17e76048aSMarcel Moolenaar /* $NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
27e76048aSMarcel Moolenaar
3*51369649SPedro F. Giffuni /*-
4*51369649SPedro F. Giffuni * SPDX-License-Identifier: BSD-3-Clause
5*51369649SPedro F. Giffuni *
67e76048aSMarcel Moolenaar * Copyright (c) 1992, 1993
77e76048aSMarcel Moolenaar * The Regents of the University of California. All rights reserved.
87e76048aSMarcel Moolenaar *
97e76048aSMarcel Moolenaar * This software was developed by the Computer Systems Engineering group
107e76048aSMarcel Moolenaar * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
117e76048aSMarcel Moolenaar * contributed to Berkeley.
127e76048aSMarcel Moolenaar *
137e76048aSMarcel Moolenaar * All advertising materials mentioning features or use of this software
147e76048aSMarcel Moolenaar * must display the following acknowledgement:
157e76048aSMarcel Moolenaar * This product includes software developed by the University of
167e76048aSMarcel Moolenaar * California, Lawrence Berkeley Laboratory.
177e76048aSMarcel Moolenaar *
187e76048aSMarcel Moolenaar * Redistribution and use in source and binary forms, with or without
197e76048aSMarcel Moolenaar * modification, are permitted provided that the following conditions
207e76048aSMarcel Moolenaar * are met:
217e76048aSMarcel Moolenaar * 1. Redistributions of source code must retain the above copyright
227e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer.
237e76048aSMarcel Moolenaar * 2. Redistributions in binary form must reproduce the above copyright
247e76048aSMarcel Moolenaar * notice, this list of conditions and the following disclaimer in the
257e76048aSMarcel Moolenaar * documentation and/or other materials provided with the distribution.
267e76048aSMarcel Moolenaar * 3. Neither the name of the University nor the names of its contributors
277e76048aSMarcel Moolenaar * may be used to endorse or promote products derived from this software
287e76048aSMarcel Moolenaar * without specific prior written permission.
297e76048aSMarcel Moolenaar *
307e76048aSMarcel Moolenaar * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
317e76048aSMarcel Moolenaar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
327e76048aSMarcel Moolenaar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
337e76048aSMarcel Moolenaar * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
347e76048aSMarcel Moolenaar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
357e76048aSMarcel Moolenaar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
367e76048aSMarcel Moolenaar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
377e76048aSMarcel Moolenaar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
387e76048aSMarcel Moolenaar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
397e76048aSMarcel Moolenaar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
407e76048aSMarcel Moolenaar * SUCH DAMAGE.
417e76048aSMarcel Moolenaar */
427e76048aSMarcel Moolenaar
437e76048aSMarcel Moolenaar /*
447e76048aSMarcel Moolenaar * Perform an FPU divide (return x / y).
457e76048aSMarcel Moolenaar */
467e76048aSMarcel Moolenaar
477e76048aSMarcel Moolenaar #include <sys/types.h>
482aa95aceSPeter Grehan #include <sys/systm.h>
497e76048aSMarcel Moolenaar
507e76048aSMarcel Moolenaar #include <machine/fpu.h>
517e76048aSMarcel Moolenaar
527e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_arith.h>
537e76048aSMarcel Moolenaar #include <powerpc/fpu/fpu_emu.h>
547e76048aSMarcel Moolenaar
557e76048aSMarcel Moolenaar /*
567e76048aSMarcel Moolenaar * Division of normal numbers is done as follows:
577e76048aSMarcel Moolenaar *
587e76048aSMarcel Moolenaar * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
597e76048aSMarcel Moolenaar * If X and Y are the mantissas (1.bbbb's), the quotient is then:
607e76048aSMarcel Moolenaar *
617e76048aSMarcel Moolenaar * q = (X / Y) * 2^((x exponent) - (y exponent))
627e76048aSMarcel Moolenaar *
637e76048aSMarcel Moolenaar * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
647e76048aSMarcel Moolenaar * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only
657e76048aSMarcel Moolenaar * if X < Y. In that case, it will have to be shifted left one bit to
667e76048aSMarcel Moolenaar * become a normal number, and the exponent decremented. Thus, the
677e76048aSMarcel Moolenaar * desired exponent is:
687e76048aSMarcel Moolenaar *
697e76048aSMarcel Moolenaar * left_shift = x->fp_mant < y->fp_mant;
707e76048aSMarcel Moolenaar * result_exp = x->fp_exp - y->fp_exp - left_shift;
717e76048aSMarcel Moolenaar *
727e76048aSMarcel Moolenaar * The quotient mantissa X/Y can then be computed one bit at a time
737e76048aSMarcel Moolenaar * using the following algorithm:
747e76048aSMarcel Moolenaar *
757e76048aSMarcel Moolenaar * Q = 0; -- Initial quotient.
767e76048aSMarcel Moolenaar * R = X; -- Initial remainder,
777e76048aSMarcel Moolenaar * if (left_shift) -- but fixed up in advance.
787e76048aSMarcel Moolenaar * R *= 2;
797e76048aSMarcel Moolenaar * for (bit = FP_NMANT; --bit >= 0; R *= 2) {
807e76048aSMarcel Moolenaar * if (R >= Y) {
817e76048aSMarcel Moolenaar * Q |= 1 << bit;
827e76048aSMarcel Moolenaar * R -= Y;
837e76048aSMarcel Moolenaar * }
847e76048aSMarcel Moolenaar * }
857e76048aSMarcel Moolenaar *
867e76048aSMarcel Moolenaar * The subtraction R -= Y always removes the uppermost bit from R (and
877e76048aSMarcel Moolenaar * can sometimes remove additional lower-order 1 bits); this proof is
887e76048aSMarcel Moolenaar * left to the reader.
897e76048aSMarcel Moolenaar *
907e76048aSMarcel Moolenaar * This loop correctly calculates the guard and round bits since they are
917e76048aSMarcel Moolenaar * included in the expanded internal representation. The sticky bit
927e76048aSMarcel Moolenaar * is to be set if and only if any other bits beyond guard and round
937e76048aSMarcel Moolenaar * would be set. From the above it is obvious that this is true if and
947e76048aSMarcel Moolenaar * only if the remainder R is nonzero when the loop terminates.
957e76048aSMarcel Moolenaar *
967e76048aSMarcel Moolenaar * Examining the loop above, we can see that the quotient Q is built
977e76048aSMarcel Moolenaar * one bit at a time ``from the top down''. This means that we can
987e76048aSMarcel Moolenaar * dispense with the multi-word arithmetic and just build it one word
997e76048aSMarcel Moolenaar * at a time, writing each result word when it is done.
1007e76048aSMarcel Moolenaar *
1017e76048aSMarcel Moolenaar * Furthermore, since X and Y are both in [1.0,2.0), we know that,
1027e76048aSMarcel Moolenaar * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and
1037e76048aSMarcel Moolenaar * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1
1047e76048aSMarcel Moolenaar * set, and R can be set initially to either X - Y (when X >= Y) or
1057e76048aSMarcel Moolenaar * 2X - Y (when X < Y). In addition, comparing R and Y is difficult,
1067e76048aSMarcel Moolenaar * so we will simply calculate R - Y and see if that underflows.
1077e76048aSMarcel Moolenaar * This leads to the following revised version of the algorithm:
1087e76048aSMarcel Moolenaar *
1097e76048aSMarcel Moolenaar * R = X;
1107e76048aSMarcel Moolenaar * bit = FP_1;
1117e76048aSMarcel Moolenaar * D = R - Y;
1127e76048aSMarcel Moolenaar * if (D >= 0) {
1137e76048aSMarcel Moolenaar * result_exp = x->fp_exp - y->fp_exp;
1147e76048aSMarcel Moolenaar * R = D;
1157e76048aSMarcel Moolenaar * q = bit;
1167e76048aSMarcel Moolenaar * bit >>= 1;
1177e76048aSMarcel Moolenaar * } else {
1187e76048aSMarcel Moolenaar * result_exp = x->fp_exp - y->fp_exp - 1;
1197e76048aSMarcel Moolenaar * q = 0;
1207e76048aSMarcel Moolenaar * }
1217e76048aSMarcel Moolenaar * R <<= 1;
1227e76048aSMarcel Moolenaar * do {
1237e76048aSMarcel Moolenaar * D = R - Y;
1247e76048aSMarcel Moolenaar * if (D >= 0) {
1257e76048aSMarcel Moolenaar * q |= bit;
1267e76048aSMarcel Moolenaar * R = D;
1277e76048aSMarcel Moolenaar * }
1287e76048aSMarcel Moolenaar * R <<= 1;
1297e76048aSMarcel Moolenaar * } while ((bit >>= 1) != 0);
1307e76048aSMarcel Moolenaar * Q[0] = q;
1317e76048aSMarcel Moolenaar * for (i = 1; i < 4; i++) {
1327e76048aSMarcel Moolenaar * q = 0, bit = 1 << 31;
1337e76048aSMarcel Moolenaar * do {
1347e76048aSMarcel Moolenaar * D = R - Y;
1357e76048aSMarcel Moolenaar * if (D >= 0) {
1367e76048aSMarcel Moolenaar * q |= bit;
1377e76048aSMarcel Moolenaar * R = D;
1387e76048aSMarcel Moolenaar * }
1397e76048aSMarcel Moolenaar * R <<= 1;
1407e76048aSMarcel Moolenaar * } while ((bit >>= 1) != 0);
1417e76048aSMarcel Moolenaar * Q[i] = q;
1427e76048aSMarcel Moolenaar * }
1437e76048aSMarcel Moolenaar *
1447e76048aSMarcel Moolenaar * This can be refined just a bit further by moving the `R <<= 1'
1457e76048aSMarcel Moolenaar * calculations to the front of the do-loops and eliding the first one.
1467e76048aSMarcel Moolenaar * The process can be terminated immediately whenever R becomes 0, but
1477e76048aSMarcel Moolenaar * this is relatively rare, and we do not bother.
1487e76048aSMarcel Moolenaar */
1497e76048aSMarcel Moolenaar
1507e76048aSMarcel Moolenaar struct fpn *
fpu_div(struct fpemu * fe)1517e76048aSMarcel Moolenaar fpu_div(struct fpemu *fe)
1527e76048aSMarcel Moolenaar {
1537e76048aSMarcel Moolenaar struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
1547e76048aSMarcel Moolenaar u_int q, bit;
1557e76048aSMarcel Moolenaar u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
1567e76048aSMarcel Moolenaar FPU_DECL_CARRY
1577e76048aSMarcel Moolenaar
1587e76048aSMarcel Moolenaar /*
1597e76048aSMarcel Moolenaar * Since divide is not commutative, we cannot just use ORDER.
1607e76048aSMarcel Moolenaar * Check either operand for NaN first; if there is at least one,
1617e76048aSMarcel Moolenaar * order the signalling one (if only one) onto the right, then
1627e76048aSMarcel Moolenaar * return it. Otherwise we have the following cases:
1637e76048aSMarcel Moolenaar *
1647e76048aSMarcel Moolenaar * Inf / Inf = NaN, plus NV exception
1657e76048aSMarcel Moolenaar * Inf / num = Inf [i.e., return x]
1667e76048aSMarcel Moolenaar * Inf / 0 = Inf [i.e., return x]
1677e76048aSMarcel Moolenaar * 0 / Inf = 0 [i.e., return x]
1687e76048aSMarcel Moolenaar * 0 / num = 0 [i.e., return x]
1697e76048aSMarcel Moolenaar * 0 / 0 = NaN, plus NV exception
1707e76048aSMarcel Moolenaar * num / Inf = 0
1717e76048aSMarcel Moolenaar * num / num = num (do the divide)
1727e76048aSMarcel Moolenaar * num / 0 = Inf, plus DZ exception
1737e76048aSMarcel Moolenaar */
1747e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("fpu_div:\n"));
1757e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
1767e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y);
1777e76048aSMarcel Moolenaar DPRINTF(FPE_REG, ("=>\n"));
1787e76048aSMarcel Moolenaar if (ISNAN(x) || ISNAN(y)) {
1797e76048aSMarcel Moolenaar ORDER(x, y);
1807e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXSNAN;
1817e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, y);
1827e76048aSMarcel Moolenaar return (y);
1837e76048aSMarcel Moolenaar }
1847e76048aSMarcel Moolenaar /*
1857e76048aSMarcel Moolenaar * Need to split the following out cause they generate different
1867e76048aSMarcel Moolenaar * exceptions.
1877e76048aSMarcel Moolenaar */
1887e76048aSMarcel Moolenaar if (ISINF(x)) {
1897e76048aSMarcel Moolenaar if (x->fp_class == y->fp_class) {
1907e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXIDI;
1917e76048aSMarcel Moolenaar return (fpu_newnan(fe));
1927e76048aSMarcel Moolenaar }
1937e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
1947e76048aSMarcel Moolenaar return (x);
1957e76048aSMarcel Moolenaar }
1967e76048aSMarcel Moolenaar if (ISZERO(x)) {
1977e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_ZX;
1987e76048aSMarcel Moolenaar if (x->fp_class == y->fp_class) {
1997e76048aSMarcel Moolenaar fe->fe_cx |= FPSCR_VXZDZ;
2007e76048aSMarcel Moolenaar return (fpu_newnan(fe));
2017e76048aSMarcel Moolenaar }
2027e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2037e76048aSMarcel Moolenaar return (x);
2047e76048aSMarcel Moolenaar }
2057e76048aSMarcel Moolenaar
2067e76048aSMarcel Moolenaar /* all results at this point use XOR of operand signs */
2077e76048aSMarcel Moolenaar x->fp_sign ^= y->fp_sign;
2087e76048aSMarcel Moolenaar if (ISINF(y)) {
2097e76048aSMarcel Moolenaar x->fp_class = FPC_ZERO;
2107e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2117e76048aSMarcel Moolenaar return (x);
2127e76048aSMarcel Moolenaar }
2137e76048aSMarcel Moolenaar if (ISZERO(y)) {
2147e76048aSMarcel Moolenaar fe->fe_cx = FPSCR_ZX;
2157e76048aSMarcel Moolenaar x->fp_class = FPC_INF;
2167e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2177e76048aSMarcel Moolenaar return (x);
2187e76048aSMarcel Moolenaar }
2197e76048aSMarcel Moolenaar
2207e76048aSMarcel Moolenaar /*
2217e76048aSMarcel Moolenaar * Macros for the divide. See comments at top for algorithm.
2227e76048aSMarcel Moolenaar * Note that we expand R, D, and Y here.
2237e76048aSMarcel Moolenaar */
2247e76048aSMarcel Moolenaar
2257e76048aSMarcel Moolenaar #define SUBTRACT /* D = R - Y */ \
2267e76048aSMarcel Moolenaar FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
2277e76048aSMarcel Moolenaar FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
2287e76048aSMarcel Moolenaar
2297e76048aSMarcel Moolenaar #define NONNEGATIVE /* D >= 0 */ \
2307e76048aSMarcel Moolenaar ((int)d0 >= 0)
2317e76048aSMarcel Moolenaar
2327e76048aSMarcel Moolenaar #ifdef FPU_SHL1_BY_ADD
2337e76048aSMarcel Moolenaar #define SHL1 /* R <<= 1 */ \
2347e76048aSMarcel Moolenaar FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
2357e76048aSMarcel Moolenaar FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
2367e76048aSMarcel Moolenaar #else
2377e76048aSMarcel Moolenaar #define SHL1 \
2387e76048aSMarcel Moolenaar r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
2397e76048aSMarcel Moolenaar r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
2407e76048aSMarcel Moolenaar #endif
2417e76048aSMarcel Moolenaar
2427e76048aSMarcel Moolenaar #define LOOP /* do ... while (bit >>= 1) */ \
2437e76048aSMarcel Moolenaar do { \
2447e76048aSMarcel Moolenaar SHL1; \
2457e76048aSMarcel Moolenaar SUBTRACT; \
2467e76048aSMarcel Moolenaar if (NONNEGATIVE) { \
2477e76048aSMarcel Moolenaar q |= bit; \
2487e76048aSMarcel Moolenaar r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
2497e76048aSMarcel Moolenaar } \
2507e76048aSMarcel Moolenaar } while ((bit >>= 1) != 0)
2517e76048aSMarcel Moolenaar
2527e76048aSMarcel Moolenaar #define WORD(r, i) /* calculate r->fp_mant[i] */ \
2537e76048aSMarcel Moolenaar q = 0; \
2547e76048aSMarcel Moolenaar bit = 1 << 31; \
2557e76048aSMarcel Moolenaar LOOP; \
2567e76048aSMarcel Moolenaar (x)->fp_mant[i] = q
2577e76048aSMarcel Moolenaar
2587e76048aSMarcel Moolenaar /* Setup. Note that we put our result in x. */
2597e76048aSMarcel Moolenaar r0 = x->fp_mant[0];
2607e76048aSMarcel Moolenaar r1 = x->fp_mant[1];
2617e76048aSMarcel Moolenaar r2 = x->fp_mant[2];
2627e76048aSMarcel Moolenaar r3 = x->fp_mant[3];
2637e76048aSMarcel Moolenaar y0 = y->fp_mant[0];
2647e76048aSMarcel Moolenaar y1 = y->fp_mant[1];
2657e76048aSMarcel Moolenaar y2 = y->fp_mant[2];
2667e76048aSMarcel Moolenaar y3 = y->fp_mant[3];
2677e76048aSMarcel Moolenaar
2687e76048aSMarcel Moolenaar bit = FP_1;
2697e76048aSMarcel Moolenaar SUBTRACT;
2707e76048aSMarcel Moolenaar if (NONNEGATIVE) {
2717e76048aSMarcel Moolenaar x->fp_exp -= y->fp_exp;
2727e76048aSMarcel Moolenaar r0 = d0, r1 = d1, r2 = d2, r3 = d3;
2737e76048aSMarcel Moolenaar q = bit;
2747e76048aSMarcel Moolenaar bit >>= 1;
2757e76048aSMarcel Moolenaar } else {
2767e76048aSMarcel Moolenaar x->fp_exp -= y->fp_exp + 1;
2777e76048aSMarcel Moolenaar q = 0;
2787e76048aSMarcel Moolenaar }
2797e76048aSMarcel Moolenaar LOOP;
2807e76048aSMarcel Moolenaar x->fp_mant[0] = q;
2817e76048aSMarcel Moolenaar WORD(x, 1);
2827e76048aSMarcel Moolenaar WORD(x, 2);
2837e76048aSMarcel Moolenaar WORD(x, 3);
2847e76048aSMarcel Moolenaar x->fp_sticky = r0 | r1 | r2 | r3;
2857e76048aSMarcel Moolenaar
2867e76048aSMarcel Moolenaar DUMPFPN(FPE_REG, x);
2877e76048aSMarcel Moolenaar return (x);
2887e76048aSMarcel Moolenaar }
289