	fp->fp_mant[0] = m0;
146 	fp->fp_mant[1] = m1;
147 	fp->fp_mant[2] = m2;
148 	fp->fp_mant[3] = m3;
149 	return (1);
150 
151 rounddown:
152 	fp->fp_mant[0] = m0;
153 	fp->fp_mant[1] = m1;
154 	fp->fp_mant[2] = m2;
155 	fp->fp_mant[3] = m3;
156 	return (0);
157 }
158 
159 /*
160  * For overflow: return true if overflow is to go to +/-Inf, according
161  * to the sign of the overflowing result.  If false, overflow is to go
162  * to the largest magnitude value instead.
163  */
164 static int
165 toinf(struct fpemu *fe, int sign)
166 {
167 	int inf;
168 
169 	/* look at rounding direction */
170 	switch ((fe->fe_fpscr) & FPSCR_RN) {
171 	default:
172 	case FP_RN:		/* the nearest value is always Inf */
173 		inf = 1;
174 		break;
175 
176 	case FP_RZ:		/* toward 0 => never towards Inf */
177 		inf = 0;
178 		break;
179 
180 	case FP_RP:		/* toward +Inf iff positive */
181 		inf = sign == 0;
182 		break;
183 
184 	case FP_RM:		/* toward -Inf iff negative */
185 		inf = sign;
186 		break;
187 	}
188 	if (inf)
189 		fe->fe_cx |= FPSCR_OX;
190 	return (inf);
191 }
192 
193 /*
194  * fpn -> int (int value returned as return value).
195  *
196  * N.B.: this conversion always rounds towards zero (this is a peculiarity
197  * of the SPARC instruction set).
198  */
199 u_int
200 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
201 {
202 	u_int i;
203 	int sign, exp;
204 
205 	sign = fp->fp_sign;
206 	switch (fp->fp_class) {
207 	case FPC_ZERO:
208 		return (0);
209 
210 	case FPC_NUM:
211 		/*
212 		 * If exp >= 2^32, overflow.  Otherwise shift value right
213 		 * into last mantissa word (this will not exceed 0xffffffff),
214 		 * shifting any guard and round bits out into the sticky
215 		 * bit.  Then ``round'' towards zero, i.e., just set an
216 		 * inexact exception if sticky is set (see round()).
217 		 * If the result is > 0x80000000, or is positive and equals
218 		 * 0x80000000, overflow; otherwise the last fraction word
219 		 * is the result.
220 		 */
221 		if ((exp = fp->fp_exp) >= 32)
222 			break;
223 		/* NB: the following includes exp < 0 cases */
224 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
225 			fe->fe_cx |= FPSCR_UX;
226 		i = fp->fp_mant[3];
227 		if (i >= ((u_int)0x80000000 + sign))
228 			break;
229 		return (sign ? -i : i);
230 
231 	default:		/* Inf, qNaN, sNaN */
232 		break;
233 	}
234 	/* overflow: replace any inexact exception with invalid */
235 	fe->fe_cx |= FPSCR_VXCVI;
236 	return (0x7fffffff + sign);
237 }
238 
239 /*
240  * fpn -> extended int (high bits of int value returned as return value).
241  *
242  * N.B.: this conversion always rounds towards zero (this is a peculiarity
243  * of the SPARC instruction set).
244  */
245 u_int
246 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
247 {
248 	u_int64_t i;
249 	int sign, exp;
250 
251 	sign = fp->fp_sign;
252 	switch (fp->fp_class) {
253 	case FPC_ZERO:
254 		res[1] = 0;
255 		return (0);
256 
257 	case FPC_NUM:
258 		/*
259 		 * If exp >= 2^64, overflow.  Otherwise shift value right
260 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
261 		 * shifting any guard and round bits out into the sticky
262 		 * bit.  Then ``round'' towards zero, i.e., just set an
263 		 * inexact exception if sticky is set (see round()).
264 		 * If the result is > 0x8000000000000000, or is positive and equals
265 		 * 0x8000000000000000, overflow; otherwise the last fraction word
266 		 * is the result.
267 		 */
268 		if ((exp = fp->fp_exp) >= 64)
269 			break;
270 		/* NB: the following includes exp < 0 cases */
271 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
272 			fe->fe_cx |= FPSCR_UX;
273 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
274 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
275 			break;
276 		return (sign ? -i : i);
277 
278 	default:		/* Inf, qNaN, sNaN */
279 		break;
280 	}
281 	/* overflow: replace any inexact exception with invalid */
282 	fe->fe_cx |= FPSCR_VXCVI;
283 	return (0x7fffffffffffffffLL + sign);
284 }
285 
286 /*
287  * fpn -> single (32 bit single returned as return value).
288  * We assume <= 29 bits in a single-precision fraction (1.f part).
289  */
290 u_int
291 fpu_ftos(struct fpemu *fe, struct fpn *fp)
292 {
293 	u_int sign = fp->fp_sign << 31;
294 	int exp;
295 
296 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
297 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
298 
299 	/* Take care of non-numbers first. */
300 	if (ISNAN(fp)) {
301 		/*
302 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
303 		 * Note that fp->fp_mant[0] has the quiet bit set,
304 		 * even if it is classified as a signalling NaN.
305 		 */
306 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
307 		exp = SNG_EXP_INFNAN;
308 		goto done;
309 	}
310 	if (ISINF(fp))
311 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
312 	if (ISZERO(fp))
313 		return (sign);
314 
315 	/*
316 	 * Normals (including subnormals).  Drop all the fraction bits
317 	 * (including the explicit ``implied'' 1 bit) down into the
318 	 * single-precision range.  If the number is subnormal, move
319 	 * the ``implied'' 1 into the explicit range as well, and shift
320 	 * right to introduce leading zeroes.  Rounding then acts
321 	 * differently for normals and subnormals: the largest subnormal
322 	 * may round to the smallest normal (1.0 x 2^minexp), or may
323 	 * remain subnormal.  In the latter case, signal an underflow
324 	 * if the result was inexact or if underflow traps are enabled.
325 	 *
326 	 * Rounding a normal, on the other hand, always produces another
327 	 * normal (although either way the result might be too big for
328 	 * single precision, and cause an overflow).  If rounding a
329 	 * normal produces 2.0 in the fraction, we need not adjust that
330 	 * fraction at all, since both 1.0 and 2.0 are zero under the
331 	 * fraction mask.
332 	 *
333 	 * Note that the guard and round bits vanish from the number after
334 	 * rounding.
335 	 */
336 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
337 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
338 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
339 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
340 			return (sign | SNG_EXP(1) | 0);
341 		if ((fe->fe_cx & FPSCR_FI) ||
342 		    (fe->fe_fpscr & FPSCR_UX))
343 			fe->fe_cx |= FPSCR_UX;
344 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
345 	}
346 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
347 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
348 #ifdef DIAGNOSTIC
349 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
350 		panic("fpu_ftos");
351 #endif
352 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
353 		exp++;
354 	if (exp >= SNG_EXP_INFNAN) {
355 		/* overflow to inf or to max single */
356 		if (toinf(fe, sign))
357 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
358 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
359 	}
360 done:
361 	/* phew, made it */
362 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
363 }
364 
365 /*
366  * fpn -> double (32 bit high-order result returned; 32-bit low order result
367  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
368  *
369  * This code mimics fpu_ftos; see it for comments.
370  */
371 u_int
372 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
373 {
374 	u_int sign = fp->fp_sign << 31;
375 	int exp;
376 
377 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
378 #define	DBL_MASK	(DBL_EXP(1) - 1)
379 
380 	if (ISNAN(fp)) {
381 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
382 		exp = DBL_EXP_INFNAN;
383 		goto done;
384 	}
385 	if (ISINF(fp)) {
386 		sign |= DBL_EXP(DBL_EXP_INFNAN);
387 		goto zero;
388 	}
389 	if (ISZERO(fp)) {
390 zero:		res[1] = 0;
391 		return (sign);
392 	}
393 
394 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
395 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
396 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
397 			res[1] = 0;
398 			return (sign | DBL_EXP(1) | 0);
399 		}
400 		if ((fe->fe_cx & FPSCR_FI) ||
401 		    (fe->fe_fpscr & FPSCR_UX))
402 			fe->fe_cx |= FPSCR_UX;
403 		exp = 0;
404 		goto done;
405 	}
406 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
407 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
408 		exp++;
409 	if (exp >= DBL_EXP_INFNAN) {
410 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
411 		if (toinf(fe, sign)) {
412 			res[1] = 0;
413 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
414 		}
415 		res[1] = ~0;
416 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
417 	}
418 done:
419 	res[1] = fp->fp_mant[3];
420 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
421 }
422 
423 /*
424  * Implode an fpn, writing the result into the given space.
425  */
426 void
427 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
428 {
429 
430 	switch (type) {
431 	case FTYPE_LNG:
432 		space[0] = fpu_ftox(fe, fp, space);
433 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
434 			space[0], space[1]));
435 		break;
436 
437 	case FTYPE_INT:
438 		space[0] = 0;
439 		space[1] = fpu_ftoi(fe, fp);
440 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
441 			space[1]));
442 		break;
443 
444 	case FTYPE_SNG:
445 		space[0] = fpu_ftos(fe, fp);
446 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
447 			space[0]));
448 		break;
449 
450 	case FTYPE_DBL:
451 		space[0] = fpu_ftod(fe, fp, space);
452 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
453 			space[0], space[1]));
454 		break;		break;
455 
456 	default:
457 		panic("fpu_implode: invalid type %d", type);
458 	}
459 }
460