xref: /freebsd/sys/powerpc/fpu/fpu_div.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*	$NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
41  */
42 
43 /*
44  * Perform an FPU divide (return x / y).
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/types.h>
51 #include <sys/systm.h>
52 
53 #include <machine/fpu.h>
54 #include <machine/reg.h>
55 
56 #include <powerpc/fpu/fpu_arith.h>
57 #include <powerpc/fpu/fpu_emu.h>
58 
59 /*
60  * Division of normal numbers is done as follows:
61  *
62  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
63  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
64  *
65  *	q = (X / Y) * 2^((x exponent) - (y exponent))
66  *
67  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
68  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
69  * if X < Y.  In that case, it will have to be shifted left one bit to
70  * become a normal number, and the exponent decremented.  Thus, the
71  * desired exponent is:
72  *
73  *	left_shift = x->fp_mant < y->fp_mant;
74  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
75  *
76  * The quotient mantissa X/Y can then be computed one bit at a time
77  * using the following algorithm:
78  *
79  *	Q = 0;			-- Initial quotient.
80  *	R = X;			-- Initial remainder,
81  *	if (left_shift)		--   but fixed up in advance.
82  *		R *= 2;
83  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
84  *		if (R >= Y) {
85  *			Q |= 1 << bit;
86  *			R -= Y;
87  *		}
88  *	}
89  *
90  * The subtraction R -= Y always removes the uppermost bit from R (and
91  * can sometimes remove additional lower-order 1 bits); this proof is
92  * left to the reader.
93  *
94  * This loop correctly calculates the guard and round bits since they are
95  * included in the expanded internal representation.  The sticky bit
96  * is to be set if and only if any other bits beyond guard and round
97  * would be set.  From the above it is obvious that this is true if and
98  * only if the remainder R is nonzero when the loop terminates.
99  *
100  * Examining the loop above, we can see that the quotient Q is built
101  * one bit at a time ``from the top down''.  This means that we can
102  * dispense with the multi-word arithmetic and just build it one word
103  * at a time, writing each result word when it is done.
104  *
105  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
106  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
107  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
108  * set, and R can be set initially to either X - Y (when X >= Y) or
109  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
110  * so we will simply calculate R - Y and see if that underflows.
111  * This leads to the following revised version of the algorithm:
112  *
113  *	R = X;
114  *	bit = FP_1;
115  *	D = R - Y;
116  *	if (D >= 0) {
117  *		result_exp = x->fp_exp - y->fp_exp;
118  *		R = D;
119  *		q = bit;
120  *		bit >>= 1;
121  *	} else {
122  *		result_exp = x->fp_exp - y->fp_exp - 1;
123  *		q = 0;
124  *	}
125  *	R <<= 1;
126  *	do  {
127  *		D = R - Y;
128  *		if (D >= 0) {
129  *			q |= bit;
130  *			R = D;
131  *		}
132  *		R <<= 1;
133  *	} while ((bit >>= 1) != 0);
134  *	Q[0] = q;
135  *	for (i = 1; i < 4; i++) {
136  *		q = 0, bit = 1 << 31;
137  *		do {
138  *			D = R - Y;
139  *			if (D >= 0) {
140  *				q |= bit;
141  *				R = D;
142  *			}
143  *			R <<= 1;
144  *		} while ((bit >>= 1) != 0);
145  *		Q[i] = q;
146  *	}
147  *
148  * This can be refined just a bit further by moving the `R <<= 1'
149  * calculations to the front of the do-loops and eliding the first one.
150  * The process can be terminated immediately whenever R becomes 0, but
151  * this is relatively rare, and we do not bother.
152  */
153 
154 struct fpn *
155 fpu_div(struct fpemu *fe)
156 {
157 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
158 	u_int q, bit;
159 	u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
160 	FPU_DECL_CARRY
161 
162 	/*
163 	 * Since divide is not commutative, we cannot just use ORDER.
164 	 * Check either operand for NaN first; if there is at least one,
165 	 * order the signalling one (if only one) onto the right, then
166 	 * return it.  Otherwise we have the following cases:
167 	 *
168 	 *	Inf / Inf = NaN, plus NV exception
169 	 *	Inf / num = Inf [i.e., return x]
170 	 *	Inf / 0   = Inf [i.e., return x]
171 	 *	0 / Inf = 0 [i.e., return x]
172 	 *	0 / num = 0 [i.e., return x]
173 	 *	0 / 0   = NaN, plus NV exception
174 	 *	num / Inf = 0
175 	 *	num / num = num (do the divide)
176 	 *	num / 0   = Inf, plus DZ exception
177 	 */
178 	DPRINTF(FPE_REG, ("fpu_div:\n"));
179 	DUMPFPN(FPE_REG, x);
180 	DUMPFPN(FPE_REG, y);
181 	DPRINTF(FPE_REG, ("=>\n"));
182 	if (ISNAN(x) || ISNAN(y)) {
183 		ORDER(x, y);
184 		fe->fe_cx |= FPSCR_VXSNAN;
185 		DUMPFPN(FPE_REG, y);
186 		return (y);
187 	}
188 	/*
189 	 * Need to split the following out cause they generate different
190 	 * exceptions.
191 	 */
192 	if (ISINF(x)) {
193 		if (x->fp_class == y->fp_class) {
194 			fe->fe_cx |= FPSCR_VXIDI;
195 			return (fpu_newnan(fe));
196 		}
197 		DUMPFPN(FPE_REG, x);
198 		return (x);
199 	}
200 	if (ISZERO(x)) {
201 		fe->fe_cx |= FPSCR_ZX;
202 		if (x->fp_class == y->fp_class) {
203 			fe->fe_cx |= FPSCR_VXZDZ;
204 			return (fpu_newnan(fe));
205 		}
206 		DUMPFPN(FPE_REG, x);
207 		return (x);
208 	}
209 
210 	/* all results at this point use XOR of operand signs */
211 	x->fp_sign ^= y->fp_sign;
212 	if (ISINF(y)) {
213 		x->fp_class = FPC_ZERO;
214 		DUMPFPN(FPE_REG, x);
215 		return (x);
216 	}
217 	if (ISZERO(y)) {
218 		fe->fe_cx = FPSCR_ZX;
219 		x->fp_class = FPC_INF;
220 		DUMPFPN(FPE_REG, x);
221 		return (x);
222 	}
223 
224 	/*
225 	 * Macros for the divide.  See comments at top for algorithm.
226 	 * Note that we expand R, D, and Y here.
227 	 */
228 
229 #define	SUBTRACT		/* D = R - Y */ \
230 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
231 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
232 
233 #define	NONNEGATIVE		/* D >= 0 */ \
234 	((int)d0 >= 0)
235 
236 #ifdef FPU_SHL1_BY_ADD
237 #define	SHL1			/* R <<= 1 */ \
238 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
239 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
240 #else
241 #define	SHL1 \
242 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
243 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
244 #endif
245 
246 #define	LOOP			/* do ... while (bit >>= 1) */ \
247 	do { \
248 		SHL1; \
249 		SUBTRACT; \
250 		if (NONNEGATIVE) { \
251 			q |= bit; \
252 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
253 		} \
254 	} while ((bit >>= 1) != 0)
255 
256 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
257 	q = 0; \
258 	bit = 1 << 31; \
259 	LOOP; \
260 	(x)->fp_mant[i] = q
261 
262 	/* Setup.  Note that we put our result in x. */
263 	r0 = x->fp_mant[0];
264 	r1 = x->fp_mant[1];
265 	r2 = x->fp_mant[2];
266 	r3 = x->fp_mant[3];
267 	y0 = y->fp_mant[0];
268 	y1 = y->fp_mant[1];
269 	y2 = y->fp_mant[2];
270 	y3 = y->fp_mant[3];
271 
272 	bit = FP_1;
273 	SUBTRACT;
274 	if (NONNEGATIVE) {
275 		x->fp_exp -= y->fp_exp;
276 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
277 		q = bit;
278 		bit >>= 1;
279 	} else {
280 		x->fp_exp -= y->fp_exp + 1;
281 		q = 0;
282 	}
283 	LOOP;
284 	x->fp_mant[0] = q;
285 	WORD(x, 1);
286 	WORD(x, 2);
287 	WORD(x, 3);
288 	x->fp_sticky = r0 | r1 | r2 | r3;
289 
290 	DUMPFPN(FPE_REG, x);
291 	return (x);
292 }
293