xref: /freebsd/sys/powerpc/fpu/fpu_div.c (revision 7e76048a6983e2f98c82d50ccd83bcdffe5a69d4)
17e76048aSMarcel Moolenaar /*	$NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
27e76048aSMarcel Moolenaar 
37e76048aSMarcel Moolenaar /*
47e76048aSMarcel Moolenaar  * Copyright (c) 1992, 1993
57e76048aSMarcel Moolenaar  *	The Regents of the University of California.  All rights reserved.
67e76048aSMarcel Moolenaar  *
77e76048aSMarcel Moolenaar  * This software was developed by the Computer Systems Engineering group
87e76048aSMarcel Moolenaar  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
97e76048aSMarcel Moolenaar  * contributed to Berkeley.
107e76048aSMarcel Moolenaar  *
117e76048aSMarcel Moolenaar  * All advertising materials mentioning features or use of this software
127e76048aSMarcel Moolenaar  * must display the following acknowledgement:
137e76048aSMarcel Moolenaar  *	This product includes software developed by the University of
147e76048aSMarcel Moolenaar  *	California, Lawrence Berkeley Laboratory.
157e76048aSMarcel Moolenaar  *
167e76048aSMarcel Moolenaar  * Redistribution and use in source and binary forms, with or without
177e76048aSMarcel Moolenaar  * modification, are permitted provided that the following conditions
187e76048aSMarcel Moolenaar  * are met:
197e76048aSMarcel Moolenaar  * 1. Redistributions of source code must retain the above copyright
207e76048aSMarcel Moolenaar  *    notice, this list of conditions and the following disclaimer.
217e76048aSMarcel Moolenaar  * 2. Redistributions in binary form must reproduce the above copyright
227e76048aSMarcel Moolenaar  *    notice, this list of conditions and the following disclaimer in the
237e76048aSMarcel Moolenaar  *    documentation and/or other materials provided with the distribution.
247e76048aSMarcel Moolenaar  * 3. Neither the name of the University nor the names of its contributors
257e76048aSMarcel Moolenaar  *    may be used to endorse or promote products derived from this software
267e76048aSMarcel Moolenaar  *    without specific prior written permission.
277e76048aSMarcel Moolenaar  *
287e76048aSMarcel Moolenaar  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
297e76048aSMarcel Moolenaar  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
307e76048aSMarcel Moolenaar  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
317e76048aSMarcel Moolenaar  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
327e76048aSMarcel Moolenaar  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
337e76048aSMarcel Moolenaar  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
347e76048aSMarcel Moolenaar  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
357e76048aSMarcel Moolenaar  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
367e76048aSMarcel Moolenaar  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
377e76048aSMarcel Moolenaar  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
387e76048aSMarcel Moolenaar  * SUCH DAMAGE.
397e76048aSMarcel Moolenaar  *
407e76048aSMarcel Moolenaar  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
417e76048aSMarcel Moolenaar  */
427e76048aSMarcel Moolenaar 
437e76048aSMarcel Moolenaar /*
447e76048aSMarcel Moolenaar  * Perform an FPU divide (return x / y).
457e76048aSMarcel Moolenaar  */
467e76048aSMarcel Moolenaar 
477e76048aSMarcel Moolenaar #include <sys/cdefs.h>
487e76048aSMarcel Moolenaar __FBSDID("$FreeBSD$");
497e76048aSMarcel Moolenaar 
507e76048aSMarcel Moolenaar #include <sys/systm.h>
517e76048aSMarcel Moolenaar #include <sys/types.h>
527e76048aSMarcel Moolenaar 
537e76048aSMarcel Moolenaar #include <machine/fpu.h>
547e76048aSMarcel Moolenaar #include <machine/reg.h>
557e76048aSMarcel Moolenaar 
567e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h>
577e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h>
587e76048aSMarcel Moolenaar 
597e76048aSMarcel Moolenaar /*
607e76048aSMarcel Moolenaar  * Division of normal numbers is done as follows:
617e76048aSMarcel Moolenaar  *
627e76048aSMarcel Moolenaar  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
637e76048aSMarcel Moolenaar  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
647e76048aSMarcel Moolenaar  *
657e76048aSMarcel Moolenaar  *	q = (X / Y) * 2^((x exponent) - (y exponent))
667e76048aSMarcel Moolenaar  *
677e76048aSMarcel Moolenaar  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
687e76048aSMarcel Moolenaar  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
697e76048aSMarcel Moolenaar  * if X < Y.  In that case, it will have to be shifted left one bit to
707e76048aSMarcel Moolenaar  * become a normal number, and the exponent decremented.  Thus, the
717e76048aSMarcel Moolenaar  * desired exponent is:
727e76048aSMarcel Moolenaar  *
737e76048aSMarcel Moolenaar  *	left_shift = x->fp_mant < y->fp_mant;
747e76048aSMarcel Moolenaar  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
757e76048aSMarcel Moolenaar  *
767e76048aSMarcel Moolenaar  * The quotient mantissa X/Y can then be computed one bit at a time
777e76048aSMarcel Moolenaar  * using the following algorithm:
787e76048aSMarcel Moolenaar  *
797e76048aSMarcel Moolenaar  *	Q = 0;			-- Initial quotient.
807e76048aSMarcel Moolenaar  *	R = X;			-- Initial remainder,
817e76048aSMarcel Moolenaar  *	if (left_shift)		--   but fixed up in advance.
827e76048aSMarcel Moolenaar  *		R *= 2;
837e76048aSMarcel Moolenaar  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
847e76048aSMarcel Moolenaar  *		if (R >= Y) {
857e76048aSMarcel Moolenaar  *			Q |= 1 << bit;
867e76048aSMarcel Moolenaar  *			R -= Y;
877e76048aSMarcel Moolenaar  *		}
887e76048aSMarcel Moolenaar  *	}
897e76048aSMarcel Moolenaar  *
907e76048aSMarcel Moolenaar  * The subtraction R -= Y always removes the uppermost bit from R (and
917e76048aSMarcel Moolenaar  * can sometimes remove additional lower-order 1 bits); this proof is
927e76048aSMarcel Moolenaar  * left to the reader.
937e76048aSMarcel Moolenaar  *
947e76048aSMarcel Moolenaar  * This loop correctly calculates the guard and round bits since they are
957e76048aSMarcel Moolenaar  * included in the expanded internal representation.  The sticky bit
967e76048aSMarcel Moolenaar  * is to be set if and only if any other bits beyond guard and round
977e76048aSMarcel Moolenaar  * would be set.  From the above it is obvious that this is true if and
987e76048aSMarcel Moolenaar  * only if the remainder R is nonzero when the loop terminates.
997e76048aSMarcel Moolenaar  *
1007e76048aSMarcel Moolenaar  * Examining the loop above, we can see that the quotient Q is built
1017e76048aSMarcel Moolenaar  * one bit at a time ``from the top down''.  This means that we can
1027e76048aSMarcel Moolenaar  * dispense with the multi-word arithmetic and just build it one word
1037e76048aSMarcel Moolenaar  * at a time, writing each result word when it is done.
1047e76048aSMarcel Moolenaar  *
1057e76048aSMarcel Moolenaar  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
1067e76048aSMarcel Moolenaar  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
1077e76048aSMarcel Moolenaar  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
1087e76048aSMarcel Moolenaar  * set, and R can be set initially to either X - Y (when X >= Y) or
1097e76048aSMarcel Moolenaar  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
1107e76048aSMarcel Moolenaar  * so we will simply calculate R - Y and see if that underflows.
1117e76048aSMarcel Moolenaar  * This leads to the following revised version of the algorithm:
1127e76048aSMarcel Moolenaar  *
1137e76048aSMarcel Moolenaar  *	R = X;
1147e76048aSMarcel Moolenaar  *	bit = FP_1;
1157e76048aSMarcel Moolenaar  *	D = R - Y;
1167e76048aSMarcel Moolenaar  *	if (D >= 0) {
1177e76048aSMarcel Moolenaar  *		result_exp = x->fp_exp - y->fp_exp;
1187e76048aSMarcel Moolenaar  *		R = D;
1197e76048aSMarcel Moolenaar  *		q = bit;
1207e76048aSMarcel Moolenaar  *		bit >>= 1;
1217e76048aSMarcel Moolenaar  *	} else {
1227e76048aSMarcel Moolenaar  *		result_exp = x->fp_exp - y->fp_exp - 1;
1237e76048aSMarcel Moolenaar  *		q = 0;
1247e76048aSMarcel Moolenaar  *	}
1257e76048aSMarcel Moolenaar  *	R <<= 1;
1267e76048aSMarcel Moolenaar  *	do  {
1277e76048aSMarcel Moolenaar  *		D = R - Y;
1287e76048aSMarcel Moolenaar  *		if (D >= 0) {
1297e76048aSMarcel Moolenaar  *			q |= bit;
1307e76048aSMarcel Moolenaar  *			R = D;
1317e76048aSMarcel Moolenaar  *		}
1327e76048aSMarcel Moolenaar  *		R <<= 1;
1337e76048aSMarcel Moolenaar  *	} while ((bit >>= 1) != 0);
1347e76048aSMarcel Moolenaar  *	Q[0] = q;
1357e76048aSMarcel Moolenaar  *	for (i = 1; i < 4; i++) {
1367e76048aSMarcel Moolenaar  *		q = 0, bit = 1 << 31;
1377e76048aSMarcel Moolenaar  *		do {
1387e76048aSMarcel Moolenaar  *			D = R - Y;
1397e76048aSMarcel Moolenaar  *			if (D >= 0) {
1407e76048aSMarcel Moolenaar  *				q |= bit;
1417e76048aSMarcel Moolenaar  *				R = D;
1427e76048aSMarcel Moolenaar  *			}
1437e76048aSMarcel Moolenaar  *			R <<= 1;
1447e76048aSMarcel Moolenaar  *		} while ((bit >>= 1) != 0);
1457e76048aSMarcel Moolenaar  *		Q[i] = q;
1467e76048aSMarcel Moolenaar  *	}
1477e76048aSMarcel Moolenaar  *
1487e76048aSMarcel Moolenaar  * This can be refined just a bit further by moving the `R <<= 1'
1497e76048aSMarcel Moolenaar  * calculations to the front of the do-loops and eliding the first one.
1507e76048aSMarcel Moolenaar  * The process can be terminated immediately whenever R becomes 0, but
1517e76048aSMarcel Moolenaar  * this is relatively rare, and we do not bother.
1527e76048aSMarcel Moolenaar  */
1537e76048aSMarcel Moolenaar 
1547e76048aSMarcel Moolenaar struct fpn *
1557e76048aSMarcel Moolenaar fpu_div(struct fpemu *fe)
1567e76048aSMarcel Moolenaar {
1577e76048aSMarcel Moolenaar 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
1587e76048aSMarcel Moolenaar 	u_int q, bit;
1597e76048aSMarcel Moolenaar 	u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
1607e76048aSMarcel Moolenaar 	FPU_DECL_CARRY
1617e76048aSMarcel Moolenaar 
1627e76048aSMarcel Moolenaar 	/*
1637e76048aSMarcel Moolenaar 	 * Since divide is not commutative, we cannot just use ORDER.
1647e76048aSMarcel Moolenaar 	 * Check either operand for NaN first; if there is at least one,
1657e76048aSMarcel Moolenaar 	 * order the signalling one (if only one) onto the right, then
1667e76048aSMarcel Moolenaar 	 * return it.  Otherwise we have the following cases:
1677e76048aSMarcel Moolenaar 	 *
1687e76048aSMarcel Moolenaar 	 *	Inf / Inf = NaN, plus NV exception
1697e76048aSMarcel Moolenaar 	 *	Inf / num = Inf [i.e., return x]
1707e76048aSMarcel Moolenaar 	 *	Inf / 0   = Inf [i.e., return x]
1717e76048aSMarcel Moolenaar 	 *	0 / Inf = 0 [i.e., return x]
1727e76048aSMarcel Moolenaar 	 *	0 / num = 0 [i.e., return x]
1737e76048aSMarcel Moolenaar 	 *	0 / 0   = NaN, plus NV exception
1747e76048aSMarcel Moolenaar 	 *	num / Inf = 0
1757e76048aSMarcel Moolenaar 	 *	num / num = num (do the divide)
1767e76048aSMarcel Moolenaar 	 *	num / 0   = Inf, plus DZ exception
1777e76048aSMarcel Moolenaar 	 */
1787e76048aSMarcel Moolenaar 	DPRINTF(FPE_REG, ("fpu_div:\n"));
1797e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, x);
1807e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, y);
1817e76048aSMarcel Moolenaar 	DPRINTF(FPE_REG, ("=>\n"));
1827e76048aSMarcel Moolenaar 	if (ISNAN(x) || ISNAN(y)) {
1837e76048aSMarcel Moolenaar 		ORDER(x, y);
1847e76048aSMarcel Moolenaar 		fe->fe_cx |= FPSCR_VXSNAN;
1857e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, y);
1867e76048aSMarcel Moolenaar 		return (y);
1877e76048aSMarcel Moolenaar 	}
1887e76048aSMarcel Moolenaar 	/*
1897e76048aSMarcel Moolenaar 	 * Need to split the following out cause they generate different
1907e76048aSMarcel Moolenaar 	 * exceptions.
1917e76048aSMarcel Moolenaar 	 */
1927e76048aSMarcel Moolenaar 	if (ISINF(x)) {
1937e76048aSMarcel Moolenaar 		if (x->fp_class == y->fp_class) {
1947e76048aSMarcel Moolenaar 			fe->fe_cx |= FPSCR_VXIDI;
1957e76048aSMarcel Moolenaar 			return (fpu_newnan(fe));
1967e76048aSMarcel Moolenaar 		}
1977e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
1987e76048aSMarcel Moolenaar 		return (x);
1997e76048aSMarcel Moolenaar 	}
2007e76048aSMarcel Moolenaar 	if (ISZERO(x)) {
2017e76048aSMarcel Moolenaar 		fe->fe_cx |= FPSCR_ZX;
2027e76048aSMarcel Moolenaar 		if (x->fp_class == y->fp_class) {
2037e76048aSMarcel Moolenaar 			fe->fe_cx |= FPSCR_VXZDZ;
2047e76048aSMarcel Moolenaar 			return (fpu_newnan(fe));
2057e76048aSMarcel Moolenaar 		}
2067e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
2077e76048aSMarcel Moolenaar 		return (x);
2087e76048aSMarcel Moolenaar 	}
2097e76048aSMarcel Moolenaar 
2107e76048aSMarcel Moolenaar 	/* all results at this point use XOR of operand signs */
2117e76048aSMarcel Moolenaar 	x->fp_sign ^= y->fp_sign;
2127e76048aSMarcel Moolenaar 	if (ISINF(y)) {
2137e76048aSMarcel Moolenaar 		x->fp_class = FPC_ZERO;
2147e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
2157e76048aSMarcel Moolenaar 		return (x);
2167e76048aSMarcel Moolenaar 	}
2177e76048aSMarcel Moolenaar 	if (ISZERO(y)) {
2187e76048aSMarcel Moolenaar 		fe->fe_cx = FPSCR_ZX;
2197e76048aSMarcel Moolenaar 		x->fp_class = FPC_INF;
2207e76048aSMarcel Moolenaar 		DUMPFPN(FPE_REG, x);
2217e76048aSMarcel Moolenaar 		return (x);
2227e76048aSMarcel Moolenaar 	}
2237e76048aSMarcel Moolenaar 
2247e76048aSMarcel Moolenaar 	/*
2257e76048aSMarcel Moolenaar 	 * Macros for the divide.  See comments at top for algorithm.
2267e76048aSMarcel Moolenaar 	 * Note that we expand R, D, and Y here.
2277e76048aSMarcel Moolenaar 	 */
2287e76048aSMarcel Moolenaar 
2297e76048aSMarcel Moolenaar #define	SUBTRACT		/* D = R - Y */ \
2307e76048aSMarcel Moolenaar 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
2317e76048aSMarcel Moolenaar 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
2327e76048aSMarcel Moolenaar 
2337e76048aSMarcel Moolenaar #define	NONNEGATIVE		/* D >= 0 */ \
2347e76048aSMarcel Moolenaar 	((int)d0 >= 0)
2357e76048aSMarcel Moolenaar 
2367e76048aSMarcel Moolenaar #ifdef FPU_SHL1_BY_ADD
2377e76048aSMarcel Moolenaar #define	SHL1			/* R <<= 1 */ \
2387e76048aSMarcel Moolenaar 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
2397e76048aSMarcel Moolenaar 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
2407e76048aSMarcel Moolenaar #else
2417e76048aSMarcel Moolenaar #define	SHL1 \
2427e76048aSMarcel Moolenaar 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
2437e76048aSMarcel Moolenaar 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
2447e76048aSMarcel Moolenaar #endif
2457e76048aSMarcel Moolenaar 
2467e76048aSMarcel Moolenaar #define	LOOP			/* do ... while (bit >>= 1) */ \
2477e76048aSMarcel Moolenaar 	do { \
2487e76048aSMarcel Moolenaar 		SHL1; \
2497e76048aSMarcel Moolenaar 		SUBTRACT; \
2507e76048aSMarcel Moolenaar 		if (NONNEGATIVE) { \
2517e76048aSMarcel Moolenaar 			q |= bit; \
2527e76048aSMarcel Moolenaar 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
2537e76048aSMarcel Moolenaar 		} \
2547e76048aSMarcel Moolenaar 	} while ((bit >>= 1) != 0)
2557e76048aSMarcel Moolenaar 
2567e76048aSMarcel Moolenaar #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
2577e76048aSMarcel Moolenaar 	q = 0; \
2587e76048aSMarcel Moolenaar 	bit = 1 << 31; \
2597e76048aSMarcel Moolenaar 	LOOP; \
2607e76048aSMarcel Moolenaar 	(x)->fp_mant[i] = q
2617e76048aSMarcel Moolenaar 
2627e76048aSMarcel Moolenaar 	/* Setup.  Note that we put our result in x. */
2637e76048aSMarcel Moolenaar 	r0 = x->fp_mant[0];
2647e76048aSMarcel Moolenaar 	r1 = x->fp_mant[1];
2657e76048aSMarcel Moolenaar 	r2 = x->fp_mant[2];
2667e76048aSMarcel Moolenaar 	r3 = x->fp_mant[3];
2677e76048aSMarcel Moolenaar 	y0 = y->fp_mant[0];
2687e76048aSMarcel Moolenaar 	y1 = y->fp_mant[1];
2697e76048aSMarcel Moolenaar 	y2 = y->fp_mant[2];
2707e76048aSMarcel Moolenaar 	y3 = y->fp_mant[3];
2717e76048aSMarcel Moolenaar 
2727e76048aSMarcel Moolenaar 	bit = FP_1;
2737e76048aSMarcel Moolenaar 	SUBTRACT;
2747e76048aSMarcel Moolenaar 	if (NONNEGATIVE) {
2757e76048aSMarcel Moolenaar 		x->fp_exp -= y->fp_exp;
2767e76048aSMarcel Moolenaar 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
2777e76048aSMarcel Moolenaar 		q = bit;
2787e76048aSMarcel Moolenaar 		bit >>= 1;
2797e76048aSMarcel Moolenaar 	} else {
2807e76048aSMarcel Moolenaar 		x->fp_exp -= y->fp_exp + 1;
2817e76048aSMarcel Moolenaar 		q = 0;
2827e76048aSMarcel Moolenaar 	}
2837e76048aSMarcel Moolenaar 	LOOP;
2847e76048aSMarcel Moolenaar 	x->fp_mant[0] = q;
2857e76048aSMarcel Moolenaar 	WORD(x, 1);
2867e76048aSMarcel Moolenaar 	WORD(x, 2);
2877e76048aSMarcel Moolenaar 	WORD(x, 3);
2887e76048aSMarcel Moolenaar 	x->fp_sticky = r0 | r1 | r2 | r3;
2897e76048aSMarcel Moolenaar 
2907e76048aSMarcel Moolenaar 	DUMPFPN(FPE_REG, x);
2917e76048aSMarcel Moolenaar 	return (x);
2927e76048aSMarcel Moolenaar }
293