1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * Virtual address space layout: 38 * ----------------------------- 39 * 0x0000_0000 - 0xafff_ffff : user process 40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 43 * 0xc100_0000 - 0xfeef_ffff : KVA 44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include "opt_kstack_pages.h" 55 56 #include <sys/param.h> 57 #include <sys/conf.h> 58 #include <sys/malloc.h> 59 #include <sys/ktr.h> 60 #include <sys/proc.h> 61 #include <sys/user.h> 62 #include <sys/queue.h> 63 #include <sys/systm.h> 64 #include <sys/kernel.h> 65 #include <sys/kerneldump.h> 66 #include <sys/linker.h> 67 #include <sys/msgbuf.h> 68 #include <sys/lock.h> 69 #include <sys/mutex.h> 70 #include <sys/rwlock.h> 71 #include <sys/sched.h> 72 #include <sys/smp.h> 73 #include <sys/vmmeter.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_page.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_pageout.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_pager.h> 84 #include <vm/uma.h> 85 86 #include <machine/cpu.h> 87 #include <machine/pcb.h> 88 #include <machine/platform.h> 89 90 #include <machine/tlb.h> 91 #include <machine/spr.h> 92 #include <machine/md_var.h> 93 #include <machine/mmuvar.h> 94 #include <machine/pmap.h> 95 #include <machine/pte.h> 96 97 #include "mmu_if.h" 98 99 #define SPARSE_MAPDEV 100 #ifdef DEBUG 101 #define debugf(fmt, args...) printf(fmt, ##args) 102 #else 103 #define debugf(fmt, args...) 104 #endif 105 106 #define TODO panic("%s: not implemented", __func__); 107 108 extern unsigned char _etext[]; 109 extern unsigned char _end[]; 110 111 extern uint32_t *bootinfo; 112 113 vm_paddr_t kernload; 114 vm_offset_t kernstart; 115 vm_size_t kernsize; 116 117 /* Message buffer and tables. */ 118 static vm_offset_t data_start; 119 static vm_size_t data_end; 120 121 /* Phys/avail memory regions. */ 122 static struct mem_region *availmem_regions; 123 static int availmem_regions_sz; 124 static struct mem_region *physmem_regions; 125 static int physmem_regions_sz; 126 127 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 128 static vm_offset_t zero_page_va; 129 static struct mtx zero_page_mutex; 130 131 static struct mtx tlbivax_mutex; 132 133 /* 134 * Reserved KVA space for mmu_booke_zero_page_idle. This is used 135 * by idle thred only, no lock required. 136 */ 137 static vm_offset_t zero_page_idle_va; 138 139 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 140 static vm_offset_t copy_page_src_va; 141 static vm_offset_t copy_page_dst_va; 142 static struct mtx copy_page_mutex; 143 144 /**************************************************************************/ 145 /* PMAP */ 146 /**************************************************************************/ 147 148 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 149 vm_prot_t, u_int flags, int8_t psind); 150 151 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 152 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 153 154 /* 155 * If user pmap is processed with mmu_booke_remove and the resident count 156 * drops to 0, there are no more pages to remove, so we need not continue. 157 */ 158 #define PMAP_REMOVE_DONE(pmap) \ 159 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 160 161 extern int elf32_nxstack; 162 163 /**************************************************************************/ 164 /* TLB and TID handling */ 165 /**************************************************************************/ 166 167 /* Translation ID busy table */ 168 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 169 170 /* 171 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 172 * core revisions and should be read from h/w registers during early config. 173 */ 174 uint32_t tlb0_entries; 175 uint32_t tlb0_ways; 176 uint32_t tlb0_entries_per_way; 177 uint32_t tlb1_entries; 178 179 #define TLB0_ENTRIES (tlb0_entries) 180 #define TLB0_WAYS (tlb0_ways) 181 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 182 183 #define TLB1_ENTRIES (tlb1_entries) 184 #define TLB1_MAXENTRIES 64 185 186 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE; 187 188 static tlbtid_t tid_alloc(struct pmap *); 189 static void tid_flush(tlbtid_t tid); 190 191 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 192 193 static void tlb1_read_entry(tlb_entry_t *, unsigned int); 194 static void tlb1_write_entry(tlb_entry_t *, unsigned int); 195 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 196 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); 197 198 static vm_size_t tsize2size(unsigned int); 199 static unsigned int size2tsize(vm_size_t); 200 static unsigned int ilog2(unsigned int); 201 202 static void set_mas4_defaults(void); 203 204 static inline void tlb0_flush_entry(vm_offset_t); 205 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 206 207 /**************************************************************************/ 208 /* Page table management */ 209 /**************************************************************************/ 210 211 static struct rwlock_padalign pvh_global_lock; 212 213 /* Data for the pv entry allocation mechanism */ 214 static uma_zone_t pvzone; 215 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 216 217 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 218 219 #ifndef PMAP_SHPGPERPROC 220 #define PMAP_SHPGPERPROC 200 221 #endif 222 223 static void ptbl_init(void); 224 static struct ptbl_buf *ptbl_buf_alloc(void); 225 static void ptbl_buf_free(struct ptbl_buf *); 226 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 227 228 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); 229 static void ptbl_free(mmu_t, pmap_t, unsigned int); 230 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 231 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 232 233 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 234 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 235 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); 236 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 237 static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, 238 vm_offset_t pdir); 239 240 static pv_entry_t pv_alloc(void); 241 static void pv_free(pv_entry_t); 242 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 243 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 244 245 static void booke_pmap_init_qpages(void); 246 247 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 248 #define PTBL_BUFS (128 * 16) 249 250 struct ptbl_buf { 251 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 252 vm_offset_t kva; /* va of mapping */ 253 }; 254 255 /* ptbl free list and a lock used for access synchronization. */ 256 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 257 static struct mtx ptbl_buf_freelist_lock; 258 259 /* Base address of kva space allocated fot ptbl bufs. */ 260 static vm_offset_t ptbl_buf_pool_vabase; 261 262 /* Pointer to ptbl_buf structures. */ 263 static struct ptbl_buf *ptbl_bufs; 264 265 #ifdef SMP 266 extern tlb_entry_t __boot_tlb1[]; 267 void pmap_bootstrap_ap(volatile uint32_t *); 268 #endif 269 270 /* 271 * Kernel MMU interface 272 */ 273 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 274 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 275 vm_size_t, vm_offset_t); 276 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 277 static void mmu_booke_copy_pages(mmu_t, vm_page_t *, 278 vm_offset_t, vm_page_t *, vm_offset_t, int); 279 static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 280 vm_prot_t, u_int flags, int8_t psind); 281 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 282 vm_page_t, vm_prot_t); 283 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 284 vm_prot_t); 285 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 286 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 287 vm_prot_t); 288 static void mmu_booke_init(mmu_t); 289 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 290 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 291 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 292 static int mmu_booke_ts_referenced(mmu_t, vm_page_t); 293 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, 294 int); 295 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, 296 vm_paddr_t *); 297 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 298 vm_object_t, vm_pindex_t, vm_size_t); 299 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 300 static void mmu_booke_page_init(mmu_t, vm_page_t); 301 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 302 static void mmu_booke_pinit(mmu_t, pmap_t); 303 static void mmu_booke_pinit0(mmu_t, pmap_t); 304 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 305 vm_prot_t); 306 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 307 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 308 static void mmu_booke_release(mmu_t, pmap_t); 309 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 310 static void mmu_booke_remove_all(mmu_t, vm_page_t); 311 static void mmu_booke_remove_write(mmu_t, vm_page_t); 312 static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 313 static void mmu_booke_zero_page(mmu_t, vm_page_t); 314 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 315 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t); 316 static void mmu_booke_activate(mmu_t, struct thread *); 317 static void mmu_booke_deactivate(mmu_t, struct thread *); 318 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 319 static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); 320 static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); 321 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 322 static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); 323 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); 324 static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); 325 static void mmu_booke_kremove(mmu_t, vm_offset_t); 326 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 327 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 328 vm_size_t); 329 static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, 330 void **); 331 static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, 332 void *); 333 static void mmu_booke_scan_init(mmu_t); 334 static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m); 335 static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr); 336 static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, 337 vm_size_t sz, vm_memattr_t mode); 338 339 static mmu_method_t mmu_booke_methods[] = { 340 /* pmap dispatcher interface */ 341 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 342 MMUMETHOD(mmu_copy, mmu_booke_copy), 343 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 344 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), 345 MMUMETHOD(mmu_enter, mmu_booke_enter), 346 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 347 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 348 MMUMETHOD(mmu_extract, mmu_booke_extract), 349 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 350 MMUMETHOD(mmu_init, mmu_booke_init), 351 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 352 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 353 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 354 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 355 MMUMETHOD(mmu_map, mmu_booke_map), 356 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 357 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 358 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 359 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 360 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 361 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 362 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 363 MMUMETHOD(mmu_protect, mmu_booke_protect), 364 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 365 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 366 MMUMETHOD(mmu_release, mmu_booke_release), 367 MMUMETHOD(mmu_remove, mmu_booke_remove), 368 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 369 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 370 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 371 MMUMETHOD(mmu_unwire, mmu_booke_unwire), 372 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 373 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 374 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle), 375 MMUMETHOD(mmu_activate, mmu_booke_activate), 376 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 377 MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page), 378 MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page), 379 380 /* Internal interfaces */ 381 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 382 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 383 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 384 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), 385 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 386 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), 387 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 388 MMUMETHOD(mmu_kremove, mmu_booke_kremove), 389 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 390 MMUMETHOD(mmu_change_attr, mmu_booke_change_attr), 391 392 /* dumpsys() support */ 393 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 394 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 395 MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), 396 397 { 0, 0 } 398 }; 399 400 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); 401 402 static __inline uint32_t 403 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) 404 { 405 uint32_t attrib; 406 int i; 407 408 if (ma != VM_MEMATTR_DEFAULT) { 409 switch (ma) { 410 case VM_MEMATTR_UNCACHEABLE: 411 return (MAS2_I | MAS2_G); 412 case VM_MEMATTR_WRITE_COMBINING: 413 case VM_MEMATTR_WRITE_BACK: 414 case VM_MEMATTR_PREFETCHABLE: 415 return (MAS2_I); 416 case VM_MEMATTR_WRITE_THROUGH: 417 return (MAS2_W | MAS2_M); 418 case VM_MEMATTR_CACHEABLE: 419 return (MAS2_M); 420 } 421 } 422 423 /* 424 * Assume the page is cache inhibited and access is guarded unless 425 * it's in our available memory array. 426 */ 427 attrib = _TLB_ENTRY_IO; 428 for (i = 0; i < physmem_regions_sz; i++) { 429 if ((pa >= physmem_regions[i].mr_start) && 430 (pa < (physmem_regions[i].mr_start + 431 physmem_regions[i].mr_size))) { 432 attrib = _TLB_ENTRY_MEM; 433 break; 434 } 435 } 436 437 return (attrib); 438 } 439 440 static inline void 441 tlb_miss_lock(void) 442 { 443 #ifdef SMP 444 struct pcpu *pc; 445 446 if (!smp_started) 447 return; 448 449 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 450 if (pc != pcpup) { 451 452 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 453 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 454 455 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 456 ("tlb_miss_lock: tried to lock self")); 457 458 tlb_lock(pc->pc_booke_tlb_lock); 459 460 CTR1(KTR_PMAP, "%s: locked", __func__); 461 } 462 } 463 #endif 464 } 465 466 static inline void 467 tlb_miss_unlock(void) 468 { 469 #ifdef SMP 470 struct pcpu *pc; 471 472 if (!smp_started) 473 return; 474 475 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 476 if (pc != pcpup) { 477 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 478 __func__, pc->pc_cpuid); 479 480 tlb_unlock(pc->pc_booke_tlb_lock); 481 482 CTR1(KTR_PMAP, "%s: unlocked", __func__); 483 } 484 } 485 #endif 486 } 487 488 /* Return number of entries in TLB0. */ 489 static __inline void 490 tlb0_get_tlbconf(void) 491 { 492 uint32_t tlb0_cfg; 493 494 tlb0_cfg = mfspr(SPR_TLB0CFG); 495 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 496 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 497 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 498 } 499 500 /* Return number of entries in TLB1. */ 501 static __inline void 502 tlb1_get_tlbconf(void) 503 { 504 uint32_t tlb1_cfg; 505 506 tlb1_cfg = mfspr(SPR_TLB1CFG); 507 tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; 508 } 509 510 /**************************************************************************/ 511 /* Page table related */ 512 /**************************************************************************/ 513 514 /* Initialize pool of kva ptbl buffers. */ 515 static void 516 ptbl_init(void) 517 { 518 int i; 519 520 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 521 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 522 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 523 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 524 525 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 526 TAILQ_INIT(&ptbl_buf_freelist); 527 528 for (i = 0; i < PTBL_BUFS; i++) { 529 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 530 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 531 } 532 } 533 534 /* Get a ptbl_buf from the freelist. */ 535 static struct ptbl_buf * 536 ptbl_buf_alloc(void) 537 { 538 struct ptbl_buf *buf; 539 540 mtx_lock(&ptbl_buf_freelist_lock); 541 buf = TAILQ_FIRST(&ptbl_buf_freelist); 542 if (buf != NULL) 543 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 544 mtx_unlock(&ptbl_buf_freelist_lock); 545 546 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 547 548 return (buf); 549 } 550 551 /* Return ptbl buff to free pool. */ 552 static void 553 ptbl_buf_free(struct ptbl_buf *buf) 554 { 555 556 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 557 558 mtx_lock(&ptbl_buf_freelist_lock); 559 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 560 mtx_unlock(&ptbl_buf_freelist_lock); 561 } 562 563 /* 564 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 565 */ 566 static void 567 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 568 { 569 struct ptbl_buf *pbuf; 570 571 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 572 573 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 574 575 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 576 if (pbuf->kva == (vm_offset_t)ptbl) { 577 /* Remove from pmap ptbl buf list. */ 578 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 579 580 /* Free corresponding ptbl buf. */ 581 ptbl_buf_free(pbuf); 582 break; 583 } 584 } 585 586 /* Allocate page table. */ 587 static pte_t * 588 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) 589 { 590 vm_page_t mtbl[PTBL_PAGES]; 591 vm_page_t m; 592 struct ptbl_buf *pbuf; 593 unsigned int pidx; 594 pte_t *ptbl; 595 int i, j; 596 597 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 598 (pmap == kernel_pmap), pdir_idx); 599 600 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 601 ("ptbl_alloc: invalid pdir_idx")); 602 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 603 ("pte_alloc: valid ptbl entry exists!")); 604 605 pbuf = ptbl_buf_alloc(); 606 if (pbuf == NULL) 607 panic("pte_alloc: couldn't alloc kernel virtual memory"); 608 609 ptbl = (pte_t *)pbuf->kva; 610 611 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 612 613 /* Allocate ptbl pages, this will sleep! */ 614 for (i = 0; i < PTBL_PAGES; i++) { 615 pidx = (PTBL_PAGES * pdir_idx) + i; 616 while ((m = vm_page_alloc(NULL, pidx, 617 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 618 PMAP_UNLOCK(pmap); 619 rw_wunlock(&pvh_global_lock); 620 if (nosleep) { 621 ptbl_free_pmap_ptbl(pmap, ptbl); 622 for (j = 0; j < i; j++) 623 vm_page_free(mtbl[j]); 624 atomic_subtract_int(&vm_cnt.v_wire_count, i); 625 return (NULL); 626 } 627 VM_WAIT; 628 rw_wlock(&pvh_global_lock); 629 PMAP_LOCK(pmap); 630 } 631 mtbl[i] = m; 632 } 633 634 /* Map allocated pages into kernel_pmap. */ 635 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 636 637 /* Zero whole ptbl. */ 638 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 639 640 /* Add pbuf to the pmap ptbl bufs list. */ 641 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 642 643 return (ptbl); 644 } 645 646 /* Free ptbl pages and invalidate pdir entry. */ 647 static void 648 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 649 { 650 pte_t *ptbl; 651 vm_paddr_t pa; 652 vm_offset_t va; 653 vm_page_t m; 654 int i; 655 656 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 657 (pmap == kernel_pmap), pdir_idx); 658 659 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 660 ("ptbl_free: invalid pdir_idx")); 661 662 ptbl = pmap->pm_pdir[pdir_idx]; 663 664 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 665 666 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 667 668 /* 669 * Invalidate the pdir entry as soon as possible, so that other CPUs 670 * don't attempt to look up the page tables we are releasing. 671 */ 672 mtx_lock_spin(&tlbivax_mutex); 673 tlb_miss_lock(); 674 675 pmap->pm_pdir[pdir_idx] = NULL; 676 677 tlb_miss_unlock(); 678 mtx_unlock_spin(&tlbivax_mutex); 679 680 for (i = 0; i < PTBL_PAGES; i++) { 681 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 682 pa = pte_vatopa(mmu, kernel_pmap, va); 683 m = PHYS_TO_VM_PAGE(pa); 684 vm_page_free_zero(m); 685 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 686 mmu_booke_kremove(mmu, va); 687 } 688 689 ptbl_free_pmap_ptbl(pmap, ptbl); 690 } 691 692 /* 693 * Decrement ptbl pages hold count and attempt to free ptbl pages. 694 * Called when removing pte entry from ptbl. 695 * 696 * Return 1 if ptbl pages were freed. 697 */ 698 static int 699 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 700 { 701 pte_t *ptbl; 702 vm_paddr_t pa; 703 vm_page_t m; 704 int i; 705 706 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 707 (pmap == kernel_pmap), pdir_idx); 708 709 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 710 ("ptbl_unhold: invalid pdir_idx")); 711 KASSERT((pmap != kernel_pmap), 712 ("ptbl_unhold: unholding kernel ptbl!")); 713 714 ptbl = pmap->pm_pdir[pdir_idx]; 715 716 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 717 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 718 ("ptbl_unhold: non kva ptbl")); 719 720 /* decrement hold count */ 721 for (i = 0; i < PTBL_PAGES; i++) { 722 pa = pte_vatopa(mmu, kernel_pmap, 723 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 724 m = PHYS_TO_VM_PAGE(pa); 725 m->wire_count--; 726 } 727 728 /* 729 * Free ptbl pages if there are no pte etries in this ptbl. 730 * wire_count has the same value for all ptbl pages, so check the last 731 * page. 732 */ 733 if (m->wire_count == 0) { 734 ptbl_free(mmu, pmap, pdir_idx); 735 736 //debugf("ptbl_unhold: e (freed ptbl)\n"); 737 return (1); 738 } 739 740 return (0); 741 } 742 743 /* 744 * Increment hold count for ptbl pages. This routine is used when a new pte 745 * entry is being inserted into the ptbl. 746 */ 747 static void 748 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 749 { 750 vm_paddr_t pa; 751 pte_t *ptbl; 752 vm_page_t m; 753 int i; 754 755 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 756 pdir_idx); 757 758 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 759 ("ptbl_hold: invalid pdir_idx")); 760 KASSERT((pmap != kernel_pmap), 761 ("ptbl_hold: holding kernel ptbl!")); 762 763 ptbl = pmap->pm_pdir[pdir_idx]; 764 765 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 766 767 for (i = 0; i < PTBL_PAGES; i++) { 768 pa = pte_vatopa(mmu, kernel_pmap, 769 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 770 m = PHYS_TO_VM_PAGE(pa); 771 m->wire_count++; 772 } 773 } 774 775 /* Allocate pv_entry structure. */ 776 pv_entry_t 777 pv_alloc(void) 778 { 779 pv_entry_t pv; 780 781 pv_entry_count++; 782 if (pv_entry_count > pv_entry_high_water) 783 pagedaemon_wakeup(); 784 pv = uma_zalloc(pvzone, M_NOWAIT); 785 786 return (pv); 787 } 788 789 /* Free pv_entry structure. */ 790 static __inline void 791 pv_free(pv_entry_t pve) 792 { 793 794 pv_entry_count--; 795 uma_zfree(pvzone, pve); 796 } 797 798 799 /* Allocate and initialize pv_entry structure. */ 800 static void 801 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 802 { 803 pv_entry_t pve; 804 805 //int su = (pmap == kernel_pmap); 806 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 807 // (u_int32_t)pmap, va, (u_int32_t)m); 808 809 pve = pv_alloc(); 810 if (pve == NULL) 811 panic("pv_insert: no pv entries!"); 812 813 pve->pv_pmap = pmap; 814 pve->pv_va = va; 815 816 /* add to pv_list */ 817 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 818 rw_assert(&pvh_global_lock, RA_WLOCKED); 819 820 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 821 822 //debugf("pv_insert: e\n"); 823 } 824 825 /* Destroy pv entry. */ 826 static void 827 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 828 { 829 pv_entry_t pve; 830 831 //int su = (pmap == kernel_pmap); 832 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 833 834 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 835 rw_assert(&pvh_global_lock, RA_WLOCKED); 836 837 /* find pv entry */ 838 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 839 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 840 /* remove from pv_list */ 841 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 842 if (TAILQ_EMPTY(&m->md.pv_list)) 843 vm_page_aflag_clear(m, PGA_WRITEABLE); 844 845 /* free pv entry struct */ 846 pv_free(pve); 847 break; 848 } 849 } 850 851 //debugf("pv_remove: e\n"); 852 } 853 854 /* 855 * Clean pte entry, try to free page table page if requested. 856 * 857 * Return 1 if ptbl pages were freed, otherwise return 0. 858 */ 859 static int 860 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 861 { 862 unsigned int pdir_idx = PDIR_IDX(va); 863 unsigned int ptbl_idx = PTBL_IDX(va); 864 vm_page_t m; 865 pte_t *ptbl; 866 pte_t *pte; 867 868 //int su = (pmap == kernel_pmap); 869 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 870 // su, (u_int32_t)pmap, va, flags); 871 872 ptbl = pmap->pm_pdir[pdir_idx]; 873 KASSERT(ptbl, ("pte_remove: null ptbl")); 874 875 pte = &ptbl[ptbl_idx]; 876 877 if (pte == NULL || !PTE_ISVALID(pte)) 878 return (0); 879 880 if (PTE_ISWIRED(pte)) 881 pmap->pm_stats.wired_count--; 882 883 /* Handle managed entry. */ 884 if (PTE_ISMANAGED(pte)) { 885 /* Get vm_page_t for mapped pte. */ 886 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 887 888 if (PTE_ISMODIFIED(pte)) 889 vm_page_dirty(m); 890 891 if (PTE_ISREFERENCED(pte)) 892 vm_page_aflag_set(m, PGA_REFERENCED); 893 894 pv_remove(pmap, va, m); 895 } 896 897 mtx_lock_spin(&tlbivax_mutex); 898 tlb_miss_lock(); 899 900 tlb0_flush_entry(va); 901 *pte = 0; 902 903 tlb_miss_unlock(); 904 mtx_unlock_spin(&tlbivax_mutex); 905 906 pmap->pm_stats.resident_count--; 907 908 if (flags & PTBL_UNHOLD) { 909 //debugf("pte_remove: e (unhold)\n"); 910 return (ptbl_unhold(mmu, pmap, pdir_idx)); 911 } 912 913 //debugf("pte_remove: e\n"); 914 return (0); 915 } 916 917 /* 918 * Insert PTE for a given page and virtual address. 919 */ 920 static int 921 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 922 boolean_t nosleep) 923 { 924 unsigned int pdir_idx = PDIR_IDX(va); 925 unsigned int ptbl_idx = PTBL_IDX(va); 926 pte_t *ptbl, *pte; 927 928 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 929 pmap == kernel_pmap, pmap, va); 930 931 /* Get the page table pointer. */ 932 ptbl = pmap->pm_pdir[pdir_idx]; 933 934 if (ptbl == NULL) { 935 /* Allocate page table pages. */ 936 ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); 937 if (ptbl == NULL) { 938 KASSERT(nosleep, ("nosleep and NULL ptbl")); 939 return (ENOMEM); 940 } 941 } else { 942 /* 943 * Check if there is valid mapping for requested 944 * va, if there is, remove it. 945 */ 946 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 947 if (PTE_ISVALID(pte)) { 948 pte_remove(mmu, pmap, va, PTBL_HOLD); 949 } else { 950 /* 951 * pte is not used, increment hold count 952 * for ptbl pages. 953 */ 954 if (pmap != kernel_pmap) 955 ptbl_hold(mmu, pmap, pdir_idx); 956 } 957 } 958 959 /* 960 * Insert pv_entry into pv_list for mapped page if part of managed 961 * memory. 962 */ 963 if ((m->oflags & VPO_UNMANAGED) == 0) { 964 flags |= PTE_MANAGED; 965 966 /* Create and insert pv entry. */ 967 pv_insert(pmap, va, m); 968 } 969 970 pmap->pm_stats.resident_count++; 971 972 mtx_lock_spin(&tlbivax_mutex); 973 tlb_miss_lock(); 974 975 tlb0_flush_entry(va); 976 if (pmap->pm_pdir[pdir_idx] == NULL) { 977 /* 978 * If we just allocated a new page table, hook it in 979 * the pdir. 980 */ 981 pmap->pm_pdir[pdir_idx] = ptbl; 982 } 983 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 984 *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 985 *pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ 986 987 tlb_miss_unlock(); 988 mtx_unlock_spin(&tlbivax_mutex); 989 return (0); 990 } 991 992 /* Return the pa for the given pmap/va. */ 993 static vm_paddr_t 994 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 995 { 996 vm_paddr_t pa = 0; 997 pte_t *pte; 998 999 pte = pte_find(mmu, pmap, va); 1000 if ((pte != NULL) && PTE_ISVALID(pte)) 1001 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 1002 return (pa); 1003 } 1004 1005 /* Get a pointer to a PTE in a page table. */ 1006 static pte_t * 1007 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1008 { 1009 unsigned int pdir_idx = PDIR_IDX(va); 1010 unsigned int ptbl_idx = PTBL_IDX(va); 1011 1012 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 1013 1014 if (pmap->pm_pdir[pdir_idx]) 1015 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 1016 1017 return (NULL); 1018 } 1019 1020 /* Set up kernel page tables. */ 1021 static void 1022 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) 1023 { 1024 int i; 1025 vm_offset_t va; 1026 pte_t *pte; 1027 1028 /* Initialize kernel pdir */ 1029 for (i = 0; i < kernel_ptbls; i++) 1030 kernel_pmap->pm_pdir[kptbl_min + i] = 1031 (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1032 1033 /* 1034 * Fill in PTEs covering kernel code and data. They are not required 1035 * for address translation, as this area is covered by static TLB1 1036 * entries, but for pte_vatopa() to work correctly with kernel area 1037 * addresses. 1038 */ 1039 for (va = addr; va < data_end; va += PAGE_SIZE) { 1040 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1041 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 1042 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1043 PTE_VALID | PTE_PS_4KB; 1044 } 1045 } 1046 1047 /**************************************************************************/ 1048 /* PMAP related */ 1049 /**************************************************************************/ 1050 1051 /* 1052 * This is called during booke_init, before the system is really initialized. 1053 */ 1054 static void 1055 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 1056 { 1057 vm_paddr_t phys_kernelend; 1058 struct mem_region *mp, *mp1; 1059 int cnt, i, j; 1060 vm_paddr_t s, e, sz; 1061 vm_paddr_t physsz, hwphyssz; 1062 u_int phys_avail_count; 1063 vm_size_t kstack0_sz; 1064 vm_offset_t kernel_pdir, kstack0; 1065 vm_paddr_t kstack0_phys; 1066 void *dpcpu; 1067 1068 debugf("mmu_booke_bootstrap: entered\n"); 1069 1070 /* Set interesting system properties */ 1071 hw_direct_map = 0; 1072 elf32_nxstack = 1; 1073 1074 /* Initialize invalidation mutex */ 1075 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 1076 1077 /* Read TLB0 size and associativity. */ 1078 tlb0_get_tlbconf(); 1079 1080 /* 1081 * Align kernel start and end address (kernel image). 1082 * Note that kernel end does not necessarily relate to kernsize. 1083 * kernsize is the size of the kernel that is actually mapped. 1084 */ 1085 kernstart = trunc_page(start); 1086 data_start = round_page(kernelend); 1087 data_end = data_start; 1088 1089 /* 1090 * Addresses of preloaded modules (like file systems) use 1091 * physical addresses. Make sure we relocate those into 1092 * virtual addresses. 1093 */ 1094 preload_addr_relocate = kernstart - kernload; 1095 1096 /* Allocate the dynamic per-cpu area. */ 1097 dpcpu = (void *)data_end; 1098 data_end += DPCPU_SIZE; 1099 1100 /* Allocate space for the message buffer. */ 1101 msgbufp = (struct msgbuf *)data_end; 1102 data_end += msgbufsize; 1103 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, 1104 data_end); 1105 1106 data_end = round_page(data_end); 1107 1108 /* Allocate space for ptbl_bufs. */ 1109 ptbl_bufs = (struct ptbl_buf *)data_end; 1110 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1111 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, 1112 data_end); 1113 1114 data_end = round_page(data_end); 1115 1116 /* Allocate PTE tables for kernel KVA. */ 1117 kernel_pdir = data_end; 1118 kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, 1119 PDIR_SIZE); 1120 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1121 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1122 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); 1123 1124 debugf(" data_end: 0x%08x\n", data_end); 1125 if (data_end - kernstart > kernsize) { 1126 kernsize += tlb1_mapin_region(kernstart + kernsize, 1127 kernload + kernsize, (data_end - kernstart) - kernsize); 1128 } 1129 data_end = kernstart + kernsize; 1130 debugf(" updated data_end: 0x%08x\n", data_end); 1131 1132 /* 1133 * Clear the structures - note we can only do it safely after the 1134 * possible additional TLB1 translations are in place (above) so that 1135 * all range up to the currently calculated 'data_end' is covered. 1136 */ 1137 dpcpu_init(dpcpu, 0); 1138 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1139 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1140 1141 /*******************************************************/ 1142 /* Set the start and end of kva. */ 1143 /*******************************************************/ 1144 virtual_avail = round_page(data_end); 1145 virtual_end = VM_MAX_KERNEL_ADDRESS; 1146 1147 /* Allocate KVA space for page zero/copy operations. */ 1148 zero_page_va = virtual_avail; 1149 virtual_avail += PAGE_SIZE; 1150 zero_page_idle_va = virtual_avail; 1151 virtual_avail += PAGE_SIZE; 1152 copy_page_src_va = virtual_avail; 1153 virtual_avail += PAGE_SIZE; 1154 copy_page_dst_va = virtual_avail; 1155 virtual_avail += PAGE_SIZE; 1156 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1157 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va); 1158 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1159 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1160 1161 /* Initialize page zero/copy mutexes. */ 1162 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1163 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1164 1165 /* Allocate KVA space for ptbl bufs. */ 1166 ptbl_buf_pool_vabase = virtual_avail; 1167 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1168 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1169 ptbl_buf_pool_vabase, virtual_avail); 1170 1171 /* Calculate corresponding physical addresses for the kernel region. */ 1172 phys_kernelend = kernload + kernsize; 1173 debugf("kernel image and allocated data:\n"); 1174 debugf(" kernload = 0x%09llx\n", (uint64_t)kernload); 1175 debugf(" kernstart = 0x%08x\n", kernstart); 1176 debugf(" kernsize = 0x%08x\n", kernsize); 1177 1178 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1179 panic("mmu_booke_bootstrap: phys_avail too small"); 1180 1181 /* 1182 * Remove kernel physical address range from avail regions list. Page 1183 * align all regions. Non-page aligned memory isn't very interesting 1184 * to us. Also, sort the entries for ascending addresses. 1185 */ 1186 1187 /* Retrieve phys/avail mem regions */ 1188 mem_regions(&physmem_regions, &physmem_regions_sz, 1189 &availmem_regions, &availmem_regions_sz); 1190 sz = 0; 1191 cnt = availmem_regions_sz; 1192 debugf("processing avail regions:\n"); 1193 for (mp = availmem_regions; mp->mr_size; mp++) { 1194 s = mp->mr_start; 1195 e = mp->mr_start + mp->mr_size; 1196 debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e); 1197 /* Check whether this region holds all of the kernel. */ 1198 if (s < kernload && e > phys_kernelend) { 1199 availmem_regions[cnt].mr_start = phys_kernelend; 1200 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1201 e = kernload; 1202 } 1203 /* Look whether this regions starts within the kernel. */ 1204 if (s >= kernload && s < phys_kernelend) { 1205 if (e <= phys_kernelend) 1206 goto empty; 1207 s = phys_kernelend; 1208 } 1209 /* Now look whether this region ends within the kernel. */ 1210 if (e > kernload && e <= phys_kernelend) { 1211 if (s >= kernload) 1212 goto empty; 1213 e = kernload; 1214 } 1215 /* Now page align the start and size of the region. */ 1216 s = round_page(s); 1217 e = trunc_page(e); 1218 if (e < s) 1219 e = s; 1220 sz = e - s; 1221 debugf("%09jx-%09jx = %jx\n", 1222 (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz); 1223 1224 /* Check whether some memory is left here. */ 1225 if (sz == 0) { 1226 empty: 1227 memmove(mp, mp + 1, 1228 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1229 cnt--; 1230 mp--; 1231 continue; 1232 } 1233 1234 /* Do an insertion sort. */ 1235 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1236 if (s < mp1->mr_start) 1237 break; 1238 if (mp1 < mp) { 1239 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1240 mp1->mr_start = s; 1241 mp1->mr_size = sz; 1242 } else { 1243 mp->mr_start = s; 1244 mp->mr_size = sz; 1245 } 1246 } 1247 availmem_regions_sz = cnt; 1248 1249 /*******************************************************/ 1250 /* Steal physical memory for kernel stack from the end */ 1251 /* of the first avail region */ 1252 /*******************************************************/ 1253 kstack0_sz = kstack_pages * PAGE_SIZE; 1254 kstack0_phys = availmem_regions[0].mr_start + 1255 availmem_regions[0].mr_size; 1256 kstack0_phys -= kstack0_sz; 1257 availmem_regions[0].mr_size -= kstack0_sz; 1258 1259 /*******************************************************/ 1260 /* Fill in phys_avail table, based on availmem_regions */ 1261 /*******************************************************/ 1262 phys_avail_count = 0; 1263 physsz = 0; 1264 hwphyssz = 0; 1265 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1266 1267 debugf("fill in phys_avail:\n"); 1268 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1269 1270 debugf(" region: 0x%jx - 0x%jx (0x%jx)\n", 1271 (uintmax_t)availmem_regions[i].mr_start, 1272 (uintmax_t)availmem_regions[i].mr_start + 1273 availmem_regions[i].mr_size, 1274 (uintmax_t)availmem_regions[i].mr_size); 1275 1276 if (hwphyssz != 0 && 1277 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1278 debugf(" hw.physmem adjust\n"); 1279 if (physsz < hwphyssz) { 1280 phys_avail[j] = availmem_regions[i].mr_start; 1281 phys_avail[j + 1] = 1282 availmem_regions[i].mr_start + 1283 hwphyssz - physsz; 1284 physsz = hwphyssz; 1285 phys_avail_count++; 1286 } 1287 break; 1288 } 1289 1290 phys_avail[j] = availmem_regions[i].mr_start; 1291 phys_avail[j + 1] = availmem_regions[i].mr_start + 1292 availmem_regions[i].mr_size; 1293 phys_avail_count++; 1294 physsz += availmem_regions[i].mr_size; 1295 } 1296 physmem = btoc(physsz); 1297 1298 /* Calculate the last available physical address. */ 1299 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1300 ; 1301 Maxmem = powerpc_btop(phys_avail[i + 1]); 1302 1303 debugf("Maxmem = 0x%08lx\n", Maxmem); 1304 debugf("phys_avail_count = %d\n", phys_avail_count); 1305 debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n", 1306 (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem); 1307 1308 /*******************************************************/ 1309 /* Initialize (statically allocated) kernel pmap. */ 1310 /*******************************************************/ 1311 PMAP_LOCK_INIT(kernel_pmap); 1312 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1313 1314 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); 1315 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); 1316 debugf("kernel pdir range: 0x%08x - 0x%08x\n", 1317 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); 1318 1319 kernel_pte_alloc(data_end, kernstart, kernel_pdir); 1320 for (i = 0; i < MAXCPU; i++) { 1321 kernel_pmap->pm_tid[i] = TID_KERNEL; 1322 1323 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1324 tidbusy[i][TID_KERNEL] = kernel_pmap; 1325 } 1326 1327 /* Mark kernel_pmap active on all CPUs */ 1328 CPU_FILL(&kernel_pmap->pm_active); 1329 1330 /* 1331 * Initialize the global pv list lock. 1332 */ 1333 rw_init(&pvh_global_lock, "pmap pv global"); 1334 1335 /*******************************************************/ 1336 /* Final setup */ 1337 /*******************************************************/ 1338 1339 /* Enter kstack0 into kernel map, provide guard page */ 1340 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1341 thread0.td_kstack = kstack0; 1342 thread0.td_kstack_pages = kstack_pages; 1343 1344 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1345 debugf("kstack0_phys at 0x%09llx - 0x%09llx\n", 1346 kstack0_phys, kstack0_phys + kstack0_sz); 1347 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); 1348 1349 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 1350 for (i = 0; i < kstack_pages; i++) { 1351 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 1352 kstack0 += PAGE_SIZE; 1353 kstack0_phys += PAGE_SIZE; 1354 } 1355 1356 pmap_bootstrapped = 1; 1357 1358 debugf("virtual_avail = %08x\n", virtual_avail); 1359 debugf("virtual_end = %08x\n", virtual_end); 1360 1361 debugf("mmu_booke_bootstrap: exit\n"); 1362 } 1363 1364 #ifdef SMP 1365 void 1366 tlb1_ap_prep(void) 1367 { 1368 tlb_entry_t *e, tmp; 1369 unsigned int i; 1370 1371 /* Prepare TLB1 image for AP processors */ 1372 e = __boot_tlb1; 1373 for (i = 0; i < TLB1_ENTRIES; i++) { 1374 tlb1_read_entry(&tmp, i); 1375 1376 if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED)) 1377 memcpy(e++, &tmp, sizeof(tmp)); 1378 } 1379 } 1380 1381 void 1382 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 1383 { 1384 int i; 1385 1386 /* 1387 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 1388 * have the snapshot of its contents in the s/w __boot_tlb1[] table 1389 * created by tlb1_ap_prep(), so use these values directly to 1390 * (re)program AP's TLB1 hardware. 1391 * 1392 * Start at index 1 because index 0 has the kernel map. 1393 */ 1394 for (i = 1; i < TLB1_ENTRIES; i++) { 1395 if (__boot_tlb1[i].mas1 & MAS1_VALID) 1396 tlb1_write_entry(&__boot_tlb1[i], i); 1397 } 1398 1399 set_mas4_defaults(); 1400 } 1401 #endif 1402 1403 static void 1404 booke_pmap_init_qpages(void) 1405 { 1406 struct pcpu *pc; 1407 int i; 1408 1409 CPU_FOREACH(i) { 1410 pc = pcpu_find(i); 1411 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); 1412 if (pc->pc_qmap_addr == 0) 1413 panic("pmap_init_qpages: unable to allocate KVA"); 1414 } 1415 } 1416 1417 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL); 1418 1419 /* 1420 * Get the physical page address for the given pmap/virtual address. 1421 */ 1422 static vm_paddr_t 1423 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1424 { 1425 vm_paddr_t pa; 1426 1427 PMAP_LOCK(pmap); 1428 pa = pte_vatopa(mmu, pmap, va); 1429 PMAP_UNLOCK(pmap); 1430 1431 return (pa); 1432 } 1433 1434 /* 1435 * Extract the physical page address associated with the given 1436 * kernel virtual address. 1437 */ 1438 static vm_paddr_t 1439 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 1440 { 1441 tlb_entry_t e; 1442 int i; 1443 1444 /* Check TLB1 mappings */ 1445 for (i = 0; i < TLB1_ENTRIES; i++) { 1446 tlb1_read_entry(&e, i); 1447 if (!(e.mas1 & MAS1_VALID)) 1448 continue; 1449 if (va >= e.virt && va < e.virt + e.size) 1450 return (e.phys + (va - e.virt)); 1451 } 1452 1453 return (pte_vatopa(mmu, kernel_pmap, va)); 1454 } 1455 1456 /* 1457 * Initialize the pmap module. 1458 * Called by vm_init, to initialize any structures that the pmap 1459 * system needs to map virtual memory. 1460 */ 1461 static void 1462 mmu_booke_init(mmu_t mmu) 1463 { 1464 int shpgperproc = PMAP_SHPGPERPROC; 1465 1466 /* 1467 * Initialize the address space (zone) for the pv entries. Set a 1468 * high water mark so that the system can recover from excessive 1469 * numbers of pv entries. 1470 */ 1471 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 1472 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 1473 1474 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 1475 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; 1476 1477 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 1478 pv_entry_high_water = 9 * (pv_entry_max / 10); 1479 1480 uma_zone_reserve_kva(pvzone, pv_entry_max); 1481 1482 /* Pre-fill pvzone with initial number of pv entries. */ 1483 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 1484 1485 /* Initialize ptbl allocation. */ 1486 ptbl_init(); 1487 } 1488 1489 /* 1490 * Map a list of wired pages into kernel virtual address space. This is 1491 * intended for temporary mappings which do not need page modification or 1492 * references recorded. Existing mappings in the region are overwritten. 1493 */ 1494 static void 1495 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1496 { 1497 vm_offset_t va; 1498 1499 va = sva; 1500 while (count-- > 0) { 1501 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1502 va += PAGE_SIZE; 1503 m++; 1504 } 1505 } 1506 1507 /* 1508 * Remove page mappings from kernel virtual address space. Intended for 1509 * temporary mappings entered by mmu_booke_qenter. 1510 */ 1511 static void 1512 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 1513 { 1514 vm_offset_t va; 1515 1516 va = sva; 1517 while (count-- > 0) { 1518 mmu_booke_kremove(mmu, va); 1519 va += PAGE_SIZE; 1520 } 1521 } 1522 1523 /* 1524 * Map a wired page into kernel virtual address space. 1525 */ 1526 static void 1527 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1528 { 1529 1530 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1531 } 1532 1533 static void 1534 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 1535 { 1536 uint32_t flags; 1537 pte_t *pte; 1538 1539 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1540 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 1541 1542 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 1543 flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT; 1544 flags |= PTE_PS_4KB; 1545 1546 pte = pte_find(mmu, kernel_pmap, va); 1547 1548 mtx_lock_spin(&tlbivax_mutex); 1549 tlb_miss_lock(); 1550 1551 if (PTE_ISVALID(pte)) { 1552 1553 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 1554 1555 /* Flush entry from TLB0 */ 1556 tlb0_flush_entry(va); 1557 } 1558 1559 *pte = PTE_RPN_FROM_PA(pa) | flags; 1560 1561 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 1562 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 1563 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 1564 1565 /* Flush the real memory from the instruction cache. */ 1566 if ((flags & (PTE_I | PTE_G)) == 0) 1567 __syncicache((void *)va, PAGE_SIZE); 1568 1569 tlb_miss_unlock(); 1570 mtx_unlock_spin(&tlbivax_mutex); 1571 } 1572 1573 /* 1574 * Remove a page from kernel page table. 1575 */ 1576 static void 1577 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 1578 { 1579 pte_t *pte; 1580 1581 CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va); 1582 1583 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1584 (va <= VM_MAX_KERNEL_ADDRESS)), 1585 ("mmu_booke_kremove: invalid va")); 1586 1587 pte = pte_find(mmu, kernel_pmap, va); 1588 1589 if (!PTE_ISVALID(pte)) { 1590 1591 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 1592 1593 return; 1594 } 1595 1596 mtx_lock_spin(&tlbivax_mutex); 1597 tlb_miss_lock(); 1598 1599 /* Invalidate entry in TLB0, update PTE. */ 1600 tlb0_flush_entry(va); 1601 *pte = 0; 1602 1603 tlb_miss_unlock(); 1604 mtx_unlock_spin(&tlbivax_mutex); 1605 } 1606 1607 /* 1608 * Initialize pmap associated with process 0. 1609 */ 1610 static void 1611 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 1612 { 1613 1614 PMAP_LOCK_INIT(pmap); 1615 mmu_booke_pinit(mmu, pmap); 1616 PCPU_SET(curpmap, pmap); 1617 } 1618 1619 /* 1620 * Initialize a preallocated and zeroed pmap structure, 1621 * such as one in a vmspace structure. 1622 */ 1623 static void 1624 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 1625 { 1626 int i; 1627 1628 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 1629 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 1630 1631 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 1632 1633 for (i = 0; i < MAXCPU; i++) 1634 pmap->pm_tid[i] = TID_NONE; 1635 CPU_ZERO(&kernel_pmap->pm_active); 1636 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 1637 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 1638 TAILQ_INIT(&pmap->pm_ptbl_list); 1639 } 1640 1641 /* 1642 * Release any resources held by the given physical map. 1643 * Called when a pmap initialized by mmu_booke_pinit is being released. 1644 * Should only be called if the map contains no valid mappings. 1645 */ 1646 static void 1647 mmu_booke_release(mmu_t mmu, pmap_t pmap) 1648 { 1649 1650 KASSERT(pmap->pm_stats.resident_count == 0, 1651 ("pmap_release: pmap resident count %ld != 0", 1652 pmap->pm_stats.resident_count)); 1653 } 1654 1655 /* 1656 * Insert the given physical page at the specified virtual address in the 1657 * target physical map with the protection requested. If specified the page 1658 * will be wired down. 1659 */ 1660 static int 1661 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1662 vm_prot_t prot, u_int flags, int8_t psind) 1663 { 1664 int error; 1665 1666 rw_wlock(&pvh_global_lock); 1667 PMAP_LOCK(pmap); 1668 error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); 1669 rw_wunlock(&pvh_global_lock); 1670 PMAP_UNLOCK(pmap); 1671 return (error); 1672 } 1673 1674 static int 1675 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1676 vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) 1677 { 1678 pte_t *pte; 1679 vm_paddr_t pa; 1680 uint32_t flags; 1681 int error, su, sync; 1682 1683 pa = VM_PAGE_TO_PHYS(m); 1684 su = (pmap == kernel_pmap); 1685 sync = 0; 1686 1687 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 1688 // "pa=0x%08x prot=0x%08x flags=%#x)\n", 1689 // (u_int32_t)pmap, su, pmap->pm_tid, 1690 // (u_int32_t)m, va, pa, prot, flags); 1691 1692 if (su) { 1693 KASSERT(((va >= virtual_avail) && 1694 (va <= VM_MAX_KERNEL_ADDRESS)), 1695 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 1696 } else { 1697 KASSERT((va <= VM_MAXUSER_ADDRESS), 1698 ("mmu_booke_enter_locked: user pmap, non user va")); 1699 } 1700 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 1701 VM_OBJECT_ASSERT_LOCKED(m->object); 1702 1703 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1704 1705 /* 1706 * If there is an existing mapping, and the physical address has not 1707 * changed, must be protection or wiring change. 1708 */ 1709 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 1710 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 1711 1712 /* 1713 * Before actually updating pte->flags we calculate and 1714 * prepare its new value in a helper var. 1715 */ 1716 flags = *pte; 1717 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 1718 1719 /* Wiring change, just update stats. */ 1720 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { 1721 if (!PTE_ISWIRED(pte)) { 1722 flags |= PTE_WIRED; 1723 pmap->pm_stats.wired_count++; 1724 } 1725 } else { 1726 if (PTE_ISWIRED(pte)) { 1727 flags &= ~PTE_WIRED; 1728 pmap->pm_stats.wired_count--; 1729 } 1730 } 1731 1732 if (prot & VM_PROT_WRITE) { 1733 /* Add write permissions. */ 1734 flags |= PTE_SW; 1735 if (!su) 1736 flags |= PTE_UW; 1737 1738 if ((flags & PTE_MANAGED) != 0) 1739 vm_page_aflag_set(m, PGA_WRITEABLE); 1740 } else { 1741 /* Handle modified pages, sense modify status. */ 1742 1743 /* 1744 * The PTE_MODIFIED flag could be set by underlying 1745 * TLB misses since we last read it (above), possibly 1746 * other CPUs could update it so we check in the PTE 1747 * directly rather than rely on that saved local flags 1748 * copy. 1749 */ 1750 if (PTE_ISMODIFIED(pte)) 1751 vm_page_dirty(m); 1752 } 1753 1754 if (prot & VM_PROT_EXECUTE) { 1755 flags |= PTE_SX; 1756 if (!su) 1757 flags |= PTE_UX; 1758 1759 /* 1760 * Check existing flags for execute permissions: if we 1761 * are turning execute permissions on, icache should 1762 * be flushed. 1763 */ 1764 if ((*pte & (PTE_UX | PTE_SX)) == 0) 1765 sync++; 1766 } 1767 1768 flags &= ~PTE_REFERENCED; 1769 1770 /* 1771 * The new flags value is all calculated -- only now actually 1772 * update the PTE. 1773 */ 1774 mtx_lock_spin(&tlbivax_mutex); 1775 tlb_miss_lock(); 1776 1777 tlb0_flush_entry(va); 1778 *pte &= ~PTE_FLAGS_MASK; 1779 *pte |= flags; 1780 1781 tlb_miss_unlock(); 1782 mtx_unlock_spin(&tlbivax_mutex); 1783 1784 } else { 1785 /* 1786 * If there is an existing mapping, but it's for a different 1787 * physical address, pte_enter() will delete the old mapping. 1788 */ 1789 //if ((pte != NULL) && PTE_ISVALID(pte)) 1790 // debugf("mmu_booke_enter_locked: replace\n"); 1791 //else 1792 // debugf("mmu_booke_enter_locked: new\n"); 1793 1794 /* Now set up the flags and install the new mapping. */ 1795 flags = (PTE_SR | PTE_VALID); 1796 flags |= PTE_M; 1797 1798 if (!su) 1799 flags |= PTE_UR; 1800 1801 if (prot & VM_PROT_WRITE) { 1802 flags |= PTE_SW; 1803 if (!su) 1804 flags |= PTE_UW; 1805 1806 if ((m->oflags & VPO_UNMANAGED) == 0) 1807 vm_page_aflag_set(m, PGA_WRITEABLE); 1808 } 1809 1810 if (prot & VM_PROT_EXECUTE) { 1811 flags |= PTE_SX; 1812 if (!su) 1813 flags |= PTE_UX; 1814 } 1815 1816 /* If its wired update stats. */ 1817 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) 1818 flags |= PTE_WIRED; 1819 1820 error = pte_enter(mmu, pmap, m, va, flags, 1821 (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); 1822 if (error != 0) 1823 return (KERN_RESOURCE_SHORTAGE); 1824 1825 if ((flags & PMAP_ENTER_WIRED) != 0) 1826 pmap->pm_stats.wired_count++; 1827 1828 /* Flush the real memory from the instruction cache. */ 1829 if (prot & VM_PROT_EXECUTE) 1830 sync++; 1831 } 1832 1833 if (sync && (su || pmap == PCPU_GET(curpmap))) { 1834 __syncicache((void *)va, PAGE_SIZE); 1835 sync = 0; 1836 } 1837 1838 return (KERN_SUCCESS); 1839 } 1840 1841 /* 1842 * Maps a sequence of resident pages belonging to the same object. 1843 * The sequence begins with the given page m_start. This page is 1844 * mapped at the given virtual address start. Each subsequent page is 1845 * mapped at a virtual address that is offset from start by the same 1846 * amount as the page is offset from m_start within the object. The 1847 * last page in the sequence is the page with the largest offset from 1848 * m_start that can be mapped at a virtual address less than the given 1849 * virtual address end. Not every virtual page between start and end 1850 * is mapped; only those for which a resident page exists with the 1851 * corresponding offset from m_start are mapped. 1852 */ 1853 static void 1854 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 1855 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 1856 { 1857 vm_page_t m; 1858 vm_pindex_t diff, psize; 1859 1860 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1861 1862 psize = atop(end - start); 1863 m = m_start; 1864 rw_wlock(&pvh_global_lock); 1865 PMAP_LOCK(pmap); 1866 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1867 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 1868 prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1869 PMAP_ENTER_NOSLEEP, 0); 1870 m = TAILQ_NEXT(m, listq); 1871 } 1872 rw_wunlock(&pvh_global_lock); 1873 PMAP_UNLOCK(pmap); 1874 } 1875 1876 static void 1877 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1878 vm_prot_t prot) 1879 { 1880 1881 rw_wlock(&pvh_global_lock); 1882 PMAP_LOCK(pmap); 1883 mmu_booke_enter_locked(mmu, pmap, va, m, 1884 prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 1885 0); 1886 rw_wunlock(&pvh_global_lock); 1887 PMAP_UNLOCK(pmap); 1888 } 1889 1890 /* 1891 * Remove the given range of addresses from the specified map. 1892 * 1893 * It is assumed that the start and end are properly rounded to the page size. 1894 */ 1895 static void 1896 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 1897 { 1898 pte_t *pte; 1899 uint8_t hold_flag; 1900 1901 int su = (pmap == kernel_pmap); 1902 1903 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 1904 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 1905 1906 if (su) { 1907 KASSERT(((va >= virtual_avail) && 1908 (va <= VM_MAX_KERNEL_ADDRESS)), 1909 ("mmu_booke_remove: kernel pmap, non kernel va")); 1910 } else { 1911 KASSERT((va <= VM_MAXUSER_ADDRESS), 1912 ("mmu_booke_remove: user pmap, non user va")); 1913 } 1914 1915 if (PMAP_REMOVE_DONE(pmap)) { 1916 //debugf("mmu_booke_remove: e (empty)\n"); 1917 return; 1918 } 1919 1920 hold_flag = PTBL_HOLD_FLAG(pmap); 1921 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 1922 1923 rw_wlock(&pvh_global_lock); 1924 PMAP_LOCK(pmap); 1925 for (; va < endva; va += PAGE_SIZE) { 1926 pte = pte_find(mmu, pmap, va); 1927 if ((pte != NULL) && PTE_ISVALID(pte)) 1928 pte_remove(mmu, pmap, va, hold_flag); 1929 } 1930 PMAP_UNLOCK(pmap); 1931 rw_wunlock(&pvh_global_lock); 1932 1933 //debugf("mmu_booke_remove: e\n"); 1934 } 1935 1936 /* 1937 * Remove physical page from all pmaps in which it resides. 1938 */ 1939 static void 1940 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 1941 { 1942 pv_entry_t pv, pvn; 1943 uint8_t hold_flag; 1944 1945 rw_wlock(&pvh_global_lock); 1946 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 1947 pvn = TAILQ_NEXT(pv, pv_link); 1948 1949 PMAP_LOCK(pv->pv_pmap); 1950 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 1951 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 1952 PMAP_UNLOCK(pv->pv_pmap); 1953 } 1954 vm_page_aflag_clear(m, PGA_WRITEABLE); 1955 rw_wunlock(&pvh_global_lock); 1956 } 1957 1958 /* 1959 * Map a range of physical addresses into kernel virtual address space. 1960 */ 1961 static vm_offset_t 1962 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1963 vm_paddr_t pa_end, int prot) 1964 { 1965 vm_offset_t sva = *virt; 1966 vm_offset_t va = sva; 1967 1968 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 1969 // sva, pa_start, pa_end); 1970 1971 while (pa_start < pa_end) { 1972 mmu_booke_kenter(mmu, va, pa_start); 1973 va += PAGE_SIZE; 1974 pa_start += PAGE_SIZE; 1975 } 1976 *virt = va; 1977 1978 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 1979 return (sva); 1980 } 1981 1982 /* 1983 * The pmap must be activated before it's address space can be accessed in any 1984 * way. 1985 */ 1986 static void 1987 mmu_booke_activate(mmu_t mmu, struct thread *td) 1988 { 1989 pmap_t pmap; 1990 u_int cpuid; 1991 1992 pmap = &td->td_proc->p_vmspace->vm_pmap; 1993 1994 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 1995 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1996 1997 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 1998 1999 sched_pin(); 2000 2001 cpuid = PCPU_GET(cpuid); 2002 CPU_SET_ATOMIC(cpuid, &pmap->pm_active); 2003 PCPU_SET(curpmap, pmap); 2004 2005 if (pmap->pm_tid[cpuid] == TID_NONE) 2006 tid_alloc(pmap); 2007 2008 /* Load PID0 register with pmap tid value. */ 2009 mtspr(SPR_PID0, pmap->pm_tid[cpuid]); 2010 __asm __volatile("isync"); 2011 2012 mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); 2013 2014 sched_unpin(); 2015 2016 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 2017 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 2018 } 2019 2020 /* 2021 * Deactivate the specified process's address space. 2022 */ 2023 static void 2024 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 2025 { 2026 pmap_t pmap; 2027 2028 pmap = &td->td_proc->p_vmspace->vm_pmap; 2029 2030 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 2031 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 2032 2033 td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); 2034 2035 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); 2036 PCPU_SET(curpmap, NULL); 2037 } 2038 2039 /* 2040 * Copy the range specified by src_addr/len 2041 * from the source map to the range dst_addr/len 2042 * in the destination map. 2043 * 2044 * This routine is only advisory and need not do anything. 2045 */ 2046 static void 2047 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 2048 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 2049 { 2050 2051 } 2052 2053 /* 2054 * Set the physical protection on the specified range of this map as requested. 2055 */ 2056 static void 2057 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 2058 vm_prot_t prot) 2059 { 2060 vm_offset_t va; 2061 vm_page_t m; 2062 pte_t *pte; 2063 2064 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2065 mmu_booke_remove(mmu, pmap, sva, eva); 2066 return; 2067 } 2068 2069 if (prot & VM_PROT_WRITE) 2070 return; 2071 2072 PMAP_LOCK(pmap); 2073 for (va = sva; va < eva; va += PAGE_SIZE) { 2074 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2075 if (PTE_ISVALID(pte)) { 2076 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2077 2078 mtx_lock_spin(&tlbivax_mutex); 2079 tlb_miss_lock(); 2080 2081 /* Handle modified pages. */ 2082 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) 2083 vm_page_dirty(m); 2084 2085 tlb0_flush_entry(va); 2086 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2087 2088 tlb_miss_unlock(); 2089 mtx_unlock_spin(&tlbivax_mutex); 2090 } 2091 } 2092 } 2093 PMAP_UNLOCK(pmap); 2094 } 2095 2096 /* 2097 * Clear the write and modified bits in each of the given page's mappings. 2098 */ 2099 static void 2100 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 2101 { 2102 pv_entry_t pv; 2103 pte_t *pte; 2104 2105 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2106 ("mmu_booke_remove_write: page %p is not managed", m)); 2107 2108 /* 2109 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 2110 * set by another thread while the object is locked. Thus, 2111 * if PGA_WRITEABLE is clear, no page table entries need updating. 2112 */ 2113 VM_OBJECT_ASSERT_WLOCKED(m->object); 2114 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 2115 return; 2116 rw_wlock(&pvh_global_lock); 2117 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2118 PMAP_LOCK(pv->pv_pmap); 2119 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2120 if (PTE_ISVALID(pte)) { 2121 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2122 2123 mtx_lock_spin(&tlbivax_mutex); 2124 tlb_miss_lock(); 2125 2126 /* Handle modified pages. */ 2127 if (PTE_ISMODIFIED(pte)) 2128 vm_page_dirty(m); 2129 2130 /* Flush mapping from TLB0. */ 2131 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2132 2133 tlb_miss_unlock(); 2134 mtx_unlock_spin(&tlbivax_mutex); 2135 } 2136 } 2137 PMAP_UNLOCK(pv->pv_pmap); 2138 } 2139 vm_page_aflag_clear(m, PGA_WRITEABLE); 2140 rw_wunlock(&pvh_global_lock); 2141 } 2142 2143 static void 2144 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2145 { 2146 pte_t *pte; 2147 pmap_t pmap; 2148 vm_page_t m; 2149 vm_offset_t addr; 2150 vm_paddr_t pa = 0; 2151 int active, valid; 2152 2153 va = trunc_page(va); 2154 sz = round_page(sz); 2155 2156 rw_wlock(&pvh_global_lock); 2157 pmap = PCPU_GET(curpmap); 2158 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 2159 while (sz > 0) { 2160 PMAP_LOCK(pm); 2161 pte = pte_find(mmu, pm, va); 2162 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2163 if (valid) 2164 pa = PTE_PA(pte); 2165 PMAP_UNLOCK(pm); 2166 if (valid) { 2167 if (!active) { 2168 /* Create a mapping in the active pmap. */ 2169 addr = 0; 2170 m = PHYS_TO_VM_PAGE(pa); 2171 PMAP_LOCK(pmap); 2172 pte_enter(mmu, pmap, m, addr, 2173 PTE_SR | PTE_VALID | PTE_UR, FALSE); 2174 __syncicache((void *)addr, PAGE_SIZE); 2175 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2176 PMAP_UNLOCK(pmap); 2177 } else 2178 __syncicache((void *)va, PAGE_SIZE); 2179 } 2180 va += PAGE_SIZE; 2181 sz -= PAGE_SIZE; 2182 } 2183 rw_wunlock(&pvh_global_lock); 2184 } 2185 2186 /* 2187 * Atomically extract and hold the physical page with the given 2188 * pmap and virtual address pair if that mapping permits the given 2189 * protection. 2190 */ 2191 static vm_page_t 2192 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2193 vm_prot_t prot) 2194 { 2195 pte_t *pte; 2196 vm_page_t m; 2197 uint32_t pte_wbit; 2198 vm_paddr_t pa; 2199 2200 m = NULL; 2201 pa = 0; 2202 PMAP_LOCK(pmap); 2203 retry: 2204 pte = pte_find(mmu, pmap, va); 2205 if ((pte != NULL) && PTE_ISVALID(pte)) { 2206 if (pmap == kernel_pmap) 2207 pte_wbit = PTE_SW; 2208 else 2209 pte_wbit = PTE_UW; 2210 2211 if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2212 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) 2213 goto retry; 2214 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2215 vm_page_hold(m); 2216 } 2217 } 2218 2219 PA_UNLOCK_COND(pa); 2220 PMAP_UNLOCK(pmap); 2221 return (m); 2222 } 2223 2224 /* 2225 * Initialize a vm_page's machine-dependent fields. 2226 */ 2227 static void 2228 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2229 { 2230 2231 TAILQ_INIT(&m->md.pv_list); 2232 } 2233 2234 /* 2235 * mmu_booke_zero_page_area zeros the specified hardware page by 2236 * mapping it into virtual memory and using bzero to clear 2237 * its contents. 2238 * 2239 * off and size must reside within a single page. 2240 */ 2241 static void 2242 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2243 { 2244 vm_offset_t va; 2245 2246 /* XXX KASSERT off and size are within a single page? */ 2247 2248 mtx_lock(&zero_page_mutex); 2249 va = zero_page_va; 2250 2251 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2252 bzero((caddr_t)va + off, size); 2253 mmu_booke_kremove(mmu, va); 2254 2255 mtx_unlock(&zero_page_mutex); 2256 } 2257 2258 /* 2259 * mmu_booke_zero_page zeros the specified hardware page. 2260 */ 2261 static void 2262 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2263 { 2264 vm_offset_t off, va; 2265 2266 mtx_lock(&zero_page_mutex); 2267 va = zero_page_va; 2268 2269 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2270 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 2271 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 2272 mmu_booke_kremove(mmu, va); 2273 2274 mtx_unlock(&zero_page_mutex); 2275 } 2276 2277 /* 2278 * mmu_booke_copy_page copies the specified (machine independent) page by 2279 * mapping the page into virtual memory and using memcopy to copy the page, 2280 * one machine dependent page at a time. 2281 */ 2282 static void 2283 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2284 { 2285 vm_offset_t sva, dva; 2286 2287 sva = copy_page_src_va; 2288 dva = copy_page_dst_va; 2289 2290 mtx_lock(©_page_mutex); 2291 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2292 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2293 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2294 mmu_booke_kremove(mmu, dva); 2295 mmu_booke_kremove(mmu, sva); 2296 mtx_unlock(©_page_mutex); 2297 } 2298 2299 static inline void 2300 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 2301 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 2302 { 2303 void *a_cp, *b_cp; 2304 vm_offset_t a_pg_offset, b_pg_offset; 2305 int cnt; 2306 2307 mtx_lock(©_page_mutex); 2308 while (xfersize > 0) { 2309 a_pg_offset = a_offset & PAGE_MASK; 2310 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 2311 mmu_booke_kenter(mmu, copy_page_src_va, 2312 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 2313 a_cp = (char *)copy_page_src_va + a_pg_offset; 2314 b_pg_offset = b_offset & PAGE_MASK; 2315 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 2316 mmu_booke_kenter(mmu, copy_page_dst_va, 2317 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 2318 b_cp = (char *)copy_page_dst_va + b_pg_offset; 2319 bcopy(a_cp, b_cp, cnt); 2320 mmu_booke_kremove(mmu, copy_page_dst_va); 2321 mmu_booke_kremove(mmu, copy_page_src_va); 2322 a_offset += cnt; 2323 b_offset += cnt; 2324 xfersize -= cnt; 2325 } 2326 mtx_unlock(©_page_mutex); 2327 } 2328 2329 /* 2330 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it 2331 * into virtual memory and using bzero to clear its contents. This is intended 2332 * to be called from the vm_pagezero process only and outside of Giant. No 2333 * lock is required. 2334 */ 2335 static void 2336 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m) 2337 { 2338 vm_offset_t va; 2339 2340 va = zero_page_idle_va; 2341 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2342 bzero((caddr_t)va, PAGE_SIZE); 2343 mmu_booke_kremove(mmu, va); 2344 } 2345 2346 static vm_offset_t 2347 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) 2348 { 2349 vm_paddr_t paddr; 2350 vm_offset_t qaddr; 2351 uint32_t flags; 2352 pte_t *pte; 2353 2354 paddr = VM_PAGE_TO_PHYS(m); 2355 2356 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 2357 flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; 2358 flags |= PTE_PS_4KB; 2359 2360 critical_enter(); 2361 qaddr = PCPU_GET(qmap_addr); 2362 2363 pte = pte_find(mmu, kernel_pmap, qaddr); 2364 2365 KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); 2366 2367 /* 2368 * XXX: tlbivax is broadcast to other cores, but qaddr should 2369 * not be present in other TLBs. Is there a better instruction 2370 * sequence to use? Or just forget it & use mmu_booke_kenter()... 2371 */ 2372 __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); 2373 __asm __volatile("isync; msync"); 2374 2375 *pte = PTE_RPN_FROM_PA(paddr) | flags; 2376 2377 /* Flush the real memory from the instruction cache. */ 2378 if ((flags & (PTE_I | PTE_G)) == 0) 2379 __syncicache((void *)qaddr, PAGE_SIZE); 2380 2381 return (qaddr); 2382 } 2383 2384 static void 2385 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) 2386 { 2387 pte_t *pte; 2388 2389 pte = pte_find(mmu, kernel_pmap, addr); 2390 2391 KASSERT(PCPU_GET(qmap_addr) == addr, 2392 ("mmu_booke_quick_remove_page: invalid address")); 2393 KASSERT(*pte != 0, 2394 ("mmu_booke_quick_remove_page: PTE not in use")); 2395 2396 *pte = 0; 2397 critical_exit(); 2398 } 2399 2400 /* 2401 * Return whether or not the specified physical page was modified 2402 * in any of physical maps. 2403 */ 2404 static boolean_t 2405 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 2406 { 2407 pte_t *pte; 2408 pv_entry_t pv; 2409 boolean_t rv; 2410 2411 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2412 ("mmu_booke_is_modified: page %p is not managed", m)); 2413 rv = FALSE; 2414 2415 /* 2416 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 2417 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 2418 * is clear, no PTEs can be modified. 2419 */ 2420 VM_OBJECT_ASSERT_WLOCKED(m->object); 2421 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 2422 return (rv); 2423 rw_wlock(&pvh_global_lock); 2424 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2425 PMAP_LOCK(pv->pv_pmap); 2426 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2427 PTE_ISVALID(pte)) { 2428 if (PTE_ISMODIFIED(pte)) 2429 rv = TRUE; 2430 } 2431 PMAP_UNLOCK(pv->pv_pmap); 2432 if (rv) 2433 break; 2434 } 2435 rw_wunlock(&pvh_global_lock); 2436 return (rv); 2437 } 2438 2439 /* 2440 * Return whether or not the specified virtual address is eligible 2441 * for prefault. 2442 */ 2443 static boolean_t 2444 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2445 { 2446 2447 return (FALSE); 2448 } 2449 2450 /* 2451 * Return whether or not the specified physical page was referenced 2452 * in any physical maps. 2453 */ 2454 static boolean_t 2455 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 2456 { 2457 pte_t *pte; 2458 pv_entry_t pv; 2459 boolean_t rv; 2460 2461 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2462 ("mmu_booke_is_referenced: page %p is not managed", m)); 2463 rv = FALSE; 2464 rw_wlock(&pvh_global_lock); 2465 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2466 PMAP_LOCK(pv->pv_pmap); 2467 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2468 PTE_ISVALID(pte)) { 2469 if (PTE_ISREFERENCED(pte)) 2470 rv = TRUE; 2471 } 2472 PMAP_UNLOCK(pv->pv_pmap); 2473 if (rv) 2474 break; 2475 } 2476 rw_wunlock(&pvh_global_lock); 2477 return (rv); 2478 } 2479 2480 /* 2481 * Clear the modify bits on the specified physical page. 2482 */ 2483 static void 2484 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 2485 { 2486 pte_t *pte; 2487 pv_entry_t pv; 2488 2489 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2490 ("mmu_booke_clear_modify: page %p is not managed", m)); 2491 VM_OBJECT_ASSERT_WLOCKED(m->object); 2492 KASSERT(!vm_page_xbusied(m), 2493 ("mmu_booke_clear_modify: page %p is exclusive busied", m)); 2494 2495 /* 2496 * If the page is not PG_AWRITEABLE, then no PTEs can be modified. 2497 * If the object containing the page is locked and the page is not 2498 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set. 2499 */ 2500 if ((m->aflags & PGA_WRITEABLE) == 0) 2501 return; 2502 rw_wlock(&pvh_global_lock); 2503 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2504 PMAP_LOCK(pv->pv_pmap); 2505 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2506 PTE_ISVALID(pte)) { 2507 mtx_lock_spin(&tlbivax_mutex); 2508 tlb_miss_lock(); 2509 2510 if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 2511 tlb0_flush_entry(pv->pv_va); 2512 *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 2513 PTE_REFERENCED); 2514 } 2515 2516 tlb_miss_unlock(); 2517 mtx_unlock_spin(&tlbivax_mutex); 2518 } 2519 PMAP_UNLOCK(pv->pv_pmap); 2520 } 2521 rw_wunlock(&pvh_global_lock); 2522 } 2523 2524 /* 2525 * Return a count of reference bits for a page, clearing those bits. 2526 * It is not necessary for every reference bit to be cleared, but it 2527 * is necessary that 0 only be returned when there are truly no 2528 * reference bits set. 2529 * 2530 * XXX: The exact number of bits to check and clear is a matter that 2531 * should be tested and standardized at some point in the future for 2532 * optimal aging of shared pages. 2533 */ 2534 static int 2535 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 2536 { 2537 pte_t *pte; 2538 pv_entry_t pv; 2539 int count; 2540 2541 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2542 ("mmu_booke_ts_referenced: page %p is not managed", m)); 2543 count = 0; 2544 rw_wlock(&pvh_global_lock); 2545 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2546 PMAP_LOCK(pv->pv_pmap); 2547 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2548 PTE_ISVALID(pte)) { 2549 if (PTE_ISREFERENCED(pte)) { 2550 mtx_lock_spin(&tlbivax_mutex); 2551 tlb_miss_lock(); 2552 2553 tlb0_flush_entry(pv->pv_va); 2554 *pte &= ~PTE_REFERENCED; 2555 2556 tlb_miss_unlock(); 2557 mtx_unlock_spin(&tlbivax_mutex); 2558 2559 if (++count > 4) { 2560 PMAP_UNLOCK(pv->pv_pmap); 2561 break; 2562 } 2563 } 2564 } 2565 PMAP_UNLOCK(pv->pv_pmap); 2566 } 2567 rw_wunlock(&pvh_global_lock); 2568 return (count); 2569 } 2570 2571 /* 2572 * Clear the wired attribute from the mappings for the specified range of 2573 * addresses in the given pmap. Every valid mapping within that range must 2574 * have the wired attribute set. In contrast, invalid mappings cannot have 2575 * the wired attribute set, so they are ignored. 2576 * 2577 * The wired attribute of the page table entry is not a hardware feature, so 2578 * there is no need to invalidate any TLB entries. 2579 */ 2580 static void 2581 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) 2582 { 2583 vm_offset_t va; 2584 pte_t *pte; 2585 2586 PMAP_LOCK(pmap); 2587 for (va = sva; va < eva; va += PAGE_SIZE) { 2588 if ((pte = pte_find(mmu, pmap, va)) != NULL && 2589 PTE_ISVALID(pte)) { 2590 if (!PTE_ISWIRED(pte)) 2591 panic("mmu_booke_unwire: pte %p isn't wired", 2592 pte); 2593 *pte &= ~PTE_WIRED; 2594 pmap->pm_stats.wired_count--; 2595 } 2596 } 2597 PMAP_UNLOCK(pmap); 2598 2599 } 2600 2601 /* 2602 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 2603 * page. This count may be changed upwards or downwards in the future; it is 2604 * only necessary that true be returned for a small subset of pmaps for proper 2605 * page aging. 2606 */ 2607 static boolean_t 2608 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 2609 { 2610 pv_entry_t pv; 2611 int loops; 2612 boolean_t rv; 2613 2614 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2615 ("mmu_booke_page_exists_quick: page %p is not managed", m)); 2616 loops = 0; 2617 rv = FALSE; 2618 rw_wlock(&pvh_global_lock); 2619 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2620 if (pv->pv_pmap == pmap) { 2621 rv = TRUE; 2622 break; 2623 } 2624 if (++loops >= 16) 2625 break; 2626 } 2627 rw_wunlock(&pvh_global_lock); 2628 return (rv); 2629 } 2630 2631 /* 2632 * Return the number of managed mappings to the given physical page that are 2633 * wired. 2634 */ 2635 static int 2636 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 2637 { 2638 pv_entry_t pv; 2639 pte_t *pte; 2640 int count = 0; 2641 2642 if ((m->oflags & VPO_UNMANAGED) != 0) 2643 return (count); 2644 rw_wlock(&pvh_global_lock); 2645 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2646 PMAP_LOCK(pv->pv_pmap); 2647 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 2648 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 2649 count++; 2650 PMAP_UNLOCK(pv->pv_pmap); 2651 } 2652 rw_wunlock(&pvh_global_lock); 2653 return (count); 2654 } 2655 2656 static int 2657 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2658 { 2659 int i; 2660 vm_offset_t va; 2661 2662 /* 2663 * This currently does not work for entries that 2664 * overlap TLB1 entries. 2665 */ 2666 for (i = 0; i < TLB1_ENTRIES; i ++) { 2667 if (tlb1_iomapped(i, pa, size, &va) == 0) 2668 return (0); 2669 } 2670 2671 return (EFAULT); 2672 } 2673 2674 void 2675 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) 2676 { 2677 vm_paddr_t ppa; 2678 vm_offset_t ofs; 2679 vm_size_t gran; 2680 2681 /* Minidumps are based on virtual memory addresses. */ 2682 if (do_minidump) { 2683 *va = (void *)(vm_offset_t)pa; 2684 return; 2685 } 2686 2687 /* Raw physical memory dumps don't have a virtual address. */ 2688 /* We always map a 256MB page at 256M. */ 2689 gran = 256 * 1024 * 1024; 2690 ppa = rounddown2(pa, gran); 2691 ofs = pa - ppa; 2692 *va = (void *)gran; 2693 tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); 2694 2695 if (sz > (gran - ofs)) 2696 tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, 2697 _TLB_ENTRY_IO); 2698 } 2699 2700 void 2701 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) 2702 { 2703 vm_paddr_t ppa; 2704 vm_offset_t ofs; 2705 vm_size_t gran; 2706 tlb_entry_t e; 2707 int i; 2708 2709 /* Minidumps are based on virtual memory addresses. */ 2710 /* Nothing to do... */ 2711 if (do_minidump) 2712 return; 2713 2714 for (i = 0; i < TLB1_ENTRIES; i++) { 2715 tlb1_read_entry(&e, i); 2716 if (!(e.mas1 & MAS1_VALID)) 2717 break; 2718 } 2719 2720 /* Raw physical memory dumps don't have a virtual address. */ 2721 i--; 2722 e.mas1 = 0; 2723 e.mas2 = 0; 2724 e.mas3 = 0; 2725 tlb1_write_entry(&e, i); 2726 2727 gran = 256 * 1024 * 1024; 2728 ppa = rounddown2(pa, gran); 2729 ofs = pa - ppa; 2730 if (sz > (gran - ofs)) { 2731 i--; 2732 e.mas1 = 0; 2733 e.mas2 = 0; 2734 e.mas3 = 0; 2735 tlb1_write_entry(&e, i); 2736 } 2737 } 2738 2739 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 2740 2741 void 2742 mmu_booke_scan_init(mmu_t mmu) 2743 { 2744 vm_offset_t va; 2745 pte_t *pte; 2746 int i; 2747 2748 if (!do_minidump) { 2749 /* Initialize phys. segments for dumpsys(). */ 2750 memset(&dump_map, 0, sizeof(dump_map)); 2751 mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, 2752 &availmem_regions_sz); 2753 for (i = 0; i < physmem_regions_sz; i++) { 2754 dump_map[i].pa_start = physmem_regions[i].mr_start; 2755 dump_map[i].pa_size = physmem_regions[i].mr_size; 2756 } 2757 return; 2758 } 2759 2760 /* Virtual segments for minidumps: */ 2761 memset(&dump_map, 0, sizeof(dump_map)); 2762 2763 /* 1st: kernel .data and .bss. */ 2764 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 2765 dump_map[0].pa_size = 2766 round_page((uintptr_t)_end) - dump_map[0].pa_start; 2767 2768 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2769 dump_map[1].pa_start = data_start; 2770 dump_map[1].pa_size = data_end - data_start; 2771 2772 /* 3rd: kernel VM. */ 2773 va = dump_map[1].pa_start + dump_map[1].pa_size; 2774 /* Find start of next chunk (from va). */ 2775 while (va < virtual_end) { 2776 /* Don't dump the buffer cache. */ 2777 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 2778 va = kmi.buffer_eva; 2779 continue; 2780 } 2781 pte = pte_find(mmu, kernel_pmap, va); 2782 if (pte != NULL && PTE_ISVALID(pte)) 2783 break; 2784 va += PAGE_SIZE; 2785 } 2786 if (va < virtual_end) { 2787 dump_map[2].pa_start = va; 2788 va += PAGE_SIZE; 2789 /* Find last page in chunk. */ 2790 while (va < virtual_end) { 2791 /* Don't run into the buffer cache. */ 2792 if (va == kmi.buffer_sva) 2793 break; 2794 pte = pte_find(mmu, kernel_pmap, va); 2795 if (pte == NULL || !PTE_ISVALID(pte)) 2796 break; 2797 va += PAGE_SIZE; 2798 } 2799 dump_map[2].pa_size = va - dump_map[2].pa_start; 2800 } 2801 } 2802 2803 /* 2804 * Map a set of physical memory pages into the kernel virtual address space. 2805 * Return a pointer to where it is mapped. This routine is intended to be used 2806 * for mapping device memory, NOT real memory. 2807 */ 2808 static void * 2809 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2810 { 2811 2812 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); 2813 } 2814 2815 static void * 2816 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 2817 { 2818 tlb_entry_t e; 2819 void *res; 2820 uintptr_t va, tmpva; 2821 vm_size_t sz; 2822 int i; 2823 2824 /* 2825 * Check if this is premapped in TLB1. Note: this should probably also 2826 * check whether a sequence of TLB1 entries exist that match the 2827 * requirement, but now only checks the easy case. 2828 */ 2829 if (ma == VM_MEMATTR_DEFAULT) { 2830 for (i = 0; i < TLB1_ENTRIES; i++) { 2831 tlb1_read_entry(&e, i); 2832 if (!(e.mas1 & MAS1_VALID)) 2833 continue; 2834 if (pa >= e.phys && 2835 (pa + size) <= (e.phys + e.size)) 2836 return (void *)(e.virt + 2837 (vm_offset_t)(pa - e.phys)); 2838 } 2839 } 2840 2841 size = roundup(size, PAGE_SIZE); 2842 2843 /* 2844 * The device mapping area is between VM_MAXUSER_ADDRESS and 2845 * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing. 2846 */ 2847 #ifdef SPARSE_MAPDEV 2848 /* 2849 * With a sparse mapdev, align to the largest starting region. This 2850 * could feasibly be optimized for a 'best-fit' alignment, but that 2851 * calculation could be very costly. 2852 */ 2853 do { 2854 tmpva = tlb1_map_base; 2855 va = roundup(tlb1_map_base, 1 << flsl(size)); 2856 } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size)); 2857 #else 2858 va = atomic_fetchadd_int(&tlb1_map_base, size); 2859 #endif 2860 res = (void *)va; 2861 2862 do { 2863 sz = 1 << (ilog2(size) & ~1); 2864 if (va % sz != 0) { 2865 do { 2866 sz >>= 2; 2867 } while (va % sz != 0); 2868 } 2869 if (bootverbose) 2870 printf("Wiring VA=%x to PA=%jx (size=%x)\n", 2871 va, (uintmax_t)pa, sz); 2872 tlb1_set_entry(va, pa, sz, 2873 _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)); 2874 size -= sz; 2875 pa += sz; 2876 va += sz; 2877 } while (size > 0); 2878 2879 return (res); 2880 } 2881 2882 /* 2883 * 'Unmap' a range mapped by mmu_booke_mapdev(). 2884 */ 2885 static void 2886 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2887 { 2888 #ifdef SUPPORTS_SHRINKING_TLB1 2889 vm_offset_t base, offset; 2890 2891 /* 2892 * Unmap only if this is inside kernel virtual space. 2893 */ 2894 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 2895 base = trunc_page(va); 2896 offset = va & PAGE_MASK; 2897 size = roundup(offset + size, PAGE_SIZE); 2898 kva_free(base, size); 2899 } 2900 #endif 2901 } 2902 2903 /* 2904 * mmu_booke_object_init_pt preloads the ptes for a given object into the 2905 * specified pmap. This eliminates the blast of soft faults on process startup 2906 * and immediately after an mmap. 2907 */ 2908 static void 2909 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2910 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 2911 { 2912 2913 VM_OBJECT_ASSERT_WLOCKED(object); 2914 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 2915 ("mmu_booke_object_init_pt: non-device object")); 2916 } 2917 2918 /* 2919 * Perform the pmap work for mincore. 2920 */ 2921 static int 2922 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2923 vm_paddr_t *locked_pa) 2924 { 2925 2926 /* XXX: this should be implemented at some point */ 2927 return (0); 2928 } 2929 2930 static int 2931 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, 2932 vm_memattr_t mode) 2933 { 2934 vm_offset_t va; 2935 pte_t *pte; 2936 int i, j; 2937 tlb_entry_t e; 2938 2939 /* Check TLB1 mappings */ 2940 for (i = 0; i < TLB1_ENTRIES; i++) { 2941 tlb1_read_entry(&e, i); 2942 if (!(e.mas1 & MAS1_VALID)) 2943 continue; 2944 if (addr >= e.virt && addr < e.virt + e.size) 2945 break; 2946 } 2947 if (i < TLB1_ENTRIES) { 2948 /* Only allow full mappings to be modified for now. */ 2949 /* Validate the range. */ 2950 for (j = i, va = addr; va < addr + sz; va += e.size, j++) { 2951 tlb1_read_entry(&e, j); 2952 if (va != e.virt || (sz - (va - addr) < e.size)) 2953 return (EINVAL); 2954 } 2955 for (va = addr; va < addr + sz; va += e.size, i++) { 2956 tlb1_read_entry(&e, i); 2957 e.mas2 &= ~MAS2_WIMGE_MASK; 2958 e.mas2 |= tlb_calc_wimg(e.phys, mode); 2959 2960 /* 2961 * Write it out to the TLB. Should really re-sync with other 2962 * cores. 2963 */ 2964 tlb1_write_entry(&e, i); 2965 } 2966 return (0); 2967 } 2968 2969 /* Not in TLB1, try through pmap */ 2970 /* First validate the range. */ 2971 for (va = addr; va < addr + sz; va += PAGE_SIZE) { 2972 pte = pte_find(mmu, kernel_pmap, va); 2973 if (pte == NULL || !PTE_ISVALID(pte)) 2974 return (EINVAL); 2975 } 2976 2977 mtx_lock_spin(&tlbivax_mutex); 2978 tlb_miss_lock(); 2979 for (va = addr; va < addr + sz; va += PAGE_SIZE) { 2980 pte = pte_find(mmu, kernel_pmap, va); 2981 *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT); 2982 *pte |= tlb_calc_wimg(PTE_PA(pte), mode << PTE_MAS2_SHIFT); 2983 tlb0_flush_entry(va); 2984 } 2985 tlb_miss_unlock(); 2986 mtx_unlock_spin(&tlbivax_mutex); 2987 2988 return (pte_vatopa(mmu, kernel_pmap, va)); 2989 } 2990 2991 /**************************************************************************/ 2992 /* TID handling */ 2993 /**************************************************************************/ 2994 2995 /* 2996 * Allocate a TID. If necessary, steal one from someone else. 2997 * The new TID is flushed from the TLB before returning. 2998 */ 2999 static tlbtid_t 3000 tid_alloc(pmap_t pmap) 3001 { 3002 tlbtid_t tid; 3003 int thiscpu; 3004 3005 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 3006 3007 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 3008 3009 thiscpu = PCPU_GET(cpuid); 3010 3011 tid = PCPU_GET(tid_next); 3012 if (tid > TID_MAX) 3013 tid = TID_MIN; 3014 PCPU_SET(tid_next, tid + 1); 3015 3016 /* If we are stealing TID then clear the relevant pmap's field */ 3017 if (tidbusy[thiscpu][tid] != NULL) { 3018 3019 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 3020 3021 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 3022 3023 /* Flush all entries from TLB0 matching this TID. */ 3024 tid_flush(tid); 3025 } 3026 3027 tidbusy[thiscpu][tid] = pmap; 3028 pmap->pm_tid[thiscpu] = tid; 3029 __asm __volatile("msync; isync"); 3030 3031 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 3032 PCPU_GET(tid_next)); 3033 3034 return (tid); 3035 } 3036 3037 /**************************************************************************/ 3038 /* TLB0 handling */ 3039 /**************************************************************************/ 3040 3041 static void 3042 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 3043 uint32_t mas7) 3044 { 3045 int as; 3046 char desc[3]; 3047 tlbtid_t tid; 3048 vm_size_t size; 3049 unsigned int tsize; 3050 3051 desc[2] = '\0'; 3052 if (mas1 & MAS1_VALID) 3053 desc[0] = 'V'; 3054 else 3055 desc[0] = ' '; 3056 3057 if (mas1 & MAS1_IPROT) 3058 desc[1] = 'P'; 3059 else 3060 desc[1] = ' '; 3061 3062 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 3063 tid = MAS1_GETTID(mas1); 3064 3065 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3066 size = 0; 3067 if (tsize) 3068 size = tsize2size(tsize); 3069 3070 debugf("%3d: (%s) [AS=%d] " 3071 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 3072 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", 3073 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 3074 } 3075 3076 /* Convert TLB0 va and way number to tlb0[] table index. */ 3077 static inline unsigned int 3078 tlb0_tableidx(vm_offset_t va, unsigned int way) 3079 { 3080 unsigned int idx; 3081 3082 idx = (way * TLB0_ENTRIES_PER_WAY); 3083 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 3084 return (idx); 3085 } 3086 3087 /* 3088 * Invalidate TLB0 entry. 3089 */ 3090 static inline void 3091 tlb0_flush_entry(vm_offset_t va) 3092 { 3093 3094 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 3095 3096 mtx_assert(&tlbivax_mutex, MA_OWNED); 3097 3098 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 3099 __asm __volatile("isync; msync"); 3100 __asm __volatile("tlbsync; msync"); 3101 3102 CTR1(KTR_PMAP, "%s: e", __func__); 3103 } 3104 3105 /* Print out contents of the MAS registers for each TLB0 entry */ 3106 void 3107 tlb0_print_tlbentries(void) 3108 { 3109 uint32_t mas0, mas1, mas2, mas3, mas7; 3110 int entryidx, way, idx; 3111 3112 debugf("TLB0 entries:\n"); 3113 for (way = 0; way < TLB0_WAYS; way ++) 3114 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 3115 3116 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 3117 mtspr(SPR_MAS0, mas0); 3118 __asm __volatile("isync"); 3119 3120 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 3121 mtspr(SPR_MAS2, mas2); 3122 3123 __asm __volatile("isync; tlbre"); 3124 3125 mas1 = mfspr(SPR_MAS1); 3126 mas2 = mfspr(SPR_MAS2); 3127 mas3 = mfspr(SPR_MAS3); 3128 mas7 = mfspr(SPR_MAS7); 3129 3130 idx = tlb0_tableidx(mas2, way); 3131 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 3132 } 3133 } 3134 3135 /**************************************************************************/ 3136 /* TLB1 handling */ 3137 /**************************************************************************/ 3138 3139 /* 3140 * TLB1 mapping notes: 3141 * 3142 * TLB1[0] Kernel text and data. 3143 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI 3144 * windows, other devices mappings. 3145 */ 3146 3147 /* 3148 * Read an entry from given TLB1 slot. 3149 */ 3150 void 3151 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot) 3152 { 3153 uint32_t mas0; 3154 3155 KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__)); 3156 3157 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot); 3158 mtspr(SPR_MAS0, mas0); 3159 __asm __volatile("isync; tlbre"); 3160 3161 entry->mas1 = mfspr(SPR_MAS1); 3162 entry->mas2 = mfspr(SPR_MAS2); 3163 entry->mas3 = mfspr(SPR_MAS3); 3164 3165 switch ((mfpvr() >> 16) & 0xFFFF) { 3166 case FSL_E500v2: 3167 case FSL_E500mc: 3168 case FSL_E5500: 3169 entry->mas7 = mfspr(SPR_MAS7); 3170 break; 3171 default: 3172 entry->mas7 = 0; 3173 break; 3174 } 3175 3176 entry->virt = entry->mas2 & MAS2_EPN_MASK; 3177 entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) | 3178 (entry->mas3 & MAS3_RPN); 3179 entry->size = 3180 tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT); 3181 } 3182 3183 /* 3184 * Write given entry to TLB1 hardware. 3185 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 3186 */ 3187 static void 3188 tlb1_write_entry(tlb_entry_t *e, unsigned int idx) 3189 { 3190 uint32_t mas0; 3191 3192 //debugf("tlb1_write_entry: s\n"); 3193 3194 /* Select entry */ 3195 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 3196 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 3197 3198 mtspr(SPR_MAS0, mas0); 3199 __asm __volatile("isync"); 3200 mtspr(SPR_MAS1, e->mas1); 3201 __asm __volatile("isync"); 3202 mtspr(SPR_MAS2, e->mas2); 3203 __asm __volatile("isync"); 3204 mtspr(SPR_MAS3, e->mas3); 3205 __asm __volatile("isync"); 3206 switch ((mfpvr() >> 16) & 0xFFFF) { 3207 case FSL_E500mc: 3208 case FSL_E5500: 3209 mtspr(SPR_MAS8, 0); 3210 __asm __volatile("isync"); 3211 /* FALLTHROUGH */ 3212 case FSL_E500v2: 3213 mtspr(SPR_MAS7, e->mas7); 3214 __asm __volatile("isync"); 3215 break; 3216 default: 3217 break; 3218 } 3219 3220 __asm __volatile("tlbwe; isync; msync"); 3221 3222 //debugf("tlb1_write_entry: e\n"); 3223 } 3224 3225 /* 3226 * Return the largest uint value log such that 2^log <= num. 3227 */ 3228 static unsigned int 3229 ilog2(unsigned int num) 3230 { 3231 int lz; 3232 3233 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 3234 return (31 - lz); 3235 } 3236 3237 /* 3238 * Convert TLB TSIZE value to mapped region size. 3239 */ 3240 static vm_size_t 3241 tsize2size(unsigned int tsize) 3242 { 3243 3244 /* 3245 * size = 4^tsize KB 3246 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 3247 */ 3248 3249 return ((1 << (2 * tsize)) * 1024); 3250 } 3251 3252 /* 3253 * Convert region size (must be power of 4) to TLB TSIZE value. 3254 */ 3255 static unsigned int 3256 size2tsize(vm_size_t size) 3257 { 3258 3259 return (ilog2(size) / 2 - 5); 3260 } 3261 3262 /* 3263 * Register permanent kernel mapping in TLB1. 3264 * 3265 * Entries are created starting from index 0 (current free entry is 3266 * kept in tlb1_idx) and are not supposed to be invalidated. 3267 */ 3268 int 3269 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size, 3270 uint32_t flags) 3271 { 3272 tlb_entry_t e; 3273 uint32_t ts, tid; 3274 int tsize, index; 3275 3276 for (index = 0; index < TLB1_ENTRIES; index++) { 3277 tlb1_read_entry(&e, index); 3278 if ((e.mas1 & MAS1_VALID) == 0) 3279 break; 3280 /* Check if we're just updating the flags, and update them. */ 3281 if (e.phys == pa && e.virt == va && e.size == size) { 3282 e.mas2 = (va & MAS2_EPN_MASK) | flags; 3283 tlb1_write_entry(&e, index); 3284 return (0); 3285 } 3286 } 3287 if (index >= TLB1_ENTRIES) { 3288 printf("tlb1_set_entry: TLB1 full!\n"); 3289 return (-1); 3290 } 3291 3292 /* Convert size to TSIZE */ 3293 tsize = size2tsize(size); 3294 3295 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 3296 /* XXX TS is hard coded to 0 for now as we only use single address space */ 3297 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 3298 3299 e.phys = pa; 3300 e.virt = va; 3301 e.size = size; 3302 e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 3303 e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 3304 e.mas2 = (va & MAS2_EPN_MASK) | flags; 3305 3306 /* Set supervisor RWX permission bits */ 3307 e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 3308 e.mas7 = (pa >> 32) & MAS7_RPN; 3309 3310 tlb1_write_entry(&e, index); 3311 3312 /* 3313 * XXX in general TLB1 updates should be propagated between CPUs, 3314 * since current design assumes to have the same TLB1 set-up on all 3315 * cores. 3316 */ 3317 return (0); 3318 } 3319 3320 /* 3321 * Map in contiguous RAM region into the TLB1 using maximum of 3322 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 3323 * 3324 * If necessary round up last entry size and return total size 3325 * used by all allocated entries. 3326 */ 3327 vm_size_t 3328 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) 3329 { 3330 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; 3331 vm_size_t mapped, pgsz, base, mask; 3332 int idx, nents; 3333 3334 /* Round up to the next 1M */ 3335 size = roundup2(size, 1 << 20); 3336 3337 mapped = 0; 3338 idx = 0; 3339 base = va; 3340 pgsz = 64*1024*1024; 3341 while (mapped < size) { 3342 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { 3343 while (pgsz > (size - mapped)) 3344 pgsz >>= 2; 3345 pgs[idx++] = pgsz; 3346 mapped += pgsz; 3347 } 3348 3349 /* We under-map. Correct for this. */ 3350 if (mapped < size) { 3351 while (pgs[idx - 1] == pgsz) { 3352 idx--; 3353 mapped -= pgsz; 3354 } 3355 /* XXX We may increase beyond out starting point. */ 3356 pgsz <<= 2; 3357 pgs[idx++] = pgsz; 3358 mapped += pgsz; 3359 } 3360 } 3361 3362 nents = idx; 3363 mask = pgs[0] - 1; 3364 /* Align address to the boundary */ 3365 if (va & mask) { 3366 va = (va + mask) & ~mask; 3367 pa = (pa + mask) & ~mask; 3368 } 3369 3370 for (idx = 0; idx < nents; idx++) { 3371 pgsz = pgs[idx]; 3372 debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz); 3373 tlb1_set_entry(va, pa, pgsz, 3374 _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM); 3375 pa += pgsz; 3376 va += pgsz; 3377 } 3378 3379 mapped = (va - base); 3380 #ifdef __powerpc64__ 3381 printf("mapped size 0x%016lx (wasted space 0x%16lx)\n", 3382 #else 3383 printf("mapped size 0x%08x (wasted space 0x%08x)\n", 3384 #endif 3385 mapped, mapped - size); 3386 return (mapped); 3387 } 3388 3389 /* 3390 * TLB1 initialization routine, to be called after the very first 3391 * assembler level setup done in locore.S. 3392 */ 3393 void 3394 tlb1_init() 3395 { 3396 uint32_t mas0, mas1, mas2, mas3, mas7; 3397 uint32_t tsz; 3398 3399 tlb1_get_tlbconf(); 3400 3401 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0); 3402 mtspr(SPR_MAS0, mas0); 3403 __asm __volatile("isync; tlbre"); 3404 3405 mas1 = mfspr(SPR_MAS1); 3406 mas2 = mfspr(SPR_MAS2); 3407 mas3 = mfspr(SPR_MAS3); 3408 mas7 = mfspr(SPR_MAS7); 3409 3410 kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) | 3411 (mas3 & MAS3_RPN); 3412 3413 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3414 kernsize += (tsz > 0) ? tsize2size(tsz) : 0; 3415 3416 /* Setup TLB miss defaults */ 3417 set_mas4_defaults(); 3418 } 3419 3420 vm_offset_t 3421 pmap_early_io_map(vm_paddr_t pa, vm_size_t size) 3422 { 3423 vm_paddr_t pa_base; 3424 vm_offset_t va, sz; 3425 int i; 3426 tlb_entry_t e; 3427 3428 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); 3429 3430 for (i = 0; i < TLB1_ENTRIES; i++) { 3431 tlb1_read_entry(&e, i); 3432 if (!(e.mas1 & MAS1_VALID)) 3433 continue; 3434 if (pa >= e.phys && (pa + size) <= 3435 (e.phys + e.size)) 3436 return (e.virt + (pa - e.phys)); 3437 } 3438 3439 pa_base = rounddown(pa, PAGE_SIZE); 3440 size = roundup(size + (pa - pa_base), PAGE_SIZE); 3441 tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); 3442 va = tlb1_map_base + (pa - pa_base); 3443 3444 do { 3445 sz = 1 << (ilog2(size) & ~1); 3446 tlb1_set_entry(tlb1_map_base, pa_base, sz, 3447 _TLB_ENTRY_SHARED | _TLB_ENTRY_IO); 3448 size -= sz; 3449 pa_base += sz; 3450 tlb1_map_base += sz; 3451 } while (size > 0); 3452 3453 return (va); 3454 } 3455 3456 /* 3457 * Setup MAS4 defaults. 3458 * These values are loaded to MAS0-2 on a TLB miss. 3459 */ 3460 static void 3461 set_mas4_defaults(void) 3462 { 3463 uint32_t mas4; 3464 3465 /* Defaults: TLB0, PID0, TSIZED=4K */ 3466 mas4 = MAS4_TLBSELD0; 3467 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 3468 #ifdef SMP 3469 mas4 |= MAS4_MD; 3470 #endif 3471 mtspr(SPR_MAS4, mas4); 3472 __asm __volatile("isync"); 3473 } 3474 3475 /* 3476 * Print out contents of the MAS registers for each TLB1 entry 3477 */ 3478 void 3479 tlb1_print_tlbentries(void) 3480 { 3481 uint32_t mas0, mas1, mas2, mas3, mas7; 3482 int i; 3483 3484 debugf("TLB1 entries:\n"); 3485 for (i = 0; i < TLB1_ENTRIES; i++) { 3486 3487 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3488 mtspr(SPR_MAS0, mas0); 3489 3490 __asm __volatile("isync; tlbre"); 3491 3492 mas1 = mfspr(SPR_MAS1); 3493 mas2 = mfspr(SPR_MAS2); 3494 mas3 = mfspr(SPR_MAS3); 3495 mas7 = mfspr(SPR_MAS7); 3496 3497 tlb_print_entry(i, mas1, mas2, mas3, mas7); 3498 } 3499 } 3500 3501 /* 3502 * Return 0 if the physical IO range is encompassed by one of the 3503 * the TLB1 entries, otherwise return related error code. 3504 */ 3505 static int 3506 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 3507 { 3508 uint32_t prot; 3509 vm_paddr_t pa_start; 3510 vm_paddr_t pa_end; 3511 unsigned int entry_tsize; 3512 vm_size_t entry_size; 3513 tlb_entry_t e; 3514 3515 *va = (vm_offset_t)NULL; 3516 3517 tlb1_read_entry(&e, i); 3518 /* Skip invalid entries */ 3519 if (!(e.mas1 & MAS1_VALID)) 3520 return (EINVAL); 3521 3522 /* 3523 * The entry must be cache-inhibited, guarded, and r/w 3524 * so it can function as an i/o page 3525 */ 3526 prot = e.mas2 & (MAS2_I | MAS2_G); 3527 if (prot != (MAS2_I | MAS2_G)) 3528 return (EPERM); 3529 3530 prot = e.mas3 & (MAS3_SR | MAS3_SW); 3531 if (prot != (MAS3_SR | MAS3_SW)) 3532 return (EPERM); 3533 3534 /* The address should be within the entry range. */ 3535 entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3536 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 3537 3538 entry_size = tsize2size(entry_tsize); 3539 pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | 3540 (e.mas3 & MAS3_RPN); 3541 pa_end = pa_start + entry_size; 3542 3543 if ((pa < pa_start) || ((pa + size) > pa_end)) 3544 return (ERANGE); 3545 3546 /* Return virtual address of this mapping. */ 3547 *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start); 3548 return (0); 3549 } 3550 3551 /* 3552 * Invalidate all TLB0 entries which match the given TID. Note this is 3553 * dedicated for cases when invalidations should NOT be propagated to other 3554 * CPUs. 3555 */ 3556 static void 3557 tid_flush(tlbtid_t tid) 3558 { 3559 register_t msr; 3560 uint32_t mas0, mas1, mas2; 3561 int entry, way; 3562 3563 3564 /* Don't evict kernel translations */ 3565 if (tid == TID_KERNEL) 3566 return; 3567 3568 msr = mfmsr(); 3569 __asm __volatile("wrteei 0"); 3570 3571 for (way = 0; way < TLB0_WAYS; way++) 3572 for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { 3573 3574 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 3575 mtspr(SPR_MAS0, mas0); 3576 __asm __volatile("isync"); 3577 3578 mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; 3579 mtspr(SPR_MAS2, mas2); 3580 3581 __asm __volatile("isync; tlbre"); 3582 3583 mas1 = mfspr(SPR_MAS1); 3584 3585 if (!(mas1 & MAS1_VALID)) 3586 continue; 3587 if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) 3588 continue; 3589 mas1 &= ~MAS1_VALID; 3590 mtspr(SPR_MAS1, mas1); 3591 __asm __volatile("isync; tlbwe; isync; msync"); 3592 } 3593 mtmsr(msr); 3594 } 3595