17e76048aSMarcel Moolenaar /* $NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ 27e76048aSMarcel Moolenaar 37e76048aSMarcel Moolenaar /* 47e76048aSMarcel Moolenaar * Copyright (c) 1992, 1993 57e76048aSMarcel Moolenaar * The Regents of the University of California. All rights reserved. 67e76048aSMarcel Moolenaar * 77e76048aSMarcel Moolenaar * This software was developed by the Computer Systems Engineering group 87e76048aSMarcel Moolenaar * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 97e76048aSMarcel Moolenaar * contributed to Berkeley. 107e76048aSMarcel Moolenaar * 117e76048aSMarcel Moolenaar * All advertising materials mentioning features or use of this software 127e76048aSMarcel Moolenaar * must display the following acknowledgement: 137e76048aSMarcel Moolenaar * This product includes software developed by the University of 147e76048aSMarcel Moolenaar * California, Lawrence Berkeley Laboratory. 157e76048aSMarcel Moolenaar * 167e76048aSMarcel Moolenaar * Redistribution and use in source and binary forms, with or without 177e76048aSMarcel Moolenaar * modification, are permitted provided that the following conditions 187e76048aSMarcel Moolenaar * are met: 197e76048aSMarcel Moolenaar * 1. Redistributions of source code must retain the above copyright 207e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer. 217e76048aSMarcel Moolenaar * 2. Redistributions in binary form must reproduce the above copyright 227e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer in the 237e76048aSMarcel Moolenaar * documentation and/or other materials provided with the distribution. 247e76048aSMarcel Moolenaar * 3. Neither the name of the University nor the names of its contributors 257e76048aSMarcel Moolenaar * may be used to endorse or promote products derived from this software 267e76048aSMarcel Moolenaar * without specific prior written permission. 277e76048aSMarcel Moolenaar * 287e76048aSMarcel Moolenaar * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 297e76048aSMarcel Moolenaar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 307e76048aSMarcel Moolenaar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 317e76048aSMarcel Moolenaar * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 327e76048aSMarcel Moolenaar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 337e76048aSMarcel Moolenaar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 347e76048aSMarcel Moolenaar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 357e76048aSMarcel Moolenaar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 367e76048aSMarcel Moolenaar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 377e76048aSMarcel Moolenaar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 387e76048aSMarcel Moolenaar * SUCH DAMAGE. 397e76048aSMarcel Moolenaar * 407e76048aSMarcel Moolenaar * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93 417e76048aSMarcel Moolenaar */ 427e76048aSMarcel Moolenaar 437e76048aSMarcel Moolenaar /* 447e76048aSMarcel Moolenaar * Perform an FPU divide (return x / y). 457e76048aSMarcel Moolenaar */ 467e76048aSMarcel Moolenaar 477e76048aSMarcel Moolenaar #include <sys/cdefs.h> 487e76048aSMarcel Moolenaar __FBSDID("$FreeBSD$"); 497e76048aSMarcel Moolenaar 507e76048aSMarcel Moolenaar #include <sys/systm.h> 517e76048aSMarcel Moolenaar #include <sys/types.h> 527e76048aSMarcel Moolenaar 537e76048aSMarcel Moolenaar #include <machine/fpu.h> 547e76048aSMarcel Moolenaar #include <machine/reg.h> 557e76048aSMarcel Moolenaar 567e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h> 577e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h> 587e76048aSMarcel Moolenaar 597e76048aSMarcel Moolenaar /* 607e76048aSMarcel Moolenaar * Division of normal numbers is done as follows: 617e76048aSMarcel Moolenaar * 627e76048aSMarcel Moolenaar * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e. 637e76048aSMarcel Moolenaar * If X and Y are the mantissas (1.bbbb's), the quotient is then: 647e76048aSMarcel Moolenaar * 657e76048aSMarcel Moolenaar * q = (X / Y) * 2^((x exponent) - (y exponent)) 667e76048aSMarcel Moolenaar * 677e76048aSMarcel Moolenaar * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y) 687e76048aSMarcel Moolenaar * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only 697e76048aSMarcel Moolenaar * if X < Y. In that case, it will have to be shifted left one bit to 707e76048aSMarcel Moolenaar * become a normal number, and the exponent decremented. Thus, the 717e76048aSMarcel Moolenaar * desired exponent is: 727e76048aSMarcel Moolenaar * 737e76048aSMarcel Moolenaar * left_shift = x->fp_mant < y->fp_mant; 747e76048aSMarcel Moolenaar * result_exp = x->fp_exp - y->fp_exp - left_shift; 757e76048aSMarcel Moolenaar * 767e76048aSMarcel Moolenaar * The quotient mantissa X/Y can then be computed one bit at a time 777e76048aSMarcel Moolenaar * using the following algorithm: 787e76048aSMarcel Moolenaar * 797e76048aSMarcel Moolenaar * Q = 0; -- Initial quotient. 807e76048aSMarcel Moolenaar * R = X; -- Initial remainder, 817e76048aSMarcel Moolenaar * if (left_shift) -- but fixed up in advance. 827e76048aSMarcel Moolenaar * R *= 2; 837e76048aSMarcel Moolenaar * for (bit = FP_NMANT; --bit >= 0; R *= 2) { 847e76048aSMarcel Moolenaar * if (R >= Y) { 857e76048aSMarcel Moolenaar * Q |= 1 << bit; 867e76048aSMarcel Moolenaar * R -= Y; 877e76048aSMarcel Moolenaar * } 887e76048aSMarcel Moolenaar * } 897e76048aSMarcel Moolenaar * 907e76048aSMarcel Moolenaar * The subtraction R -= Y always removes the uppermost bit from R (and 917e76048aSMarcel Moolenaar * can sometimes remove additional lower-order 1 bits); this proof is 927e76048aSMarcel Moolenaar * left to the reader. 937e76048aSMarcel Moolenaar * 947e76048aSMarcel Moolenaar * This loop correctly calculates the guard and round bits since they are 957e76048aSMarcel Moolenaar * included in the expanded internal representation. The sticky bit 967e76048aSMarcel Moolenaar * is to be set if and only if any other bits beyond guard and round 977e76048aSMarcel Moolenaar * would be set. From the above it is obvious that this is true if and 987e76048aSMarcel Moolenaar * only if the remainder R is nonzero when the loop terminates. 997e76048aSMarcel Moolenaar * 1007e76048aSMarcel Moolenaar * Examining the loop above, we can see that the quotient Q is built 1017e76048aSMarcel Moolenaar * one bit at a time ``from the top down''. This means that we can 1027e76048aSMarcel Moolenaar * dispense with the multi-word arithmetic and just build it one word 1037e76048aSMarcel Moolenaar * at a time, writing each result word when it is done. 1047e76048aSMarcel Moolenaar * 1057e76048aSMarcel Moolenaar * Furthermore, since X and Y are both in [1.0,2.0), we know that, 1067e76048aSMarcel Moolenaar * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and 1077e76048aSMarcel Moolenaar * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1 1087e76048aSMarcel Moolenaar * set, and R can be set initially to either X - Y (when X >= Y) or 1097e76048aSMarcel Moolenaar * 2X - Y (when X < Y). In addition, comparing R and Y is difficult, 1107e76048aSMarcel Moolenaar * so we will simply calculate R - Y and see if that underflows. 1117e76048aSMarcel Moolenaar * This leads to the following revised version of the algorithm: 1127e76048aSMarcel Moolenaar * 1137e76048aSMarcel Moolenaar * R = X; 1147e76048aSMarcel Moolenaar * bit = FP_1; 1157e76048aSMarcel Moolenaar * D = R - Y; 1167e76048aSMarcel Moolenaar * if (D >= 0) { 1177e76048aSMarcel Moolenaar * result_exp = x->fp_exp - y->fp_exp; 1187e76048aSMarcel Moolenaar * R = D; 1197e76048aSMarcel Moolenaar * q = bit; 1207e76048aSMarcel Moolenaar * bit >>= 1; 1217e76048aSMarcel Moolenaar * } else { 1227e76048aSMarcel Moolenaar * result_exp = x->fp_exp - y->fp_exp - 1; 1237e76048aSMarcel Moolenaar * q = 0; 1247e76048aSMarcel Moolenaar * } 1257e76048aSMarcel Moolenaar * R <<= 1; 1267e76048aSMarcel Moolenaar * do { 1277e76048aSMarcel Moolenaar * D = R - Y; 1287e76048aSMarcel Moolenaar * if (D >= 0) { 1297e76048aSMarcel Moolenaar * q |= bit; 1307e76048aSMarcel Moolenaar * R = D; 1317e76048aSMarcel Moolenaar * } 1327e76048aSMarcel Moolenaar * R <<= 1; 1337e76048aSMarcel Moolenaar * } while ((bit >>= 1) != 0); 1347e76048aSMarcel Moolenaar * Q[0] = q; 1357e76048aSMarcel Moolenaar * for (i = 1; i < 4; i++) { 1367e76048aSMarcel Moolenaar * q = 0, bit = 1 << 31; 1377e76048aSMarcel Moolenaar * do { 1387e76048aSMarcel Moolenaar * D = R - Y; 1397e76048aSMarcel Moolenaar * if (D >= 0) { 1407e76048aSMarcel Moolenaar * q |= bit; 1417e76048aSMarcel Moolenaar * R = D; 1427e76048aSMarcel Moolenaar * } 1437e76048aSMarcel Moolenaar * R <<= 1; 1447e76048aSMarcel Moolenaar * } while ((bit >>= 1) != 0); 1457e76048aSMarcel Moolenaar * Q[i] = q; 1467e76048aSMarcel Moolenaar * } 1477e76048aSMarcel Moolenaar * 1487e76048aSMarcel Moolenaar * This can be refined just a bit further by moving the `R <<= 1' 1497e76048aSMarcel Moolenaar * calculations to the front of the do-loops and eliding the first one. 1507e76048aSMarcel Moolenaar * The process can be terminated immediately whenever R becomes 0, but 1517e76048aSMarcel Moolenaar * this is relatively rare, and we do not bother. 1527e76048aSMarcel Moolenaar */ 1537e76048aSMarcel Moolenaar 1547e76048aSMarcel Moolenaar struct fpn * 1557e76048aSMarcel Moolenaar fpu_div(struct fpemu *fe) 1567e76048aSMarcel Moolenaar { 1577e76048aSMarcel Moolenaar struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 1587e76048aSMarcel Moolenaar u_int q, bit; 1597e76048aSMarcel Moolenaar u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3; 1607e76048aSMarcel Moolenaar FPU_DECL_CARRY 1617e76048aSMarcel Moolenaar 1627e76048aSMarcel Moolenaar /* 1637e76048aSMarcel Moolenaar * Since divide is not commutative, we cannot just use ORDER. 1647e76048aSMarcel Moolenaar * Check either operand for NaN first; if there is at least one, 1657e76048aSMarcel Moolenaar * order the signalling one (if only one) onto the right, then 1667e76048aSMarcel Moolenaar * return it. Otherwise we have the following cases: 1677e76048aSMarcel Moolenaar * 1687e76048aSMarcel Moolenaar * Inf / Inf = NaN, plus NV exception 1697e76048aSMarcel Moolenaar * Inf / num = Inf [i.e., return x] 1707e76048aSMarcel Moolenaar * Inf / 0 = Inf [i.e., return x] 1717e76048aSMarcel Moolenaar * 0 / Inf = 0 [i.e., return x] 1727e76048aSMarcel Moolenaar * 0 / num = 0 [i.e., return x] 1737e76048aSMarcel Moolenaar * 0 / 0 = NaN, plus NV exception 1747e76048aSMarcel Moolenaar * num / Inf = 0 1757e76048aSMarcel Moolenaar * num / num = num (do the divide) 1767e76048aSMarcel Moolenaar * num / 0 = Inf, plus DZ exception 1777e76048aSMarcel Moolenaar */ 1787e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("fpu_div:\n")); 1797e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 1807e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y); 1817e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("=>\n")); 1827e76048aSMarcel Moolenaar if (ISNAN(x) || ISNAN(y)) { 1837e76048aSMarcel Moolenaar ORDER(x, y); 1847e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSNAN; 1857e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y); 1867e76048aSMarcel Moolenaar return (y); 1877e76048aSMarcel Moolenaar } 1887e76048aSMarcel Moolenaar /* 1897e76048aSMarcel Moolenaar * Need to split the following out cause they generate different 1907e76048aSMarcel Moolenaar * exceptions. 1917e76048aSMarcel Moolenaar */ 1927e76048aSMarcel Moolenaar if (ISINF(x)) { 1937e76048aSMarcel Moolenaar if (x->fp_class == y->fp_class) { 1947e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXIDI; 1957e76048aSMarcel Moolenaar return (fpu_newnan(fe)); 1967e76048aSMarcel Moolenaar } 1977e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 1987e76048aSMarcel Moolenaar return (x); 1997e76048aSMarcel Moolenaar } 2007e76048aSMarcel Moolenaar if (ISZERO(x)) { 2017e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_ZX; 2027e76048aSMarcel Moolenaar if (x->fp_class == y->fp_class) { 2037e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXZDZ; 2047e76048aSMarcel Moolenaar return (fpu_newnan(fe)); 2057e76048aSMarcel Moolenaar } 2067e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2077e76048aSMarcel Moolenaar return (x); 2087e76048aSMarcel Moolenaar } 2097e76048aSMarcel Moolenaar 2107e76048aSMarcel Moolenaar /* all results at this point use XOR of operand signs */ 2117e76048aSMarcel Moolenaar x->fp_sign ^= y->fp_sign; 2127e76048aSMarcel Moolenaar if (ISINF(y)) { 2137e76048aSMarcel Moolenaar x->fp_class = FPC_ZERO; 2147e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2157e76048aSMarcel Moolenaar return (x); 2167e76048aSMarcel Moolenaar } 2177e76048aSMarcel Moolenaar if (ISZERO(y)) { 2187e76048aSMarcel Moolenaar fe->fe_cx = FPSCR_ZX; 2197e76048aSMarcel Moolenaar x->fp_class = FPC_INF; 2207e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2217e76048aSMarcel Moolenaar return (x); 2227e76048aSMarcel Moolenaar } 2237e76048aSMarcel Moolenaar 2247e76048aSMarcel Moolenaar /* 2257e76048aSMarcel Moolenaar * Macros for the divide. See comments at top for algorithm. 2267e76048aSMarcel Moolenaar * Note that we expand R, D, and Y here. 2277e76048aSMarcel Moolenaar */ 2287e76048aSMarcel Moolenaar 2297e76048aSMarcel Moolenaar #define SUBTRACT /* D = R - Y */ \ 2307e76048aSMarcel Moolenaar FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \ 2317e76048aSMarcel Moolenaar FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0) 2327e76048aSMarcel Moolenaar 2337e76048aSMarcel Moolenaar #define NONNEGATIVE /* D >= 0 */ \ 2347e76048aSMarcel Moolenaar ((int)d0 >= 0) 2357e76048aSMarcel Moolenaar 2367e76048aSMarcel Moolenaar #ifdef FPU_SHL1_BY_ADD 2377e76048aSMarcel Moolenaar #define SHL1 /* R <<= 1 */ \ 2387e76048aSMarcel Moolenaar FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \ 2397e76048aSMarcel Moolenaar FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0) 2407e76048aSMarcel Moolenaar #else 2417e76048aSMarcel Moolenaar #define SHL1 \ 2427e76048aSMarcel Moolenaar r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \ 2437e76048aSMarcel Moolenaar r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1 2447e76048aSMarcel Moolenaar #endif 2457e76048aSMarcel Moolenaar 2467e76048aSMarcel Moolenaar #define LOOP /* do ... while (bit >>= 1) */ \ 2477e76048aSMarcel Moolenaar do { \ 2487e76048aSMarcel Moolenaar SHL1; \ 2497e76048aSMarcel Moolenaar SUBTRACT; \ 2507e76048aSMarcel Moolenaar if (NONNEGATIVE) { \ 2517e76048aSMarcel Moolenaar q |= bit; \ 2527e76048aSMarcel Moolenaar r0 = d0, r1 = d1, r2 = d2, r3 = d3; \ 2537e76048aSMarcel Moolenaar } \ 2547e76048aSMarcel Moolenaar } while ((bit >>= 1) != 0) 2557e76048aSMarcel Moolenaar 2567e76048aSMarcel Moolenaar #define WORD(r, i) /* calculate r->fp_mant[i] */ \ 2577e76048aSMarcel Moolenaar q = 0; \ 2587e76048aSMarcel Moolenaar bit = 1 << 31; \ 2597e76048aSMarcel Moolenaar LOOP; \ 2607e76048aSMarcel Moolenaar (x)->fp_mant[i] = q 2617e76048aSMarcel Moolenaar 2627e76048aSMarcel Moolenaar /* Setup. Note that we put our result in x. */ 2637e76048aSMarcel Moolenaar r0 = x->fp_mant[0]; 2647e76048aSMarcel Moolenaar r1 = x->fp_mant[1]; 2657e76048aSMarcel Moolenaar r2 = x->fp_mant[2]; 2667e76048aSMarcel Moolenaar r3 = x->fp_mant[3]; 2677e76048aSMarcel Moolenaar y0 = y->fp_mant[0]; 2687e76048aSMarcel Moolenaar y1 = y->fp_mant[1]; 2697e76048aSMarcel Moolenaar y2 = y->fp_mant[2]; 2707e76048aSMarcel Moolenaar y3 = y->fp_mant[3]; 2717e76048aSMarcel Moolenaar 2727e76048aSMarcel Moolenaar bit = FP_1; 2737e76048aSMarcel Moolenaar SUBTRACT; 2747e76048aSMarcel Moolenaar if (NONNEGATIVE) { 2757e76048aSMarcel Moolenaar x->fp_exp -= y->fp_exp; 2767e76048aSMarcel Moolenaar r0 = d0, r1 = d1, r2 = d2, r3 = d3; 2777e76048aSMarcel Moolenaar q = bit; 2787e76048aSMarcel Moolenaar bit >>= 1; 2797e76048aSMarcel Moolenaar } else { 2807e76048aSMarcel Moolenaar x->fp_exp -= y->fp_exp + 1; 2817e76048aSMarcel Moolenaar q = 0; 2827e76048aSMarcel Moolenaar } 2837e76048aSMarcel Moolenaar LOOP; 2847e76048aSMarcel Moolenaar x->fp_mant[0] = q; 2857e76048aSMarcel Moolenaar WORD(x, 1); 2867e76048aSMarcel Moolenaar WORD(x, 2); 2877e76048aSMarcel Moolenaar WORD(x, 3); 2887e76048aSMarcel Moolenaar x->fp_sticky = r0 | r1 | r2 | r3; 2897e76048aSMarcel Moolenaar 2907e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x); 2917e76048aSMarcel Moolenaar return (x); 2927e76048aSMarcel Moolenaar } 293