xref: /freebsd/sys/powerpc/booke/pmap.c (revision eccfee6ebc28c335f2a2b9db7736dc1961131b04)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_kstack_pages.h"
55 
56 #include <sys/param.h>
57 #include <sys/conf.h>
58 #include <sys/malloc.h>
59 #include <sys/ktr.h>
60 #include <sys/proc.h>
61 #include <sys/user.h>
62 #include <sys/queue.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/kerneldump.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/lock.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #include <sys/smp.h>
73 #include <sys/vmmeter.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/uma.h>
85 
86 #include <machine/cpu.h>
87 #include <machine/pcb.h>
88 #include <machine/platform.h>
89 
90 #include <machine/tlb.h>
91 #include <machine/spr.h>
92 #include <machine/md_var.h>
93 #include <machine/mmuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/pte.h>
96 
97 #include "mmu_if.h"
98 
99 #ifdef  DEBUG
100 #define debugf(fmt, args...) printf(fmt, ##args)
101 #else
102 #define debugf(fmt, args...)
103 #endif
104 
105 #define TODO			panic("%s: not implemented", __func__);
106 
107 extern unsigned char _etext[];
108 extern unsigned char _end[];
109 
110 extern uint32_t *bootinfo;
111 
112 #ifdef SMP
113 extern uint32_t bp_ntlb1s;
114 #endif
115 
116 vm_paddr_t kernload;
117 vm_offset_t kernstart;
118 vm_size_t kernsize;
119 
120 /* Message buffer and tables. */
121 static vm_offset_t data_start;
122 static vm_size_t data_end;
123 
124 /* Phys/avail memory regions. */
125 static struct mem_region *availmem_regions;
126 static int availmem_regions_sz;
127 static struct mem_region *physmem_regions;
128 static int physmem_regions_sz;
129 
130 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
131 static vm_offset_t zero_page_va;
132 static struct mtx zero_page_mutex;
133 
134 static struct mtx tlbivax_mutex;
135 
136 /*
137  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
138  * by idle thred only, no lock required.
139  */
140 static vm_offset_t zero_page_idle_va;
141 
142 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
143 static vm_offset_t copy_page_src_va;
144 static vm_offset_t copy_page_dst_va;
145 static struct mtx copy_page_mutex;
146 
147 /**************************************************************************/
148 /* PMAP */
149 /**************************************************************************/
150 
151 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
152     vm_prot_t, u_int flags, int8_t psind);
153 
154 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
155 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
156 
157 /*
158  * If user pmap is processed with mmu_booke_remove and the resident count
159  * drops to 0, there are no more pages to remove, so we need not continue.
160  */
161 #define PMAP_REMOVE_DONE(pmap) \
162 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
163 
164 extern int elf32_nxstack;
165 
166 /**************************************************************************/
167 /* TLB and TID handling */
168 /**************************************************************************/
169 
170 /* Translation ID busy table */
171 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
172 
173 /*
174  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
175  * core revisions and should be read from h/w registers during early config.
176  */
177 uint32_t tlb0_entries;
178 uint32_t tlb0_ways;
179 uint32_t tlb0_entries_per_way;
180 uint32_t tlb1_entries;
181 
182 #define TLB0_ENTRIES		(tlb0_entries)
183 #define TLB0_WAYS		(tlb0_ways)
184 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185 
186 #define TLB1_ENTRIES (tlb1_entries)
187 #define TLB1_MAXENTRIES	64
188 
189 /* In-ram copy of the TLB1 */
190 static tlb_entry_t tlb1[TLB1_MAXENTRIES];
191 
192 /* Next free entry in the TLB1 */
193 static unsigned int tlb1_idx;
194 static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
195 
196 static tlbtid_t tid_alloc(struct pmap *);
197 static void tid_flush(tlbtid_t tid);
198 
199 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200 
201 static int tlb1_set_entry(vm_offset_t, vm_paddr_t, vm_size_t, uint32_t);
202 static void tlb1_write_entry(unsigned int);
203 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
205 
206 static vm_size_t tsize2size(unsigned int);
207 static unsigned int size2tsize(vm_size_t);
208 static unsigned int ilog2(unsigned int);
209 
210 static void set_mas4_defaults(void);
211 
212 static inline void tlb0_flush_entry(vm_offset_t);
213 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214 
215 /**************************************************************************/
216 /* Page table management */
217 /**************************************************************************/
218 
219 static struct rwlock_padalign pvh_global_lock;
220 
221 /* Data for the pv entry allocation mechanism */
222 static uma_zone_t pvzone;
223 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224 
225 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
226 
227 #ifndef PMAP_SHPGPERPROC
228 #define PMAP_SHPGPERPROC	200
229 #endif
230 
231 static void ptbl_init(void);
232 static struct ptbl_buf *ptbl_buf_alloc(void);
233 static void ptbl_buf_free(struct ptbl_buf *);
234 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
235 
236 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
237 static void ptbl_free(mmu_t, pmap_t, unsigned int);
238 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
239 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
240 
241 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
242 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
243 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
244 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
245 static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr,
246 			     vm_offset_t pdir);
247 
248 static pv_entry_t pv_alloc(void);
249 static void pv_free(pv_entry_t);
250 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
251 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
252 
253 static void booke_pmap_init_qpages(void);
254 
255 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
256 #define PTBL_BUFS		(128 * 16)
257 
258 struct ptbl_buf {
259 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
260 	vm_offset_t kva;		/* va of mapping */
261 };
262 
263 /* ptbl free list and a lock used for access synchronization. */
264 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
265 static struct mtx ptbl_buf_freelist_lock;
266 
267 /* Base address of kva space allocated fot ptbl bufs. */
268 static vm_offset_t ptbl_buf_pool_vabase;
269 
270 /* Pointer to ptbl_buf structures. */
271 static struct ptbl_buf *ptbl_bufs;
272 
273 #ifdef SMP
274 void pmap_bootstrap_ap(volatile uint32_t *);
275 #endif
276 
277 /*
278  * Kernel MMU interface
279  */
280 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
281 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
282     vm_size_t, vm_offset_t);
283 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
284 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
285     vm_offset_t, vm_page_t *, vm_offset_t, int);
286 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
287     vm_prot_t, u_int flags, int8_t psind);
288 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
289     vm_page_t, vm_prot_t);
290 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
291     vm_prot_t);
292 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
293 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
294     vm_prot_t);
295 static void		mmu_booke_init(mmu_t);
296 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
297 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
298 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
299 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
300 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
301     int);
302 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
303     vm_paddr_t *);
304 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
305     vm_object_t, vm_pindex_t, vm_size_t);
306 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
307 static void		mmu_booke_page_init(mmu_t, vm_page_t);
308 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
309 static void		mmu_booke_pinit(mmu_t, pmap_t);
310 static void		mmu_booke_pinit0(mmu_t, pmap_t);
311 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
312     vm_prot_t);
313 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
314 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
315 static void		mmu_booke_release(mmu_t, pmap_t);
316 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
317 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
318 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
319 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
320 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
321 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
322 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
323 static void		mmu_booke_activate(mmu_t, struct thread *);
324 static void		mmu_booke_deactivate(mmu_t, struct thread *);
325 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
326 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
327 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
328 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
329 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
330 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
331 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
332 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
333 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
334 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
335     vm_size_t);
336 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
337     void **);
338 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
339     void *);
340 static void		mmu_booke_scan_init(mmu_t);
341 static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
342 static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
343 
344 static mmu_method_t mmu_booke_methods[] = {
345 	/* pmap dispatcher interface */
346 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
347 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
348 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
349 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
350 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
351 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
352 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
353 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
354 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
355 	MMUMETHOD(mmu_init,		mmu_booke_init),
356 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
357 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
358 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
359 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
360 	MMUMETHOD(mmu_map,		mmu_booke_map),
361 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
362 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
363 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
364 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
365 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
366 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
367 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
368 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
369 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
370 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
371 	MMUMETHOD(mmu_release,		mmu_booke_release),
372 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
373 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
374 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
375 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
376 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
377 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
378 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
379 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
380 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
381 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
382 	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
383 	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
384 
385 	/* Internal interfaces */
386 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
387 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
388 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
389 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
390 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
391 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
392 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
393 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
394 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
395 
396 	/* dumpsys() support */
397 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
398 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
399 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
400 
401 	{ 0, 0 }
402 };
403 
404 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
405 
406 static __inline uint32_t
407 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
408 {
409 	uint32_t attrib;
410 	int i;
411 
412 	if (ma != VM_MEMATTR_DEFAULT) {
413 		switch (ma) {
414 		case VM_MEMATTR_UNCACHEABLE:
415 			return (PTE_I | PTE_G);
416 		case VM_MEMATTR_WRITE_COMBINING:
417 		case VM_MEMATTR_WRITE_BACK:
418 		case VM_MEMATTR_PREFETCHABLE:
419 			return (PTE_I);
420 		case VM_MEMATTR_WRITE_THROUGH:
421 			return (PTE_W | PTE_M);
422 		}
423 	}
424 
425 	/*
426 	 * Assume the page is cache inhibited and access is guarded unless
427 	 * it's in our available memory array.
428 	 */
429 	attrib = _TLB_ENTRY_IO;
430 	for (i = 0; i < physmem_regions_sz; i++) {
431 		if ((pa >= physmem_regions[i].mr_start) &&
432 		    (pa < (physmem_regions[i].mr_start +
433 		     physmem_regions[i].mr_size))) {
434 			attrib = _TLB_ENTRY_MEM;
435 			break;
436 		}
437 	}
438 
439 	return (attrib);
440 }
441 
442 static inline void
443 tlb_miss_lock(void)
444 {
445 #ifdef SMP
446 	struct pcpu *pc;
447 
448 	if (!smp_started)
449 		return;
450 
451 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
452 		if (pc != pcpup) {
453 
454 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
455 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
456 
457 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
458 			    ("tlb_miss_lock: tried to lock self"));
459 
460 			tlb_lock(pc->pc_booke_tlb_lock);
461 
462 			CTR1(KTR_PMAP, "%s: locked", __func__);
463 		}
464 	}
465 #endif
466 }
467 
468 static inline void
469 tlb_miss_unlock(void)
470 {
471 #ifdef SMP
472 	struct pcpu *pc;
473 
474 	if (!smp_started)
475 		return;
476 
477 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
478 		if (pc != pcpup) {
479 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
480 			    __func__, pc->pc_cpuid);
481 
482 			tlb_unlock(pc->pc_booke_tlb_lock);
483 
484 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
485 		}
486 	}
487 #endif
488 }
489 
490 /* Return number of entries in TLB0. */
491 static __inline void
492 tlb0_get_tlbconf(void)
493 {
494 	uint32_t tlb0_cfg;
495 
496 	tlb0_cfg = mfspr(SPR_TLB0CFG);
497 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
498 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
499 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
500 }
501 
502 /* Return number of entries in TLB1. */
503 static __inline void
504 tlb1_get_tlbconf(void)
505 {
506 	uint32_t tlb1_cfg;
507 
508 	tlb1_cfg = mfspr(SPR_TLB1CFG);
509 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
510 }
511 
512 /**************************************************************************/
513 /* Page table related */
514 /**************************************************************************/
515 
516 /* Initialize pool of kva ptbl buffers. */
517 static void
518 ptbl_init(void)
519 {
520 	int i;
521 
522 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
523 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
524 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
525 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
526 
527 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
528 	TAILQ_INIT(&ptbl_buf_freelist);
529 
530 	for (i = 0; i < PTBL_BUFS; i++) {
531 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
532 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
533 	}
534 }
535 
536 /* Get a ptbl_buf from the freelist. */
537 static struct ptbl_buf *
538 ptbl_buf_alloc(void)
539 {
540 	struct ptbl_buf *buf;
541 
542 	mtx_lock(&ptbl_buf_freelist_lock);
543 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
544 	if (buf != NULL)
545 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
546 	mtx_unlock(&ptbl_buf_freelist_lock);
547 
548 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
549 
550 	return (buf);
551 }
552 
553 /* Return ptbl buff to free pool. */
554 static void
555 ptbl_buf_free(struct ptbl_buf *buf)
556 {
557 
558 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
559 
560 	mtx_lock(&ptbl_buf_freelist_lock);
561 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
562 	mtx_unlock(&ptbl_buf_freelist_lock);
563 }
564 
565 /*
566  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
567  */
568 static void
569 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
570 {
571 	struct ptbl_buf *pbuf;
572 
573 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
574 
575 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
576 
577 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
578 		if (pbuf->kva == (vm_offset_t)ptbl) {
579 			/* Remove from pmap ptbl buf list. */
580 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
581 
582 			/* Free corresponding ptbl buf. */
583 			ptbl_buf_free(pbuf);
584 			break;
585 		}
586 }
587 
588 /* Allocate page table. */
589 static pte_t *
590 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
591 {
592 	vm_page_t mtbl[PTBL_PAGES];
593 	vm_page_t m;
594 	struct ptbl_buf *pbuf;
595 	unsigned int pidx;
596 	pte_t *ptbl;
597 	int i, j;
598 
599 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
600 	    (pmap == kernel_pmap), pdir_idx);
601 
602 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
603 	    ("ptbl_alloc: invalid pdir_idx"));
604 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
605 	    ("pte_alloc: valid ptbl entry exists!"));
606 
607 	pbuf = ptbl_buf_alloc();
608 	if (pbuf == NULL)
609 		panic("pte_alloc: couldn't alloc kernel virtual memory");
610 
611 	ptbl = (pte_t *)pbuf->kva;
612 
613 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
614 
615 	/* Allocate ptbl pages, this will sleep! */
616 	for (i = 0; i < PTBL_PAGES; i++) {
617 		pidx = (PTBL_PAGES * pdir_idx) + i;
618 		while ((m = vm_page_alloc(NULL, pidx,
619 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
620 			PMAP_UNLOCK(pmap);
621 			rw_wunlock(&pvh_global_lock);
622 			if (nosleep) {
623 				ptbl_free_pmap_ptbl(pmap, ptbl);
624 				for (j = 0; j < i; j++)
625 					vm_page_free(mtbl[j]);
626 				atomic_subtract_int(&vm_cnt.v_wire_count, i);
627 				return (NULL);
628 			}
629 			VM_WAIT;
630 			rw_wlock(&pvh_global_lock);
631 			PMAP_LOCK(pmap);
632 		}
633 		mtbl[i] = m;
634 	}
635 
636 	/* Map allocated pages into kernel_pmap. */
637 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
638 
639 	/* Zero whole ptbl. */
640 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
641 
642 	/* Add pbuf to the pmap ptbl bufs list. */
643 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
644 
645 	return (ptbl);
646 }
647 
648 /* Free ptbl pages and invalidate pdir entry. */
649 static void
650 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
651 {
652 	pte_t *ptbl;
653 	vm_paddr_t pa;
654 	vm_offset_t va;
655 	vm_page_t m;
656 	int i;
657 
658 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
659 	    (pmap == kernel_pmap), pdir_idx);
660 
661 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
662 	    ("ptbl_free: invalid pdir_idx"));
663 
664 	ptbl = pmap->pm_pdir[pdir_idx];
665 
666 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
667 
668 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
669 
670 	/*
671 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
672 	 * don't attempt to look up the page tables we are releasing.
673 	 */
674 	mtx_lock_spin(&tlbivax_mutex);
675 	tlb_miss_lock();
676 
677 	pmap->pm_pdir[pdir_idx] = NULL;
678 
679 	tlb_miss_unlock();
680 	mtx_unlock_spin(&tlbivax_mutex);
681 
682 	for (i = 0; i < PTBL_PAGES; i++) {
683 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
684 		pa = pte_vatopa(mmu, kernel_pmap, va);
685 		m = PHYS_TO_VM_PAGE(pa);
686 		vm_page_free_zero(m);
687 		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
688 		mmu_booke_kremove(mmu, va);
689 	}
690 
691 	ptbl_free_pmap_ptbl(pmap, ptbl);
692 }
693 
694 /*
695  * Decrement ptbl pages hold count and attempt to free ptbl pages.
696  * Called when removing pte entry from ptbl.
697  *
698  * Return 1 if ptbl pages were freed.
699  */
700 static int
701 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
702 {
703 	pte_t *ptbl;
704 	vm_paddr_t pa;
705 	vm_page_t m;
706 	int i;
707 
708 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
709 	    (pmap == kernel_pmap), pdir_idx);
710 
711 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
712 	    ("ptbl_unhold: invalid pdir_idx"));
713 	KASSERT((pmap != kernel_pmap),
714 	    ("ptbl_unhold: unholding kernel ptbl!"));
715 
716 	ptbl = pmap->pm_pdir[pdir_idx];
717 
718 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
719 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
720 	    ("ptbl_unhold: non kva ptbl"));
721 
722 	/* decrement hold count */
723 	for (i = 0; i < PTBL_PAGES; i++) {
724 		pa = pte_vatopa(mmu, kernel_pmap,
725 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
726 		m = PHYS_TO_VM_PAGE(pa);
727 		m->wire_count--;
728 	}
729 
730 	/*
731 	 * Free ptbl pages if there are no pte etries in this ptbl.
732 	 * wire_count has the same value for all ptbl pages, so check the last
733 	 * page.
734 	 */
735 	if (m->wire_count == 0) {
736 		ptbl_free(mmu, pmap, pdir_idx);
737 
738 		//debugf("ptbl_unhold: e (freed ptbl)\n");
739 		return (1);
740 	}
741 
742 	return (0);
743 }
744 
745 /*
746  * Increment hold count for ptbl pages. This routine is used when a new pte
747  * entry is being inserted into the ptbl.
748  */
749 static void
750 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
751 {
752 	vm_paddr_t pa;
753 	pte_t *ptbl;
754 	vm_page_t m;
755 	int i;
756 
757 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
758 	    pdir_idx);
759 
760 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
761 	    ("ptbl_hold: invalid pdir_idx"));
762 	KASSERT((pmap != kernel_pmap),
763 	    ("ptbl_hold: holding kernel ptbl!"));
764 
765 	ptbl = pmap->pm_pdir[pdir_idx];
766 
767 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
768 
769 	for (i = 0; i < PTBL_PAGES; i++) {
770 		pa = pte_vatopa(mmu, kernel_pmap,
771 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
772 		m = PHYS_TO_VM_PAGE(pa);
773 		m->wire_count++;
774 	}
775 }
776 
777 /* Allocate pv_entry structure. */
778 pv_entry_t
779 pv_alloc(void)
780 {
781 	pv_entry_t pv;
782 
783 	pv_entry_count++;
784 	if (pv_entry_count > pv_entry_high_water)
785 		pagedaemon_wakeup();
786 	pv = uma_zalloc(pvzone, M_NOWAIT);
787 
788 	return (pv);
789 }
790 
791 /* Free pv_entry structure. */
792 static __inline void
793 pv_free(pv_entry_t pve)
794 {
795 
796 	pv_entry_count--;
797 	uma_zfree(pvzone, pve);
798 }
799 
800 
801 /* Allocate and initialize pv_entry structure. */
802 static void
803 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
804 {
805 	pv_entry_t pve;
806 
807 	//int su = (pmap == kernel_pmap);
808 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
809 	//	(u_int32_t)pmap, va, (u_int32_t)m);
810 
811 	pve = pv_alloc();
812 	if (pve == NULL)
813 		panic("pv_insert: no pv entries!");
814 
815 	pve->pv_pmap = pmap;
816 	pve->pv_va = va;
817 
818 	/* add to pv_list */
819 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
820 	rw_assert(&pvh_global_lock, RA_WLOCKED);
821 
822 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
823 
824 	//debugf("pv_insert: e\n");
825 }
826 
827 /* Destroy pv entry. */
828 static void
829 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
830 {
831 	pv_entry_t pve;
832 
833 	//int su = (pmap == kernel_pmap);
834 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
835 
836 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
837 	rw_assert(&pvh_global_lock, RA_WLOCKED);
838 
839 	/* find pv entry */
840 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
841 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
842 			/* remove from pv_list */
843 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
844 			if (TAILQ_EMPTY(&m->md.pv_list))
845 				vm_page_aflag_clear(m, PGA_WRITEABLE);
846 
847 			/* free pv entry struct */
848 			pv_free(pve);
849 			break;
850 		}
851 	}
852 
853 	//debugf("pv_remove: e\n");
854 }
855 
856 /*
857  * Clean pte entry, try to free page table page if requested.
858  *
859  * Return 1 if ptbl pages were freed, otherwise return 0.
860  */
861 static int
862 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
863 {
864 	unsigned int pdir_idx = PDIR_IDX(va);
865 	unsigned int ptbl_idx = PTBL_IDX(va);
866 	vm_page_t m;
867 	pte_t *ptbl;
868 	pte_t *pte;
869 
870 	//int su = (pmap == kernel_pmap);
871 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
872 	//		su, (u_int32_t)pmap, va, flags);
873 
874 	ptbl = pmap->pm_pdir[pdir_idx];
875 	KASSERT(ptbl, ("pte_remove: null ptbl"));
876 
877 	pte = &ptbl[ptbl_idx];
878 
879 	if (pte == NULL || !PTE_ISVALID(pte))
880 		return (0);
881 
882 	if (PTE_ISWIRED(pte))
883 		pmap->pm_stats.wired_count--;
884 
885 	/* Handle managed entry. */
886 	if (PTE_ISMANAGED(pte)) {
887 		/* Get vm_page_t for mapped pte. */
888 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
889 
890 		if (PTE_ISMODIFIED(pte))
891 			vm_page_dirty(m);
892 
893 		if (PTE_ISREFERENCED(pte))
894 			vm_page_aflag_set(m, PGA_REFERENCED);
895 
896 		pv_remove(pmap, va, m);
897 	}
898 
899 	mtx_lock_spin(&tlbivax_mutex);
900 	tlb_miss_lock();
901 
902 	tlb0_flush_entry(va);
903 	pte->flags = 0;
904 	pte->rpn = 0;
905 
906 	tlb_miss_unlock();
907 	mtx_unlock_spin(&tlbivax_mutex);
908 
909 	pmap->pm_stats.resident_count--;
910 
911 	if (flags & PTBL_UNHOLD) {
912 		//debugf("pte_remove: e (unhold)\n");
913 		return (ptbl_unhold(mmu, pmap, pdir_idx));
914 	}
915 
916 	//debugf("pte_remove: e\n");
917 	return (0);
918 }
919 
920 /*
921  * Insert PTE for a given page and virtual address.
922  */
923 static int
924 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
925     boolean_t nosleep)
926 {
927 	unsigned int pdir_idx = PDIR_IDX(va);
928 	unsigned int ptbl_idx = PTBL_IDX(va);
929 	pte_t *ptbl, *pte;
930 
931 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
932 	    pmap == kernel_pmap, pmap, va);
933 
934 	/* Get the page table pointer. */
935 	ptbl = pmap->pm_pdir[pdir_idx];
936 
937 	if (ptbl == NULL) {
938 		/* Allocate page table pages. */
939 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
940 		if (ptbl == NULL) {
941 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
942 			return (ENOMEM);
943 		}
944 	} else {
945 		/*
946 		 * Check if there is valid mapping for requested
947 		 * va, if there is, remove it.
948 		 */
949 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
950 		if (PTE_ISVALID(pte)) {
951 			pte_remove(mmu, pmap, va, PTBL_HOLD);
952 		} else {
953 			/*
954 			 * pte is not used, increment hold count
955 			 * for ptbl pages.
956 			 */
957 			if (pmap != kernel_pmap)
958 				ptbl_hold(mmu, pmap, pdir_idx);
959 		}
960 	}
961 
962 	/*
963 	 * Insert pv_entry into pv_list for mapped page if part of managed
964 	 * memory.
965 	 */
966 	if ((m->oflags & VPO_UNMANAGED) == 0) {
967 		flags |= PTE_MANAGED;
968 
969 		/* Create and insert pv entry. */
970 		pv_insert(pmap, va, m);
971 	}
972 
973 	pmap->pm_stats.resident_count++;
974 
975 	mtx_lock_spin(&tlbivax_mutex);
976 	tlb_miss_lock();
977 
978 	tlb0_flush_entry(va);
979 	if (pmap->pm_pdir[pdir_idx] == NULL) {
980 		/*
981 		 * If we just allocated a new page table, hook it in
982 		 * the pdir.
983 		 */
984 		pmap->pm_pdir[pdir_idx] = ptbl;
985 	}
986 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
987 	pte->rpn = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
988 	pte->flags |= (PTE_VALID | flags);
989 
990 	tlb_miss_unlock();
991 	mtx_unlock_spin(&tlbivax_mutex);
992 	return (0);
993 }
994 
995 /* Return the pa for the given pmap/va. */
996 static vm_paddr_t
997 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
998 {
999 	vm_paddr_t pa = 0;
1000 	pte_t *pte;
1001 
1002 	pte = pte_find(mmu, pmap, va);
1003 	if ((pte != NULL) && PTE_ISVALID(pte))
1004 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1005 	return (pa);
1006 }
1007 
1008 /* Get a pointer to a PTE in a page table. */
1009 static pte_t *
1010 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1011 {
1012 	unsigned int pdir_idx = PDIR_IDX(va);
1013 	unsigned int ptbl_idx = PTBL_IDX(va);
1014 
1015 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1016 
1017 	if (pmap->pm_pdir[pdir_idx])
1018 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1019 
1020 	return (NULL);
1021 }
1022 
1023 /* Set up kernel page tables. */
1024 static void
1025 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1026 {
1027 	int		i;
1028 	vm_offset_t	va;
1029 	pte_t		*pte;
1030 
1031 	/* Initialize kernel pdir */
1032 	for (i = 0; i < kernel_ptbls; i++)
1033 		kernel_pmap->pm_pdir[kptbl_min + i] =
1034 		    (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1035 
1036 	/*
1037 	 * Fill in PTEs covering kernel code and data. They are not required
1038 	 * for address translation, as this area is covered by static TLB1
1039 	 * entries, but for pte_vatopa() to work correctly with kernel area
1040 	 * addresses.
1041 	 */
1042 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1043 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1044 		pte->rpn = kernload + (va - kernstart);
1045 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1046 		    PTE_VALID;
1047 	}
1048 }
1049 
1050 /**************************************************************************/
1051 /* PMAP related */
1052 /**************************************************************************/
1053 
1054 /*
1055  * This is called during booke_init, before the system is really initialized.
1056  */
1057 static void
1058 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1059 {
1060 	vm_paddr_t phys_kernelend;
1061 	struct mem_region *mp, *mp1;
1062 	int cnt, i, j;
1063 	vm_paddr_t s, e, sz;
1064 	vm_paddr_t physsz, hwphyssz;
1065 	u_int phys_avail_count;
1066 	vm_size_t kstack0_sz;
1067 	vm_offset_t kernel_pdir, kstack0;
1068 	vm_paddr_t kstack0_phys;
1069 	void *dpcpu;
1070 
1071 	debugf("mmu_booke_bootstrap: entered\n");
1072 
1073 	/* Set interesting system properties */
1074 	hw_direct_map = 0;
1075 	elf32_nxstack = 1;
1076 
1077 	/* Initialize invalidation mutex */
1078 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1079 
1080 	/* Read TLB0 size and associativity. */
1081 	tlb0_get_tlbconf();
1082 
1083 	/*
1084 	 * Align kernel start and end address (kernel image).
1085 	 * Note that kernel end does not necessarily relate to kernsize.
1086 	 * kernsize is the size of the kernel that is actually mapped.
1087 	 */
1088 	kernstart = trunc_page(start);
1089 	data_start = round_page(kernelend);
1090 	data_end = data_start;
1091 
1092 	/*
1093 	 * Addresses of preloaded modules (like file systems) use
1094 	 * physical addresses. Make sure we relocate those into
1095 	 * virtual addresses.
1096 	 */
1097 	preload_addr_relocate = kernstart - kernload;
1098 
1099 	/* Allocate the dynamic per-cpu area. */
1100 	dpcpu = (void *)data_end;
1101 	data_end += DPCPU_SIZE;
1102 
1103 	/* Allocate space for the message buffer. */
1104 	msgbufp = (struct msgbuf *)data_end;
1105 	data_end += msgbufsize;
1106 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1107 	    data_end);
1108 
1109 	data_end = round_page(data_end);
1110 
1111 	/* Allocate space for ptbl_bufs. */
1112 	ptbl_bufs = (struct ptbl_buf *)data_end;
1113 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1114 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1115 	    data_end);
1116 
1117 	data_end = round_page(data_end);
1118 
1119 	/* Allocate PTE tables for kernel KVA. */
1120 	kernel_pdir = data_end;
1121 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1122 	    PDIR_SIZE - 1) / PDIR_SIZE;
1123 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1124 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1125 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1126 
1127 	debugf(" data_end: 0x%08x\n", data_end);
1128 	if (data_end - kernstart > kernsize) {
1129 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1130 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1131 	}
1132 	data_end = kernstart + kernsize;
1133 	debugf(" updated data_end: 0x%08x\n", data_end);
1134 
1135 	/*
1136 	 * Clear the structures - note we can only do it safely after the
1137 	 * possible additional TLB1 translations are in place (above) so that
1138 	 * all range up to the currently calculated 'data_end' is covered.
1139 	 */
1140 	dpcpu_init(dpcpu, 0);
1141 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1142 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1143 
1144 	/*******************************************************/
1145 	/* Set the start and end of kva. */
1146 	/*******************************************************/
1147 	virtual_avail = round_page(data_end);
1148 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1149 
1150 	/* Allocate KVA space for page zero/copy operations. */
1151 	zero_page_va = virtual_avail;
1152 	virtual_avail += PAGE_SIZE;
1153 	zero_page_idle_va = virtual_avail;
1154 	virtual_avail += PAGE_SIZE;
1155 	copy_page_src_va = virtual_avail;
1156 	virtual_avail += PAGE_SIZE;
1157 	copy_page_dst_va = virtual_avail;
1158 	virtual_avail += PAGE_SIZE;
1159 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1160 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1161 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1162 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1163 
1164 	/* Initialize page zero/copy mutexes. */
1165 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1166 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1167 
1168 	/* Allocate KVA space for ptbl bufs. */
1169 	ptbl_buf_pool_vabase = virtual_avail;
1170 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1171 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1172 	    ptbl_buf_pool_vabase, virtual_avail);
1173 
1174 	/* Calculate corresponding physical addresses for the kernel region. */
1175 	phys_kernelend = kernload + kernsize;
1176 	debugf("kernel image and allocated data:\n");
1177 	debugf(" kernload    = 0x%09llx\n", (uint64_t)kernload);
1178 	debugf(" kernstart   = 0x%08x\n", kernstart);
1179 	debugf(" kernsize    = 0x%08x\n", kernsize);
1180 
1181 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1182 		panic("mmu_booke_bootstrap: phys_avail too small");
1183 
1184 	/*
1185 	 * Remove kernel physical address range from avail regions list. Page
1186 	 * align all regions.  Non-page aligned memory isn't very interesting
1187 	 * to us.  Also, sort the entries for ascending addresses.
1188 	 */
1189 
1190 	/* Retrieve phys/avail mem regions */
1191 	mem_regions(&physmem_regions, &physmem_regions_sz,
1192 	    &availmem_regions, &availmem_regions_sz);
1193 	sz = 0;
1194 	cnt = availmem_regions_sz;
1195 	debugf("processing avail regions:\n");
1196 	for (mp = availmem_regions; mp->mr_size; mp++) {
1197 		s = mp->mr_start;
1198 		e = mp->mr_start + mp->mr_size;
1199 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1200 		/* Check whether this region holds all of the kernel. */
1201 		if (s < kernload && e > phys_kernelend) {
1202 			availmem_regions[cnt].mr_start = phys_kernelend;
1203 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1204 			e = kernload;
1205 		}
1206 		/* Look whether this regions starts within the kernel. */
1207 		if (s >= kernload && s < phys_kernelend) {
1208 			if (e <= phys_kernelend)
1209 				goto empty;
1210 			s = phys_kernelend;
1211 		}
1212 		/* Now look whether this region ends within the kernel. */
1213 		if (e > kernload && e <= phys_kernelend) {
1214 			if (s >= kernload)
1215 				goto empty;
1216 			e = kernload;
1217 		}
1218 		/* Now page align the start and size of the region. */
1219 		s = round_page(s);
1220 		e = trunc_page(e);
1221 		if (e < s)
1222 			e = s;
1223 		sz = e - s;
1224 		debugf("%09jx-%09jx = %jx\n",
1225 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1226 
1227 		/* Check whether some memory is left here. */
1228 		if (sz == 0) {
1229 		empty:
1230 			memmove(mp, mp + 1,
1231 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1232 			cnt--;
1233 			mp--;
1234 			continue;
1235 		}
1236 
1237 		/* Do an insertion sort. */
1238 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1239 			if (s < mp1->mr_start)
1240 				break;
1241 		if (mp1 < mp) {
1242 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1243 			mp1->mr_start = s;
1244 			mp1->mr_size = sz;
1245 		} else {
1246 			mp->mr_start = s;
1247 			mp->mr_size = sz;
1248 		}
1249 	}
1250 	availmem_regions_sz = cnt;
1251 
1252 	/*******************************************************/
1253 	/* Steal physical memory for kernel stack from the end */
1254 	/* of the first avail region                           */
1255 	/*******************************************************/
1256 	kstack0_sz = kstack_pages * PAGE_SIZE;
1257 	kstack0_phys = availmem_regions[0].mr_start +
1258 	    availmem_regions[0].mr_size;
1259 	kstack0_phys -= kstack0_sz;
1260 	availmem_regions[0].mr_size -= kstack0_sz;
1261 
1262 	/*******************************************************/
1263 	/* Fill in phys_avail table, based on availmem_regions */
1264 	/*******************************************************/
1265 	phys_avail_count = 0;
1266 	physsz = 0;
1267 	hwphyssz = 0;
1268 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1269 
1270 	debugf("fill in phys_avail:\n");
1271 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1272 
1273 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1274 		    (uintmax_t)availmem_regions[i].mr_start,
1275 		    (uintmax_t)availmem_regions[i].mr_start +
1276 		        availmem_regions[i].mr_size,
1277 		    (uintmax_t)availmem_regions[i].mr_size);
1278 
1279 		if (hwphyssz != 0 &&
1280 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1281 			debugf(" hw.physmem adjust\n");
1282 			if (physsz < hwphyssz) {
1283 				phys_avail[j] = availmem_regions[i].mr_start;
1284 				phys_avail[j + 1] =
1285 				    availmem_regions[i].mr_start +
1286 				    hwphyssz - physsz;
1287 				physsz = hwphyssz;
1288 				phys_avail_count++;
1289 			}
1290 			break;
1291 		}
1292 
1293 		phys_avail[j] = availmem_regions[i].mr_start;
1294 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1295 		    availmem_regions[i].mr_size;
1296 		phys_avail_count++;
1297 		physsz += availmem_regions[i].mr_size;
1298 	}
1299 	physmem = btoc(physsz);
1300 
1301 	/* Calculate the last available physical address. */
1302 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1303 		;
1304 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1305 
1306 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1307 	debugf("phys_avail_count = %d\n", phys_avail_count);
1308 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1309 	    physmem);
1310 
1311 	/*******************************************************/
1312 	/* Initialize (statically allocated) kernel pmap. */
1313 	/*******************************************************/
1314 	PMAP_LOCK_INIT(kernel_pmap);
1315 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1316 
1317 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1318 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1319 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1320 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1321 
1322 	kernel_pte_alloc(data_end, kernstart, kernel_pdir);
1323 	for (i = 0; i < MAXCPU; i++) {
1324 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1325 
1326 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1327 		tidbusy[i][TID_KERNEL] = kernel_pmap;
1328 	}
1329 
1330 	/* Mark kernel_pmap active on all CPUs */
1331 	CPU_FILL(&kernel_pmap->pm_active);
1332 
1333  	/*
1334 	 * Initialize the global pv list lock.
1335 	 */
1336 	rw_init(&pvh_global_lock, "pmap pv global");
1337 
1338 	/*******************************************************/
1339 	/* Final setup */
1340 	/*******************************************************/
1341 
1342 	/* Enter kstack0 into kernel map, provide guard page */
1343 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1344 	thread0.td_kstack = kstack0;
1345 	thread0.td_kstack_pages = kstack_pages;
1346 
1347 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1348 	debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1349 	    kstack0_phys, kstack0_phys + kstack0_sz);
1350 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1351 
1352 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1353 	for (i = 0; i < kstack_pages; i++) {
1354 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1355 		kstack0 += PAGE_SIZE;
1356 		kstack0_phys += PAGE_SIZE;
1357 	}
1358 
1359 	pmap_bootstrapped = 1;
1360 
1361 	debugf("virtual_avail = %08x\n", virtual_avail);
1362 	debugf("virtual_end   = %08x\n", virtual_end);
1363 
1364 	debugf("mmu_booke_bootstrap: exit\n");
1365 }
1366 
1367 #ifdef SMP
1368 void
1369 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1370 {
1371 	int i;
1372 
1373 	/*
1374 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1375 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1376 	 * these values directly to (re)program AP's TLB1 hardware.
1377 	 */
1378 	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1379 		/* Skip invalid entries */
1380 		if (!(tlb1[i].mas1 & MAS1_VALID))
1381 			continue;
1382 
1383 		tlb1_write_entry(i);
1384 	}
1385 
1386 	set_mas4_defaults();
1387 }
1388 #endif
1389 
1390 static void
1391 booke_pmap_init_qpages(void)
1392 {
1393 	struct pcpu *pc;
1394 	int i;
1395 
1396 	CPU_FOREACH(i) {
1397 		pc = pcpu_find(i);
1398 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1399 		if (pc->pc_qmap_addr == 0)
1400 			panic("pmap_init_qpages: unable to allocate KVA");
1401 	}
1402 }
1403 
1404 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1405 
1406 /*
1407  * Get the physical page address for the given pmap/virtual address.
1408  */
1409 static vm_paddr_t
1410 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1411 {
1412 	vm_paddr_t pa;
1413 
1414 	PMAP_LOCK(pmap);
1415 	pa = pte_vatopa(mmu, pmap, va);
1416 	PMAP_UNLOCK(pmap);
1417 
1418 	return (pa);
1419 }
1420 
1421 /*
1422  * Extract the physical page address associated with the given
1423  * kernel virtual address.
1424  */
1425 static vm_paddr_t
1426 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1427 {
1428 	int i;
1429 
1430 	/* Check TLB1 mappings */
1431 	for (i = 0; i < tlb1_idx; i++) {
1432 		if (!(tlb1[i].mas1 & MAS1_VALID))
1433 			continue;
1434 		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1435 			return (tlb1[i].phys + (va - tlb1[i].virt));
1436 	}
1437 
1438 	return (pte_vatopa(mmu, kernel_pmap, va));
1439 }
1440 
1441 /*
1442  * Initialize the pmap module.
1443  * Called by vm_init, to initialize any structures that the pmap
1444  * system needs to map virtual memory.
1445  */
1446 static void
1447 mmu_booke_init(mmu_t mmu)
1448 {
1449 	int shpgperproc = PMAP_SHPGPERPROC;
1450 
1451 	/*
1452 	 * Initialize the address space (zone) for the pv entries.  Set a
1453 	 * high water mark so that the system can recover from excessive
1454 	 * numbers of pv entries.
1455 	 */
1456 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1457 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1458 
1459 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1460 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1461 
1462 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1463 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1464 
1465 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1466 
1467 	/* Pre-fill pvzone with initial number of pv entries. */
1468 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1469 
1470 	/* Initialize ptbl allocation. */
1471 	ptbl_init();
1472 }
1473 
1474 /*
1475  * Map a list of wired pages into kernel virtual address space.  This is
1476  * intended for temporary mappings which do not need page modification or
1477  * references recorded.  Existing mappings in the region are overwritten.
1478  */
1479 static void
1480 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1481 {
1482 	vm_offset_t va;
1483 
1484 	va = sva;
1485 	while (count-- > 0) {
1486 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1487 		va += PAGE_SIZE;
1488 		m++;
1489 	}
1490 }
1491 
1492 /*
1493  * Remove page mappings from kernel virtual address space.  Intended for
1494  * temporary mappings entered by mmu_booke_qenter.
1495  */
1496 static void
1497 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1498 {
1499 	vm_offset_t va;
1500 
1501 	va = sva;
1502 	while (count-- > 0) {
1503 		mmu_booke_kremove(mmu, va);
1504 		va += PAGE_SIZE;
1505 	}
1506 }
1507 
1508 /*
1509  * Map a wired page into kernel virtual address space.
1510  */
1511 static void
1512 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1513 {
1514 
1515 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1516 }
1517 
1518 static void
1519 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1520 {
1521 	uint32_t flags;
1522 	pte_t *pte;
1523 
1524 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1525 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1526 
1527 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1528 	flags |= tlb_calc_wimg(pa, ma);
1529 
1530 	pte = pte_find(mmu, kernel_pmap, va);
1531 
1532 	mtx_lock_spin(&tlbivax_mutex);
1533 	tlb_miss_lock();
1534 
1535 	if (PTE_ISVALID(pte)) {
1536 
1537 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1538 
1539 		/* Flush entry from TLB0 */
1540 		tlb0_flush_entry(va);
1541 	}
1542 
1543 	pte->rpn = PTE_RPN_FROM_PA(pa);
1544 	pte->flags = flags;
1545 
1546 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1547 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1548 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1549 
1550 	/* Flush the real memory from the instruction cache. */
1551 	if ((flags & (PTE_I | PTE_G)) == 0) {
1552 		__syncicache((void *)va, PAGE_SIZE);
1553 	}
1554 
1555 	tlb_miss_unlock();
1556 	mtx_unlock_spin(&tlbivax_mutex);
1557 }
1558 
1559 /*
1560  * Remove a page from kernel page table.
1561  */
1562 static void
1563 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1564 {
1565 	pte_t *pte;
1566 
1567 	CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va);
1568 
1569 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1570 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1571 	    ("mmu_booke_kremove: invalid va"));
1572 
1573 	pte = pte_find(mmu, kernel_pmap, va);
1574 
1575 	if (!PTE_ISVALID(pte)) {
1576 
1577 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1578 
1579 		return;
1580 	}
1581 
1582 	mtx_lock_spin(&tlbivax_mutex);
1583 	tlb_miss_lock();
1584 
1585 	/* Invalidate entry in TLB0, update PTE. */
1586 	tlb0_flush_entry(va);
1587 	pte->flags = 0;
1588 	pte->rpn = 0;
1589 
1590 	tlb_miss_unlock();
1591 	mtx_unlock_spin(&tlbivax_mutex);
1592 }
1593 
1594 /*
1595  * Initialize pmap associated with process 0.
1596  */
1597 static void
1598 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1599 {
1600 
1601 	PMAP_LOCK_INIT(pmap);
1602 	mmu_booke_pinit(mmu, pmap);
1603 	PCPU_SET(curpmap, pmap);
1604 }
1605 
1606 /*
1607  * Initialize a preallocated and zeroed pmap structure,
1608  * such as one in a vmspace structure.
1609  */
1610 static void
1611 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1612 {
1613 	int i;
1614 
1615 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1616 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1617 
1618 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1619 
1620 	for (i = 0; i < MAXCPU; i++)
1621 		pmap->pm_tid[i] = TID_NONE;
1622 	CPU_ZERO(&kernel_pmap->pm_active);
1623 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1624 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1625 	TAILQ_INIT(&pmap->pm_ptbl_list);
1626 }
1627 
1628 /*
1629  * Release any resources held by the given physical map.
1630  * Called when a pmap initialized by mmu_booke_pinit is being released.
1631  * Should only be called if the map contains no valid mappings.
1632  */
1633 static void
1634 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1635 {
1636 
1637 	KASSERT(pmap->pm_stats.resident_count == 0,
1638 	    ("pmap_release: pmap resident count %ld != 0",
1639 	    pmap->pm_stats.resident_count));
1640 }
1641 
1642 /*
1643  * Insert the given physical page at the specified virtual address in the
1644  * target physical map with the protection requested. If specified the page
1645  * will be wired down.
1646  */
1647 static int
1648 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1649     vm_prot_t prot, u_int flags, int8_t psind)
1650 {
1651 	int error;
1652 
1653 	rw_wlock(&pvh_global_lock);
1654 	PMAP_LOCK(pmap);
1655 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1656 	rw_wunlock(&pvh_global_lock);
1657 	PMAP_UNLOCK(pmap);
1658 	return (error);
1659 }
1660 
1661 static int
1662 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1663     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1664 {
1665 	pte_t *pte;
1666 	vm_paddr_t pa;
1667 	uint32_t flags;
1668 	int error, su, sync;
1669 
1670 	pa = VM_PAGE_TO_PHYS(m);
1671 	su = (pmap == kernel_pmap);
1672 	sync = 0;
1673 
1674 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1675 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1676 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1677 	//		(u_int32_t)m, va, pa, prot, flags);
1678 
1679 	if (su) {
1680 		KASSERT(((va >= virtual_avail) &&
1681 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1682 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1683 	} else {
1684 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1685 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1686 	}
1687 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1688 		VM_OBJECT_ASSERT_LOCKED(m->object);
1689 
1690 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1691 
1692 	/*
1693 	 * If there is an existing mapping, and the physical address has not
1694 	 * changed, must be protection or wiring change.
1695 	 */
1696 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1697 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1698 
1699 		/*
1700 		 * Before actually updating pte->flags we calculate and
1701 		 * prepare its new value in a helper var.
1702 		 */
1703 		flags = pte->flags;
1704 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1705 
1706 		/* Wiring change, just update stats. */
1707 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1708 			if (!PTE_ISWIRED(pte)) {
1709 				flags |= PTE_WIRED;
1710 				pmap->pm_stats.wired_count++;
1711 			}
1712 		} else {
1713 			if (PTE_ISWIRED(pte)) {
1714 				flags &= ~PTE_WIRED;
1715 				pmap->pm_stats.wired_count--;
1716 			}
1717 		}
1718 
1719 		if (prot & VM_PROT_WRITE) {
1720 			/* Add write permissions. */
1721 			flags |= PTE_SW;
1722 			if (!su)
1723 				flags |= PTE_UW;
1724 
1725 			if ((flags & PTE_MANAGED) != 0)
1726 				vm_page_aflag_set(m, PGA_WRITEABLE);
1727 		} else {
1728 			/* Handle modified pages, sense modify status. */
1729 
1730 			/*
1731 			 * The PTE_MODIFIED flag could be set by underlying
1732 			 * TLB misses since we last read it (above), possibly
1733 			 * other CPUs could update it so we check in the PTE
1734 			 * directly rather than rely on that saved local flags
1735 			 * copy.
1736 			 */
1737 			if (PTE_ISMODIFIED(pte))
1738 				vm_page_dirty(m);
1739 		}
1740 
1741 		if (prot & VM_PROT_EXECUTE) {
1742 			flags |= PTE_SX;
1743 			if (!su)
1744 				flags |= PTE_UX;
1745 
1746 			/*
1747 			 * Check existing flags for execute permissions: if we
1748 			 * are turning execute permissions on, icache should
1749 			 * be flushed.
1750 			 */
1751 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1752 				sync++;
1753 		}
1754 
1755 		flags &= ~PTE_REFERENCED;
1756 
1757 		/*
1758 		 * The new flags value is all calculated -- only now actually
1759 		 * update the PTE.
1760 		 */
1761 		mtx_lock_spin(&tlbivax_mutex);
1762 		tlb_miss_lock();
1763 
1764 		tlb0_flush_entry(va);
1765 		pte->flags = flags;
1766 
1767 		tlb_miss_unlock();
1768 		mtx_unlock_spin(&tlbivax_mutex);
1769 
1770 	} else {
1771 		/*
1772 		 * If there is an existing mapping, but it's for a different
1773 		 * physical address, pte_enter() will delete the old mapping.
1774 		 */
1775 		//if ((pte != NULL) && PTE_ISVALID(pte))
1776 		//	debugf("mmu_booke_enter_locked: replace\n");
1777 		//else
1778 		//	debugf("mmu_booke_enter_locked: new\n");
1779 
1780 		/* Now set up the flags and install the new mapping. */
1781 		flags = (PTE_SR | PTE_VALID);
1782 		flags |= PTE_M;
1783 
1784 		if (!su)
1785 			flags |= PTE_UR;
1786 
1787 		if (prot & VM_PROT_WRITE) {
1788 			flags |= PTE_SW;
1789 			if (!su)
1790 				flags |= PTE_UW;
1791 
1792 			if ((m->oflags & VPO_UNMANAGED) == 0)
1793 				vm_page_aflag_set(m, PGA_WRITEABLE);
1794 		}
1795 
1796 		if (prot & VM_PROT_EXECUTE) {
1797 			flags |= PTE_SX;
1798 			if (!su)
1799 				flags |= PTE_UX;
1800 		}
1801 
1802 		/* If its wired update stats. */
1803 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1804 			flags |= PTE_WIRED;
1805 
1806 		error = pte_enter(mmu, pmap, m, va, flags,
1807 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1808 		if (error != 0)
1809 			return (KERN_RESOURCE_SHORTAGE);
1810 
1811 		if ((flags & PMAP_ENTER_WIRED) != 0)
1812 			pmap->pm_stats.wired_count++;
1813 
1814 		/* Flush the real memory from the instruction cache. */
1815 		if (prot & VM_PROT_EXECUTE)
1816 			sync++;
1817 	}
1818 
1819 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1820 		__syncicache((void *)va, PAGE_SIZE);
1821 		sync = 0;
1822 	}
1823 
1824 	return (KERN_SUCCESS);
1825 }
1826 
1827 /*
1828  * Maps a sequence of resident pages belonging to the same object.
1829  * The sequence begins with the given page m_start.  This page is
1830  * mapped at the given virtual address start.  Each subsequent page is
1831  * mapped at a virtual address that is offset from start by the same
1832  * amount as the page is offset from m_start within the object.  The
1833  * last page in the sequence is the page with the largest offset from
1834  * m_start that can be mapped at a virtual address less than the given
1835  * virtual address end.  Not every virtual page between start and end
1836  * is mapped; only those for which a resident page exists with the
1837  * corresponding offset from m_start are mapped.
1838  */
1839 static void
1840 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1841     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1842 {
1843 	vm_page_t m;
1844 	vm_pindex_t diff, psize;
1845 
1846 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1847 
1848 	psize = atop(end - start);
1849 	m = m_start;
1850 	rw_wlock(&pvh_global_lock);
1851 	PMAP_LOCK(pmap);
1852 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1853 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1854 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1855 		    PMAP_ENTER_NOSLEEP, 0);
1856 		m = TAILQ_NEXT(m, listq);
1857 	}
1858 	rw_wunlock(&pvh_global_lock);
1859 	PMAP_UNLOCK(pmap);
1860 }
1861 
1862 static void
1863 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1864     vm_prot_t prot)
1865 {
1866 
1867 	rw_wlock(&pvh_global_lock);
1868 	PMAP_LOCK(pmap);
1869 	mmu_booke_enter_locked(mmu, pmap, va, m,
1870 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1871 	    0);
1872 	rw_wunlock(&pvh_global_lock);
1873 	PMAP_UNLOCK(pmap);
1874 }
1875 
1876 /*
1877  * Remove the given range of addresses from the specified map.
1878  *
1879  * It is assumed that the start and end are properly rounded to the page size.
1880  */
1881 static void
1882 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1883 {
1884 	pte_t *pte;
1885 	uint8_t hold_flag;
1886 
1887 	int su = (pmap == kernel_pmap);
1888 
1889 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1890 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1891 
1892 	if (su) {
1893 		KASSERT(((va >= virtual_avail) &&
1894 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1895 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1896 	} else {
1897 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1898 		    ("mmu_booke_remove: user pmap, non user va"));
1899 	}
1900 
1901 	if (PMAP_REMOVE_DONE(pmap)) {
1902 		//debugf("mmu_booke_remove: e (empty)\n");
1903 		return;
1904 	}
1905 
1906 	hold_flag = PTBL_HOLD_FLAG(pmap);
1907 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1908 
1909 	rw_wlock(&pvh_global_lock);
1910 	PMAP_LOCK(pmap);
1911 	for (; va < endva; va += PAGE_SIZE) {
1912 		pte = pte_find(mmu, pmap, va);
1913 		if ((pte != NULL) && PTE_ISVALID(pte))
1914 			pte_remove(mmu, pmap, va, hold_flag);
1915 	}
1916 	PMAP_UNLOCK(pmap);
1917 	rw_wunlock(&pvh_global_lock);
1918 
1919 	//debugf("mmu_booke_remove: e\n");
1920 }
1921 
1922 /*
1923  * Remove physical page from all pmaps in which it resides.
1924  */
1925 static void
1926 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1927 {
1928 	pv_entry_t pv, pvn;
1929 	uint8_t hold_flag;
1930 
1931 	rw_wlock(&pvh_global_lock);
1932 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1933 		pvn = TAILQ_NEXT(pv, pv_link);
1934 
1935 		PMAP_LOCK(pv->pv_pmap);
1936 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1937 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1938 		PMAP_UNLOCK(pv->pv_pmap);
1939 	}
1940 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1941 	rw_wunlock(&pvh_global_lock);
1942 }
1943 
1944 /*
1945  * Map a range of physical addresses into kernel virtual address space.
1946  */
1947 static vm_offset_t
1948 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1949     vm_paddr_t pa_end, int prot)
1950 {
1951 	vm_offset_t sva = *virt;
1952 	vm_offset_t va = sva;
1953 
1954 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1955 	//		sva, pa_start, pa_end);
1956 
1957 	while (pa_start < pa_end) {
1958 		mmu_booke_kenter(mmu, va, pa_start);
1959 		va += PAGE_SIZE;
1960 		pa_start += PAGE_SIZE;
1961 	}
1962 	*virt = va;
1963 
1964 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1965 	return (sva);
1966 }
1967 
1968 /*
1969  * The pmap must be activated before it's address space can be accessed in any
1970  * way.
1971  */
1972 static void
1973 mmu_booke_activate(mmu_t mmu, struct thread *td)
1974 {
1975 	pmap_t pmap;
1976 	u_int cpuid;
1977 
1978 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1979 
1980 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1981 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1982 
1983 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1984 
1985 	sched_pin();
1986 
1987 	cpuid = PCPU_GET(cpuid);
1988 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1989 	PCPU_SET(curpmap, pmap);
1990 
1991 	if (pmap->pm_tid[cpuid] == TID_NONE)
1992 		tid_alloc(pmap);
1993 
1994 	/* Load PID0 register with pmap tid value. */
1995 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1996 	__asm __volatile("isync");
1997 
1998 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1999 
2000 	sched_unpin();
2001 
2002 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2003 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2004 }
2005 
2006 /*
2007  * Deactivate the specified process's address space.
2008  */
2009 static void
2010 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2011 {
2012 	pmap_t pmap;
2013 
2014 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2015 
2016 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
2017 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2018 
2019 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2020 
2021 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2022 	PCPU_SET(curpmap, NULL);
2023 }
2024 
2025 /*
2026  * Copy the range specified by src_addr/len
2027  * from the source map to the range dst_addr/len
2028  * in the destination map.
2029  *
2030  * This routine is only advisory and need not do anything.
2031  */
2032 static void
2033 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2034     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2035 {
2036 
2037 }
2038 
2039 /*
2040  * Set the physical protection on the specified range of this map as requested.
2041  */
2042 static void
2043 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2044     vm_prot_t prot)
2045 {
2046 	vm_offset_t va;
2047 	vm_page_t m;
2048 	pte_t *pte;
2049 
2050 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2051 		mmu_booke_remove(mmu, pmap, sva, eva);
2052 		return;
2053 	}
2054 
2055 	if (prot & VM_PROT_WRITE)
2056 		return;
2057 
2058 	PMAP_LOCK(pmap);
2059 	for (va = sva; va < eva; va += PAGE_SIZE) {
2060 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2061 			if (PTE_ISVALID(pte)) {
2062 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2063 
2064 				mtx_lock_spin(&tlbivax_mutex);
2065 				tlb_miss_lock();
2066 
2067 				/* Handle modified pages. */
2068 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2069 					vm_page_dirty(m);
2070 
2071 				tlb0_flush_entry(va);
2072 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2073 
2074 				tlb_miss_unlock();
2075 				mtx_unlock_spin(&tlbivax_mutex);
2076 			}
2077 		}
2078 	}
2079 	PMAP_UNLOCK(pmap);
2080 }
2081 
2082 /*
2083  * Clear the write and modified bits in each of the given page's mappings.
2084  */
2085 static void
2086 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2087 {
2088 	pv_entry_t pv;
2089 	pte_t *pte;
2090 
2091 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2092 	    ("mmu_booke_remove_write: page %p is not managed", m));
2093 
2094 	/*
2095 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2096 	 * set by another thread while the object is locked.  Thus,
2097 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2098 	 */
2099 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2100 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2101 		return;
2102 	rw_wlock(&pvh_global_lock);
2103 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2104 		PMAP_LOCK(pv->pv_pmap);
2105 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2106 			if (PTE_ISVALID(pte)) {
2107 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2108 
2109 				mtx_lock_spin(&tlbivax_mutex);
2110 				tlb_miss_lock();
2111 
2112 				/* Handle modified pages. */
2113 				if (PTE_ISMODIFIED(pte))
2114 					vm_page_dirty(m);
2115 
2116 				/* Flush mapping from TLB0. */
2117 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2118 
2119 				tlb_miss_unlock();
2120 				mtx_unlock_spin(&tlbivax_mutex);
2121 			}
2122 		}
2123 		PMAP_UNLOCK(pv->pv_pmap);
2124 	}
2125 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2126 	rw_wunlock(&pvh_global_lock);
2127 }
2128 
2129 static void
2130 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2131 {
2132 	pte_t *pte;
2133 	pmap_t pmap;
2134 	vm_page_t m;
2135 	vm_offset_t addr;
2136 	vm_paddr_t pa = 0;
2137 	int active, valid;
2138 
2139 	va = trunc_page(va);
2140 	sz = round_page(sz);
2141 
2142 	rw_wlock(&pvh_global_lock);
2143 	pmap = PCPU_GET(curpmap);
2144 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2145 	while (sz > 0) {
2146 		PMAP_LOCK(pm);
2147 		pte = pte_find(mmu, pm, va);
2148 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2149 		if (valid)
2150 			pa = PTE_PA(pte);
2151 		PMAP_UNLOCK(pm);
2152 		if (valid) {
2153 			if (!active) {
2154 				/* Create a mapping in the active pmap. */
2155 				addr = 0;
2156 				m = PHYS_TO_VM_PAGE(pa);
2157 				PMAP_LOCK(pmap);
2158 				pte_enter(mmu, pmap, m, addr,
2159 				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2160 				__syncicache((void *)addr, PAGE_SIZE);
2161 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2162 				PMAP_UNLOCK(pmap);
2163 			} else
2164 				__syncicache((void *)va, PAGE_SIZE);
2165 		}
2166 		va += PAGE_SIZE;
2167 		sz -= PAGE_SIZE;
2168 	}
2169 	rw_wunlock(&pvh_global_lock);
2170 }
2171 
2172 /*
2173  * Atomically extract and hold the physical page with the given
2174  * pmap and virtual address pair if that mapping permits the given
2175  * protection.
2176  */
2177 static vm_page_t
2178 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2179     vm_prot_t prot)
2180 {
2181 	pte_t *pte;
2182 	vm_page_t m;
2183 	uint32_t pte_wbit;
2184 	vm_paddr_t pa;
2185 
2186 	m = NULL;
2187 	pa = 0;
2188 	PMAP_LOCK(pmap);
2189 retry:
2190 	pte = pte_find(mmu, pmap, va);
2191 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2192 		if (pmap == kernel_pmap)
2193 			pte_wbit = PTE_SW;
2194 		else
2195 			pte_wbit = PTE_UW;
2196 
2197 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2198 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2199 				goto retry;
2200 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2201 			vm_page_hold(m);
2202 		}
2203 	}
2204 
2205 	PA_UNLOCK_COND(pa);
2206 	PMAP_UNLOCK(pmap);
2207 	return (m);
2208 }
2209 
2210 /*
2211  * Initialize a vm_page's machine-dependent fields.
2212  */
2213 static void
2214 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2215 {
2216 
2217 	TAILQ_INIT(&m->md.pv_list);
2218 }
2219 
2220 /*
2221  * mmu_booke_zero_page_area zeros the specified hardware page by
2222  * mapping it into virtual memory and using bzero to clear
2223  * its contents.
2224  *
2225  * off and size must reside within a single page.
2226  */
2227 static void
2228 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2229 {
2230 	vm_offset_t va;
2231 
2232 	/* XXX KASSERT off and size are within a single page? */
2233 
2234 	mtx_lock(&zero_page_mutex);
2235 	va = zero_page_va;
2236 
2237 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2238 	bzero((caddr_t)va + off, size);
2239 	mmu_booke_kremove(mmu, va);
2240 
2241 	mtx_unlock(&zero_page_mutex);
2242 }
2243 
2244 /*
2245  * mmu_booke_zero_page zeros the specified hardware page.
2246  */
2247 static void
2248 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2249 {
2250 	vm_offset_t off, va;
2251 
2252 	mtx_lock(&zero_page_mutex);
2253 	va = zero_page_va;
2254 
2255 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2256 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2257 		__asm __volatile("dcbzl 0,%0" :: "r"(va + off));
2258 	mmu_booke_kremove(mmu, va);
2259 
2260 	mtx_unlock(&zero_page_mutex);
2261 }
2262 
2263 /*
2264  * mmu_booke_copy_page copies the specified (machine independent) page by
2265  * mapping the page into virtual memory and using memcopy to copy the page,
2266  * one machine dependent page at a time.
2267  */
2268 static void
2269 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2270 {
2271 	vm_offset_t sva, dva;
2272 
2273 	sva = copy_page_src_va;
2274 	dva = copy_page_dst_va;
2275 
2276 	mtx_lock(&copy_page_mutex);
2277 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2278 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2279 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2280 	mmu_booke_kremove(mmu, dva);
2281 	mmu_booke_kremove(mmu, sva);
2282 	mtx_unlock(&copy_page_mutex);
2283 }
2284 
2285 static inline void
2286 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2287     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2288 {
2289 	void *a_cp, *b_cp;
2290 	vm_offset_t a_pg_offset, b_pg_offset;
2291 	int cnt;
2292 
2293 	mtx_lock(&copy_page_mutex);
2294 	while (xfersize > 0) {
2295 		a_pg_offset = a_offset & PAGE_MASK;
2296 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2297 		mmu_booke_kenter(mmu, copy_page_src_va,
2298 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2299 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2300 		b_pg_offset = b_offset & PAGE_MASK;
2301 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2302 		mmu_booke_kenter(mmu, copy_page_dst_va,
2303 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2304 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2305 		bcopy(a_cp, b_cp, cnt);
2306 		mmu_booke_kremove(mmu, copy_page_dst_va);
2307 		mmu_booke_kremove(mmu, copy_page_src_va);
2308 		a_offset += cnt;
2309 		b_offset += cnt;
2310 		xfersize -= cnt;
2311 	}
2312 	mtx_unlock(&copy_page_mutex);
2313 }
2314 
2315 /*
2316  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2317  * into virtual memory and using bzero to clear its contents. This is intended
2318  * to be called from the vm_pagezero process only and outside of Giant. No
2319  * lock is required.
2320  */
2321 static void
2322 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2323 {
2324 	vm_offset_t va;
2325 
2326 	va = zero_page_idle_va;
2327 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2328 	bzero((caddr_t)va, PAGE_SIZE);
2329 	mmu_booke_kremove(mmu, va);
2330 }
2331 
2332 static vm_offset_t
2333 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2334 {
2335 	vm_paddr_t paddr;
2336 	vm_offset_t qaddr;
2337 	uint32_t flags;
2338 	pte_t *pte;
2339 
2340 	paddr = VM_PAGE_TO_PHYS(m);
2341 
2342 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2343 	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m));
2344 
2345 	critical_enter();
2346 	qaddr = PCPU_GET(qmap_addr);
2347 
2348 	pte = pte_find(mmu, kernel_pmap, qaddr);
2349 
2350 	KASSERT(pte->flags == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2351 
2352 	/*
2353 	 * XXX: tlbivax is broadcast to other cores, but qaddr should
2354  	 * not be present in other TLBs.  Is there a better instruction
2355 	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2356 	 */
2357 	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2358 	__asm __volatile("isync; msync");
2359 
2360 	pte->rpn = paddr & ~PTE_PA_MASK;
2361 	pte->flags = flags;
2362 
2363 	/* Flush the real memory from the instruction cache. */
2364 	if ((flags & (PTE_I | PTE_G)) == 0)
2365 		__syncicache((void *)qaddr, PAGE_SIZE);
2366 
2367 	return (qaddr);
2368 }
2369 
2370 static void
2371 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
2372 {
2373 	pte_t *pte;
2374 
2375 	pte = pte_find(mmu, kernel_pmap, addr);
2376 
2377 	KASSERT(PCPU_GET(qmap_addr) == addr,
2378 	    ("mmu_booke_quick_remove_page: invalid address"));
2379 	KASSERT(pte->flags != 0,
2380 	    ("mmu_booke_quick_remove_page: PTE not in use"));
2381 
2382 	pte->flags = 0;
2383 	pte->rpn = 0;
2384 	critical_exit();
2385 }
2386 
2387 /*
2388  * Return whether or not the specified physical page was modified
2389  * in any of physical maps.
2390  */
2391 static boolean_t
2392 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2393 {
2394 	pte_t *pte;
2395 	pv_entry_t pv;
2396 	boolean_t rv;
2397 
2398 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2399 	    ("mmu_booke_is_modified: page %p is not managed", m));
2400 	rv = FALSE;
2401 
2402 	/*
2403 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2404 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2405 	 * is clear, no PTEs can be modified.
2406 	 */
2407 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2408 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2409 		return (rv);
2410 	rw_wlock(&pvh_global_lock);
2411 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2412 		PMAP_LOCK(pv->pv_pmap);
2413 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2414 		    PTE_ISVALID(pte)) {
2415 			if (PTE_ISMODIFIED(pte))
2416 				rv = TRUE;
2417 		}
2418 		PMAP_UNLOCK(pv->pv_pmap);
2419 		if (rv)
2420 			break;
2421 	}
2422 	rw_wunlock(&pvh_global_lock);
2423 	return (rv);
2424 }
2425 
2426 /*
2427  * Return whether or not the specified virtual address is eligible
2428  * for prefault.
2429  */
2430 static boolean_t
2431 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2432 {
2433 
2434 	return (FALSE);
2435 }
2436 
2437 /*
2438  * Return whether or not the specified physical page was referenced
2439  * in any physical maps.
2440  */
2441 static boolean_t
2442 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2443 {
2444 	pte_t *pte;
2445 	pv_entry_t pv;
2446 	boolean_t rv;
2447 
2448 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2449 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2450 	rv = FALSE;
2451 	rw_wlock(&pvh_global_lock);
2452 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2453 		PMAP_LOCK(pv->pv_pmap);
2454 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2455 		    PTE_ISVALID(pte)) {
2456 			if (PTE_ISREFERENCED(pte))
2457 				rv = TRUE;
2458 		}
2459 		PMAP_UNLOCK(pv->pv_pmap);
2460 		if (rv)
2461 			break;
2462 	}
2463 	rw_wunlock(&pvh_global_lock);
2464 	return (rv);
2465 }
2466 
2467 /*
2468  * Clear the modify bits on the specified physical page.
2469  */
2470 static void
2471 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2472 {
2473 	pte_t *pte;
2474 	pv_entry_t pv;
2475 
2476 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2477 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2478 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2479 	KASSERT(!vm_page_xbusied(m),
2480 	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2481 
2482 	/*
2483 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2484 	 * If the object containing the page is locked and the page is not
2485 	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2486 	 */
2487 	if ((m->aflags & PGA_WRITEABLE) == 0)
2488 		return;
2489 	rw_wlock(&pvh_global_lock);
2490 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2491 		PMAP_LOCK(pv->pv_pmap);
2492 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2493 		    PTE_ISVALID(pte)) {
2494 			mtx_lock_spin(&tlbivax_mutex);
2495 			tlb_miss_lock();
2496 
2497 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2498 				tlb0_flush_entry(pv->pv_va);
2499 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2500 				    PTE_REFERENCED);
2501 			}
2502 
2503 			tlb_miss_unlock();
2504 			mtx_unlock_spin(&tlbivax_mutex);
2505 		}
2506 		PMAP_UNLOCK(pv->pv_pmap);
2507 	}
2508 	rw_wunlock(&pvh_global_lock);
2509 }
2510 
2511 /*
2512  * Return a count of reference bits for a page, clearing those bits.
2513  * It is not necessary for every reference bit to be cleared, but it
2514  * is necessary that 0 only be returned when there are truly no
2515  * reference bits set.
2516  *
2517  * XXX: The exact number of bits to check and clear is a matter that
2518  * should be tested and standardized at some point in the future for
2519  * optimal aging of shared pages.
2520  */
2521 static int
2522 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2523 {
2524 	pte_t *pte;
2525 	pv_entry_t pv;
2526 	int count;
2527 
2528 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2529 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2530 	count = 0;
2531 	rw_wlock(&pvh_global_lock);
2532 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2533 		PMAP_LOCK(pv->pv_pmap);
2534 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2535 		    PTE_ISVALID(pte)) {
2536 			if (PTE_ISREFERENCED(pte)) {
2537 				mtx_lock_spin(&tlbivax_mutex);
2538 				tlb_miss_lock();
2539 
2540 				tlb0_flush_entry(pv->pv_va);
2541 				pte->flags &= ~PTE_REFERENCED;
2542 
2543 				tlb_miss_unlock();
2544 				mtx_unlock_spin(&tlbivax_mutex);
2545 
2546 				if (++count > 4) {
2547 					PMAP_UNLOCK(pv->pv_pmap);
2548 					break;
2549 				}
2550 			}
2551 		}
2552 		PMAP_UNLOCK(pv->pv_pmap);
2553 	}
2554 	rw_wunlock(&pvh_global_lock);
2555 	return (count);
2556 }
2557 
2558 /*
2559  * Clear the wired attribute from the mappings for the specified range of
2560  * addresses in the given pmap.  Every valid mapping within that range must
2561  * have the wired attribute set.  In contrast, invalid mappings cannot have
2562  * the wired attribute set, so they are ignored.
2563  *
2564  * The wired attribute of the page table entry is not a hardware feature, so
2565  * there is no need to invalidate any TLB entries.
2566  */
2567 static void
2568 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2569 {
2570 	vm_offset_t va;
2571 	pte_t *pte;
2572 
2573 	PMAP_LOCK(pmap);
2574 	for (va = sva; va < eva; va += PAGE_SIZE) {
2575 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2576 		    PTE_ISVALID(pte)) {
2577 			if (!PTE_ISWIRED(pte))
2578 				panic("mmu_booke_unwire: pte %p isn't wired",
2579 				    pte);
2580 			pte->flags &= ~PTE_WIRED;
2581 			pmap->pm_stats.wired_count--;
2582 		}
2583 	}
2584 	PMAP_UNLOCK(pmap);
2585 
2586 }
2587 
2588 /*
2589  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2590  * page.  This count may be changed upwards or downwards in the future; it is
2591  * only necessary that true be returned for a small subset of pmaps for proper
2592  * page aging.
2593  */
2594 static boolean_t
2595 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2596 {
2597 	pv_entry_t pv;
2598 	int loops;
2599 	boolean_t rv;
2600 
2601 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2602 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2603 	loops = 0;
2604 	rv = FALSE;
2605 	rw_wlock(&pvh_global_lock);
2606 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2607 		if (pv->pv_pmap == pmap) {
2608 			rv = TRUE;
2609 			break;
2610 		}
2611 		if (++loops >= 16)
2612 			break;
2613 	}
2614 	rw_wunlock(&pvh_global_lock);
2615 	return (rv);
2616 }
2617 
2618 /*
2619  * Return the number of managed mappings to the given physical page that are
2620  * wired.
2621  */
2622 static int
2623 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2624 {
2625 	pv_entry_t pv;
2626 	pte_t *pte;
2627 	int count = 0;
2628 
2629 	if ((m->oflags & VPO_UNMANAGED) != 0)
2630 		return (count);
2631 	rw_wlock(&pvh_global_lock);
2632 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2633 		PMAP_LOCK(pv->pv_pmap);
2634 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2635 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2636 				count++;
2637 		PMAP_UNLOCK(pv->pv_pmap);
2638 	}
2639 	rw_wunlock(&pvh_global_lock);
2640 	return (count);
2641 }
2642 
2643 static int
2644 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2645 {
2646 	int i;
2647 	vm_offset_t va;
2648 
2649 	/*
2650 	 * This currently does not work for entries that
2651 	 * overlap TLB1 entries.
2652 	 */
2653 	for (i = 0; i < tlb1_idx; i ++) {
2654 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2655 			return (0);
2656 	}
2657 
2658 	return (EFAULT);
2659 }
2660 
2661 void
2662 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2663 {
2664 	vm_paddr_t ppa;
2665 	vm_offset_t ofs;
2666 	vm_size_t gran;
2667 
2668 	/* Minidumps are based on virtual memory addresses. */
2669 	if (do_minidump) {
2670 		*va = (void *)(vm_offset_t)pa;
2671 		return;
2672 	}
2673 
2674 	/* Raw physical memory dumps don't have a virtual address. */
2675 	/* We always map a 256MB page at 256M. */
2676 	gran = 256 * 1024 * 1024;
2677 	ppa = pa & ~(gran - 1);
2678 	ofs = pa - ppa;
2679 	*va = (void *)gran;
2680 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2681 
2682 	if (sz > (gran - ofs))
2683 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2684 		    _TLB_ENTRY_IO);
2685 }
2686 
2687 void
2688 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
2689 {
2690 	vm_paddr_t ppa;
2691 	vm_offset_t ofs;
2692 	vm_size_t gran;
2693 
2694 	/* Minidumps are based on virtual memory addresses. */
2695 	/* Nothing to do... */
2696 	if (do_minidump)
2697 		return;
2698 
2699 	/* Raw physical memory dumps don't have a virtual address. */
2700 	tlb1_idx--;
2701 	tlb1[tlb1_idx].mas1 = 0;
2702 	tlb1[tlb1_idx].mas2 = 0;
2703 	tlb1[tlb1_idx].mas3 = 0;
2704 	tlb1_write_entry(tlb1_idx);
2705 
2706 	gran = 256 * 1024 * 1024;
2707 	ppa = pa & ~(gran - 1);
2708 	ofs = pa - ppa;
2709 	if (sz > (gran - ofs)) {
2710 		tlb1_idx--;
2711 		tlb1[tlb1_idx].mas1 = 0;
2712 		tlb1[tlb1_idx].mas2 = 0;
2713 		tlb1[tlb1_idx].mas3 = 0;
2714 		tlb1_write_entry(tlb1_idx);
2715 	}
2716 }
2717 
2718 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2719 
2720 void
2721 mmu_booke_scan_init(mmu_t mmu)
2722 {
2723 	vm_offset_t va;
2724 	pte_t *pte;
2725 	int i;
2726 
2727 	if (!do_minidump) {
2728 		/* Initialize phys. segments for dumpsys(). */
2729 		memset(&dump_map, 0, sizeof(dump_map));
2730 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2731 		    &availmem_regions_sz);
2732 		for (i = 0; i < physmem_regions_sz; i++) {
2733 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2734 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2735 		}
2736 		return;
2737 	}
2738 
2739 	/* Virtual segments for minidumps: */
2740 	memset(&dump_map, 0, sizeof(dump_map));
2741 
2742 	/* 1st: kernel .data and .bss. */
2743 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2744 	dump_map[0].pa_size =
2745 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2746 
2747 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2748 	dump_map[1].pa_start = data_start;
2749 	dump_map[1].pa_size = data_end - data_start;
2750 
2751 	/* 3rd: kernel VM. */
2752 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2753 	/* Find start of next chunk (from va). */
2754 	while (va < virtual_end) {
2755 		/* Don't dump the buffer cache. */
2756 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2757 			va = kmi.buffer_eva;
2758 			continue;
2759 		}
2760 		pte = pte_find(mmu, kernel_pmap, va);
2761 		if (pte != NULL && PTE_ISVALID(pte))
2762 			break;
2763 		va += PAGE_SIZE;
2764 	}
2765 	if (va < virtual_end) {
2766 		dump_map[2].pa_start = va;
2767 		va += PAGE_SIZE;
2768 		/* Find last page in chunk. */
2769 		while (va < virtual_end) {
2770 			/* Don't run into the buffer cache. */
2771 			if (va == kmi.buffer_sva)
2772 				break;
2773 			pte = pte_find(mmu, kernel_pmap, va);
2774 			if (pte == NULL || !PTE_ISVALID(pte))
2775 				break;
2776 			va += PAGE_SIZE;
2777 		}
2778 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2779 	}
2780 }
2781 
2782 /*
2783  * Map a set of physical memory pages into the kernel virtual address space.
2784  * Return a pointer to where it is mapped. This routine is intended to be used
2785  * for mapping device memory, NOT real memory.
2786  */
2787 static void *
2788 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2789 {
2790 
2791 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2792 }
2793 
2794 static void *
2795 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2796 {
2797 	void *res;
2798 	uintptr_t va;
2799 	vm_size_t sz;
2800 	int i;
2801 
2802 	/*
2803 	 * Check if this is premapped in TLB1. Note: this should probably also
2804 	 * check whether a sequence of TLB1 entries exist that match the
2805 	 * requirement, but now only checks the easy case.
2806 	 */
2807 	if (ma == VM_MEMATTR_DEFAULT) {
2808 		for (i = 0; i < tlb1_idx; i++) {
2809 			if (!(tlb1[i].mas1 & MAS1_VALID))
2810 				continue;
2811 			if (pa >= tlb1[i].phys &&
2812 			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2813 				return (void *)(tlb1[i].virt +
2814 				    (vm_offset_t)(pa - tlb1[i].phys));
2815 		}
2816 	}
2817 
2818 	size = roundup(size, PAGE_SIZE);
2819 
2820 	/*
2821 	 * We leave a hole for device direct mapping between the maximum user
2822 	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2823 	 * devices are in there, just map them 1:1. If not, map them to the
2824 	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2825 	 * addresses should be pulled from an allocator, but since we do not
2826 	 * ever free TLB1 entries, it is safe just to increment a counter.
2827 	 * Note that there isn't a lot of address space here (128 MB) and it
2828 	 * is not at all difficult to imagine running out, since that is a 4:1
2829 	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2830 	 * mapped there.
2831 	 */
2832 	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2833 	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2834 		va = pa;
2835 	else
2836 		va = atomic_fetchadd_int(&tlb1_map_base, size);
2837 	res = (void *)va;
2838 
2839 	do {
2840 		sz = 1 << (ilog2(size) & ~1);
2841 		if (va % sz != 0) {
2842 			do {
2843 				sz >>= 2;
2844 			} while (va % sz != 0);
2845 		}
2846 		if (bootverbose)
2847 			printf("Wiring VA=%x to PA=%jx (size=%x), "
2848 			    "using TLB1[%d]\n", va, (uintmax_t)pa, sz, tlb1_idx);
2849 		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2850 		size -= sz;
2851 		pa += sz;
2852 		va += sz;
2853 	} while (size > 0);
2854 
2855 	return (res);
2856 }
2857 
2858 /*
2859  * 'Unmap' a range mapped by mmu_booke_mapdev().
2860  */
2861 static void
2862 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2863 {
2864 #ifdef SUPPORTS_SHRINKING_TLB1
2865 	vm_offset_t base, offset;
2866 
2867 	/*
2868 	 * Unmap only if this is inside kernel virtual space.
2869 	 */
2870 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2871 		base = trunc_page(va);
2872 		offset = va & PAGE_MASK;
2873 		size = roundup(offset + size, PAGE_SIZE);
2874 		kva_free(base, size);
2875 	}
2876 #endif
2877 }
2878 
2879 /*
2880  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2881  * specified pmap. This eliminates the blast of soft faults on process startup
2882  * and immediately after an mmap.
2883  */
2884 static void
2885 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2886     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2887 {
2888 
2889 	VM_OBJECT_ASSERT_WLOCKED(object);
2890 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2891 	    ("mmu_booke_object_init_pt: non-device object"));
2892 }
2893 
2894 /*
2895  * Perform the pmap work for mincore.
2896  */
2897 static int
2898 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2899     vm_paddr_t *locked_pa)
2900 {
2901 
2902 	/* XXX: this should be implemented at some point */
2903 	return (0);
2904 }
2905 
2906 /**************************************************************************/
2907 /* TID handling */
2908 /**************************************************************************/
2909 
2910 /*
2911  * Allocate a TID. If necessary, steal one from someone else.
2912  * The new TID is flushed from the TLB before returning.
2913  */
2914 static tlbtid_t
2915 tid_alloc(pmap_t pmap)
2916 {
2917 	tlbtid_t tid;
2918 	int thiscpu;
2919 
2920 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2921 
2922 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2923 
2924 	thiscpu = PCPU_GET(cpuid);
2925 
2926 	tid = PCPU_GET(tid_next);
2927 	if (tid > TID_MAX)
2928 		tid = TID_MIN;
2929 	PCPU_SET(tid_next, tid + 1);
2930 
2931 	/* If we are stealing TID then clear the relevant pmap's field */
2932 	if (tidbusy[thiscpu][tid] != NULL) {
2933 
2934 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2935 
2936 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2937 
2938 		/* Flush all entries from TLB0 matching this TID. */
2939 		tid_flush(tid);
2940 	}
2941 
2942 	tidbusy[thiscpu][tid] = pmap;
2943 	pmap->pm_tid[thiscpu] = tid;
2944 	__asm __volatile("msync; isync");
2945 
2946 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2947 	    PCPU_GET(tid_next));
2948 
2949 	return (tid);
2950 }
2951 
2952 /**************************************************************************/
2953 /* TLB0 handling */
2954 /**************************************************************************/
2955 
2956 static void
2957 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2958     uint32_t mas7)
2959 {
2960 	int as;
2961 	char desc[3];
2962 	tlbtid_t tid;
2963 	vm_size_t size;
2964 	unsigned int tsize;
2965 
2966 	desc[2] = '\0';
2967 	if (mas1 & MAS1_VALID)
2968 		desc[0] = 'V';
2969 	else
2970 		desc[0] = ' ';
2971 
2972 	if (mas1 & MAS1_IPROT)
2973 		desc[1] = 'P';
2974 	else
2975 		desc[1] = ' ';
2976 
2977 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2978 	tid = MAS1_GETTID(mas1);
2979 
2980 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2981 	size = 0;
2982 	if (tsize)
2983 		size = tsize2size(tsize);
2984 
2985 	debugf("%3d: (%s) [AS=%d] "
2986 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2987 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2988 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2989 }
2990 
2991 /* Convert TLB0 va and way number to tlb0[] table index. */
2992 static inline unsigned int
2993 tlb0_tableidx(vm_offset_t va, unsigned int way)
2994 {
2995 	unsigned int idx;
2996 
2997 	idx = (way * TLB0_ENTRIES_PER_WAY);
2998 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2999 	return (idx);
3000 }
3001 
3002 /*
3003  * Invalidate TLB0 entry.
3004  */
3005 static inline void
3006 tlb0_flush_entry(vm_offset_t va)
3007 {
3008 
3009 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3010 
3011 	mtx_assert(&tlbivax_mutex, MA_OWNED);
3012 
3013 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3014 	__asm __volatile("isync; msync");
3015 	__asm __volatile("tlbsync; msync");
3016 
3017 	CTR1(KTR_PMAP, "%s: e", __func__);
3018 }
3019 
3020 /* Print out contents of the MAS registers for each TLB0 entry */
3021 void
3022 tlb0_print_tlbentries(void)
3023 {
3024 	uint32_t mas0, mas1, mas2, mas3, mas7;
3025 	int entryidx, way, idx;
3026 
3027 	debugf("TLB0 entries:\n");
3028 	for (way = 0; way < TLB0_WAYS; way ++)
3029 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3030 
3031 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3032 			mtspr(SPR_MAS0, mas0);
3033 			__asm __volatile("isync");
3034 
3035 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3036 			mtspr(SPR_MAS2, mas2);
3037 
3038 			__asm __volatile("isync; tlbre");
3039 
3040 			mas1 = mfspr(SPR_MAS1);
3041 			mas2 = mfspr(SPR_MAS2);
3042 			mas3 = mfspr(SPR_MAS3);
3043 			mas7 = mfspr(SPR_MAS7);
3044 
3045 			idx = tlb0_tableidx(mas2, way);
3046 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3047 		}
3048 }
3049 
3050 /**************************************************************************/
3051 /* TLB1 handling */
3052 /**************************************************************************/
3053 
3054 /*
3055  * TLB1 mapping notes:
3056  *
3057  * TLB1[0]	Kernel text and data.
3058  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3059  *		windows, other devices mappings.
3060  */
3061 
3062 /*
3063  * Write given entry to TLB1 hardware.
3064  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
3065  */
3066 static void
3067 tlb1_write_entry(unsigned int idx)
3068 {
3069 	uint32_t mas0;
3070 
3071 	//debugf("tlb1_write_entry: s\n");
3072 
3073 	/* Select entry */
3074 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
3075 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
3076 
3077 	mtspr(SPR_MAS0, mas0);
3078 	__asm __volatile("isync");
3079 	mtspr(SPR_MAS1, tlb1[idx].mas1);
3080 	__asm __volatile("isync");
3081 	mtspr(SPR_MAS2, tlb1[idx].mas2);
3082 	__asm __volatile("isync");
3083 	mtspr(SPR_MAS3, tlb1[idx].mas3);
3084 	__asm __volatile("isync");
3085 	switch ((mfpvr() >> 16) & 0xFFFF) {
3086 	case FSL_E500mc:
3087 	case FSL_E5500:
3088 		mtspr(SPR_MAS8, 0);
3089 		__asm __volatile("isync");
3090 		/* FALLTHROUGH */
3091 	case FSL_E500v2:
3092 		mtspr(SPR_MAS7, tlb1[idx].mas7);
3093 		__asm __volatile("isync");
3094 		break;
3095 	default:
3096 		break;
3097 	}
3098 
3099 	__asm __volatile("tlbwe; isync; msync");
3100 
3101 	//debugf("tlb1_write_entry: e\n");
3102 }
3103 
3104 /*
3105  * Return the largest uint value log such that 2^log <= num.
3106  */
3107 static unsigned int
3108 ilog2(unsigned int num)
3109 {
3110 	int lz;
3111 
3112 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3113 	return (31 - lz);
3114 }
3115 
3116 /*
3117  * Convert TLB TSIZE value to mapped region size.
3118  */
3119 static vm_size_t
3120 tsize2size(unsigned int tsize)
3121 {
3122 
3123 	/*
3124 	 * size = 4^tsize KB
3125 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3126 	 */
3127 
3128 	return ((1 << (2 * tsize)) * 1024);
3129 }
3130 
3131 /*
3132  * Convert region size (must be power of 4) to TLB TSIZE value.
3133  */
3134 static unsigned int
3135 size2tsize(vm_size_t size)
3136 {
3137 
3138 	return (ilog2(size) / 2 - 5);
3139 }
3140 
3141 /*
3142  * Register permanent kernel mapping in TLB1.
3143  *
3144  * Entries are created starting from index 0 (current free entry is
3145  * kept in tlb1_idx) and are not supposed to be invalidated.
3146  */
3147 static int
3148 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3149     uint32_t flags)
3150 {
3151 	uint32_t ts, tid;
3152 	int tsize, index;
3153 
3154 	index = atomic_fetchadd_int(&tlb1_idx, 1);
3155 	if (index >= TLB1_ENTRIES) {
3156 		printf("tlb1_set_entry: TLB1 full!\n");
3157 		return (-1);
3158 	}
3159 
3160 	/* Convert size to TSIZE */
3161 	tsize = size2tsize(size);
3162 
3163 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3164 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3165 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3166 
3167 	/*
3168 	 * Atomicity is preserved by the atomic increment above since nothing
3169 	 * is ever removed from tlb1.
3170 	 */
3171 
3172 	tlb1[index].phys = pa;
3173 	tlb1[index].virt = va;
3174 	tlb1[index].size = size;
3175 	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3176 	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3177 	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3178 
3179 	/* Set supervisor RWX permission bits */
3180 	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3181 	tlb1[index].mas7 = (pa >> 32) & MAS7_RPN;
3182 
3183 	tlb1_write_entry(index);
3184 
3185 	/*
3186 	 * XXX in general TLB1 updates should be propagated between CPUs,
3187 	 * since current design assumes to have the same TLB1 set-up on all
3188 	 * cores.
3189 	 */
3190 	return (0);
3191 }
3192 
3193 /*
3194  * Map in contiguous RAM region into the TLB1 using maximum of
3195  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3196  *
3197  * If necessary round up last entry size and return total size
3198  * used by all allocated entries.
3199  */
3200 vm_size_t
3201 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3202 {
3203 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3204 	vm_size_t mapped, pgsz, base, mask;
3205 	int idx, nents;
3206 
3207 	/* Round up to the next 1M */
3208 	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3209 
3210 	mapped = 0;
3211 	idx = 0;
3212 	base = va;
3213 	pgsz = 64*1024*1024;
3214 	while (mapped < size) {
3215 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3216 			while (pgsz > (size - mapped))
3217 				pgsz >>= 2;
3218 			pgs[idx++] = pgsz;
3219 			mapped += pgsz;
3220 		}
3221 
3222 		/* We under-map. Correct for this. */
3223 		if (mapped < size) {
3224 			while (pgs[idx - 1] == pgsz) {
3225 				idx--;
3226 				mapped -= pgsz;
3227 			}
3228 			/* XXX We may increase beyond out starting point. */
3229 			pgsz <<= 2;
3230 			pgs[idx++] = pgsz;
3231 			mapped += pgsz;
3232 		}
3233 	}
3234 
3235 	nents = idx;
3236 	mask = pgs[0] - 1;
3237 	/* Align address to the boundary */
3238 	if (va & mask) {
3239 		va = (va + mask) & ~mask;
3240 		pa = (pa + mask) & ~mask;
3241 	}
3242 
3243 	for (idx = 0; idx < nents; idx++) {
3244 		pgsz = pgs[idx];
3245 		debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz);
3246 		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3247 		pa += pgsz;
3248 		va += pgsz;
3249 	}
3250 
3251 	mapped = (va - base);
3252 #ifdef __powerpc64__
3253 	printf("mapped size 0x%016lx (wasted space 0x%16lx)\n",
3254 #else
3255 	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3256 #endif
3257 	    mapped, mapped - size);
3258 	return (mapped);
3259 }
3260 
3261 /*
3262  * TLB1 initialization routine, to be called after the very first
3263  * assembler level setup done in locore.S.
3264  */
3265 void
3266 tlb1_init()
3267 {
3268 	uint32_t mas0, mas1, mas2, mas3, mas7;
3269 	uint32_t tsz;
3270 	int i;
3271 
3272 	tlb1_idx = 1;
3273 
3274 	tlb1_get_tlbconf();
3275 
3276 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
3277 	mtspr(SPR_MAS0, mas0);
3278 	__asm __volatile("isync; tlbre");
3279 
3280 	mas1 = mfspr(SPR_MAS1);
3281 	mas2 = mfspr(SPR_MAS2);
3282 	mas3 = mfspr(SPR_MAS3);
3283 	mas7 = mfspr(SPR_MAS7);
3284 
3285 	tlb1[0].mas1 = mas1;
3286 	tlb1[0].mas2 = mfspr(SPR_MAS2);
3287 	tlb1[0].mas3 = mas3;
3288 	tlb1[0].mas7 = mas7;
3289 	tlb1[0].virt = mas2 & MAS2_EPN_MASK;
3290 	tlb1[0].phys =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
3291 	    (mas3 & MAS3_RPN);
3292 
3293 	kernload = tlb1[0].phys;
3294 
3295 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3296 	tlb1[0].size = (tsz > 0) ? tsize2size(tsz) : 0;
3297 	kernsize += tlb1[0].size;
3298 
3299 #ifdef SMP
3300 	bp_ntlb1s = tlb1_idx;
3301 #endif
3302 
3303 	/* Purge the remaining entries */
3304 	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3305 		tlb1_write_entry(i);
3306 
3307 	/* Setup TLB miss defaults */
3308 	set_mas4_defaults();
3309 }
3310 
3311 vm_offset_t
3312 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3313 {
3314 	vm_paddr_t pa_base;
3315 	vm_offset_t va, sz;
3316 	int i;
3317 
3318 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3319 
3320 	for (i = 0; i < tlb1_idx; i++) {
3321 		if (!(tlb1[i].mas1 & MAS1_VALID))
3322 			continue;
3323 		if (pa >= tlb1[i].phys && (pa + size) <=
3324 		    (tlb1[i].phys + tlb1[i].size))
3325 			return (tlb1[i].virt + (pa - tlb1[i].phys));
3326 	}
3327 
3328 	pa_base = rounddown(pa, PAGE_SIZE);
3329 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3330 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3331 	va = tlb1_map_base + (pa - pa_base);
3332 
3333 	do {
3334 		sz = 1 << (ilog2(size) & ~1);
3335 		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3336 		size -= sz;
3337 		pa_base += sz;
3338 		tlb1_map_base += sz;
3339 	} while (size > 0);
3340 
3341 #ifdef SMP
3342 	bp_ntlb1s = tlb1_idx;
3343 #endif
3344 
3345 	return (va);
3346 }
3347 
3348 /*
3349  * Setup MAS4 defaults.
3350  * These values are loaded to MAS0-2 on a TLB miss.
3351  */
3352 static void
3353 set_mas4_defaults(void)
3354 {
3355 	uint32_t mas4;
3356 
3357 	/* Defaults: TLB0, PID0, TSIZED=4K */
3358 	mas4 = MAS4_TLBSELD0;
3359 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3360 #ifdef SMP
3361 	mas4 |= MAS4_MD;
3362 #endif
3363 	mtspr(SPR_MAS4, mas4);
3364 	__asm __volatile("isync");
3365 }
3366 
3367 /*
3368  * Print out contents of the MAS registers for each TLB1 entry
3369  */
3370 void
3371 tlb1_print_tlbentries(void)
3372 {
3373 	uint32_t mas0, mas1, mas2, mas3, mas7;
3374 	int i;
3375 
3376 	debugf("TLB1 entries:\n");
3377 	for (i = 0; i < TLB1_ENTRIES; i++) {
3378 
3379 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3380 		mtspr(SPR_MAS0, mas0);
3381 
3382 		__asm __volatile("isync; tlbre");
3383 
3384 		mas1 = mfspr(SPR_MAS1);
3385 		mas2 = mfspr(SPR_MAS2);
3386 		mas3 = mfspr(SPR_MAS3);
3387 		mas7 = mfspr(SPR_MAS7);
3388 
3389 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3390 	}
3391 }
3392 
3393 /*
3394  * Print out contents of the in-ram tlb1 table.
3395  */
3396 void
3397 tlb1_print_entries(void)
3398 {
3399 	int i;
3400 
3401 	debugf("tlb1[] table entries:\n");
3402 	for (i = 0; i < TLB1_ENTRIES; i++)
3403 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3,
3404 		    tlb1[i].mas7);
3405 }
3406 
3407 /*
3408  * Return 0 if the physical IO range is encompassed by one of the
3409  * the TLB1 entries, otherwise return related error code.
3410  */
3411 static int
3412 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3413 {
3414 	uint32_t prot;
3415 	vm_paddr_t pa_start;
3416 	vm_paddr_t pa_end;
3417 	unsigned int entry_tsize;
3418 	vm_size_t entry_size;
3419 
3420 	*va = (vm_offset_t)NULL;
3421 
3422 	/* Skip invalid entries */
3423 	if (!(tlb1[i].mas1 & MAS1_VALID))
3424 		return (EINVAL);
3425 
3426 	/*
3427 	 * The entry must be cache-inhibited, guarded, and r/w
3428 	 * so it can function as an i/o page
3429 	 */
3430 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3431 	if (prot != (MAS2_I | MAS2_G))
3432 		return (EPERM);
3433 
3434 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3435 	if (prot != (MAS3_SR | MAS3_SW))
3436 		return (EPERM);
3437 
3438 	/* The address should be within the entry range. */
3439 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3440 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3441 
3442 	entry_size = tsize2size(entry_tsize);
3443 	pa_start = (((vm_paddr_t)tlb1[i].mas7 & MAS7_RPN) << 32) |
3444 	    (tlb1[i].mas3 & MAS3_RPN);
3445 	pa_end = pa_start + entry_size;
3446 
3447 	if ((pa < pa_start) || ((pa + size) > pa_end))
3448 		return (ERANGE);
3449 
3450 	/* Return virtual address of this mapping. */
3451 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3452 	return (0);
3453 }
3454 
3455 /*
3456  * Invalidate all TLB0 entries which match the given TID. Note this is
3457  * dedicated for cases when invalidations should NOT be propagated to other
3458  * CPUs.
3459  */
3460 static void
3461 tid_flush(tlbtid_t tid)
3462 {
3463 	register_t msr;
3464 	uint32_t mas0, mas1, mas2;
3465 	int entry, way;
3466 
3467 
3468 	/* Don't evict kernel translations */
3469 	if (tid == TID_KERNEL)
3470 		return;
3471 
3472 	msr = mfmsr();
3473 	__asm __volatile("wrteei 0");
3474 
3475 	for (way = 0; way < TLB0_WAYS; way++)
3476 		for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
3477 
3478 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3479 			mtspr(SPR_MAS0, mas0);
3480 			__asm __volatile("isync");
3481 
3482 			mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
3483 			mtspr(SPR_MAS2, mas2);
3484 
3485 			__asm __volatile("isync; tlbre");
3486 
3487 			mas1 = mfspr(SPR_MAS1);
3488 
3489 			if (!(mas1 & MAS1_VALID))
3490 				continue;
3491 			if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
3492 				continue;
3493 			mas1 &= ~MAS1_VALID;
3494 			mtspr(SPR_MAS1, mas1);
3495 			__asm __volatile("isync; tlbwe; isync; msync");
3496 		}
3497 	mtmsr(msr);
3498 }
3499