1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2020 Justin Hibbits 5 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 6 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 21 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 24 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 25 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 26 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 27 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * Some hw specific parts of this pmap were derived or influenced 30 * by NetBSD's ibm4xx pmap module. More generic code is shared with 31 * a few other pmap modules from the FreeBSD tree. 32 */ 33 34 /* 35 * VM layout notes: 36 * 37 * Kernel and user threads run within one common virtual address space 38 * defined by AS=0. 39 * 40 * 32-bit pmap: 41 * Virtual address space layout: 42 * ----------------------------- 43 * 0x0000_0000 - 0x7fff_ffff : user process 44 * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 45 * 0xc000_0000 - 0xffff_efff : KVA 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_kstack_pages.h" 53 54 #include <sys/param.h> 55 #include <sys/conf.h> 56 #include <sys/malloc.h> 57 #include <sys/ktr.h> 58 #include <sys/proc.h> 59 #include <sys/user.h> 60 #include <sys/queue.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/kerneldump.h> 64 #include <sys/linker.h> 65 #include <sys/msgbuf.h> 66 #include <sys/lock.h> 67 #include <sys/mutex.h> 68 #include <sys/rwlock.h> 69 #include <sys/sched.h> 70 #include <sys/smp.h> 71 #include <sys/vmmeter.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_param.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_pager.h> 82 #include <vm/vm_phys.h> 83 #include <vm/vm_pagequeue.h> 84 #include <vm/uma.h> 85 86 #include <machine/_inttypes.h> 87 #include <machine/cpu.h> 88 #include <machine/pcb.h> 89 #include <machine/platform.h> 90 91 #include <machine/tlb.h> 92 #include <machine/spr.h> 93 #include <machine/md_var.h> 94 #include <machine/mmuvar.h> 95 #include <machine/pmap.h> 96 #include <machine/pte.h> 97 98 #include <ddb/ddb.h> 99 100 #define PRI0ptrX "08x" 101 102 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 103 static vm_offset_t zero_page_va; 104 static struct mtx zero_page_mutex; 105 106 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 107 static vm_offset_t copy_page_src_va; 108 static vm_offset_t copy_page_dst_va; 109 static struct mtx copy_page_mutex; 110 111 static vm_offset_t kernel_ptbl_root; 112 static unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 113 114 /**************************************************************************/ 115 /* PMAP */ 116 /**************************************************************************/ 117 118 #define VM_MAPDEV_BASE ((vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE) 119 120 static void tid_flush(tlbtid_t tid); 121 static unsigned long ilog2(unsigned long); 122 123 /**************************************************************************/ 124 /* Page table management */ 125 /**************************************************************************/ 126 127 #define PMAP_ROOT_SIZE (sizeof(pte_t**) * PDIR_NENTRIES) 128 static void ptbl_init(void); 129 static struct ptbl_buf *ptbl_buf_alloc(void); 130 static void ptbl_buf_free(struct ptbl_buf *); 131 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 132 133 static pte_t *ptbl_alloc(pmap_t, unsigned int, boolean_t); 134 static void ptbl_free(pmap_t, unsigned int); 135 static void ptbl_hold(pmap_t, unsigned int); 136 static int ptbl_unhold(pmap_t, unsigned int); 137 138 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t); 139 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); 140 static int pte_remove(pmap_t, vm_offset_t, uint8_t); 141 static pte_t *pte_find(pmap_t, vm_offset_t); 142 143 struct ptbl_buf { 144 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 145 vm_offset_t kva; /* va of mapping */ 146 }; 147 148 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 149 #define PTBL_BUFS (128 * 16) 150 151 /* ptbl free list and a lock used for access synchronization. */ 152 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 153 static struct mtx ptbl_buf_freelist_lock; 154 155 /* Base address of kva space allocated fot ptbl bufs. */ 156 static vm_offset_t ptbl_buf_pool_vabase; 157 158 /* Pointer to ptbl_buf structures. */ 159 static struct ptbl_buf *ptbl_bufs; 160 161 /**************************************************************************/ 162 /* Page table related */ 163 /**************************************************************************/ 164 165 /* Initialize pool of kva ptbl buffers. */ 166 static void 167 ptbl_init(void) 168 { 169 int i; 170 171 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 172 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 173 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 174 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 175 176 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 177 TAILQ_INIT(&ptbl_buf_freelist); 178 179 for (i = 0; i < PTBL_BUFS; i++) { 180 ptbl_bufs[i].kva = 181 ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 182 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 183 } 184 } 185 186 /* Get a ptbl_buf from the freelist. */ 187 static struct ptbl_buf * 188 ptbl_buf_alloc(void) 189 { 190 struct ptbl_buf *buf; 191 192 mtx_lock(&ptbl_buf_freelist_lock); 193 buf = TAILQ_FIRST(&ptbl_buf_freelist); 194 if (buf != NULL) 195 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 196 mtx_unlock(&ptbl_buf_freelist_lock); 197 198 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 199 200 return (buf); 201 } 202 203 /* Return ptbl buff to free pool. */ 204 static void 205 ptbl_buf_free(struct ptbl_buf *buf) 206 { 207 208 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 209 210 mtx_lock(&ptbl_buf_freelist_lock); 211 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 212 mtx_unlock(&ptbl_buf_freelist_lock); 213 } 214 215 /* 216 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 217 */ 218 static void 219 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 220 { 221 struct ptbl_buf *pbuf; 222 223 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 224 225 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 226 227 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 228 if (pbuf->kva == (vm_offset_t)ptbl) { 229 /* Remove from pmap ptbl buf list. */ 230 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 231 232 /* Free corresponding ptbl buf. */ 233 ptbl_buf_free(pbuf); 234 break; 235 } 236 } 237 238 /* Allocate page table. */ 239 static pte_t * 240 ptbl_alloc(pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) 241 { 242 vm_page_t mtbl[PTBL_PAGES]; 243 vm_page_t m; 244 struct ptbl_buf *pbuf; 245 unsigned int pidx; 246 pte_t *ptbl; 247 int i, j; 248 249 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 250 (pmap == kernel_pmap), pdir_idx); 251 252 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 253 ("ptbl_alloc: invalid pdir_idx")); 254 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 255 ("pte_alloc: valid ptbl entry exists!")); 256 257 pbuf = ptbl_buf_alloc(); 258 if (pbuf == NULL) 259 panic("pte_alloc: couldn't alloc kernel virtual memory"); 260 261 ptbl = (pte_t *)pbuf->kva; 262 263 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 264 265 for (i = 0; i < PTBL_PAGES; i++) { 266 pidx = (PTBL_PAGES * pdir_idx) + i; 267 while ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) { 268 if (nosleep) { 269 ptbl_free_pmap_ptbl(pmap, ptbl); 270 for (j = 0; j < i; j++) 271 vm_page_free(mtbl[j]); 272 vm_wire_sub(i); 273 return (NULL); 274 } 275 PMAP_UNLOCK(pmap); 276 rw_wunlock(&pvh_global_lock); 277 vm_wait(NULL); 278 rw_wlock(&pvh_global_lock); 279 PMAP_LOCK(pmap); 280 } 281 m->pindex = pidx; 282 mtbl[i] = m; 283 } 284 285 /* Map allocated pages into kernel_pmap. */ 286 mmu_booke_qenter((vm_offset_t)ptbl, mtbl, PTBL_PAGES); 287 288 /* Zero whole ptbl. */ 289 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 290 291 /* Add pbuf to the pmap ptbl bufs list. */ 292 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 293 294 return (ptbl); 295 } 296 297 /* Free ptbl pages and invalidate pdir entry. */ 298 static void 299 ptbl_free(pmap_t pmap, unsigned int pdir_idx) 300 { 301 pte_t *ptbl; 302 vm_paddr_t pa; 303 vm_offset_t va; 304 vm_page_t m; 305 int i; 306 307 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 308 (pmap == kernel_pmap), pdir_idx); 309 310 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 311 ("ptbl_free: invalid pdir_idx")); 312 313 ptbl = pmap->pm_pdir[pdir_idx]; 314 315 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 316 317 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 318 319 /* 320 * Invalidate the pdir entry as soon as possible, so that other CPUs 321 * don't attempt to look up the page tables we are releasing. 322 */ 323 mtx_lock_spin(&tlbivax_mutex); 324 tlb_miss_lock(); 325 326 pmap->pm_pdir[pdir_idx] = NULL; 327 328 tlb_miss_unlock(); 329 mtx_unlock_spin(&tlbivax_mutex); 330 331 for (i = 0; i < PTBL_PAGES; i++) { 332 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 333 pa = pte_vatopa(kernel_pmap, va); 334 m = PHYS_TO_VM_PAGE(pa); 335 vm_page_free_zero(m); 336 vm_wire_sub(1); 337 mmu_booke_kremove(va); 338 } 339 340 ptbl_free_pmap_ptbl(pmap, ptbl); 341 } 342 343 /* 344 * Decrement ptbl pages hold count and attempt to free ptbl pages. 345 * Called when removing pte entry from ptbl. 346 * 347 * Return 1 if ptbl pages were freed. 348 */ 349 static int 350 ptbl_unhold(pmap_t pmap, unsigned int pdir_idx) 351 { 352 pte_t *ptbl; 353 vm_paddr_t pa; 354 vm_page_t m; 355 int i; 356 357 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 358 (pmap == kernel_pmap), pdir_idx); 359 360 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 361 ("ptbl_unhold: invalid pdir_idx")); 362 KASSERT((pmap != kernel_pmap), 363 ("ptbl_unhold: unholding kernel ptbl!")); 364 365 ptbl = pmap->pm_pdir[pdir_idx]; 366 367 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 368 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 369 ("ptbl_unhold: non kva ptbl")); 370 371 /* decrement hold count */ 372 for (i = 0; i < PTBL_PAGES; i++) { 373 pa = pte_vatopa(kernel_pmap, 374 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 375 m = PHYS_TO_VM_PAGE(pa); 376 m->ref_count--; 377 } 378 379 /* 380 * Free ptbl pages if there are no pte etries in this ptbl. 381 * ref_count has the same value for all ptbl pages, so check the last 382 * page. 383 */ 384 if (m->ref_count == 0) { 385 ptbl_free(pmap, pdir_idx); 386 387 //debugf("ptbl_unhold: e (freed ptbl)\n"); 388 return (1); 389 } 390 391 return (0); 392 } 393 394 /* 395 * Increment hold count for ptbl pages. This routine is used when a new pte 396 * entry is being inserted into the ptbl. 397 */ 398 static void 399 ptbl_hold(pmap_t pmap, unsigned int pdir_idx) 400 { 401 vm_paddr_t pa; 402 pte_t *ptbl; 403 vm_page_t m; 404 int i; 405 406 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 407 pdir_idx); 408 409 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 410 ("ptbl_hold: invalid pdir_idx")); 411 KASSERT((pmap != kernel_pmap), 412 ("ptbl_hold: holding kernel ptbl!")); 413 414 ptbl = pmap->pm_pdir[pdir_idx]; 415 416 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 417 418 for (i = 0; i < PTBL_PAGES; i++) { 419 pa = pte_vatopa(kernel_pmap, 420 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 421 m = PHYS_TO_VM_PAGE(pa); 422 m->ref_count++; 423 } 424 } 425 426 /* 427 * Clean pte entry, try to free page table page if requested. 428 * 429 * Return 1 if ptbl pages were freed, otherwise return 0. 430 */ 431 static int 432 pte_remove(pmap_t pmap, vm_offset_t va, uint8_t flags) 433 { 434 unsigned int pdir_idx = PDIR_IDX(va); 435 unsigned int ptbl_idx = PTBL_IDX(va); 436 vm_page_t m; 437 pte_t *ptbl; 438 pte_t *pte; 439 440 //int su = (pmap == kernel_pmap); 441 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 442 // su, (u_int32_t)pmap, va, flags); 443 444 ptbl = pmap->pm_pdir[pdir_idx]; 445 KASSERT(ptbl, ("pte_remove: null ptbl")); 446 447 pte = &ptbl[ptbl_idx]; 448 449 if (pte == NULL || !PTE_ISVALID(pte)) 450 return (0); 451 452 if (PTE_ISWIRED(pte)) 453 pmap->pm_stats.wired_count--; 454 455 /* Get vm_page_t for mapped pte. */ 456 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 457 458 /* Handle managed entry. */ 459 if (PTE_ISMANAGED(pte)) { 460 if (PTE_ISMODIFIED(pte)) 461 vm_page_dirty(m); 462 463 if (PTE_ISREFERENCED(pte)) 464 vm_page_aflag_set(m, PGA_REFERENCED); 465 466 pv_remove(pmap, va, m); 467 } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { 468 /* 469 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is 470 * used. This is needed by the NCSW support code for fast 471 * VA<->PA translation. 472 */ 473 pv_remove(pmap, va, m); 474 if (TAILQ_EMPTY(&m->md.pv_list)) 475 m->md.pv_tracked = false; 476 } 477 478 mtx_lock_spin(&tlbivax_mutex); 479 tlb_miss_lock(); 480 481 tlb0_flush_entry(va); 482 *pte = 0; 483 484 tlb_miss_unlock(); 485 mtx_unlock_spin(&tlbivax_mutex); 486 487 pmap->pm_stats.resident_count--; 488 489 if (flags & PTBL_UNHOLD) { 490 //debugf("pte_remove: e (unhold)\n"); 491 return (ptbl_unhold(pmap, pdir_idx)); 492 } 493 494 //debugf("pte_remove: e\n"); 495 return (0); 496 } 497 498 /* 499 * Insert PTE for a given page and virtual address. 500 */ 501 static int 502 pte_enter(pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 503 boolean_t nosleep) 504 { 505 unsigned int pdir_idx = PDIR_IDX(va); 506 unsigned int ptbl_idx = PTBL_IDX(va); 507 pte_t *ptbl, *pte, pte_tmp; 508 509 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 510 pmap == kernel_pmap, pmap, va); 511 512 /* Get the page table pointer. */ 513 ptbl = pmap->pm_pdir[pdir_idx]; 514 515 if (ptbl == NULL) { 516 /* Allocate page table pages. */ 517 ptbl = ptbl_alloc(pmap, pdir_idx, nosleep); 518 if (ptbl == NULL) { 519 KASSERT(nosleep, ("nosleep and NULL ptbl")); 520 return (ENOMEM); 521 } 522 pmap->pm_pdir[pdir_idx] = ptbl; 523 pte = &ptbl[ptbl_idx]; 524 } else { 525 /* 526 * Check if there is valid mapping for requested 527 * va, if there is, remove it. 528 */ 529 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 530 if (PTE_ISVALID(pte)) { 531 pte_remove(pmap, va, PTBL_HOLD); 532 } else { 533 /* 534 * pte is not used, increment hold count 535 * for ptbl pages. 536 */ 537 if (pmap != kernel_pmap) 538 ptbl_hold(pmap, pdir_idx); 539 } 540 } 541 542 /* 543 * Insert pv_entry into pv_list for mapped page if part of managed 544 * memory. 545 */ 546 if ((m->oflags & VPO_UNMANAGED) == 0) { 547 flags |= PTE_MANAGED; 548 549 /* Create and insert pv entry. */ 550 pv_insert(pmap, va, m); 551 } 552 553 pmap->pm_stats.resident_count++; 554 555 pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 556 pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ 557 558 mtx_lock_spin(&tlbivax_mutex); 559 tlb_miss_lock(); 560 561 tlb0_flush_entry(va); 562 *pte = pte_tmp; 563 564 tlb_miss_unlock(); 565 mtx_unlock_spin(&tlbivax_mutex); 566 return (0); 567 } 568 569 /* Return the pa for the given pmap/va. */ 570 static vm_paddr_t 571 pte_vatopa(pmap_t pmap, vm_offset_t va) 572 { 573 vm_paddr_t pa = 0; 574 pte_t *pte; 575 576 pte = pte_find(pmap, va); 577 if ((pte != NULL) && PTE_ISVALID(pte)) 578 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 579 return (pa); 580 } 581 582 /* Get a pointer to a PTE in a page table. */ 583 static pte_t * 584 pte_find(pmap_t pmap, vm_offset_t va) 585 { 586 unsigned int pdir_idx = PDIR_IDX(va); 587 unsigned int ptbl_idx = PTBL_IDX(va); 588 589 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 590 591 if (pmap->pm_pdir[pdir_idx]) 592 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 593 594 return (NULL); 595 } 596 597 /* Get a pointer to a PTE in a page table, or the next closest (greater) one. */ 598 static __inline pte_t * 599 pte_find_next(pmap_t pmap, vm_offset_t *pva) 600 { 601 vm_offset_t va; 602 pte_t **pdir; 603 pte_t *pte; 604 unsigned long i, j; 605 606 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 607 608 va = *pva; 609 i = PDIR_IDX(va); 610 j = PTBL_IDX(va); 611 pdir = pmap->pm_pdir; 612 for (; i < PDIR_NENTRIES; i++, j = 0) { 613 if (pdir[i] == NULL) 614 continue; 615 for (; j < PTBL_NENTRIES; j++) { 616 pte = &pdir[i][j]; 617 if (!PTE_ISVALID(pte)) 618 continue; 619 *pva = PDIR_SIZE * i + PAGE_SIZE * j; 620 return (pte); 621 } 622 } 623 return (NULL); 624 } 625 626 /* Set up kernel page tables. */ 627 static void 628 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr) 629 { 630 pte_t *pte; 631 vm_offset_t va; 632 vm_offset_t pdir_start; 633 int i; 634 635 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 636 kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root; 637 638 pdir_start = kernel_ptbl_root + PDIR_NENTRIES * sizeof(pte_t); 639 640 /* Initialize kernel pdir */ 641 for (i = 0; i < kernel_ptbls; i++) { 642 kernel_pmap->pm_pdir[kptbl_min + i] = 643 (pte_t *)(pdir_start + (i * PAGE_SIZE * PTBL_PAGES)); 644 } 645 646 /* 647 * Fill in PTEs covering kernel code and data. They are not required 648 * for address translation, as this area is covered by static TLB1 649 * entries, but for pte_vatopa() to work correctly with kernel area 650 * addresses. 651 */ 652 for (va = addr; va < data_end; va += PAGE_SIZE) { 653 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 654 powerpc_sync(); 655 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 656 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 657 PTE_VALID | PTE_PS_4KB; 658 } 659 } 660 661 static vm_offset_t 662 mmu_booke_alloc_kernel_pgtables(vm_offset_t data_end) 663 { 664 /* Allocate space for ptbl_bufs. */ 665 ptbl_bufs = (struct ptbl_buf *)data_end; 666 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 667 debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 668 (uintptr_t)ptbl_bufs, data_end); 669 670 data_end = round_page(data_end); 671 672 kernel_ptbl_root = data_end; 673 data_end += PDIR_NENTRIES * sizeof(pte_t*); 674 675 /* Allocate PTE tables for kernel KVA. */ 676 kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, 677 PDIR_SIZE); 678 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 679 debugf(" kernel ptbls: %d\n", kernel_ptbls); 680 debugf(" kernel pdir at %#jx end = %#jx\n", 681 (uintmax_t)kernel_ptbl_root, (uintmax_t)data_end); 682 683 return (data_end); 684 } 685 686 /* 687 * Initialize a preallocated and zeroed pmap structure, 688 * such as one in a vmspace structure. 689 */ 690 static int 691 mmu_booke_pinit(pmap_t pmap) 692 { 693 int i; 694 695 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 696 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 697 698 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 699 700 for (i = 0; i < MAXCPU; i++) 701 pmap->pm_tid[i] = TID_NONE; 702 CPU_ZERO(&kernel_pmap->pm_active); 703 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 704 pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK); 705 bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 706 TAILQ_INIT(&pmap->pm_ptbl_list); 707 708 return (1); 709 } 710 711 /* 712 * Release any resources held by the given physical map. 713 * Called when a pmap initialized by mmu_booke_pinit is being released. 714 * Should only be called if the map contains no valid mappings. 715 */ 716 static void 717 mmu_booke_release(pmap_t pmap) 718 { 719 720 KASSERT(pmap->pm_stats.resident_count == 0, 721 ("pmap_release: pmap resident count %ld != 0", 722 pmap->pm_stats.resident_count)); 723 uma_zfree(ptbl_root_zone, pmap->pm_pdir); 724 } 725 726 static void 727 mmu_booke_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) 728 { 729 pte_t *pte; 730 vm_paddr_t pa = 0; 731 int sync_sz, valid; 732 pmap_t pmap; 733 vm_page_t m; 734 vm_offset_t addr; 735 int active; 736 737 rw_wlock(&pvh_global_lock); 738 pmap = PCPU_GET(curpmap); 739 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 740 while (sz > 0) { 741 PMAP_LOCK(pm); 742 pte = pte_find(pm, va); 743 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 744 if (valid) 745 pa = PTE_PA(pte); 746 PMAP_UNLOCK(pm); 747 sync_sz = PAGE_SIZE - (va & PAGE_MASK); 748 sync_sz = min(sync_sz, sz); 749 if (valid) { 750 if (!active) { 751 /* 752 * Create a mapping in the active pmap. 753 * 754 * XXX: We use the zero page here, because 755 * it isn't likely to be in use. 756 * If we ever decide to support 757 * security.bsd.map_at_zero on Book-E, change 758 * this to some other address that isn't 759 * normally mappable. 760 */ 761 addr = 0; 762 m = PHYS_TO_VM_PAGE(pa); 763 PMAP_LOCK(pmap); 764 pte_enter(pmap, m, addr, 765 PTE_SR | PTE_VALID, FALSE); 766 __syncicache((void *)(addr + (va & PAGE_MASK)), 767 sync_sz); 768 pte_remove(pmap, addr, PTBL_UNHOLD); 769 PMAP_UNLOCK(pmap); 770 } else 771 __syncicache((void *)va, sync_sz); 772 } 773 va += sync_sz; 774 sz -= sync_sz; 775 } 776 rw_wunlock(&pvh_global_lock); 777 } 778 779 /* 780 * mmu_booke_zero_page_area zeros the specified hardware page by 781 * mapping it into virtual memory and using bzero to clear 782 * its contents. 783 * 784 * off and size must reside within a single page. 785 */ 786 static void 787 mmu_booke_zero_page_area(vm_page_t m, int off, int size) 788 { 789 vm_offset_t va; 790 791 /* XXX KASSERT off and size are within a single page? */ 792 793 mtx_lock(&zero_page_mutex); 794 va = zero_page_va; 795 796 mmu_booke_kenter(va, VM_PAGE_TO_PHYS(m)); 797 bzero((caddr_t)va + off, size); 798 mmu_booke_kremove(va); 799 800 mtx_unlock(&zero_page_mutex); 801 } 802 803 /* 804 * mmu_booke_zero_page zeros the specified hardware page. 805 */ 806 static void 807 mmu_booke_zero_page(vm_page_t m) 808 { 809 vm_offset_t off, va; 810 811 va = zero_page_va; 812 mtx_lock(&zero_page_mutex); 813 814 mmu_booke_kenter(va, VM_PAGE_TO_PHYS(m)); 815 816 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 817 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 818 819 mmu_booke_kremove(va); 820 821 mtx_unlock(&zero_page_mutex); 822 } 823 824 /* 825 * mmu_booke_copy_page copies the specified (machine independent) page by 826 * mapping the page into virtual memory and using memcopy to copy the page, 827 * one machine dependent page at a time. 828 */ 829 static void 830 mmu_booke_copy_page(vm_page_t sm, vm_page_t dm) 831 { 832 vm_offset_t sva, dva; 833 834 sva = copy_page_src_va; 835 dva = copy_page_dst_va; 836 837 mtx_lock(©_page_mutex); 838 mmu_booke_kenter(sva, VM_PAGE_TO_PHYS(sm)); 839 mmu_booke_kenter(dva, VM_PAGE_TO_PHYS(dm)); 840 841 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 842 843 mmu_booke_kremove(dva); 844 mmu_booke_kremove(sva); 845 mtx_unlock(©_page_mutex); 846 } 847 848 static inline void 849 mmu_booke_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 850 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 851 { 852 void *a_cp, *b_cp; 853 vm_offset_t a_pg_offset, b_pg_offset; 854 int cnt; 855 856 mtx_lock(©_page_mutex); 857 while (xfersize > 0) { 858 a_pg_offset = a_offset & PAGE_MASK; 859 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 860 mmu_booke_kenter(copy_page_src_va, 861 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 862 a_cp = (char *)copy_page_src_va + a_pg_offset; 863 b_pg_offset = b_offset & PAGE_MASK; 864 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 865 mmu_booke_kenter(copy_page_dst_va, 866 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 867 b_cp = (char *)copy_page_dst_va + b_pg_offset; 868 bcopy(a_cp, b_cp, cnt); 869 mmu_booke_kremove(copy_page_dst_va); 870 mmu_booke_kremove(copy_page_src_va); 871 a_offset += cnt; 872 b_offset += cnt; 873 xfersize -= cnt; 874 } 875 mtx_unlock(©_page_mutex); 876 } 877 878 static vm_offset_t 879 mmu_booke_quick_enter_page(vm_page_t m) 880 { 881 vm_paddr_t paddr; 882 vm_offset_t qaddr; 883 uint32_t flags; 884 pte_t *pte; 885 886 paddr = VM_PAGE_TO_PHYS(m); 887 888 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 889 flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; 890 flags |= PTE_PS_4KB; 891 892 critical_enter(); 893 qaddr = PCPU_GET(qmap_addr); 894 895 pte = pte_find(kernel_pmap, qaddr); 896 897 KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); 898 899 /* 900 * XXX: tlbivax is broadcast to other cores, but qaddr should 901 * not be present in other TLBs. Is there a better instruction 902 * sequence to use? Or just forget it & use mmu_booke_kenter()... 903 */ 904 __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); 905 __asm __volatile("isync; msync"); 906 907 *pte = PTE_RPN_FROM_PA(paddr) | flags; 908 909 /* Flush the real memory from the instruction cache. */ 910 if ((flags & (PTE_I | PTE_G)) == 0) 911 __syncicache((void *)qaddr, PAGE_SIZE); 912 913 return (qaddr); 914 } 915 916 static void 917 mmu_booke_quick_remove_page(vm_offset_t addr) 918 { 919 pte_t *pte; 920 921 pte = pte_find(kernel_pmap, addr); 922 923 KASSERT(PCPU_GET(qmap_addr) == addr, 924 ("mmu_booke_quick_remove_page: invalid address")); 925 KASSERT(*pte != 0, 926 ("mmu_booke_quick_remove_page: PTE not in use")); 927 928 *pte = 0; 929 critical_exit(); 930 } 931 932 /**************************************************************************/ 933 /* TID handling */ 934 /**************************************************************************/ 935 936 /* 937 * Return the largest uint value log such that 2^log <= num. 938 */ 939 static unsigned long 940 ilog2(unsigned long num) 941 { 942 long lz; 943 944 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 945 return (31 - lz); 946 } 947 948 /* 949 * Invalidate all TLB0 entries which match the given TID. Note this is 950 * dedicated for cases when invalidations should NOT be propagated to other 951 * CPUs. 952 */ 953 static void 954 tid_flush(tlbtid_t tid) 955 { 956 register_t msr; 957 uint32_t mas0, mas1, mas2; 958 int entry, way; 959 960 /* Don't evict kernel translations */ 961 if (tid == TID_KERNEL) 962 return; 963 964 msr = mfmsr(); 965 __asm __volatile("wrteei 0"); 966 967 /* 968 * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use 969 * it for PID invalidation. 970 */ 971 switch ((mfpvr() >> 16) & 0xffff) { 972 case FSL_E500mc: 973 case FSL_E5500: 974 case FSL_E6500: 975 mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT); 976 /* tlbilxpid */ 977 __asm __volatile("isync; .long 0x7c200024; isync; msync"); 978 __asm __volatile("wrtee %0" :: "r"(msr)); 979 return; 980 } 981 982 for (way = 0; way < TLB0_WAYS; way++) 983 for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { 984 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 985 mtspr(SPR_MAS0, mas0); 986 987 mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; 988 mtspr(SPR_MAS2, mas2); 989 990 __asm __volatile("isync; tlbre"); 991 992 mas1 = mfspr(SPR_MAS1); 993 994 if (!(mas1 & MAS1_VALID)) 995 continue; 996 if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) 997 continue; 998 mas1 &= ~MAS1_VALID; 999 mtspr(SPR_MAS1, mas1); 1000 __asm __volatile("isync; tlbwe; isync; msync"); 1001 } 1002 __asm __volatile("wrtee %0" :: "r"(msr)); 1003 } 1004