xref: /freebsd/sys/powerpc/fpu/fpu_explode.c (revision 7d99ab9fd0cc2c1ce2ecef0ed6d0672c2a50b0cb)
1 /*	$NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
41  */
42 
43 /*
44  * FPU subroutines: `explode' the machine's `packed binary' format numbers
45  * into our internal format.
46  */
47 
48 #include <sys/cdefs.h>
49 __FBSDID("$FreeBSD$");
50 
51 #include <sys/types.h>
52 #include <sys/systm.h>
53 
54 #include <machine/fpu.h>
55 #include <machine/ieee.h>
56 #include <machine/reg.h>
57 
58 #include <powerpc/fpu/fpu_arith.h>
59 #include <powerpc/fpu/fpu_emu.h>
60 #include <powerpc/fpu/fpu_extern.h>
61 #include <powerpc/fpu/fpu_instr.h>
62 
63 /*
64  * N.B.: in all of the following, we assume the FP format is
65  *
66  *	---------------------------
67  *	| s | exponent | fraction |
68  *	---------------------------
69  *
70  * (which represents -1**s * 1.fraction * 2**exponent), so that the
71  * sign bit is way at the top (bit 31), the exponent is next, and
72  * then the remaining bits mark the fraction.  A zero exponent means
73  * zero or denormalized (0.fraction rather than 1.fraction), and the
74  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
75  *
76  * Since the sign bit is always the topmost bit---this holds even for
77  * integers---we set that outside all the *tof functions.  Each function
78  * returns the class code for the new number (but note that we use
79  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
80  */
81 
82 /*
83  * int -> fpn.
84  */
85 int
86 fpu_itof(struct fpn *fp, u_int i)
87 {
88 
89 	if (i == 0)
90 		return (FPC_ZERO);
91 	/*
92 	 * The value FP_1 represents 2^FP_LG, so set the exponent
93 	 * there and let normalization fix it up.  Convert negative
94 	 * numbers to sign-and-magnitude.  Note that this relies on
95 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
96 	 */
97 	fp->fp_exp = FP_LG;
98 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
99 	fp->fp_mant[1] = 0;
100 	fp->fp_mant[2] = 0;
101 	fp->fp_mant[3] = 0;
102 	fpu_norm(fp);
103 	return (FPC_NUM);
104 }
105 
106 /*
107  * 64-bit int -> fpn.
108  */
109 int
110 fpu_xtof(struct fpn *fp, u_int64_t i)
111 {
112 
113 	if (i == 0)
114 		return (FPC_ZERO);
115 	/*
116 	 * The value FP_1 represents 2^FP_LG, so set the exponent
117 	 * there and let normalization fix it up.  Convert negative
118 	 * numbers to sign-and-magnitude.  Note that this relies on
119 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
120 	 */
121 	fp->fp_exp = FP_LG2;
122 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
123 	fp->fp_mant[2] = 0;
124 	fp->fp_mant[3] = 0;
125 	fpu_norm(fp);
126 	return (FPC_NUM);
127 }
128 
129 #define	mask(nbits) ((1L << (nbits)) - 1)
130 
131 /*
132  * All external floating formats convert to internal in the same manner,
133  * as defined here.  Note that only normals get an implied 1.0 inserted.
134  */
135 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
136 	if (exp == 0) { \
137 		if (allfrac == 0) \
138 			return (FPC_ZERO); \
139 		fp->fp_exp = 1 - expbias; \
140 		fp->fp_mant[0] = f0; \
141 		fp->fp_mant[1] = f1; \
142 		fp->fp_mant[2] = f2; \
143 		fp->fp_mant[3] = f3; \
144 		fpu_norm(fp); \
145 		return (FPC_NUM); \
146 	} \
147 	if (exp == (2 * expbias + 1)) { \
148 		if (allfrac == 0) \
149 			return (FPC_INF); \
150 		fp->fp_mant[0] = f0; \
151 		fp->fp_mant[1] = f1; \
152 		fp->fp_mant[2] = f2; \
153 		fp->fp_mant[3] = f3; \
154 		return (FPC_QNAN); \
155 	} \
156 	fp->fp_exp = exp - expbias; \
157 	fp->fp_mant[0] = FP_1 | f0; \
158 	fp->fp_mant[1] = f1; \
159 	fp->fp_mant[2] = f2; \
160 	fp->fp_mant[3] = f3; \
161 	return (FPC_NUM)
162 
163 /*
164  * 32-bit single precision -> fpn.
165  * We assume a single occupies at most (64-FP_LG) bits in the internal
166  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
167  */
168 int
169 fpu_stof(struct fpn *fp, u_int i)
170 {
171 	int exp;
172 	u_int frac, f0, f1;
173 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
174 
175 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
176 	frac = i & mask(SNG_FRACBITS);
177 	f0 = frac >> SNG_SHIFT;
178 	f1 = frac << (32 - SNG_SHIFT);
179 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
180 }
181 
182 /*
183  * 64-bit double -> fpn.
184  * We assume this uses at most (96-FP_LG) bits.
185  */
186 int
187 fpu_dtof(struct fpn *fp, u_int i, u_int j)
188 {
189 	int exp;
190 	u_int frac, f0, f1, f2;
191 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
192 
193 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
194 	frac = i & mask(DBL_FRACBITS - 32);
195 	f0 = frac >> DBL_SHIFT;
196 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
197 	f2 = j << (32 - DBL_SHIFT);
198 	frac |= j;
199 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
200 }
201 
202 /*
203  * Explode the contents of a register / regpair / regquad.
204  * If the input is a signalling NaN, an NV (invalid) exception
205  * will be set.  (Note that nothing but NV can occur until ALU
206  * operations are performed.)
207  */
208 void
209 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
210 {
211 	u_int s, *space;
212 	u_int64_t l, *xspace;
213 
214 	xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
215 	l = xspace[0];
216 	space = (u_int *)&fe->fe_fpstate->fpreg[reg];
217 	s = space[0];
218 	fp->fp_sign = s >> 31;
219 	fp->fp_sticky = 0;
220 	switch (type) {
221 
222 	case FTYPE_LNG:
223 		s = fpu_xtof(fp, l);
224 		break;
225 
226 	case FTYPE_INT:
227 		s = fpu_itof(fp, space[1]);
228 		break;
229 
230 	case FTYPE_SNG:
231 		s = fpu_stof(fp, s);
232 		break;
233 
234 	case FTYPE_DBL:
235 		s = fpu_dtof(fp, s, space[1]);
236 		break;
237 
238 		panic("fpu_explode");
239 		panic("fpu_explode: invalid type %d", type);
240 	}
241 
242 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
243 		/*
244 		 * Input is a signalling NaN.  All operations that return
245 		 * an input NaN operand put it through a ``NaN conversion'',
246 		 * which basically just means ``turn on the quiet bit''.
247 		 * We do this here so that all NaNs internally look quiet
248 		 * (we can tell signalling ones by their class).
249 		 */
250 		fp->fp_mant[0] |= FP_QUIETBIT;
251 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
252 		s = FPC_SNAN;
253 	}
254 	fp->fp_class = s;
255 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
256 		((type == FTYPE_INT) ? 'i' :
257 			((type == FTYPE_SNG) ? 's' :
258 				((type == FTYPE_DBL) ? 'd' : '?'))),
259 		reg));
260 	DUMPFPN(FPE_REG, fp);
261 	DPRINTF(FPE_REG, ("\n"));
262 }
263