xref: /freebsd/sys/powerpc/fpu/fpu_explode.c (revision 9f44a47fd07924afc035991af15d84e6585dea4f)
1 /*	$NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*-
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This software was developed by the Computer Systems Engineering group
10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11  * contributed to Berkeley.
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
43  */
44 
45 /*
46  * FPU subroutines: `explode' the machine's `packed binary' format numbers
47  * into our internal format.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include <sys/types.h>
54 #include <sys/systm.h>
55 
56 #include <machine/fpu.h>
57 #include <machine/ieee.h>
58 #include <machine/pcb.h>
59 
60 #include <powerpc/fpu/fpu_arith.h>
61 #include <powerpc/fpu/fpu_emu.h>
62 #include <powerpc/fpu/fpu_extern.h>
63 #include <powerpc/fpu/fpu_instr.h>
64 
65 /*
66  * N.B.: in all of the following, we assume the FP format is
67  *
68  *	---------------------------
69  *	| s | exponent | fraction |
70  *	---------------------------
71  *
72  * (which represents -1**s * 1.fraction * 2**exponent), so that the
73  * sign bit is way at the top (bit 31), the exponent is next, and
74  * then the remaining bits mark the fraction.  A zero exponent means
75  * zero or denormalized (0.fraction rather than 1.fraction), and the
76  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
77  *
78  * Since the sign bit is always the topmost bit---this holds even for
79  * integers---we set that outside all the *tof functions.  Each function
80  * returns the class code for the new number (but note that we use
81  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
82  */
83 
84 /*
85  * int -> fpn.
86  */
87 int
88 fpu_itof(struct fpn *fp, u_int i)
89 {
90 
91 	if (i == 0)
92 		return (FPC_ZERO);
93 	/*
94 	 * The value FP_1 represents 2^FP_LG, so set the exponent
95 	 * there and let normalization fix it up.  Convert negative
96 	 * numbers to sign-and-magnitude.  Note that this relies on
97 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
98 	 */
99 	fp->fp_exp = FP_LG;
100 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
101 	fp->fp_mant[1] = 0;
102 	fp->fp_mant[2] = 0;
103 	fp->fp_mant[3] = 0;
104 	fpu_norm(fp);
105 	return (FPC_NUM);
106 }
107 
108 /*
109  * 64-bit int -> fpn.
110  */
111 int
112 fpu_xtof(struct fpn *fp, u_int64_t i)
113 {
114 
115 	if (i == 0)
116 		return (FPC_ZERO);
117 	/*
118 	 * The value FP_1 represents 2^FP_LG, so set the exponent
119 	 * there and let normalization fix it up.  Convert negative
120 	 * numbers to sign-and-magnitude.  Note that this relies on
121 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
122 	 */
123 	fp->fp_exp = FP_LG2;
124 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
125 	fp->fp_mant[2] = 0;
126 	fp->fp_mant[3] = 0;
127 	fpu_norm(fp);
128 	return (FPC_NUM);
129 }
130 
131 #define	mask(nbits) ((1L << (nbits)) - 1)
132 
133 /*
134  * All external floating formats convert to internal in the same manner,
135  * as defined here.  Note that only normals get an implied 1.0 inserted.
136  */
137 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
138 	if (exp == 0) { \
139 		if (allfrac == 0) \
140 			return (FPC_ZERO); \
141 		fp->fp_exp = 1 - expbias; \
142 		fp->fp_mant[0] = f0; \
143 		fp->fp_mant[1] = f1; \
144 		fp->fp_mant[2] = f2; \
145 		fp->fp_mant[3] = f3; \
146 		fpu_norm(fp); \
147 		return (FPC_NUM); \
148 	} \
149 	if (exp == (2 * expbias + 1)) { \
150 		if (allfrac == 0) \
151 			return (FPC_INF); \
152 		fp->fp_mant[0] = f0; \
153 		fp->fp_mant[1] = f1; \
154 		fp->fp_mant[2] = f2; \
155 		fp->fp_mant[3] = f3; \
156 		return (FPC_QNAN); \
157 	} \
158 	fp->fp_exp = exp - expbias; \
159 	fp->fp_mant[0] = FP_1 | f0; \
160 	fp->fp_mant[1] = f1; \
161 	fp->fp_mant[2] = f2; \
162 	fp->fp_mant[3] = f3; \
163 	return (FPC_NUM)
164 
165 /*
166  * 32-bit single precision -> fpn.
167  * We assume a single occupies at most (64-FP_LG) bits in the internal
168  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
169  */
170 int
171 fpu_stof(struct fpn *fp, u_int i)
172 {
173 	int exp;
174 	u_int frac, f0, f1;
175 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
176 
177 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
178 	frac = i & mask(SNG_FRACBITS);
179 	f0 = frac >> SNG_SHIFT;
180 	f1 = frac << (32 - SNG_SHIFT);
181 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
182 }
183 
184 /*
185  * 64-bit double -> fpn.
186  * We assume this uses at most (96-FP_LG) bits.
187  */
188 int
189 fpu_dtof(struct fpn *fp, u_int i, u_int j)
190 {
191 	int exp;
192 	u_int frac, f0, f1, f2;
193 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
194 
195 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
196 	frac = i & mask(DBL_FRACBITS - 32);
197 	f0 = frac >> DBL_SHIFT;
198 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
199 	f2 = j << (32 - DBL_SHIFT);
200 	frac |= j;
201 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
202 }
203 
204 /*
205  * Explode the contents of a register / regpair / regquad.
206  * If the input is a signalling NaN, an NV (invalid) exception
207  * will be set.  (Note that nothing but NV can occur until ALU
208  * operations are performed.)
209  */
210 void
211 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
212 {
213 	u_int s, *space;
214 	u_int64_t l, *xspace;
215 
216 	xspace = (u_int64_t *)&fe->fe_fpstate->fpr[reg].fpr;
217 	l = xspace[0];
218 	space = (u_int *)&fe->fe_fpstate->fpr[reg].fpr;
219 	s = space[0];
220 	fp->fp_sign = s >> 31;
221 	fp->fp_sticky = 0;
222 	switch (type) {
223 	case FTYPE_LNG:
224 		s = fpu_xtof(fp, l);
225 		break;
226 
227 	case FTYPE_INT:
228 		s = fpu_itof(fp, space[1]);
229 		break;
230 
231 	case FTYPE_SNG:
232 		s = fpu_stof(fp, s);
233 		break;
234 
235 	case FTYPE_DBL:
236 		s = fpu_dtof(fp, s, space[1]);
237 		break;
238 
239 	default:
240 		panic("fpu_explode");
241 		panic("fpu_explode: invalid type %d", type);
242 	}
243 
244 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
245 		/*
246 		 * Input is a signalling NaN.  All operations that return
247 		 * an input NaN operand put it through a ``NaN conversion'',
248 		 * which basically just means ``turn on the quiet bit''.
249 		 * We do this here so that all NaNs internally look quiet
250 		 * (we can tell signalling ones by their class).
251 		 */
252 		fp->fp_mant[0] |= FP_QUIETBIT;
253 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
254 		s = FPC_SNAN;
255 	}
256 	fp->fp_class = s;
257 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
258 		((type == FTYPE_INT) ? 'i' :
259 			((type == FTYPE_SNG) ? 's' :
260 				((type == FTYPE_DBL) ? 'd' : '?'))),
261 		reg));
262 	DUMPFPN(FPE_REG, fp);
263 	DPRINTF(FPE_REG, ("\n"));
264 }
265