1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2020 Justin Hibbits 5 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 6 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 21 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 24 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 25 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 26 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 27 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * Some hw specific parts of this pmap were derived or influenced 30 * by NetBSD's ibm4xx pmap module. More generic code is shared with 31 * a few other pmap modules from the FreeBSD tree. 32 */ 33 34 /* 35 * VM layout notes: 36 * 37 * Kernel and user threads run within one common virtual address space 38 * defined by AS=0. 39 * 40 * 64-bit pmap: 41 * Virtual address space layout: 42 * ----------------------------- 43 * 0x0000_0000_0000_0000 - 0x3fff_ffff_ffff_ffff : user process 44 * 0x4000_0000_0000_0000 - 0x7fff_ffff_ffff_ffff : unused 45 * 0x8000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : mmio region 46 * 0xc000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : direct map 47 * 0xe000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : KVA 48 */ 49 50 #include <sys/cdefs.h> 51 #include "opt_ddb.h" 52 #include "opt_kstack_pages.h" 53 54 #include <sys/param.h> 55 #include <sys/conf.h> 56 #include <sys/malloc.h> 57 #include <sys/ktr.h> 58 #include <sys/proc.h> 59 #include <sys/user.h> 60 #include <sys/queue.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/kerneldump.h> 64 #include <sys/linker.h> 65 #include <sys/msgbuf.h> 66 #include <sys/lock.h> 67 #include <sys/mutex.h> 68 #include <sys/rwlock.h> 69 #include <sys/sched.h> 70 #include <sys/smp.h> 71 #include <sys/vmmeter.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_param.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_pager.h> 82 #include <vm/vm_phys.h> 83 #include <vm/vm_pagequeue.h> 84 #include <vm/uma.h> 85 86 #include <machine/_inttypes.h> 87 #include <machine/cpu.h> 88 #include <machine/pcb.h> 89 #include <machine/platform.h> 90 91 #include <machine/tlb.h> 92 #include <machine/spr.h> 93 #include <machine/md_var.h> 94 #include <machine/mmuvar.h> 95 #include <machine/pmap.h> 96 #include <machine/pte.h> 97 98 #include <ddb/ddb.h> 99 100 #ifdef DEBUG 101 #define debugf(fmt, args...) printf(fmt, ##args) 102 #else 103 #define debugf(fmt, args...) 104 #endif 105 106 #define PRI0ptrX "016lx" 107 108 /**************************************************************************/ 109 /* PMAP */ 110 /**************************************************************************/ 111 112 unsigned int kernel_pdirs; 113 static uma_zone_t ptbl_root_zone; 114 static pte_t ****kernel_ptbl_root; 115 116 /* 117 * Base of the pmap_mapdev() region. On 32-bit it immediately follows the 118 * userspace address range. On On 64-bit it's far above, at (1 << 63), and 119 * ranges up to the DMAP, giving 62 bits of PA allowed. This is far larger than 120 * the widest Book-E address bus, the e6500 has a 40-bit PA space. This allows 121 * us to map akin to the DMAP, with addresses identical to the PA, offset by the 122 * base. 123 */ 124 #define VM_MAPDEV_BASE 0x8000000000000000 125 #define VM_MAPDEV_PA_MAX 0x4000000000000000 /* Don't encroach on DMAP */ 126 127 static void tid_flush(tlbtid_t tid); 128 129 /**************************************************************************/ 130 /* Page table management */ 131 /**************************************************************************/ 132 133 #define PMAP_ROOT_SIZE (sizeof(pte_t****) * PG_ROOT_NENTRIES) 134 static pte_t *ptbl_alloc(pmap_t pmap, vm_offset_t va, 135 bool nosleep, bool *is_new); 136 static void ptbl_hold(pmap_t, pte_t *); 137 static int ptbl_unhold(pmap_t, vm_offset_t); 138 139 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t); 140 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, bool); 141 static int pte_remove(pmap_t, vm_offset_t, uint8_t); 142 static pte_t *pte_find(pmap_t, vm_offset_t); 143 static pte_t *pte_find_next(pmap_t, vm_offset_t *); 144 static void kernel_pte_alloc(vm_offset_t, vm_offset_t); 145 146 /**************************************************************************/ 147 /* Page table related */ 148 /**************************************************************************/ 149 150 /* Allocate a page, to be used in a page table. */ 151 static vm_offset_t 152 mmu_booke_alloc_page(pmap_t pmap, unsigned int idx, bool nosleep) 153 { 154 vm_page_t m; 155 int req; 156 157 req = VM_ALLOC_WIRED | VM_ALLOC_ZERO; 158 while ((m = vm_page_alloc_noobj(req)) == NULL) { 159 if (nosleep) 160 return (0); 161 162 PMAP_UNLOCK(pmap); 163 rw_wunlock(&pvh_global_lock); 164 vm_wait(NULL); 165 rw_wlock(&pvh_global_lock); 166 PMAP_LOCK(pmap); 167 } 168 m->pindex = idx; 169 170 return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); 171 } 172 173 /* Initialize pool of kva ptbl buffers. */ 174 static void 175 ptbl_init(void) 176 { 177 } 178 179 /* Get a pointer to a PTE in a page table. */ 180 static __inline pte_t * 181 pte_find(pmap_t pmap, vm_offset_t va) 182 { 183 pte_t ***pdir_l1; 184 pte_t **pdir; 185 pte_t *ptbl; 186 187 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 188 189 pdir_l1 = pmap->pm_root[PG_ROOT_IDX(va)]; 190 if (pdir_l1 == NULL) 191 return (NULL); 192 pdir = pdir_l1[PDIR_L1_IDX(va)]; 193 if (pdir == NULL) 194 return (NULL); 195 ptbl = pdir[PDIR_IDX(va)]; 196 197 return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL); 198 } 199 200 /* Get a pointer to a PTE in a page table, or the next closest (greater) one. */ 201 static __inline pte_t * 202 pte_find_next(pmap_t pmap, vm_offset_t *pva) 203 { 204 vm_offset_t va; 205 pte_t ****pm_root; 206 pte_t *pte; 207 unsigned long i, j, k, l; 208 209 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 210 211 va = *pva; 212 i = PG_ROOT_IDX(va); 213 j = PDIR_L1_IDX(va); 214 k = PDIR_IDX(va); 215 l = PTBL_IDX(va); 216 pm_root = pmap->pm_root; 217 218 /* truncate the VA for later. */ 219 va &= ~((1UL << (PG_ROOT_H + 1)) - 1); 220 for (; i < PG_ROOT_NENTRIES; i++, j = 0, k = 0, l = 0) { 221 if (pm_root[i] == 0) 222 continue; 223 for (; j < PDIR_L1_NENTRIES; j++, k = 0, l = 0) { 224 if (pm_root[i][j] == 0) 225 continue; 226 for (; k < PDIR_NENTRIES; k++, l = 0) { 227 if (pm_root[i][j][k] == NULL) 228 continue; 229 for (; l < PTBL_NENTRIES; l++) { 230 pte = &pm_root[i][j][k][l]; 231 if (!PTE_ISVALID(pte)) 232 continue; 233 *pva = va + PG_ROOT_SIZE * i + 234 PDIR_L1_SIZE * j + 235 PDIR_SIZE * k + 236 PAGE_SIZE * l; 237 return (pte); 238 } 239 } 240 } 241 } 242 return (NULL); 243 } 244 245 static bool 246 unhold_free_page(pmap_t pmap, vm_page_t m) 247 { 248 249 if (vm_page_unwire_noq(m)) { 250 vm_page_free_zero(m); 251 return (true); 252 } 253 254 return (false); 255 } 256 257 static vm_offset_t 258 get_pgtbl_page(pmap_t pmap, vm_offset_t *ptr_tbl, uint32_t index, 259 bool nosleep, bool hold_parent, bool *isnew) 260 { 261 vm_offset_t page; 262 vm_page_t m; 263 264 page = ptr_tbl[index]; 265 KASSERT(page != 0 || pmap != kernel_pmap, 266 ("NULL page table page found in kernel pmap!")); 267 if (page == 0) { 268 page = mmu_booke_alloc_page(pmap, index, nosleep); 269 if (ptr_tbl[index] == 0) { 270 *isnew = true; 271 ptr_tbl[index] = page; 272 if (hold_parent) { 273 m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)ptr_tbl)); 274 m->ref_count++; 275 } 276 return (page); 277 } 278 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS(page)); 279 page = ptr_tbl[index]; 280 vm_page_unwire_noq(m); 281 vm_page_free_zero(m); 282 } 283 284 *isnew = false; 285 286 return (page); 287 } 288 289 /* Allocate page table. */ 290 static pte_t* 291 ptbl_alloc(pmap_t pmap, vm_offset_t va, bool nosleep, bool *is_new) 292 { 293 unsigned int pg_root_idx = PG_ROOT_IDX(va); 294 unsigned int pdir_l1_idx = PDIR_L1_IDX(va); 295 unsigned int pdir_idx = PDIR_IDX(va); 296 vm_offset_t pdir_l1, pdir, ptbl; 297 298 /* When holding a parent, no need to hold the root index pages. */ 299 pdir_l1 = get_pgtbl_page(pmap, (vm_offset_t *)pmap->pm_root, 300 pg_root_idx, nosleep, false, is_new); 301 if (pdir_l1 == 0) 302 return (NULL); 303 pdir = get_pgtbl_page(pmap, (vm_offset_t *)pdir_l1, pdir_l1_idx, 304 nosleep, !*is_new, is_new); 305 if (pdir == 0) 306 return (NULL); 307 ptbl = get_pgtbl_page(pmap, (vm_offset_t *)pdir, pdir_idx, 308 nosleep, !*is_new, is_new); 309 310 return ((pte_t *)ptbl); 311 } 312 313 /* 314 * Decrement ptbl pages hold count and attempt to free ptbl pages. Called 315 * when removing pte entry from ptbl. 316 * 317 * Return 1 if ptbl pages were freed. 318 */ 319 static int 320 ptbl_unhold(pmap_t pmap, vm_offset_t va) 321 { 322 pte_t *ptbl; 323 vm_page_t m; 324 u_int pg_root_idx; 325 pte_t ***pdir_l1; 326 u_int pdir_l1_idx; 327 pte_t **pdir; 328 u_int pdir_idx; 329 330 pg_root_idx = PG_ROOT_IDX(va); 331 pdir_l1_idx = PDIR_L1_IDX(va); 332 pdir_idx = PDIR_IDX(va); 333 334 KASSERT((pmap != kernel_pmap), 335 ("ptbl_unhold: unholding kernel ptbl!")); 336 337 pdir_l1 = pmap->pm_root[pg_root_idx]; 338 pdir = pdir_l1[pdir_l1_idx]; 339 ptbl = pdir[pdir_idx]; 340 341 /* decrement hold count */ 342 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl)); 343 344 if (!unhold_free_page(pmap, m)) 345 return (0); 346 347 pdir[pdir_idx] = NULL; 348 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) pdir)); 349 350 if (!unhold_free_page(pmap, m)) 351 return (1); 352 353 pdir_l1[pdir_l1_idx] = NULL; 354 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) pdir_l1)); 355 356 if (!unhold_free_page(pmap, m)) 357 return (1); 358 pmap->pm_root[pg_root_idx] = NULL; 359 360 return (1); 361 } 362 363 /* 364 * Increment hold count for ptbl pages. This routine is used when new pte 365 * entry is being inserted into ptbl. 366 */ 367 static void 368 ptbl_hold(pmap_t pmap, pte_t *ptbl) 369 { 370 vm_page_t m; 371 372 KASSERT((pmap != kernel_pmap), 373 ("ptbl_hold: holding kernel ptbl!")); 374 375 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl)); 376 m->ref_count++; 377 } 378 379 /* 380 * Clean pte entry, try to free page table page if requested. 381 * 382 * Return 1 if ptbl pages were freed, otherwise return 0. 383 */ 384 static int 385 pte_remove(pmap_t pmap, vm_offset_t va, u_int8_t flags) 386 { 387 vm_page_t m; 388 pte_t *pte; 389 390 pte = pte_find(pmap, va); 391 KASSERT(pte != NULL, ("%s: NULL pte for va %#jx, pmap %p", 392 __func__, (uintmax_t)va, pmap)); 393 394 if (!PTE_ISVALID(pte)) 395 return (0); 396 397 /* Get vm_page_t for mapped pte. */ 398 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 399 400 if (PTE_ISWIRED(pte)) 401 pmap->pm_stats.wired_count--; 402 403 /* Handle managed entry. */ 404 if (PTE_ISMANAGED(pte)) { 405 /* Handle modified pages. */ 406 if (PTE_ISMODIFIED(pte)) 407 vm_page_dirty(m); 408 409 /* Referenced pages. */ 410 if (PTE_ISREFERENCED(pte)) 411 vm_page_aflag_set(m, PGA_REFERENCED); 412 413 /* Remove pv_entry from pv_list. */ 414 pv_remove(pmap, va, m); 415 } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { 416 pv_remove(pmap, va, m); 417 if (TAILQ_EMPTY(&m->md.pv_list)) 418 m->md.pv_tracked = false; 419 } 420 mtx_lock_spin(&tlbivax_mutex); 421 tlb_miss_lock(); 422 423 tlb0_flush_entry(va); 424 *pte = 0; 425 426 tlb_miss_unlock(); 427 mtx_unlock_spin(&tlbivax_mutex); 428 429 pmap->pm_stats.resident_count--; 430 431 if (flags & PTBL_UNHOLD) { 432 return (ptbl_unhold(pmap, va)); 433 } 434 return (0); 435 } 436 437 /* 438 * Insert PTE for a given page and virtual address. 439 */ 440 static int 441 pte_enter(pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 442 bool nosleep) 443 { 444 unsigned int ptbl_idx = PTBL_IDX(va); 445 pte_t *ptbl, *pte, pte_tmp; 446 bool is_new; 447 448 /* Get the page directory pointer. */ 449 ptbl = ptbl_alloc(pmap, va, nosleep, &is_new); 450 if (ptbl == NULL) { 451 KASSERT(nosleep, ("nosleep and NULL ptbl")); 452 return (ENOMEM); 453 } 454 if (is_new) { 455 pte = &ptbl[ptbl_idx]; 456 } else { 457 /* 458 * Check if there is valid mapping for requested va, if there 459 * is, remove it. 460 */ 461 pte = &ptbl[ptbl_idx]; 462 if (PTE_ISVALID(pte)) { 463 pte_remove(pmap, va, PTBL_HOLD); 464 } else { 465 /* 466 * pte is not used, increment hold count for ptbl 467 * pages. 468 */ 469 if (pmap != kernel_pmap) 470 ptbl_hold(pmap, ptbl); 471 } 472 } 473 474 /* 475 * Insert pv_entry into pv_list for mapped page if part of managed 476 * memory. 477 */ 478 if ((m->oflags & VPO_UNMANAGED) == 0) { 479 flags |= PTE_MANAGED; 480 481 /* Create and insert pv entry. */ 482 pv_insert(pmap, va, m); 483 } 484 485 pmap->pm_stats.resident_count++; 486 487 pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 488 pte_tmp |= (PTE_VALID | flags); 489 490 mtx_lock_spin(&tlbivax_mutex); 491 tlb_miss_lock(); 492 493 tlb0_flush_entry(va); 494 *pte = pte_tmp; 495 496 tlb_miss_unlock(); 497 mtx_unlock_spin(&tlbivax_mutex); 498 499 return (0); 500 } 501 502 /* Return the pa for the given pmap/va. */ 503 static vm_paddr_t 504 pte_vatopa(pmap_t pmap, vm_offset_t va) 505 { 506 vm_paddr_t pa = 0; 507 pte_t *pte; 508 509 pte = pte_find(pmap, va); 510 if ((pte != NULL) && PTE_ISVALID(pte)) 511 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 512 return (pa); 513 } 514 515 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */ 516 static void 517 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr) 518 { 519 pte_t *pte; 520 vm_size_t kva_size; 521 int kernel_pdirs, kernel_pgtbls, pdir_l1s; 522 vm_offset_t va, l1_va, pdir_va, ptbl_va; 523 int i, j, k; 524 525 kva_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 526 kernel_pmap->pm_root = kernel_ptbl_root; 527 pdir_l1s = howmany(kva_size, PG_ROOT_SIZE); 528 kernel_pdirs = howmany(kva_size, PDIR_L1_SIZE); 529 kernel_pgtbls = howmany(kva_size, PDIR_SIZE); 530 531 /* Initialize kernel pdir */ 532 l1_va = (vm_offset_t)kernel_ptbl_root + 533 round_page(PG_ROOT_NENTRIES * sizeof(pte_t ***)); 534 pdir_va = l1_va + pdir_l1s * PAGE_SIZE; 535 ptbl_va = pdir_va + kernel_pdirs * PAGE_SIZE; 536 if (bootverbose) { 537 printf("ptbl_root_va: %#lx\n", (vm_offset_t)kernel_ptbl_root); 538 printf("l1_va: %#lx (%d entries)\n", l1_va, pdir_l1s); 539 printf("pdir_va: %#lx(%d entries)\n", pdir_va, kernel_pdirs); 540 printf("ptbl_va: %#lx(%d entries)\n", ptbl_va, kernel_pgtbls); 541 } 542 543 va = VM_MIN_KERNEL_ADDRESS; 544 for (i = PG_ROOT_IDX(va); i < PG_ROOT_IDX(va) + pdir_l1s; 545 i++, l1_va += PAGE_SIZE) { 546 kernel_pmap->pm_root[i] = (pte_t ***)l1_va; 547 for (j = 0; 548 j < PDIR_L1_NENTRIES && va < VM_MAX_KERNEL_ADDRESS; 549 j++, pdir_va += PAGE_SIZE) { 550 kernel_pmap->pm_root[i][j] = (pte_t **)pdir_va; 551 for (k = 0; 552 k < PDIR_NENTRIES && va < VM_MAX_KERNEL_ADDRESS; 553 k++, va += PDIR_SIZE, ptbl_va += PAGE_SIZE) 554 kernel_pmap->pm_root[i][j][k] = (pte_t *)ptbl_va; 555 } 556 } 557 /* 558 * Fill in PTEs covering kernel code and data. They are not required 559 * for address translation, as this area is covered by static TLB1 560 * entries, but for pte_vatopa() to work correctly with kernel area 561 * addresses. 562 */ 563 for (va = addr; va < data_end; va += PAGE_SIZE) { 564 pte = &(kernel_pmap->pm_root[PG_ROOT_IDX(va)][PDIR_L1_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]); 565 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 566 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 567 PTE_VALID | PTE_PS_4KB; 568 } 569 } 570 571 static vm_offset_t 572 mmu_booke_alloc_kernel_pgtables(vm_offset_t data_end) 573 { 574 vm_size_t kva_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 575 kernel_ptbl_root = (pte_t ****)data_end; 576 577 data_end += round_page(PG_ROOT_NENTRIES * sizeof(pte_t ***)); 578 data_end += howmany(kva_size, PG_ROOT_SIZE) * PAGE_SIZE; 579 data_end += howmany(kva_size, PDIR_L1_SIZE) * PAGE_SIZE; 580 data_end += howmany(kva_size, PDIR_SIZE) * PAGE_SIZE; 581 582 return (data_end); 583 } 584 585 /* 586 * Initialize a preallocated and zeroed pmap structure, 587 * such as one in a vmspace structure. 588 */ 589 static int 590 mmu_booke_pinit(pmap_t pmap) 591 { 592 int i; 593 594 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 595 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 596 597 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 598 599 for (i = 0; i < MAXCPU; i++) 600 pmap->pm_tid[i] = TID_NONE; 601 CPU_ZERO(&kernel_pmap->pm_active); 602 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 603 pmap->pm_root = uma_zalloc(ptbl_root_zone, M_WAITOK); 604 bzero(pmap->pm_root, sizeof(pte_t **) * PG_ROOT_NENTRIES); 605 606 return (1); 607 } 608 609 /* 610 * Release any resources held by the given physical map. 611 * Called when a pmap initialized by mmu_booke_pinit is being released. 612 * Should only be called if the map contains no valid mappings. 613 */ 614 static void 615 mmu_booke_release(pmap_t pmap) 616 { 617 618 KASSERT(pmap->pm_stats.resident_count == 0, 619 ("pmap_release: pmap resident count %ld != 0", 620 pmap->pm_stats.resident_count)); 621 #ifdef INVARIANTS 622 /* 623 * Verify that all page directories are gone. 624 * Protects against reference count leakage. 625 */ 626 for (int i = 0; i < PG_ROOT_NENTRIES; i++) 627 KASSERT(pmap->pm_root[i] == 0, 628 ("Index %d on root page %p is non-zero!\n", i, pmap->pm_root)); 629 #endif 630 uma_zfree(ptbl_root_zone, pmap->pm_root); 631 } 632 633 static void 634 mmu_booke_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) 635 { 636 pte_t *pte; 637 vm_paddr_t pa = 0; 638 int sync_sz, valid; 639 640 while (sz > 0) { 641 PMAP_LOCK(pm); 642 pte = pte_find(pm, va); 643 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 644 if (valid) 645 pa = PTE_PA(pte); 646 PMAP_UNLOCK(pm); 647 sync_sz = PAGE_SIZE - (va & PAGE_MASK); 648 sync_sz = min(sync_sz, sz); 649 if (valid) { 650 pa += (va & PAGE_MASK); 651 __syncicache((void *)PHYS_TO_DMAP(pa), sync_sz); 652 } 653 va += sync_sz; 654 sz -= sync_sz; 655 } 656 } 657 658 /* 659 * mmu_booke_zero_page_area zeros the specified hardware page by 660 * mapping it into virtual memory and using bzero to clear 661 * its contents. 662 * 663 * off and size must reside within a single page. 664 */ 665 static void 666 mmu_booke_zero_page_area(vm_page_t m, int off, int size) 667 { 668 vm_offset_t va; 669 670 /* XXX KASSERT off and size are within a single page? */ 671 672 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 673 bzero((caddr_t)va + off, size); 674 } 675 676 /* 677 * mmu_booke_zero_page zeros the specified hardware page. 678 */ 679 static void 680 mmu_booke_zero_page(vm_page_t m) 681 { 682 vm_offset_t off, va; 683 684 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 685 686 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 687 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 688 } 689 690 /* 691 * mmu_booke_copy_page copies the specified (machine independent) page by 692 * mapping the page into virtual memory and using memcopy to copy the page, 693 * one machine dependent page at a time. 694 */ 695 static void 696 mmu_booke_copy_page(vm_page_t sm, vm_page_t dm) 697 { 698 vm_offset_t sva, dva; 699 700 sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm)); 701 dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm)); 702 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 703 } 704 705 static inline void 706 mmu_booke_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 707 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 708 { 709 void *a_cp, *b_cp; 710 vm_offset_t a_pg_offset, b_pg_offset; 711 int cnt; 712 713 vm_page_t pa, pb; 714 715 while (xfersize > 0) { 716 a_pg_offset = a_offset & PAGE_MASK; 717 pa = ma[a_offset >> PAGE_SHIFT]; 718 b_pg_offset = b_offset & PAGE_MASK; 719 pb = mb[b_offset >> PAGE_SHIFT]; 720 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 721 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 722 a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) + 723 a_pg_offset); 724 b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) + 725 b_pg_offset); 726 bcopy(a_cp, b_cp, cnt); 727 a_offset += cnt; 728 b_offset += cnt; 729 xfersize -= cnt; 730 } 731 } 732 733 static vm_offset_t 734 mmu_booke_quick_enter_page(vm_page_t m) 735 { 736 return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); 737 } 738 739 static void 740 mmu_booke_quick_remove_page(vm_offset_t addr) 741 { 742 } 743 744 /**************************************************************************/ 745 /* TID handling */ 746 /**************************************************************************/ 747 748 /* 749 * Invalidate all TLB0 entries which match the given TID. Note this is 750 * dedicated for cases when invalidations should NOT be propagated to other 751 * CPUs. 752 */ 753 static void 754 tid_flush(tlbtid_t tid) 755 { 756 register_t msr; 757 758 /* Don't evict kernel translations */ 759 if (tid == TID_KERNEL) 760 return; 761 762 msr = mfmsr(); 763 __asm __volatile("wrteei 0"); 764 765 /* 766 * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use 767 * it for PID invalidation. 768 */ 769 mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT); 770 __asm __volatile("isync; .long 0x7c200024; isync; msync"); 771 772 __asm __volatile("wrtee %0" :: "r"(msr)); 773 } 774