xref: /freebsd/sys/powerpc/booke/pmap_64.c (revision 24ccef81405eb25efc65f16b6e9a787f3a51151a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2020 Justin Hibbits
5  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
6  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
21  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * Some hw specific parts of this pmap were derived or influenced
30  * by NetBSD's ibm4xx pmap module. More generic code is shared with
31  * a few other pmap modules from the FreeBSD tree.
32  */
33 
34  /*
35   * VM layout notes:
36   *
37   * Kernel and user threads run within one common virtual address space
38   * defined by AS=0.
39   *
40   * 64-bit pmap:
41   * Virtual address space layout:
42   * -----------------------------
43   * 0x0000_0000_0000_0000 - 0x3fff_ffff_ffff_ffff      : user process
44   * 0x4000_0000_0000_0000 - 0x7fff_ffff_ffff_ffff      : unused
45   * 0x8000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : mmio region
46   * 0xc000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : direct map
47   * 0xe000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : KVA
48   */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ddb.h"
54 #include "opt_kstack_pages.h"
55 
56 #include <sys/param.h>
57 #include <sys/conf.h>
58 #include <sys/malloc.h>
59 #include <sys/ktr.h>
60 #include <sys/proc.h>
61 #include <sys/user.h>
62 #include <sys/queue.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/kerneldump.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/lock.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #include <sys/smp.h>
73 #include <sys/vmmeter.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_phys.h>
85 #include <vm/vm_pagequeue.h>
86 #include <vm/uma.h>
87 
88 #include <machine/_inttypes.h>
89 #include <machine/cpu.h>
90 #include <machine/pcb.h>
91 #include <machine/platform.h>
92 
93 #include <machine/tlb.h>
94 #include <machine/spr.h>
95 #include <machine/md_var.h>
96 #include <machine/mmuvar.h>
97 #include <machine/pmap.h>
98 #include <machine/pte.h>
99 
100 #include <ddb/ddb.h>
101 
102 #ifdef  DEBUG
103 #define debugf(fmt, args...) printf(fmt, ##args)
104 #else
105 #define debugf(fmt, args...)
106 #endif
107 
108 #define	PRI0ptrX	"016lx"
109 
110 /**************************************************************************/
111 /* PMAP */
112 /**************************************************************************/
113 
114 unsigned int kernel_pdirs;
115 static uma_zone_t ptbl_root_zone;
116 static pte_t ****kernel_ptbl_root;
117 
118 /*
119  * Base of the pmap_mapdev() region.  On 32-bit it immediately follows the
120  * userspace address range.  On On 64-bit it's far above, at (1 << 63), and
121  * ranges up to the DMAP, giving 62 bits of PA allowed.  This is far larger than
122  * the widest Book-E address bus, the e6500 has a 40-bit PA space.  This allows
123  * us to map akin to the DMAP, with addresses identical to the PA, offset by the
124  * base.
125  */
126 #define	VM_MAPDEV_BASE		0x8000000000000000
127 #define	VM_MAPDEV_PA_MAX	0x4000000000000000 /* Don't encroach on DMAP */
128 
129 static void tid_flush(tlbtid_t tid);
130 static unsigned long ilog2(unsigned long);
131 
132 /**************************************************************************/
133 /* Page table management */
134 /**************************************************************************/
135 
136 #define PMAP_ROOT_SIZE	(sizeof(pte_t****) * PG_ROOT_NENTRIES)
137 static pte_t *ptbl_alloc(pmap_t pmap, vm_offset_t va,
138     bool nosleep, bool *is_new);
139 static void ptbl_hold(pmap_t, pte_t *);
140 static int ptbl_unhold(pmap_t, vm_offset_t);
141 
142 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
143 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
144 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
145 static pte_t *pte_find(pmap_t, vm_offset_t);
146 static pte_t *pte_find_next(pmap_t, vm_offset_t *);
147 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
148 
149 /**************************************************************************/
150 /* Page table related */
151 /**************************************************************************/
152 
153 /* Allocate a page, to be used in a page table. */
154 static vm_offset_t
155 mmu_booke_alloc_page(pmap_t pmap, unsigned int idx, bool nosleep)
156 {
157 	vm_page_t	m;
158 	int		req;
159 
160 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO;
161 	while ((m = vm_page_alloc(NULL, idx, req)) == NULL) {
162 		if (nosleep)
163 			return (0);
164 
165 		PMAP_UNLOCK(pmap);
166 		rw_wunlock(&pvh_global_lock);
167 		vm_wait(NULL);
168 		rw_wlock(&pvh_global_lock);
169 		PMAP_LOCK(pmap);
170 	}
171 
172 	if (!(m->flags & PG_ZERO))
173 		/* Zero whole ptbl. */
174 		mmu_booke_zero_page(m);
175 
176 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
177 }
178 
179 /* Initialize pool of kva ptbl buffers. */
180 static void
181 ptbl_init(void)
182 {
183 }
184 
185 /* Get a pointer to a PTE in a page table. */
186 static __inline pte_t *
187 pte_find(pmap_t pmap, vm_offset_t va)
188 {
189 	pte_t        ***pdir_l1;
190 	pte_t         **pdir;
191 	pte_t          *ptbl;
192 
193 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
194 
195 	pdir_l1 = pmap->pm_root[PG_ROOT_IDX(va)];
196 	if (pdir_l1 == NULL)
197 		return (NULL);
198 	pdir = pdir_l1[PDIR_L1_IDX(va)];
199 	if (pdir == NULL)
200 		return (NULL);
201 	ptbl = pdir[PDIR_IDX(va)];
202 
203 	return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL);
204 }
205 
206 /* Get a pointer to a PTE in a page table, or the next closest (greater) one. */
207 static __inline pte_t *
208 pte_find_next(pmap_t pmap, vm_offset_t *pva)
209 {
210 	vm_offset_t	va;
211 	pte_t	    ****pm_root;
212 	pte_t	       *pte;
213 	unsigned long	i, j, k, l;
214 
215 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
216 
217 	va = *pva;
218 	i = PG_ROOT_IDX(va);
219 	j = PDIR_L1_IDX(va);
220 	k = PDIR_IDX(va);
221 	l = PTBL_IDX(va);
222 	pm_root = pmap->pm_root;
223 
224 	/* truncate the VA for later. */
225 	va &= ~((1UL << (PG_ROOT_H + 1)) - 1);
226 	for (; i < PG_ROOT_NENTRIES; i++, j = 0, k = 0, l = 0) {
227 		if (pm_root[i] == 0)
228 			continue;
229 		for (; j < PDIR_L1_NENTRIES; j++, k = 0, l = 0) {
230 			if (pm_root[i][j] == 0)
231 				continue;
232 			for (; k < PDIR_NENTRIES; k++, l = 0) {
233 				if (pm_root[i][j][k] == NULL)
234 					continue;
235 				for (; l < PTBL_NENTRIES; l++) {
236 					pte = &pm_root[i][j][k][l];
237 					if (!PTE_ISVALID(pte))
238 						continue;
239 					*pva = va + PG_ROOT_SIZE * i +
240 					    PDIR_L1_SIZE * j +
241 					    PDIR_SIZE * k +
242 					    PAGE_SIZE * l;
243 					return (pte);
244 				}
245 			}
246 		}
247 	}
248 	return (NULL);
249 }
250 
251 static bool
252 unhold_free_page(pmap_t pmap, vm_page_t m)
253 {
254 
255 	if (vm_page_unwire_noq(m)) {
256 		vm_page_free_zero(m);
257 		return (true);
258 	}
259 
260 	return (false);
261 }
262 
263 static vm_offset_t
264 get_pgtbl_page(pmap_t pmap, vm_offset_t *ptr_tbl, uint32_t index,
265     bool nosleep, bool hold_parent, bool *isnew)
266 {
267 	vm_offset_t	page;
268 	vm_page_t	m;
269 
270 	page = ptr_tbl[index];
271 	KASSERT(page != 0 || pmap != kernel_pmap,
272 	    ("NULL page table page found in kernel pmap!"));
273 	if (page == 0) {
274 		page = mmu_booke_alloc_page(pmap, index, nosleep);
275 		if (ptr_tbl[index] == 0) {
276 			*isnew = true;
277 			ptr_tbl[index] = page;
278 			if (hold_parent) {
279 				m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)ptr_tbl));
280 				m->ref_count++;
281 			}
282 			return (page);
283 		}
284 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS(page));
285 		page = ptr_tbl[index];
286 		vm_page_unwire_noq(m);
287 		vm_page_free_zero(m);
288 	}
289 
290 	*isnew = false;
291 
292 	return (page);
293 }
294 
295 /* Allocate page table. */
296 static pte_t*
297 ptbl_alloc(pmap_t pmap, vm_offset_t va, bool nosleep, bool *is_new)
298 {
299 	unsigned int	pg_root_idx = PG_ROOT_IDX(va);
300 	unsigned int	pdir_l1_idx = PDIR_L1_IDX(va);
301 	unsigned int	pdir_idx = PDIR_IDX(va);
302 	vm_offset_t	pdir_l1, pdir, ptbl;
303 
304 	/* When holding a parent, no need to hold the root index pages. */
305 	pdir_l1 = get_pgtbl_page(pmap, (vm_offset_t *)pmap->pm_root,
306 	    pg_root_idx, nosleep, false, is_new);
307 	if (pdir_l1 == 0)
308 		return (NULL);
309 	pdir = get_pgtbl_page(pmap, (vm_offset_t *)pdir_l1, pdir_l1_idx,
310 	    nosleep, !*is_new, is_new);
311 	if (pdir == 0)
312 		return (NULL);
313 	ptbl = get_pgtbl_page(pmap, (vm_offset_t *)pdir, pdir_idx,
314 	    nosleep, !*is_new, is_new);
315 
316 	return ((pte_t *)ptbl);
317 }
318 
319 /*
320  * Decrement ptbl pages hold count and attempt to free ptbl pages. Called
321  * when removing pte entry from ptbl.
322  *
323  * Return 1 if ptbl pages were freed.
324  */
325 static int
326 ptbl_unhold(pmap_t pmap, vm_offset_t va)
327 {
328 	pte_t          *ptbl;
329 	vm_page_t	m;
330 	u_int		pg_root_idx;
331 	pte_t        ***pdir_l1;
332 	u_int		pdir_l1_idx;
333 	pte_t         **pdir;
334 	u_int		pdir_idx;
335 
336 	pg_root_idx = PG_ROOT_IDX(va);
337 	pdir_l1_idx = PDIR_L1_IDX(va);
338 	pdir_idx = PDIR_IDX(va);
339 
340 	KASSERT((pmap != kernel_pmap),
341 		("ptbl_unhold: unholding kernel ptbl!"));
342 
343 	pdir_l1 = pmap->pm_root[pg_root_idx];
344 	pdir = pdir_l1[pdir_l1_idx];
345 	ptbl = pdir[pdir_idx];
346 
347 	/* decrement hold count */
348 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
349 
350 	if (!unhold_free_page(pmap, m))
351 		return (0);
352 
353 	pdir[pdir_idx] = NULL;
354 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) pdir));
355 
356 	if (!unhold_free_page(pmap, m))
357 		return (1);
358 
359 	pdir_l1[pdir_l1_idx] = NULL;
360 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) pdir_l1));
361 
362 	if (!unhold_free_page(pmap, m))
363 		return (1);
364 	pmap->pm_root[pg_root_idx] = NULL;
365 
366 	return (1);
367 }
368 
369 /*
370  * Increment hold count for ptbl pages. This routine is used when new pte
371  * entry is being inserted into ptbl.
372  */
373 static void
374 ptbl_hold(pmap_t pmap, pte_t *ptbl)
375 {
376 	vm_page_t	m;
377 
378 	KASSERT((pmap != kernel_pmap),
379 		("ptbl_hold: holding kernel ptbl!"));
380 
381 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
382 	m->ref_count++;
383 }
384 
385 /*
386  * Clean pte entry, try to free page table page if requested.
387  *
388  * Return 1 if ptbl pages were freed, otherwise return 0.
389  */
390 static int
391 pte_remove(pmap_t pmap, vm_offset_t va, u_int8_t flags)
392 {
393 	vm_page_t	m;
394 	pte_t          *pte;
395 
396 	pte = pte_find(pmap, va);
397 	KASSERT(pte != NULL, ("%s: NULL pte for va %#jx, pmap %p",
398 	    __func__, (uintmax_t)va, pmap));
399 
400 	if (!PTE_ISVALID(pte))
401 		return (0);
402 
403 	/* Get vm_page_t for mapped pte. */
404 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
405 
406 	if (PTE_ISWIRED(pte))
407 		pmap->pm_stats.wired_count--;
408 
409 	/* Handle managed entry. */
410 	if (PTE_ISMANAGED(pte)) {
411 		/* Handle modified pages. */
412 		if (PTE_ISMODIFIED(pte))
413 			vm_page_dirty(m);
414 
415 		/* Referenced pages. */
416 		if (PTE_ISREFERENCED(pte))
417 			vm_page_aflag_set(m, PGA_REFERENCED);
418 
419 		/* Remove pv_entry from pv_list. */
420 		pv_remove(pmap, va, m);
421 	} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
422 		pv_remove(pmap, va, m);
423 		if (TAILQ_EMPTY(&m->md.pv_list))
424 			m->md.pv_tracked = false;
425 	}
426 	mtx_lock_spin(&tlbivax_mutex);
427 	tlb_miss_lock();
428 
429 	tlb0_flush_entry(va);
430 	*pte = 0;
431 
432 	tlb_miss_unlock();
433 	mtx_unlock_spin(&tlbivax_mutex);
434 
435 	pmap->pm_stats.resident_count--;
436 
437 	if (flags & PTBL_UNHOLD) {
438 		return (ptbl_unhold(pmap, va));
439 	}
440 	return (0);
441 }
442 
443 /*
444  * Insert PTE for a given page and virtual address.
445  */
446 static int
447 pte_enter(pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
448     boolean_t nosleep)
449 {
450 	unsigned int	ptbl_idx = PTBL_IDX(va);
451 	pte_t          *ptbl, *pte, pte_tmp;
452 	bool		is_new;
453 
454 	/* Get the page directory pointer. */
455 	ptbl = ptbl_alloc(pmap, va, nosleep, &is_new);
456 	if (ptbl == NULL) {
457 		KASSERT(nosleep, ("nosleep and NULL ptbl"));
458 		return (ENOMEM);
459 	}
460 	if (is_new) {
461 		pte = &ptbl[ptbl_idx];
462 	} else {
463 		/*
464 		 * Check if there is valid mapping for requested va, if there
465 		 * is, remove it.
466 		 */
467 		pte = &ptbl[ptbl_idx];
468 		if (PTE_ISVALID(pte)) {
469 			pte_remove(pmap, va, PTBL_HOLD);
470 		} else {
471 			/*
472 			 * pte is not used, increment hold count for ptbl
473 			 * pages.
474 			 */
475 			if (pmap != kernel_pmap)
476 				ptbl_hold(pmap, ptbl);
477 		}
478 	}
479 
480 	/*
481 	 * Insert pv_entry into pv_list for mapped page if part of managed
482 	 * memory.
483 	 */
484 	if ((m->oflags & VPO_UNMANAGED) == 0) {
485 		flags |= PTE_MANAGED;
486 
487 		/* Create and insert pv entry. */
488 		pv_insert(pmap, va, m);
489 	}
490 
491 	pmap->pm_stats.resident_count++;
492 
493 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
494 	pte_tmp |= (PTE_VALID | flags);
495 
496 	mtx_lock_spin(&tlbivax_mutex);
497 	tlb_miss_lock();
498 
499 	tlb0_flush_entry(va);
500 	*pte = pte_tmp;
501 
502 	tlb_miss_unlock();
503 	mtx_unlock_spin(&tlbivax_mutex);
504 
505 	return (0);
506 }
507 
508 /* Return the pa for the given pmap/va. */
509 static	vm_paddr_t
510 pte_vatopa(pmap_t pmap, vm_offset_t va)
511 {
512 	vm_paddr_t	pa = 0;
513 	pte_t          *pte;
514 
515 	pte = pte_find(pmap, va);
516 	if ((pte != NULL) && PTE_ISVALID(pte))
517 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
518 	return (pa);
519 }
520 
521 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */
522 static void
523 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr)
524 {
525 	pte_t		*pte;
526 	vm_size_t	kva_size;
527 	int		kernel_pdirs, kernel_pgtbls, pdir_l1s;
528 	vm_offset_t	va, l1_va, pdir_va, ptbl_va;
529 	int		i, j, k;
530 
531 	kva_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
532 	kernel_pmap->pm_root = kernel_ptbl_root;
533 	pdir_l1s = howmany(kva_size, PG_ROOT_SIZE);
534 	kernel_pdirs = howmany(kva_size, PDIR_L1_SIZE);
535 	kernel_pgtbls = howmany(kva_size, PDIR_SIZE);
536 
537 	/* Initialize kernel pdir */
538 	l1_va = (vm_offset_t)kernel_ptbl_root +
539 	    round_page(PG_ROOT_NENTRIES * sizeof(pte_t ***));
540 	pdir_va = l1_va + pdir_l1s * PAGE_SIZE;
541 	ptbl_va = pdir_va + kernel_pdirs * PAGE_SIZE;
542 	if (bootverbose) {
543 		printf("ptbl_root_va: %#lx\n", (vm_offset_t)kernel_ptbl_root);
544 		printf("l1_va: %#lx (%d entries)\n", l1_va, pdir_l1s);
545 		printf("pdir_va: %#lx(%d entries)\n", pdir_va, kernel_pdirs);
546 		printf("ptbl_va: %#lx(%d entries)\n", ptbl_va, kernel_pgtbls);
547 	}
548 
549 	va = VM_MIN_KERNEL_ADDRESS;
550 	for (i = PG_ROOT_IDX(va); i < PG_ROOT_IDX(va) + pdir_l1s;
551 	    i++, l1_va += PAGE_SIZE) {
552 		kernel_pmap->pm_root[i] = (pte_t ***)l1_va;
553 		for (j = 0;
554 		    j < PDIR_L1_NENTRIES && va < VM_MAX_KERNEL_ADDRESS;
555 		    j++, pdir_va += PAGE_SIZE) {
556 			kernel_pmap->pm_root[i][j] = (pte_t **)pdir_va;
557 			for (k = 0;
558 			    k < PDIR_NENTRIES && va < VM_MAX_KERNEL_ADDRESS;
559 			    k++, va += PDIR_SIZE, ptbl_va += PAGE_SIZE)
560 				kernel_pmap->pm_root[i][j][k] = (pte_t *)ptbl_va;
561 		}
562 	}
563 	/*
564 	 * Fill in PTEs covering kernel code and data. They are not required
565 	 * for address translation, as this area is covered by static TLB1
566 	 * entries, but for pte_vatopa() to work correctly with kernel area
567 	 * addresses.
568 	 */
569 	for (va = addr; va < data_end; va += PAGE_SIZE) {
570 		pte = &(kernel_pmap->pm_root[PG_ROOT_IDX(va)][PDIR_L1_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]);
571 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
572 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
573 		    PTE_VALID | PTE_PS_4KB;
574 	}
575 }
576 
577 static vm_offset_t
578 mmu_booke_alloc_kernel_pgtables(vm_offset_t data_end)
579 {
580 	vm_size_t kva_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
581 	kernel_ptbl_root = (pte_t ****)data_end;
582 
583 	data_end += round_page(PG_ROOT_NENTRIES * sizeof(pte_t ***));
584 	data_end += howmany(kva_size, PG_ROOT_SIZE) * PAGE_SIZE;
585 	data_end += howmany(kva_size, PDIR_L1_SIZE) * PAGE_SIZE;
586 	data_end += howmany(kva_size, PDIR_SIZE) * PAGE_SIZE;
587 
588 	return (data_end);
589 }
590 
591 /*
592  * Initialize a preallocated and zeroed pmap structure,
593  * such as one in a vmspace structure.
594  */
595 static int
596 mmu_booke_pinit(pmap_t pmap)
597 {
598 	int i;
599 
600 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
601 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
602 
603 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
604 
605 	for (i = 0; i < MAXCPU; i++)
606 		pmap->pm_tid[i] = TID_NONE;
607 	CPU_ZERO(&kernel_pmap->pm_active);
608 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
609 	pmap->pm_root = uma_zalloc(ptbl_root_zone, M_WAITOK);
610 	bzero(pmap->pm_root, sizeof(pte_t **) * PG_ROOT_NENTRIES);
611 
612 	return (1);
613 }
614 
615 /*
616  * Release any resources held by the given physical map.
617  * Called when a pmap initialized by mmu_booke_pinit is being released.
618  * Should only be called if the map contains no valid mappings.
619  */
620 static void
621 mmu_booke_release(pmap_t pmap)
622 {
623 
624 	KASSERT(pmap->pm_stats.resident_count == 0,
625 	    ("pmap_release: pmap resident count %ld != 0",
626 	    pmap->pm_stats.resident_count));
627 #ifdef INVARIANTS
628 	/*
629 	 * Verify that all page directories are gone.
630 	 * Protects against reference count leakage.
631 	 */
632 	for (int i = 0; i < PG_ROOT_NENTRIES; i++)
633 		KASSERT(pmap->pm_root[i] == 0,
634 		    ("Index %d on root page %p is non-zero!\n", i, pmap->pm_root));
635 #endif
636 	uma_zfree(ptbl_root_zone, pmap->pm_root);
637 }
638 
639 static void
640 mmu_booke_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
641 {
642 	pte_t *pte;
643 	vm_paddr_t pa = 0;
644 	int sync_sz, valid;
645 
646 	while (sz > 0) {
647 		PMAP_LOCK(pm);
648 		pte = pte_find(pm, va);
649 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
650 		if (valid)
651 			pa = PTE_PA(pte);
652 		PMAP_UNLOCK(pm);
653 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
654 		sync_sz = min(sync_sz, sz);
655 		if (valid) {
656 			pa += (va & PAGE_MASK);
657 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
658 		}
659 		va += sync_sz;
660 		sz -= sync_sz;
661 	}
662 }
663 
664 /*
665  * mmu_booke_zero_page_area zeros the specified hardware page by
666  * mapping it into virtual memory and using bzero to clear
667  * its contents.
668  *
669  * off and size must reside within a single page.
670  */
671 static void
672 mmu_booke_zero_page_area(vm_page_t m, int off, int size)
673 {
674 	vm_offset_t va;
675 
676 	/* XXX KASSERT off and size are within a single page? */
677 
678 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
679 	bzero((caddr_t)va + off, size);
680 }
681 
682 /*
683  * mmu_booke_zero_page zeros the specified hardware page.
684  */
685 static void
686 mmu_booke_zero_page(vm_page_t m)
687 {
688 	vm_offset_t off, va;
689 
690 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
691 
692 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
693 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
694 }
695 
696 /*
697  * mmu_booke_copy_page copies the specified (machine independent) page by
698  * mapping the page into virtual memory and using memcopy to copy the page,
699  * one machine dependent page at a time.
700  */
701 static void
702 mmu_booke_copy_page(vm_page_t sm, vm_page_t dm)
703 {
704 	vm_offset_t sva, dva;
705 
706 	sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm));
707 	dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm));
708 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
709 }
710 
711 static inline void
712 mmu_booke_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
713     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
714 {
715 	void *a_cp, *b_cp;
716 	vm_offset_t a_pg_offset, b_pg_offset;
717 	int cnt;
718 
719 	vm_page_t pa, pb;
720 
721 	while (xfersize > 0) {
722 		a_pg_offset = a_offset & PAGE_MASK;
723 		pa = ma[a_offset >> PAGE_SHIFT];
724 		b_pg_offset = b_offset & PAGE_MASK;
725 		pb = mb[b_offset >> PAGE_SHIFT];
726 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
727 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
728 		a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) +
729 		    a_pg_offset);
730 		b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) +
731 		    b_pg_offset);
732 		bcopy(a_cp, b_cp, cnt);
733 		a_offset += cnt;
734 		b_offset += cnt;
735 		xfersize -= cnt;
736 	}
737 }
738 
739 static vm_offset_t
740 mmu_booke_quick_enter_page(vm_page_t m)
741 {
742 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
743 }
744 
745 static void
746 mmu_booke_quick_remove_page(vm_offset_t addr)
747 {
748 }
749 
750 /**************************************************************************/
751 /* TID handling */
752 /**************************************************************************/
753 
754 /*
755  * Return the largest uint value log such that 2^log <= num.
756  */
757 static unsigned long
758 ilog2(unsigned long num)
759 {
760 	long lz;
761 
762 	__asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num));
763 	return (63 - lz);
764 }
765 
766 /*
767  * Invalidate all TLB0 entries which match the given TID. Note this is
768  * dedicated for cases when invalidations should NOT be propagated to other
769  * CPUs.
770  */
771 static void
772 tid_flush(tlbtid_t tid)
773 {
774 	register_t msr;
775 
776 	/* Don't evict kernel translations */
777 	if (tid == TID_KERNEL)
778 		return;
779 
780 	msr = mfmsr();
781 	__asm __volatile("wrteei 0");
782 
783 	/*
784 	 * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use
785 	 * it for PID invalidation.
786 	 */
787 	mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT);
788 	__asm __volatile("isync; .long 0x7c200024; isync; msync");
789 
790 	__asm __volatile("wrtee %0" :: "r"(msr));
791 }
792