xref: /freebsd/sys/powerpc/booke/pmap.c (revision e9b148a3185f41e3a09e91ea75cae7828d908845)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ddb.h"
80 #include "opt_kstack_pages.h"
81 
82 #include <sys/param.h>
83 #include <sys/conf.h>
84 #include <sys/malloc.h>
85 #include <sys/ktr.h>
86 #include <sys/proc.h>
87 #include <sys/user.h>
88 #include <sys/queue.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/kerneldump.h>
92 #include <sys/linker.h>
93 #include <sys/msgbuf.h>
94 #include <sys/lock.h>
95 #include <sys/mutex.h>
96 #include <sys/rwlock.h>
97 #include <sys/sched.h>
98 #include <sys/smp.h>
99 #include <sys/vmmeter.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/vm_pagequeue.h>
112 #include <vm/uma.h>
113 
114 #include <machine/_inttypes.h>
115 #include <machine/cpu.h>
116 #include <machine/pcb.h>
117 #include <machine/platform.h>
118 
119 #include <machine/tlb.h>
120 #include <machine/spr.h>
121 #include <machine/md_var.h>
122 #include <machine/mmuvar.h>
123 #include <machine/pmap.h>
124 #include <machine/pte.h>
125 
126 #include <ddb/ddb.h>
127 
128 #include "mmu_if.h"
129 
130 #define	SPARSE_MAPDEV
131 #ifdef  DEBUG
132 #define debugf(fmt, args...) printf(fmt, ##args)
133 #else
134 #define debugf(fmt, args...)
135 #endif
136 
137 #ifdef __powerpc64__
138 #define	PRI0ptrX	"016lx"
139 #else
140 #define	PRI0ptrX	"08x"
141 #endif
142 
143 #define TODO			panic("%s: not implemented", __func__);
144 
145 extern unsigned char _etext[];
146 extern unsigned char _end[];
147 
148 extern uint32_t *bootinfo;
149 
150 vm_paddr_t kernload;
151 vm_offset_t kernstart;
152 vm_size_t kernsize;
153 
154 /* Message buffer and tables. */
155 static vm_offset_t data_start;
156 static vm_size_t data_end;
157 
158 /* Phys/avail memory regions. */
159 static struct mem_region *availmem_regions;
160 static int availmem_regions_sz;
161 static struct mem_region *physmem_regions;
162 static int physmem_regions_sz;
163 
164 #ifndef __powerpc64__
165 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
166 static vm_offset_t zero_page_va;
167 static struct mtx zero_page_mutex;
168 
169 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
170 static vm_offset_t copy_page_src_va;
171 static vm_offset_t copy_page_dst_va;
172 static struct mtx copy_page_mutex;
173 #endif
174 
175 static struct mtx tlbivax_mutex;
176 
177 /**************************************************************************/
178 /* PMAP */
179 /**************************************************************************/
180 
181 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
182     vm_prot_t, u_int flags, int8_t psind);
183 
184 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
185 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
186 #ifdef __powerpc64__
187 unsigned int kernel_pdirs;
188 #endif
189 static uma_zone_t ptbl_root_zone;
190 
191 /*
192  * If user pmap is processed with mmu_booke_remove and the resident count
193  * drops to 0, there are no more pages to remove, so we need not continue.
194  */
195 #define PMAP_REMOVE_DONE(pmap) \
196 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
197 
198 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
199 extern int elf32_nxstack;
200 #endif
201 
202 /**************************************************************************/
203 /* TLB and TID handling */
204 /**************************************************************************/
205 
206 /* Translation ID busy table */
207 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
208 
209 /*
210  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
211  * core revisions and should be read from h/w registers during early config.
212  */
213 uint32_t tlb0_entries;
214 uint32_t tlb0_ways;
215 uint32_t tlb0_entries_per_way;
216 uint32_t tlb1_entries;
217 
218 #define TLB0_ENTRIES		(tlb0_entries)
219 #define TLB0_WAYS		(tlb0_ways)
220 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
221 
222 #define TLB1_ENTRIES (tlb1_entries)
223 
224 static vm_offset_t tlb1_map_base = (vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE;
225 
226 static tlbtid_t tid_alloc(struct pmap *);
227 static void tid_flush(tlbtid_t tid);
228 
229 #ifdef DDB
230 #ifdef __powerpc64__
231 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
232 #else
233 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
234 #endif
235 #endif
236 
237 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
238 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
239 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
240 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
241 
242 static vm_size_t tsize2size(unsigned int);
243 static unsigned int size2tsize(vm_size_t);
244 static unsigned int ilog2(unsigned long);
245 
246 static void set_mas4_defaults(void);
247 
248 static inline void tlb0_flush_entry(vm_offset_t);
249 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
250 
251 /**************************************************************************/
252 /* Page table management */
253 /**************************************************************************/
254 
255 static struct rwlock_padalign pvh_global_lock;
256 
257 /* Data for the pv entry allocation mechanism */
258 static uma_zone_t pvzone;
259 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
260 
261 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
262 
263 #ifndef PMAP_SHPGPERPROC
264 #define PMAP_SHPGPERPROC	200
265 #endif
266 
267 #ifdef __powerpc64__
268 #define PMAP_ROOT_SIZE	(sizeof(pte_t***) * PP2D_NENTRIES)
269 static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **,
270 			 unsigned int, boolean_t);
271 static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int, vm_page_t);
272 static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int);
273 static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t);
274 #else
275 #define PMAP_ROOT_SIZE	(sizeof(pte_t**) * PDIR_NENTRIES)
276 static void ptbl_init(void);
277 static struct ptbl_buf *ptbl_buf_alloc(void);
278 static void ptbl_buf_free(struct ptbl_buf *);
279 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
280 
281 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
282 static void ptbl_free(mmu_t, pmap_t, unsigned int);
283 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
284 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
285 #endif
286 
287 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
288 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
289 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
290 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
291 static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t);
292 
293 static pv_entry_t pv_alloc(void);
294 static void pv_free(pv_entry_t);
295 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
296 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
297 
298 static void booke_pmap_init_qpages(void);
299 
300 struct ptbl_buf {
301 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
302 	vm_offset_t kva;		/* va of mapping */
303 };
304 
305 #ifndef __powerpc64__
306 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
307 #define PTBL_BUFS		(128 * 16)
308 
309 /* ptbl free list and a lock used for access synchronization. */
310 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
311 static struct mtx ptbl_buf_freelist_lock;
312 
313 /* Base address of kva space allocated fot ptbl bufs. */
314 static vm_offset_t ptbl_buf_pool_vabase;
315 
316 /* Pointer to ptbl_buf structures. */
317 static struct ptbl_buf *ptbl_bufs;
318 #endif
319 
320 #ifdef SMP
321 extern tlb_entry_t __boot_tlb1[];
322 void pmap_bootstrap_ap(volatile uint32_t *);
323 #endif
324 
325 /*
326  * Kernel MMU interface
327  */
328 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
329 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
330     vm_size_t, vm_offset_t);
331 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
332 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
333     vm_offset_t, vm_page_t *, vm_offset_t, int);
334 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
335     vm_prot_t, u_int flags, int8_t psind);
336 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
337     vm_page_t, vm_prot_t);
338 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
339     vm_prot_t);
340 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
341 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
342     vm_prot_t);
343 static void		mmu_booke_init(mmu_t);
344 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
345 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
346 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
347 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
348 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
349     int);
350 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
351     vm_paddr_t *);
352 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
353     vm_object_t, vm_pindex_t, vm_size_t);
354 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
355 static void		mmu_booke_page_init(mmu_t, vm_page_t);
356 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
357 static void		mmu_booke_pinit(mmu_t, pmap_t);
358 static void		mmu_booke_pinit0(mmu_t, pmap_t);
359 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
360     vm_prot_t);
361 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
362 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
363 static void		mmu_booke_release(mmu_t, pmap_t);
364 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
365 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
366 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
367 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
368 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
369 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
370 static void		mmu_booke_activate(mmu_t, struct thread *);
371 static void		mmu_booke_deactivate(mmu_t, struct thread *);
372 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
373 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
374 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
375 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
376 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
377 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
378 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
379 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
380 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
381 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
382     vm_size_t);
383 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
384     void **);
385 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
386     void *);
387 static void		mmu_booke_scan_init(mmu_t);
388 static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
389 static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
390 static int		mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr,
391     vm_size_t sz, vm_memattr_t mode);
392 static int		mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm,
393     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
394 static int		mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
395     int *is_user, vm_offset_t *decoded_addr);
396 
397 
398 static mmu_method_t mmu_booke_methods[] = {
399 	/* pmap dispatcher interface */
400 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
401 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
402 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
403 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
404 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
405 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
406 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
407 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
408 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
409 	MMUMETHOD(mmu_init,		mmu_booke_init),
410 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
411 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
412 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
413 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
414 	MMUMETHOD(mmu_map,		mmu_booke_map),
415 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
416 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
417 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
418 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
419 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
420 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
421 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
422 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
423 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
424 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
425 	MMUMETHOD(mmu_release,		mmu_booke_release),
426 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
427 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
428 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
429 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
430 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
431 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
432 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
433 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
434 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
435 	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
436 	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
437 
438 	/* Internal interfaces */
439 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
440 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
441 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
442 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
443 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
444 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
445 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
446 	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),
447 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
448 	MMUMETHOD(mmu_change_attr,	mmu_booke_change_attr),
449 	MMUMETHOD(mmu_map_user_ptr,	mmu_booke_map_user_ptr),
450 	MMUMETHOD(mmu_decode_kernel_ptr, mmu_booke_decode_kernel_ptr),
451 
452 	/* dumpsys() support */
453 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
454 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
455 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
456 
457 	{ 0, 0 }
458 };
459 
460 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
461 
462 static __inline uint32_t
463 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
464 {
465 	uint32_t attrib;
466 	int i;
467 
468 	if (ma != VM_MEMATTR_DEFAULT) {
469 		switch (ma) {
470 		case VM_MEMATTR_UNCACHEABLE:
471 			return (MAS2_I | MAS2_G);
472 		case VM_MEMATTR_WRITE_COMBINING:
473 		case VM_MEMATTR_WRITE_BACK:
474 		case VM_MEMATTR_PREFETCHABLE:
475 			return (MAS2_I);
476 		case VM_MEMATTR_WRITE_THROUGH:
477 			return (MAS2_W | MAS2_M);
478 		case VM_MEMATTR_CACHEABLE:
479 			return (MAS2_M);
480 		}
481 	}
482 
483 	/*
484 	 * Assume the page is cache inhibited and access is guarded unless
485 	 * it's in our available memory array.
486 	 */
487 	attrib = _TLB_ENTRY_IO;
488 	for (i = 0; i < physmem_regions_sz; i++) {
489 		if ((pa >= physmem_regions[i].mr_start) &&
490 		    (pa < (physmem_regions[i].mr_start +
491 		     physmem_regions[i].mr_size))) {
492 			attrib = _TLB_ENTRY_MEM;
493 			break;
494 		}
495 	}
496 
497 	return (attrib);
498 }
499 
500 static inline void
501 tlb_miss_lock(void)
502 {
503 #ifdef SMP
504 	struct pcpu *pc;
505 
506 	if (!smp_started)
507 		return;
508 
509 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
510 		if (pc != pcpup) {
511 
512 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
513 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
514 
515 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
516 			    ("tlb_miss_lock: tried to lock self"));
517 
518 			tlb_lock(pc->pc_booke.tlb_lock);
519 
520 			CTR1(KTR_PMAP, "%s: locked", __func__);
521 		}
522 	}
523 #endif
524 }
525 
526 static inline void
527 tlb_miss_unlock(void)
528 {
529 #ifdef SMP
530 	struct pcpu *pc;
531 
532 	if (!smp_started)
533 		return;
534 
535 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
536 		if (pc != pcpup) {
537 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
538 			    __func__, pc->pc_cpuid);
539 
540 			tlb_unlock(pc->pc_booke.tlb_lock);
541 
542 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
543 		}
544 	}
545 #endif
546 }
547 
548 /* Return number of entries in TLB0. */
549 static __inline void
550 tlb0_get_tlbconf(void)
551 {
552 	uint32_t tlb0_cfg;
553 
554 	tlb0_cfg = mfspr(SPR_TLB0CFG);
555 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
556 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
557 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
558 }
559 
560 /* Return number of entries in TLB1. */
561 static __inline void
562 tlb1_get_tlbconf(void)
563 {
564 	uint32_t tlb1_cfg;
565 
566 	tlb1_cfg = mfspr(SPR_TLB1CFG);
567 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
568 }
569 
570 /**************************************************************************/
571 /* Page table related */
572 /**************************************************************************/
573 
574 #ifdef __powerpc64__
575 /* Initialize pool of kva ptbl buffers. */
576 static void
577 ptbl_init(void)
578 {
579 }
580 
581 /* Get a pointer to a PTE in a page table. */
582 static __inline pte_t *
583 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
584 {
585 	pte_t         **pdir;
586 	pte_t          *ptbl;
587 
588 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
589 
590 	pdir = pmap->pm_pp2d[PP2D_IDX(va)];
591 	if (!pdir)
592 		return NULL;
593 	ptbl = pdir[PDIR_IDX(va)];
594 	return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL);
595 }
596 
597 /*
598  * allocate a page of pointers to page directories, do not preallocate the
599  * page tables
600  */
601 static pte_t  **
602 pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep)
603 {
604 	vm_page_t	m;
605 	pte_t          **pdir;
606 	int		req;
607 
608 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
609 	while ((m = vm_page_alloc(NULL, pp2d_idx, req)) == NULL) {
610 		PMAP_UNLOCK(pmap);
611 		if (nosleep) {
612 			return (NULL);
613 		}
614 		vm_wait(NULL);
615 		PMAP_LOCK(pmap);
616 	}
617 
618 	/* Zero whole ptbl. */
619 	pdir = (pte_t **)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
620 	mmu_booke_zero_page(mmu, m);
621 
622 	return (pdir);
623 }
624 
625 /* Free pdir pages and invalidate pdir entry. */
626 static void
627 pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, vm_page_t m)
628 {
629 	pte_t         **pdir;
630 
631 	pdir = pmap->pm_pp2d[pp2d_idx];
632 
633 	KASSERT((pdir != NULL), ("pdir_free: null pdir"));
634 
635 	pmap->pm_pp2d[pp2d_idx] = NULL;
636 
637 	vm_wire_sub(1);
638 	vm_page_free_zero(m);
639 }
640 
641 /*
642  * Decrement pdir pages hold count and attempt to free pdir pages. Called
643  * when removing directory entry from pdir.
644  *
645  * Return 1 if pdir pages were freed.
646  */
647 static int
648 pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx)
649 {
650 	pte_t         **pdir;
651 	vm_paddr_t	pa;
652 	vm_page_t	m;
653 
654 	KASSERT((pmap != kernel_pmap),
655 		("pdir_unhold: unholding kernel pdir!"));
656 
657 	pdir = pmap->pm_pp2d[pp2d_idx];
658 
659 	/* decrement hold count */
660 	pa = DMAP_TO_PHYS((vm_offset_t) pdir);
661 	m = PHYS_TO_VM_PAGE(pa);
662 
663 	/*
664 	 * Free pdir page if there are no dir entries in this pdir.
665 	 */
666 	m->ref_count--;
667 	if (m->ref_count == 0) {
668 		pdir_free(mmu, pmap, pp2d_idx, m);
669 		return (1);
670 	}
671 	return (0);
672 }
673 
674 /*
675  * Increment hold count for pdir pages. This routine is used when new ptlb
676  * entry is being inserted into pdir.
677  */
678 static void
679 pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir)
680 {
681 	vm_page_t	m;
682 
683 	KASSERT((pmap != kernel_pmap),
684 		("pdir_hold: holding kernel pdir!"));
685 
686 	KASSERT((pdir != NULL), ("pdir_hold: null pdir"));
687 
688 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pdir));
689 	m->ref_count++;
690 }
691 
692 /* Allocate page table. */
693 static pte_t   *
694 ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx,
695     boolean_t nosleep)
696 {
697 	vm_page_t	m;
698 	pte_t          *ptbl;
699 	int		req;
700 
701 	KASSERT((pdir[pdir_idx] == NULL),
702 		("%s: valid ptbl entry exists!", __func__));
703 
704 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
705 	while ((m = vm_page_alloc(NULL, pdir_idx, req)) == NULL) {
706 		PMAP_UNLOCK(pmap);
707 		rw_wunlock(&pvh_global_lock);
708 		if (nosleep) {
709 			return (NULL);
710 		}
711 		vm_wait(NULL);
712 		rw_wlock(&pvh_global_lock);
713 		PMAP_LOCK(pmap);
714 	}
715 
716 	/* Zero whole ptbl. */
717 	ptbl = (pte_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
718 	mmu_booke_zero_page(mmu, m);
719 
720 	return (ptbl);
721 }
722 
723 /* Free ptbl pages and invalidate pdir entry. */
724 static void
725 ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, vm_page_t m)
726 {
727 	pte_t          *ptbl;
728 
729 	ptbl = pdir[pdir_idx];
730 
731 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
732 
733 	pdir[pdir_idx] = NULL;
734 
735 	vm_wire_sub(1);
736 	vm_page_free_zero(m);
737 }
738 
739 /*
740  * Decrement ptbl pages hold count and attempt to free ptbl pages. Called
741  * when removing pte entry from ptbl.
742  *
743  * Return 1 if ptbl pages were freed.
744  */
745 static int
746 ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va)
747 {
748 	pte_t          *ptbl;
749 	vm_page_t	m;
750 	u_int		pp2d_idx;
751 	pte_t         **pdir;
752 	u_int		pdir_idx;
753 
754 	pp2d_idx = PP2D_IDX(va);
755 	pdir_idx = PDIR_IDX(va);
756 
757 	KASSERT((pmap != kernel_pmap),
758 		("ptbl_unhold: unholding kernel ptbl!"));
759 
760 	pdir = pmap->pm_pp2d[pp2d_idx];
761 	ptbl = pdir[pdir_idx];
762 
763 	/* decrement hold count */
764 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
765 
766 	/*
767 	 * Free ptbl pages if there are no pte entries in this ptbl.
768 	 * ref_count has the same value for all ptbl pages, so check the
769 	 * last page.
770 	 */
771 	m->ref_count--;
772 	if (m->ref_count == 0) {
773 		ptbl_free(mmu, pmap, pdir, pdir_idx, m);
774 		pdir_unhold(mmu, pmap, pp2d_idx);
775 		return (1);
776 	}
777 	return (0);
778 }
779 
780 /*
781  * Increment hold count for ptbl pages. This routine is used when new pte
782  * entry is being inserted into ptbl.
783  */
784 static void
785 ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx)
786 {
787 	pte_t          *ptbl;
788 	vm_page_t	m;
789 
790 	KASSERT((pmap != kernel_pmap),
791 		("ptbl_hold: holding kernel ptbl!"));
792 
793 	ptbl = pdir[pdir_idx];
794 
795 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
796 
797 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
798 	m->ref_count++;
799 }
800 #else
801 
802 /* Initialize pool of kva ptbl buffers. */
803 static void
804 ptbl_init(void)
805 {
806 	int i;
807 
808 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
809 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
810 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
811 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
812 
813 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
814 	TAILQ_INIT(&ptbl_buf_freelist);
815 
816 	for (i = 0; i < PTBL_BUFS; i++) {
817 		ptbl_bufs[i].kva =
818 		    ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
819 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
820 	}
821 }
822 
823 /* Get a ptbl_buf from the freelist. */
824 static struct ptbl_buf *
825 ptbl_buf_alloc(void)
826 {
827 	struct ptbl_buf *buf;
828 
829 	mtx_lock(&ptbl_buf_freelist_lock);
830 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
831 	if (buf != NULL)
832 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
833 	mtx_unlock(&ptbl_buf_freelist_lock);
834 
835 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
836 
837 	return (buf);
838 }
839 
840 /* Return ptbl buff to free pool. */
841 static void
842 ptbl_buf_free(struct ptbl_buf *buf)
843 {
844 
845 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
846 
847 	mtx_lock(&ptbl_buf_freelist_lock);
848 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
849 	mtx_unlock(&ptbl_buf_freelist_lock);
850 }
851 
852 /*
853  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
854  */
855 static void
856 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
857 {
858 	struct ptbl_buf *pbuf;
859 
860 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
861 
862 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
863 
864 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
865 		if (pbuf->kva == (vm_offset_t)ptbl) {
866 			/* Remove from pmap ptbl buf list. */
867 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
868 
869 			/* Free corresponding ptbl buf. */
870 			ptbl_buf_free(pbuf);
871 			break;
872 		}
873 }
874 
875 /* Allocate page table. */
876 static pte_t *
877 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
878 {
879 	vm_page_t mtbl[PTBL_PAGES];
880 	vm_page_t m;
881 	struct ptbl_buf *pbuf;
882 	unsigned int pidx;
883 	pte_t *ptbl;
884 	int i, j;
885 
886 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
887 	    (pmap == kernel_pmap), pdir_idx);
888 
889 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
890 	    ("ptbl_alloc: invalid pdir_idx"));
891 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
892 	    ("pte_alloc: valid ptbl entry exists!"));
893 
894 	pbuf = ptbl_buf_alloc();
895 	if (pbuf == NULL)
896 		panic("pte_alloc: couldn't alloc kernel virtual memory");
897 
898 	ptbl = (pte_t *)pbuf->kva;
899 
900 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
901 
902 	for (i = 0; i < PTBL_PAGES; i++) {
903 		pidx = (PTBL_PAGES * pdir_idx) + i;
904 		while ((m = vm_page_alloc(NULL, pidx,
905 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
906 			PMAP_UNLOCK(pmap);
907 			rw_wunlock(&pvh_global_lock);
908 			if (nosleep) {
909 				ptbl_free_pmap_ptbl(pmap, ptbl);
910 				for (j = 0; j < i; j++)
911 					vm_page_free(mtbl[j]);
912 				vm_wire_sub(i);
913 				return (NULL);
914 			}
915 			vm_wait(NULL);
916 			rw_wlock(&pvh_global_lock);
917 			PMAP_LOCK(pmap);
918 		}
919 		mtbl[i] = m;
920 	}
921 
922 	/* Map allocated pages into kernel_pmap. */
923 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
924 
925 	/* Zero whole ptbl. */
926 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
927 
928 	/* Add pbuf to the pmap ptbl bufs list. */
929 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
930 
931 	return (ptbl);
932 }
933 
934 /* Free ptbl pages and invalidate pdir entry. */
935 static void
936 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
937 {
938 	pte_t *ptbl;
939 	vm_paddr_t pa;
940 	vm_offset_t va;
941 	vm_page_t m;
942 	int i;
943 
944 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
945 	    (pmap == kernel_pmap), pdir_idx);
946 
947 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
948 	    ("ptbl_free: invalid pdir_idx"));
949 
950 	ptbl = pmap->pm_pdir[pdir_idx];
951 
952 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
953 
954 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
955 
956 	/*
957 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
958 	 * don't attempt to look up the page tables we are releasing.
959 	 */
960 	mtx_lock_spin(&tlbivax_mutex);
961 	tlb_miss_lock();
962 
963 	pmap->pm_pdir[pdir_idx] = NULL;
964 
965 	tlb_miss_unlock();
966 	mtx_unlock_spin(&tlbivax_mutex);
967 
968 	for (i = 0; i < PTBL_PAGES; i++) {
969 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
970 		pa = pte_vatopa(mmu, kernel_pmap, va);
971 		m = PHYS_TO_VM_PAGE(pa);
972 		vm_page_free_zero(m);
973 		vm_wire_sub(1);
974 		mmu_booke_kremove(mmu, va);
975 	}
976 
977 	ptbl_free_pmap_ptbl(pmap, ptbl);
978 }
979 
980 /*
981  * Decrement ptbl pages hold count and attempt to free ptbl pages.
982  * Called when removing pte entry from ptbl.
983  *
984  * Return 1 if ptbl pages were freed.
985  */
986 static int
987 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
988 {
989 	pte_t *ptbl;
990 	vm_paddr_t pa;
991 	vm_page_t m;
992 	int i;
993 
994 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
995 	    (pmap == kernel_pmap), pdir_idx);
996 
997 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
998 	    ("ptbl_unhold: invalid pdir_idx"));
999 	KASSERT((pmap != kernel_pmap),
1000 	    ("ptbl_unhold: unholding kernel ptbl!"));
1001 
1002 	ptbl = pmap->pm_pdir[pdir_idx];
1003 
1004 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
1005 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
1006 	    ("ptbl_unhold: non kva ptbl"));
1007 
1008 	/* decrement hold count */
1009 	for (i = 0; i < PTBL_PAGES; i++) {
1010 		pa = pte_vatopa(mmu, kernel_pmap,
1011 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
1012 		m = PHYS_TO_VM_PAGE(pa);
1013 		m->ref_count--;
1014 	}
1015 
1016 	/*
1017 	 * Free ptbl pages if there are no pte etries in this ptbl.
1018 	 * ref_count has the same value for all ptbl pages, so check the last
1019 	 * page.
1020 	 */
1021 	if (m->ref_count == 0) {
1022 		ptbl_free(mmu, pmap, pdir_idx);
1023 
1024 		//debugf("ptbl_unhold: e (freed ptbl)\n");
1025 		return (1);
1026 	}
1027 
1028 	return (0);
1029 }
1030 
1031 /*
1032  * Increment hold count for ptbl pages. This routine is used when a new pte
1033  * entry is being inserted into the ptbl.
1034  */
1035 static void
1036 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
1037 {
1038 	vm_paddr_t pa;
1039 	pte_t *ptbl;
1040 	vm_page_t m;
1041 	int i;
1042 
1043 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
1044 	    pdir_idx);
1045 
1046 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
1047 	    ("ptbl_hold: invalid pdir_idx"));
1048 	KASSERT((pmap != kernel_pmap),
1049 	    ("ptbl_hold: holding kernel ptbl!"));
1050 
1051 	ptbl = pmap->pm_pdir[pdir_idx];
1052 
1053 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
1054 
1055 	for (i = 0; i < PTBL_PAGES; i++) {
1056 		pa = pte_vatopa(mmu, kernel_pmap,
1057 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
1058 		m = PHYS_TO_VM_PAGE(pa);
1059 		m->ref_count++;
1060 	}
1061 }
1062 #endif
1063 
1064 /* Allocate pv_entry structure. */
1065 pv_entry_t
1066 pv_alloc(void)
1067 {
1068 	pv_entry_t pv;
1069 
1070 	pv_entry_count++;
1071 	if (pv_entry_count > pv_entry_high_water)
1072 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
1073 	pv = uma_zalloc(pvzone, M_NOWAIT);
1074 
1075 	return (pv);
1076 }
1077 
1078 /* Free pv_entry structure. */
1079 static __inline void
1080 pv_free(pv_entry_t pve)
1081 {
1082 
1083 	pv_entry_count--;
1084 	uma_zfree(pvzone, pve);
1085 }
1086 
1087 
1088 /* Allocate and initialize pv_entry structure. */
1089 static void
1090 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
1091 {
1092 	pv_entry_t pve;
1093 
1094 	//int su = (pmap == kernel_pmap);
1095 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
1096 	//	(u_int32_t)pmap, va, (u_int32_t)m);
1097 
1098 	pve = pv_alloc();
1099 	if (pve == NULL)
1100 		panic("pv_insert: no pv entries!");
1101 
1102 	pve->pv_pmap = pmap;
1103 	pve->pv_va = va;
1104 
1105 	/* add to pv_list */
1106 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1107 	rw_assert(&pvh_global_lock, RA_WLOCKED);
1108 
1109 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
1110 
1111 	//debugf("pv_insert: e\n");
1112 }
1113 
1114 /* Destroy pv entry. */
1115 static void
1116 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
1117 {
1118 	pv_entry_t pve;
1119 
1120 	//int su = (pmap == kernel_pmap);
1121 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
1122 
1123 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1124 	rw_assert(&pvh_global_lock, RA_WLOCKED);
1125 
1126 	/* find pv entry */
1127 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
1128 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
1129 			/* remove from pv_list */
1130 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
1131 			if (TAILQ_EMPTY(&m->md.pv_list))
1132 				vm_page_aflag_clear(m, PGA_WRITEABLE);
1133 
1134 			/* free pv entry struct */
1135 			pv_free(pve);
1136 			break;
1137 		}
1138 	}
1139 
1140 	//debugf("pv_remove: e\n");
1141 }
1142 
1143 #ifdef __powerpc64__
1144 /*
1145  * Clean pte entry, try to free page table page if requested.
1146  *
1147  * Return 1 if ptbl pages were freed, otherwise return 0.
1148  */
1149 static int
1150 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags)
1151 {
1152 	vm_page_t	m;
1153 	pte_t          *pte;
1154 
1155 	pte = pte_find(mmu, pmap, va);
1156 	KASSERT(pte != NULL, ("%s: NULL pte", __func__));
1157 
1158 	if (!PTE_ISVALID(pte))
1159 		return (0);
1160 
1161 	/* Get vm_page_t for mapped pte. */
1162 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1163 
1164 	if (PTE_ISWIRED(pte))
1165 		pmap->pm_stats.wired_count--;
1166 
1167 	/* Handle managed entry. */
1168 	if (PTE_ISMANAGED(pte)) {
1169 
1170 		/* Handle modified pages. */
1171 		if (PTE_ISMODIFIED(pte))
1172 			vm_page_dirty(m);
1173 
1174 		/* Referenced pages. */
1175 		if (PTE_ISREFERENCED(pte))
1176 			vm_page_aflag_set(m, PGA_REFERENCED);
1177 
1178 		/* Remove pv_entry from pv_list. */
1179 		pv_remove(pmap, va, m);
1180 	} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
1181 		pv_remove(pmap, va, m);
1182 		if (TAILQ_EMPTY(&m->md.pv_list))
1183 			m->md.pv_tracked = false;
1184 	}
1185 	mtx_lock_spin(&tlbivax_mutex);
1186 	tlb_miss_lock();
1187 
1188 	tlb0_flush_entry(va);
1189 	*pte = 0;
1190 
1191 	tlb_miss_unlock();
1192 	mtx_unlock_spin(&tlbivax_mutex);
1193 
1194 	pmap->pm_stats.resident_count--;
1195 
1196 	if (flags & PTBL_UNHOLD) {
1197 		return (ptbl_unhold(mmu, pmap, va));
1198 	}
1199 	return (0);
1200 }
1201 
1202 /*
1203  * Insert PTE for a given page and virtual address.
1204  */
1205 static int
1206 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
1207     boolean_t nosleep)
1208 {
1209 	unsigned int	pp2d_idx = PP2D_IDX(va);
1210 	unsigned int	pdir_idx = PDIR_IDX(va);
1211 	unsigned int	ptbl_idx = PTBL_IDX(va);
1212 	pte_t          *ptbl, *pte, pte_tmp;
1213 	pte_t         **pdir;
1214 
1215 	/* Get the page directory pointer. */
1216 	pdir = pmap->pm_pp2d[pp2d_idx];
1217 	if (pdir == NULL)
1218 		pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep);
1219 
1220 	/* Get the page table pointer. */
1221 	ptbl = pdir[pdir_idx];
1222 
1223 	if (ptbl == NULL) {
1224 		/* Allocate page table pages. */
1225 		ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep);
1226 		if (ptbl == NULL) {
1227 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
1228 			return (ENOMEM);
1229 		}
1230 		pte = &ptbl[ptbl_idx];
1231 	} else {
1232 		/*
1233 		 * Check if there is valid mapping for requested va, if there
1234 		 * is, remove it.
1235 		 */
1236 		pte = &ptbl[ptbl_idx];
1237 		if (PTE_ISVALID(pte)) {
1238 			pte_remove(mmu, pmap, va, PTBL_HOLD);
1239 		} else {
1240 			/*
1241 			 * pte is not used, increment hold count for ptbl
1242 			 * pages.
1243 			 */
1244 			if (pmap != kernel_pmap)
1245 				ptbl_hold(mmu, pmap, pdir, pdir_idx);
1246 		}
1247 	}
1248 
1249 	if (pdir[pdir_idx] == NULL) {
1250 		if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL)
1251 			pdir_hold(mmu, pmap, pdir);
1252 		pdir[pdir_idx] = ptbl;
1253 	}
1254 	if (pmap->pm_pp2d[pp2d_idx] == NULL)
1255 		pmap->pm_pp2d[pp2d_idx] = pdir;
1256 
1257 	/*
1258 	 * Insert pv_entry into pv_list for mapped page if part of managed
1259 	 * memory.
1260 	 */
1261 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1262 		flags |= PTE_MANAGED;
1263 
1264 		/* Create and insert pv entry. */
1265 		pv_insert(pmap, va, m);
1266 	}
1267 
1268 	pmap->pm_stats.resident_count++;
1269 
1270 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
1271 	pte_tmp |= (PTE_VALID | flags);
1272 
1273 	mtx_lock_spin(&tlbivax_mutex);
1274 	tlb_miss_lock();
1275 
1276 	tlb0_flush_entry(va);
1277 	*pte = pte_tmp;
1278 
1279 	tlb_miss_unlock();
1280 	mtx_unlock_spin(&tlbivax_mutex);
1281 
1282 	return (0);
1283 }
1284 
1285 /* Return the pa for the given pmap/va. */
1286 static	vm_paddr_t
1287 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1288 {
1289 	vm_paddr_t	pa = 0;
1290 	pte_t          *pte;
1291 
1292 	pte = pte_find(mmu, pmap, va);
1293 	if ((pte != NULL) && PTE_ISVALID(pte))
1294 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1295 	return (pa);
1296 }
1297 
1298 
1299 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */
1300 static void
1301 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1302 {
1303 	int		i, j;
1304 	vm_offset_t	va;
1305 	pte_t		*pte;
1306 
1307 	va = addr;
1308 	/* Initialize kernel pdir */
1309 	for (i = 0; i < kernel_pdirs; i++) {
1310 		kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] =
1311 		    (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES));
1312 		for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES));
1313 		    j < PDIR_NENTRIES; j++) {
1314 			kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] =
1315 			    (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE) +
1316 			     (((i * PDIR_NENTRIES) + j) * PAGE_SIZE));
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * Fill in PTEs covering kernel code and data. They are not required
1322 	 * for address translation, as this area is covered by static TLB1
1323 	 * entries, but for pte_vatopa() to work correctly with kernel area
1324 	 * addresses.
1325 	 */
1326 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1327 		pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]);
1328 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1329 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1330 		    PTE_VALID | PTE_PS_4KB;
1331 	}
1332 }
1333 #else
1334 /*
1335  * Clean pte entry, try to free page table page if requested.
1336  *
1337  * Return 1 if ptbl pages were freed, otherwise return 0.
1338  */
1339 static int
1340 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
1341 {
1342 	unsigned int pdir_idx = PDIR_IDX(va);
1343 	unsigned int ptbl_idx = PTBL_IDX(va);
1344 	vm_page_t m;
1345 	pte_t *ptbl;
1346 	pte_t *pte;
1347 
1348 	//int su = (pmap == kernel_pmap);
1349 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
1350 	//		su, (u_int32_t)pmap, va, flags);
1351 
1352 	ptbl = pmap->pm_pdir[pdir_idx];
1353 	KASSERT(ptbl, ("pte_remove: null ptbl"));
1354 
1355 	pte = &ptbl[ptbl_idx];
1356 
1357 	if (pte == NULL || !PTE_ISVALID(pte))
1358 		return (0);
1359 
1360 	if (PTE_ISWIRED(pte))
1361 		pmap->pm_stats.wired_count--;
1362 
1363 	/* Get vm_page_t for mapped pte. */
1364 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1365 
1366 	/* Handle managed entry. */
1367 	if (PTE_ISMANAGED(pte)) {
1368 
1369 		if (PTE_ISMODIFIED(pte))
1370 			vm_page_dirty(m);
1371 
1372 		if (PTE_ISREFERENCED(pte))
1373 			vm_page_aflag_set(m, PGA_REFERENCED);
1374 
1375 		pv_remove(pmap, va, m);
1376 	} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
1377 		/*
1378 		 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is
1379 		 * used.  This is needed by the NCSW support code for fast
1380 		 * VA<->PA translation.
1381 		 */
1382 		pv_remove(pmap, va, m);
1383 		if (TAILQ_EMPTY(&m->md.pv_list))
1384 			m->md.pv_tracked = false;
1385 	}
1386 
1387 	mtx_lock_spin(&tlbivax_mutex);
1388 	tlb_miss_lock();
1389 
1390 	tlb0_flush_entry(va);
1391 	*pte = 0;
1392 
1393 	tlb_miss_unlock();
1394 	mtx_unlock_spin(&tlbivax_mutex);
1395 
1396 	pmap->pm_stats.resident_count--;
1397 
1398 	if (flags & PTBL_UNHOLD) {
1399 		//debugf("pte_remove: e (unhold)\n");
1400 		return (ptbl_unhold(mmu, pmap, pdir_idx));
1401 	}
1402 
1403 	//debugf("pte_remove: e\n");
1404 	return (0);
1405 }
1406 
1407 /*
1408  * Insert PTE for a given page and virtual address.
1409  */
1410 static int
1411 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
1412     boolean_t nosleep)
1413 {
1414 	unsigned int pdir_idx = PDIR_IDX(va);
1415 	unsigned int ptbl_idx = PTBL_IDX(va);
1416 	pte_t *ptbl, *pte, pte_tmp;
1417 
1418 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
1419 	    pmap == kernel_pmap, pmap, va);
1420 
1421 	/* Get the page table pointer. */
1422 	ptbl = pmap->pm_pdir[pdir_idx];
1423 
1424 	if (ptbl == NULL) {
1425 		/* Allocate page table pages. */
1426 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
1427 		if (ptbl == NULL) {
1428 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
1429 			return (ENOMEM);
1430 		}
1431 		pmap->pm_pdir[pdir_idx] = ptbl;
1432 		pte = &ptbl[ptbl_idx];
1433 	} else {
1434 		/*
1435 		 * Check if there is valid mapping for requested
1436 		 * va, if there is, remove it.
1437 		 */
1438 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
1439 		if (PTE_ISVALID(pte)) {
1440 			pte_remove(mmu, pmap, va, PTBL_HOLD);
1441 		} else {
1442 			/*
1443 			 * pte is not used, increment hold count
1444 			 * for ptbl pages.
1445 			 */
1446 			if (pmap != kernel_pmap)
1447 				ptbl_hold(mmu, pmap, pdir_idx);
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * Insert pv_entry into pv_list for mapped page if part of managed
1453 	 * memory.
1454 	 */
1455 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1456 		flags |= PTE_MANAGED;
1457 
1458 		/* Create and insert pv entry. */
1459 		pv_insert(pmap, va, m);
1460 	}
1461 
1462 	pmap->pm_stats.resident_count++;
1463 
1464 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
1465 	pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
1466 
1467 	mtx_lock_spin(&tlbivax_mutex);
1468 	tlb_miss_lock();
1469 
1470 	tlb0_flush_entry(va);
1471 	*pte = pte_tmp;
1472 
1473 	tlb_miss_unlock();
1474 	mtx_unlock_spin(&tlbivax_mutex);
1475 	return (0);
1476 }
1477 
1478 /* Return the pa for the given pmap/va. */
1479 static vm_paddr_t
1480 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1481 {
1482 	vm_paddr_t pa = 0;
1483 	pte_t *pte;
1484 
1485 	pte = pte_find(mmu, pmap, va);
1486 	if ((pte != NULL) && PTE_ISVALID(pte))
1487 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1488 	return (pa);
1489 }
1490 
1491 /* Get a pointer to a PTE in a page table. */
1492 static pte_t *
1493 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1494 {
1495 	unsigned int pdir_idx = PDIR_IDX(va);
1496 	unsigned int ptbl_idx = PTBL_IDX(va);
1497 
1498 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1499 
1500 	if (pmap->pm_pdir[pdir_idx])
1501 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1502 
1503 	return (NULL);
1504 }
1505 
1506 /* Set up kernel page tables. */
1507 static void
1508 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1509 {
1510 	int		i;
1511 	vm_offset_t	va;
1512 	pte_t		*pte;
1513 
1514 	/* Initialize kernel pdir */
1515 	for (i = 0; i < kernel_ptbls; i++)
1516 		kernel_pmap->pm_pdir[kptbl_min + i] =
1517 		    (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1518 
1519 	/*
1520 	 * Fill in PTEs covering kernel code and data. They are not required
1521 	 * for address translation, as this area is covered by static TLB1
1522 	 * entries, but for pte_vatopa() to work correctly with kernel area
1523 	 * addresses.
1524 	 */
1525 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1526 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1527 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1528 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1529 		    PTE_VALID | PTE_PS_4KB;
1530 	}
1531 }
1532 #endif
1533 
1534 /**************************************************************************/
1535 /* PMAP related */
1536 /**************************************************************************/
1537 
1538 /*
1539  * This is called during booke_init, before the system is really initialized.
1540  */
1541 static void
1542 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1543 {
1544 	vm_paddr_t phys_kernelend;
1545 	struct mem_region *mp, *mp1;
1546 	int cnt, i, j;
1547 	vm_paddr_t s, e, sz;
1548 	vm_paddr_t physsz, hwphyssz;
1549 	u_int phys_avail_count;
1550 	vm_size_t kstack0_sz;
1551 	vm_offset_t kernel_pdir, kstack0;
1552 	vm_paddr_t kstack0_phys;
1553 	void *dpcpu;
1554 	vm_offset_t kernel_ptbl_root;
1555 
1556 	debugf("mmu_booke_bootstrap: entered\n");
1557 
1558 	/* Set interesting system properties */
1559 #ifdef __powerpc64__
1560 	hw_direct_map = 1;
1561 #else
1562 	hw_direct_map = 0;
1563 #endif
1564 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
1565 	elf32_nxstack = 1;
1566 #endif
1567 
1568 	/* Initialize invalidation mutex */
1569 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1570 
1571 	/* Read TLB0 size and associativity. */
1572 	tlb0_get_tlbconf();
1573 
1574 	/*
1575 	 * Align kernel start and end address (kernel image).
1576 	 * Note that kernel end does not necessarily relate to kernsize.
1577 	 * kernsize is the size of the kernel that is actually mapped.
1578 	 */
1579 	data_start = round_page(kernelend);
1580 	data_end = data_start;
1581 
1582 	/* Allocate the dynamic per-cpu area. */
1583 	dpcpu = (void *)data_end;
1584 	data_end += DPCPU_SIZE;
1585 
1586 	/* Allocate space for the message buffer. */
1587 	msgbufp = (struct msgbuf *)data_end;
1588 	data_end += msgbufsize;
1589 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1590 	    (uintptr_t)msgbufp, data_end);
1591 
1592 	data_end = round_page(data_end);
1593 
1594 #ifdef __powerpc64__
1595 	kernel_ptbl_root = data_end;
1596 	data_end += PP2D_NENTRIES * sizeof(pte_t**);
1597 #else
1598 	/* Allocate space for ptbl_bufs. */
1599 	ptbl_bufs = (struct ptbl_buf *)data_end;
1600 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1601 	debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1602 	    (uintptr_t)ptbl_bufs, data_end);
1603 
1604 	data_end = round_page(data_end);
1605 	kernel_ptbl_root = data_end;
1606 	data_end += PDIR_NENTRIES * sizeof(pte_t*);
1607 #endif
1608 
1609 	/* Allocate PTE tables for kernel KVA. */
1610 	kernel_pdir = data_end;
1611 	kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
1612 	    PDIR_SIZE);
1613 #ifdef __powerpc64__
1614 	kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES);
1615 	data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE;
1616 #endif
1617 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1618 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1619 	debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1620 	    kernel_pdir, data_end);
1621 
1622 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
1623 	if (data_end - kernstart > kernsize) {
1624 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1625 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1626 	}
1627 	data_end = kernstart + kernsize;
1628 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
1629 
1630 	/*
1631 	 * Clear the structures - note we can only do it safely after the
1632 	 * possible additional TLB1 translations are in place (above) so that
1633 	 * all range up to the currently calculated 'data_end' is covered.
1634 	 */
1635 	dpcpu_init(dpcpu, 0);
1636 #ifdef __powerpc64__
1637 	memset((void *)kernel_pdir, 0,
1638 	    kernel_pdirs * PDIR_PAGES * PAGE_SIZE +
1639 	    kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1640 #else
1641 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1642 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1643 #endif
1644 
1645 	/*******************************************************/
1646 	/* Set the start and end of kva. */
1647 	/*******************************************************/
1648 	virtual_avail = round_page(data_end);
1649 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1650 
1651 #ifndef __powerpc64__
1652 	/* Allocate KVA space for page zero/copy operations. */
1653 	zero_page_va = virtual_avail;
1654 	virtual_avail += PAGE_SIZE;
1655 	copy_page_src_va = virtual_avail;
1656 	virtual_avail += PAGE_SIZE;
1657 	copy_page_dst_va = virtual_avail;
1658 	virtual_avail += PAGE_SIZE;
1659 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
1660 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
1661 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
1662 
1663 	/* Initialize page zero/copy mutexes. */
1664 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1665 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1666 
1667 	/* Allocate KVA space for ptbl bufs. */
1668 	ptbl_buf_pool_vabase = virtual_avail;
1669 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1670 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1671 	    ptbl_buf_pool_vabase, virtual_avail);
1672 #endif
1673 
1674 	/* Calculate corresponding physical addresses for the kernel region. */
1675 	phys_kernelend = kernload + kernsize;
1676 	debugf("kernel image and allocated data:\n");
1677 	debugf(" kernload    = 0x%09llx\n", (uint64_t)kernload);
1678 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
1679 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
1680 
1681 	/*
1682 	 * Remove kernel physical address range from avail regions list. Page
1683 	 * align all regions.  Non-page aligned memory isn't very interesting
1684 	 * to us.  Also, sort the entries for ascending addresses.
1685 	 */
1686 
1687 	/* Retrieve phys/avail mem regions */
1688 	mem_regions(&physmem_regions, &physmem_regions_sz,
1689 	    &availmem_regions, &availmem_regions_sz);
1690 
1691 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
1692 		panic("mmu_booke_bootstrap: phys_avail too small");
1693 
1694 	sz = 0;
1695 	cnt = availmem_regions_sz;
1696 	debugf("processing avail regions:\n");
1697 	for (mp = availmem_regions; mp->mr_size; mp++) {
1698 		s = mp->mr_start;
1699 		e = mp->mr_start + mp->mr_size;
1700 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1701 		/* Check whether this region holds all of the kernel. */
1702 		if (s < kernload && e > phys_kernelend) {
1703 			availmem_regions[cnt].mr_start = phys_kernelend;
1704 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1705 			e = kernload;
1706 		}
1707 		/* Look whether this regions starts within the kernel. */
1708 		if (s >= kernload && s < phys_kernelend) {
1709 			if (e <= phys_kernelend)
1710 				goto empty;
1711 			s = phys_kernelend;
1712 		}
1713 		/* Now look whether this region ends within the kernel. */
1714 		if (e > kernload && e <= phys_kernelend) {
1715 			if (s >= kernload)
1716 				goto empty;
1717 			e = kernload;
1718 		}
1719 		/* Now page align the start and size of the region. */
1720 		s = round_page(s);
1721 		e = trunc_page(e);
1722 		if (e < s)
1723 			e = s;
1724 		sz = e - s;
1725 		debugf("%09jx-%09jx = %jx\n",
1726 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1727 
1728 		/* Check whether some memory is left here. */
1729 		if (sz == 0) {
1730 		empty:
1731 			memmove(mp, mp + 1,
1732 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1733 			cnt--;
1734 			mp--;
1735 			continue;
1736 		}
1737 
1738 		/* Do an insertion sort. */
1739 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1740 			if (s < mp1->mr_start)
1741 				break;
1742 		if (mp1 < mp) {
1743 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1744 			mp1->mr_start = s;
1745 			mp1->mr_size = sz;
1746 		} else {
1747 			mp->mr_start = s;
1748 			mp->mr_size = sz;
1749 		}
1750 	}
1751 	availmem_regions_sz = cnt;
1752 
1753 	/*******************************************************/
1754 	/* Steal physical memory for kernel stack from the end */
1755 	/* of the first avail region                           */
1756 	/*******************************************************/
1757 	kstack0_sz = kstack_pages * PAGE_SIZE;
1758 	kstack0_phys = availmem_regions[0].mr_start +
1759 	    availmem_regions[0].mr_size;
1760 	kstack0_phys -= kstack0_sz;
1761 	availmem_regions[0].mr_size -= kstack0_sz;
1762 
1763 	/*******************************************************/
1764 	/* Fill in phys_avail table, based on availmem_regions */
1765 	/*******************************************************/
1766 	phys_avail_count = 0;
1767 	physsz = 0;
1768 	hwphyssz = 0;
1769 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1770 
1771 	debugf("fill in phys_avail:\n");
1772 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1773 
1774 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1775 		    (uintmax_t)availmem_regions[i].mr_start,
1776 		    (uintmax_t)availmem_regions[i].mr_start +
1777 		        availmem_regions[i].mr_size,
1778 		    (uintmax_t)availmem_regions[i].mr_size);
1779 
1780 		if (hwphyssz != 0 &&
1781 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1782 			debugf(" hw.physmem adjust\n");
1783 			if (physsz < hwphyssz) {
1784 				phys_avail[j] = availmem_regions[i].mr_start;
1785 				phys_avail[j + 1] =
1786 				    availmem_regions[i].mr_start +
1787 				    hwphyssz - physsz;
1788 				physsz = hwphyssz;
1789 				phys_avail_count++;
1790 				dump_avail[j] = phys_avail[j];
1791 				dump_avail[j + 1] = phys_avail[j + 1];
1792 			}
1793 			break;
1794 		}
1795 
1796 		phys_avail[j] = availmem_regions[i].mr_start;
1797 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1798 		    availmem_regions[i].mr_size;
1799 		phys_avail_count++;
1800 		physsz += availmem_regions[i].mr_size;
1801 		dump_avail[j] = phys_avail[j];
1802 		dump_avail[j + 1] = phys_avail[j + 1];
1803 	}
1804 	physmem = btoc(physsz);
1805 
1806 	/* Calculate the last available physical address. */
1807 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1808 		;
1809 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1810 
1811 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1812 	debugf("phys_avail_count = %d\n", phys_avail_count);
1813 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
1814 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
1815 
1816 #ifdef __powerpc64__
1817 	/*
1818 	 * Map the physical memory contiguously in TLB1.
1819 	 * Round so it fits into a single mapping.
1820 	 */
1821 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
1822 	    phys_avail[i + 1]);
1823 #endif
1824 
1825 	/*******************************************************/
1826 	/* Initialize (statically allocated) kernel pmap. */
1827 	/*******************************************************/
1828 	PMAP_LOCK_INIT(kernel_pmap);
1829 #ifdef __powerpc64__
1830 	kernel_pmap->pm_pp2d = (pte_t ***)kernel_ptbl_root;
1831 #else
1832 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1833 	kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root;
1834 #endif
1835 
1836 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
1837 	kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir);
1838 	for (i = 0; i < MAXCPU; i++) {
1839 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1840 
1841 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1842 		tidbusy[i][TID_KERNEL] = kernel_pmap;
1843 	}
1844 
1845 	/* Mark kernel_pmap active on all CPUs */
1846 	CPU_FILL(&kernel_pmap->pm_active);
1847 
1848  	/*
1849 	 * Initialize the global pv list lock.
1850 	 */
1851 	rw_init(&pvh_global_lock, "pmap pv global");
1852 
1853 	/*******************************************************/
1854 	/* Final setup */
1855 	/*******************************************************/
1856 
1857 	/* Enter kstack0 into kernel map, provide guard page */
1858 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1859 	thread0.td_kstack = kstack0;
1860 	thread0.td_kstack_pages = kstack_pages;
1861 
1862 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1863 	debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1864 	    kstack0_phys, kstack0_phys + kstack0_sz);
1865 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
1866 	    kstack0, kstack0 + kstack0_sz);
1867 
1868 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1869 	for (i = 0; i < kstack_pages; i++) {
1870 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1871 		kstack0 += PAGE_SIZE;
1872 		kstack0_phys += PAGE_SIZE;
1873 	}
1874 
1875 	pmap_bootstrapped = 1;
1876 
1877 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
1878 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
1879 
1880 	debugf("mmu_booke_bootstrap: exit\n");
1881 }
1882 
1883 #ifdef SMP
1884  void
1885 tlb1_ap_prep(void)
1886 {
1887 	tlb_entry_t *e, tmp;
1888 	unsigned int i;
1889 
1890 	/* Prepare TLB1 image for AP processors */
1891 	e = __boot_tlb1;
1892 	for (i = 0; i < TLB1_ENTRIES; i++) {
1893 		tlb1_read_entry(&tmp, i);
1894 
1895 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
1896 			memcpy(e++, &tmp, sizeof(tmp));
1897 	}
1898 }
1899 
1900 void
1901 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1902 {
1903 	int i;
1904 
1905 	/*
1906 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1907 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
1908 	 * created by tlb1_ap_prep(), so use these values directly to
1909 	 * (re)program AP's TLB1 hardware.
1910 	 *
1911 	 * Start at index 1 because index 0 has the kernel map.
1912 	 */
1913 	for (i = 1; i < TLB1_ENTRIES; i++) {
1914 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
1915 			tlb1_write_entry(&__boot_tlb1[i], i);
1916 	}
1917 
1918 	set_mas4_defaults();
1919 }
1920 #endif
1921 
1922 static void
1923 booke_pmap_init_qpages(void)
1924 {
1925 	struct pcpu *pc;
1926 	int i;
1927 
1928 	CPU_FOREACH(i) {
1929 		pc = pcpu_find(i);
1930 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1931 		if (pc->pc_qmap_addr == 0)
1932 			panic("pmap_init_qpages: unable to allocate KVA");
1933 	}
1934 }
1935 
1936 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1937 
1938 /*
1939  * Get the physical page address for the given pmap/virtual address.
1940  */
1941 static vm_paddr_t
1942 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1943 {
1944 	vm_paddr_t pa;
1945 
1946 	PMAP_LOCK(pmap);
1947 	pa = pte_vatopa(mmu, pmap, va);
1948 	PMAP_UNLOCK(pmap);
1949 
1950 	return (pa);
1951 }
1952 
1953 /*
1954  * Extract the physical page address associated with the given
1955  * kernel virtual address.
1956  */
1957 static vm_paddr_t
1958 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1959 {
1960 	tlb_entry_t e;
1961 	vm_paddr_t p = 0;
1962 	int i;
1963 
1964 #ifdef __powerpc64__
1965 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1966 		return (DMAP_TO_PHYS(va));
1967 #endif
1968 
1969 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1970 		p = pte_vatopa(mmu, kernel_pmap, va);
1971 
1972 	if (p == 0) {
1973 		/* Check TLB1 mappings */
1974 		for (i = 0; i < TLB1_ENTRIES; i++) {
1975 			tlb1_read_entry(&e, i);
1976 			if (!(e.mas1 & MAS1_VALID))
1977 				continue;
1978 			if (va >= e.virt && va < e.virt + e.size)
1979 				return (e.phys + (va - e.virt));
1980 		}
1981 	}
1982 
1983 	return (p);
1984 }
1985 
1986 /*
1987  * Initialize the pmap module.
1988  * Called by vm_init, to initialize any structures that the pmap
1989  * system needs to map virtual memory.
1990  */
1991 static void
1992 mmu_booke_init(mmu_t mmu)
1993 {
1994 	int shpgperproc = PMAP_SHPGPERPROC;
1995 
1996 	/*
1997 	 * Initialize the address space (zone) for the pv entries.  Set a
1998 	 * high water mark so that the system can recover from excessive
1999 	 * numbers of pv entries.
2000 	 */
2001 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
2002 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
2003 
2004 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
2005 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
2006 
2007 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
2008 	pv_entry_high_water = 9 * (pv_entry_max / 10);
2009 
2010 	uma_zone_reserve_kva(pvzone, pv_entry_max);
2011 
2012 	/* Pre-fill pvzone with initial number of pv entries. */
2013 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
2014 
2015 	/* Create a UMA zone for page table roots. */
2016 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
2017 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
2018 
2019 	/* Initialize ptbl allocation. */
2020 	ptbl_init();
2021 }
2022 
2023 /*
2024  * Map a list of wired pages into kernel virtual address space.  This is
2025  * intended for temporary mappings which do not need page modification or
2026  * references recorded.  Existing mappings in the region are overwritten.
2027  */
2028 static void
2029 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
2030 {
2031 	vm_offset_t va;
2032 
2033 	va = sva;
2034 	while (count-- > 0) {
2035 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2036 		va += PAGE_SIZE;
2037 		m++;
2038 	}
2039 }
2040 
2041 /*
2042  * Remove page mappings from kernel virtual address space.  Intended for
2043  * temporary mappings entered by mmu_booke_qenter.
2044  */
2045 static void
2046 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
2047 {
2048 	vm_offset_t va;
2049 
2050 	va = sva;
2051 	while (count-- > 0) {
2052 		mmu_booke_kremove(mmu, va);
2053 		va += PAGE_SIZE;
2054 	}
2055 }
2056 
2057 /*
2058  * Map a wired page into kernel virtual address space.
2059  */
2060 static void
2061 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
2062 {
2063 
2064 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
2065 }
2066 
2067 static void
2068 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2069 {
2070 	uint32_t flags;
2071 	pte_t *pte;
2072 
2073 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
2074 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
2075 
2076 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2077 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
2078 	flags |= PTE_PS_4KB;
2079 
2080 	pte = pte_find(mmu, kernel_pmap, va);
2081 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
2082 
2083 	mtx_lock_spin(&tlbivax_mutex);
2084 	tlb_miss_lock();
2085 
2086 	if (PTE_ISVALID(pte)) {
2087 
2088 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
2089 
2090 		/* Flush entry from TLB0 */
2091 		tlb0_flush_entry(va);
2092 	}
2093 
2094 	*pte = PTE_RPN_FROM_PA(pa) | flags;
2095 
2096 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
2097 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
2098 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
2099 
2100 	/* Flush the real memory from the instruction cache. */
2101 	if ((flags & (PTE_I | PTE_G)) == 0)
2102 		__syncicache((void *)va, PAGE_SIZE);
2103 
2104 	tlb_miss_unlock();
2105 	mtx_unlock_spin(&tlbivax_mutex);
2106 }
2107 
2108 /*
2109  * Remove a page from kernel page table.
2110  */
2111 static void
2112 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
2113 {
2114 	pte_t *pte;
2115 
2116 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
2117 
2118 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
2119 	    (va <= VM_MAX_KERNEL_ADDRESS)),
2120 	    ("mmu_booke_kremove: invalid va"));
2121 
2122 	pte = pte_find(mmu, kernel_pmap, va);
2123 
2124 	if (!PTE_ISVALID(pte)) {
2125 
2126 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
2127 
2128 		return;
2129 	}
2130 
2131 	mtx_lock_spin(&tlbivax_mutex);
2132 	tlb_miss_lock();
2133 
2134 	/* Invalidate entry in TLB0, update PTE. */
2135 	tlb0_flush_entry(va);
2136 	*pte = 0;
2137 
2138 	tlb_miss_unlock();
2139 	mtx_unlock_spin(&tlbivax_mutex);
2140 }
2141 
2142 /*
2143  * Provide a kernel pointer corresponding to a given userland pointer.
2144  * The returned pointer is valid until the next time this function is
2145  * called in this thread. This is used internally in copyin/copyout.
2146  */
2147 int
2148 mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
2149     void **kaddr, size_t ulen, size_t *klen)
2150 {
2151 
2152 	if (trunc_page((uintptr_t)uaddr + ulen) > VM_MAXUSER_ADDRESS)
2153 		return (EFAULT);
2154 
2155 	*kaddr = (void *)(uintptr_t)uaddr;
2156 	if (klen)
2157 		*klen = ulen;
2158 
2159 	return (0);
2160 }
2161 
2162 /*
2163  * Figure out where a given kernel pointer (usually in a fault) points
2164  * to from the VM's perspective, potentially remapping into userland's
2165  * address space.
2166  */
2167 static int
2168 mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2169     vm_offset_t *decoded_addr)
2170 {
2171 
2172 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
2173 		*is_user = 1;
2174 	else
2175 		*is_user = 0;
2176 
2177 	*decoded_addr = addr;
2178 	return (0);
2179 }
2180 
2181 /*
2182  * Initialize pmap associated with process 0.
2183  */
2184 static void
2185 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
2186 {
2187 
2188 	PMAP_LOCK_INIT(pmap);
2189 	mmu_booke_pinit(mmu, pmap);
2190 	PCPU_SET(curpmap, pmap);
2191 }
2192 
2193 /*
2194  * Initialize a preallocated and zeroed pmap structure,
2195  * such as one in a vmspace structure.
2196  */
2197 static void
2198 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
2199 {
2200 	int i;
2201 
2202 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
2203 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
2204 
2205 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
2206 
2207 	for (i = 0; i < MAXCPU; i++)
2208 		pmap->pm_tid[i] = TID_NONE;
2209 	CPU_ZERO(&kernel_pmap->pm_active);
2210 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2211 #ifdef __powerpc64__
2212 	pmap->pm_pp2d = uma_zalloc(ptbl_root_zone, M_WAITOK);
2213 	bzero(pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES);
2214 #else
2215 	pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK);
2216 	bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
2217 	TAILQ_INIT(&pmap->pm_ptbl_list);
2218 #endif
2219 }
2220 
2221 /*
2222  * Release any resources held by the given physical map.
2223  * Called when a pmap initialized by mmu_booke_pinit is being released.
2224  * Should only be called if the map contains no valid mappings.
2225  */
2226 static void
2227 mmu_booke_release(mmu_t mmu, pmap_t pmap)
2228 {
2229 
2230 	KASSERT(pmap->pm_stats.resident_count == 0,
2231 	    ("pmap_release: pmap resident count %ld != 0",
2232 	    pmap->pm_stats.resident_count));
2233 #ifdef __powerpc64__
2234 	uma_zfree(ptbl_root_zone, pmap->pm_pp2d);
2235 #else
2236 	uma_zfree(ptbl_root_zone, pmap->pm_pdir);
2237 #endif
2238 }
2239 
2240 /*
2241  * Insert the given physical page at the specified virtual address in the
2242  * target physical map with the protection requested. If specified the page
2243  * will be wired down.
2244  */
2245 static int
2246 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2247     vm_prot_t prot, u_int flags, int8_t psind)
2248 {
2249 	int error;
2250 
2251 	rw_wlock(&pvh_global_lock);
2252 	PMAP_LOCK(pmap);
2253 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
2254 	PMAP_UNLOCK(pmap);
2255 	rw_wunlock(&pvh_global_lock);
2256 	return (error);
2257 }
2258 
2259 static int
2260 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2261     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
2262 {
2263 	pte_t *pte;
2264 	vm_paddr_t pa;
2265 	uint32_t flags;
2266 	int error, su, sync;
2267 
2268 	pa = VM_PAGE_TO_PHYS(m);
2269 	su = (pmap == kernel_pmap);
2270 	sync = 0;
2271 
2272 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
2273 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
2274 	//		(u_int32_t)pmap, su, pmap->pm_tid,
2275 	//		(u_int32_t)m, va, pa, prot, flags);
2276 
2277 	if (su) {
2278 		KASSERT(((va >= virtual_avail) &&
2279 		    (va <= VM_MAX_KERNEL_ADDRESS)),
2280 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
2281 	} else {
2282 		KASSERT((va <= VM_MAXUSER_ADDRESS),
2283 		    ("mmu_booke_enter_locked: user pmap, non user va"));
2284 	}
2285 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2286 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
2287 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
2288 		else
2289 			VM_OBJECT_ASSERT_LOCKED(m->object);
2290 	}
2291 
2292 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2293 
2294 	/*
2295 	 * If there is an existing mapping, and the physical address has not
2296 	 * changed, must be protection or wiring change.
2297 	 */
2298 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
2299 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
2300 
2301 		/*
2302 		 * Before actually updating pte->flags we calculate and
2303 		 * prepare its new value in a helper var.
2304 		 */
2305 		flags = *pte;
2306 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
2307 
2308 		/* Wiring change, just update stats. */
2309 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
2310 			if (!PTE_ISWIRED(pte)) {
2311 				flags |= PTE_WIRED;
2312 				pmap->pm_stats.wired_count++;
2313 			}
2314 		} else {
2315 			if (PTE_ISWIRED(pte)) {
2316 				flags &= ~PTE_WIRED;
2317 				pmap->pm_stats.wired_count--;
2318 			}
2319 		}
2320 
2321 		if (prot & VM_PROT_WRITE) {
2322 			/* Add write permissions. */
2323 			flags |= PTE_SW;
2324 			if (!su)
2325 				flags |= PTE_UW;
2326 
2327 			if ((flags & PTE_MANAGED) != 0)
2328 				vm_page_aflag_set(m, PGA_WRITEABLE);
2329 		} else {
2330 			/* Handle modified pages, sense modify status. */
2331 
2332 			/*
2333 			 * The PTE_MODIFIED flag could be set by underlying
2334 			 * TLB misses since we last read it (above), possibly
2335 			 * other CPUs could update it so we check in the PTE
2336 			 * directly rather than rely on that saved local flags
2337 			 * copy.
2338 			 */
2339 			if (PTE_ISMODIFIED(pte))
2340 				vm_page_dirty(m);
2341 		}
2342 
2343 		if (prot & VM_PROT_EXECUTE) {
2344 			flags |= PTE_SX;
2345 			if (!su)
2346 				flags |= PTE_UX;
2347 
2348 			/*
2349 			 * Check existing flags for execute permissions: if we
2350 			 * are turning execute permissions on, icache should
2351 			 * be flushed.
2352 			 */
2353 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
2354 				sync++;
2355 		}
2356 
2357 		flags &= ~PTE_REFERENCED;
2358 
2359 		/*
2360 		 * The new flags value is all calculated -- only now actually
2361 		 * update the PTE.
2362 		 */
2363 		mtx_lock_spin(&tlbivax_mutex);
2364 		tlb_miss_lock();
2365 
2366 		tlb0_flush_entry(va);
2367 		*pte &= ~PTE_FLAGS_MASK;
2368 		*pte |= flags;
2369 
2370 		tlb_miss_unlock();
2371 		mtx_unlock_spin(&tlbivax_mutex);
2372 
2373 	} else {
2374 		/*
2375 		 * If there is an existing mapping, but it's for a different
2376 		 * physical address, pte_enter() will delete the old mapping.
2377 		 */
2378 		//if ((pte != NULL) && PTE_ISVALID(pte))
2379 		//	debugf("mmu_booke_enter_locked: replace\n");
2380 		//else
2381 		//	debugf("mmu_booke_enter_locked: new\n");
2382 
2383 		/* Now set up the flags and install the new mapping. */
2384 		flags = (PTE_SR | PTE_VALID);
2385 		flags |= PTE_M;
2386 
2387 		if (!su)
2388 			flags |= PTE_UR;
2389 
2390 		if (prot & VM_PROT_WRITE) {
2391 			flags |= PTE_SW;
2392 			if (!su)
2393 				flags |= PTE_UW;
2394 
2395 			if ((m->oflags & VPO_UNMANAGED) == 0)
2396 				vm_page_aflag_set(m, PGA_WRITEABLE);
2397 		}
2398 
2399 		if (prot & VM_PROT_EXECUTE) {
2400 			flags |= PTE_SX;
2401 			if (!su)
2402 				flags |= PTE_UX;
2403 		}
2404 
2405 		/* If its wired update stats. */
2406 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
2407 			flags |= PTE_WIRED;
2408 
2409 		error = pte_enter(mmu, pmap, m, va, flags,
2410 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
2411 		if (error != 0)
2412 			return (KERN_RESOURCE_SHORTAGE);
2413 
2414 		if ((flags & PMAP_ENTER_WIRED) != 0)
2415 			pmap->pm_stats.wired_count++;
2416 
2417 		/* Flush the real memory from the instruction cache. */
2418 		if (prot & VM_PROT_EXECUTE)
2419 			sync++;
2420 	}
2421 
2422 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
2423 		__syncicache((void *)va, PAGE_SIZE);
2424 		sync = 0;
2425 	}
2426 
2427 	return (KERN_SUCCESS);
2428 }
2429 
2430 /*
2431  * Maps a sequence of resident pages belonging to the same object.
2432  * The sequence begins with the given page m_start.  This page is
2433  * mapped at the given virtual address start.  Each subsequent page is
2434  * mapped at a virtual address that is offset from start by the same
2435  * amount as the page is offset from m_start within the object.  The
2436  * last page in the sequence is the page with the largest offset from
2437  * m_start that can be mapped at a virtual address less than the given
2438  * virtual address end.  Not every virtual page between start and end
2439  * is mapped; only those for which a resident page exists with the
2440  * corresponding offset from m_start are mapped.
2441  */
2442 static void
2443 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
2444     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
2445 {
2446 	vm_page_t m;
2447 	vm_pindex_t diff, psize;
2448 
2449 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2450 
2451 	psize = atop(end - start);
2452 	m = m_start;
2453 	rw_wlock(&pvh_global_lock);
2454 	PMAP_LOCK(pmap);
2455 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2456 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
2457 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
2458 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
2459 		m = TAILQ_NEXT(m, listq);
2460 	}
2461 	rw_wunlock(&pvh_global_lock);
2462 	PMAP_UNLOCK(pmap);
2463 }
2464 
2465 static void
2466 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2467     vm_prot_t prot)
2468 {
2469 
2470 	rw_wlock(&pvh_global_lock);
2471 	PMAP_LOCK(pmap);
2472 	mmu_booke_enter_locked(mmu, pmap, va, m,
2473 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
2474 	    PMAP_ENTER_QUICK_LOCKED, 0);
2475 	rw_wunlock(&pvh_global_lock);
2476 	PMAP_UNLOCK(pmap);
2477 }
2478 
2479 /*
2480  * Remove the given range of addresses from the specified map.
2481  *
2482  * It is assumed that the start and end are properly rounded to the page size.
2483  */
2484 static void
2485 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
2486 {
2487 	pte_t *pte;
2488 	uint8_t hold_flag;
2489 
2490 	int su = (pmap == kernel_pmap);
2491 
2492 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
2493 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
2494 
2495 	if (su) {
2496 		KASSERT(((va >= virtual_avail) &&
2497 		    (va <= VM_MAX_KERNEL_ADDRESS)),
2498 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
2499 	} else {
2500 		KASSERT((va <= VM_MAXUSER_ADDRESS),
2501 		    ("mmu_booke_remove: user pmap, non user va"));
2502 	}
2503 
2504 	if (PMAP_REMOVE_DONE(pmap)) {
2505 		//debugf("mmu_booke_remove: e (empty)\n");
2506 		return;
2507 	}
2508 
2509 	hold_flag = PTBL_HOLD_FLAG(pmap);
2510 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
2511 
2512 	rw_wlock(&pvh_global_lock);
2513 	PMAP_LOCK(pmap);
2514 	for (; va < endva; va += PAGE_SIZE) {
2515 		pte = pte_find(mmu, pmap, va);
2516 		if ((pte != NULL) && PTE_ISVALID(pte))
2517 			pte_remove(mmu, pmap, va, hold_flag);
2518 	}
2519 	PMAP_UNLOCK(pmap);
2520 	rw_wunlock(&pvh_global_lock);
2521 
2522 	//debugf("mmu_booke_remove: e\n");
2523 }
2524 
2525 /*
2526  * Remove physical page from all pmaps in which it resides.
2527  */
2528 static void
2529 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
2530 {
2531 	pv_entry_t pv, pvn;
2532 	uint8_t hold_flag;
2533 
2534 	rw_wlock(&pvh_global_lock);
2535 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
2536 		pvn = TAILQ_NEXT(pv, pv_link);
2537 
2538 		PMAP_LOCK(pv->pv_pmap);
2539 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
2540 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
2541 		PMAP_UNLOCK(pv->pv_pmap);
2542 	}
2543 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2544 	rw_wunlock(&pvh_global_lock);
2545 }
2546 
2547 /*
2548  * Map a range of physical addresses into kernel virtual address space.
2549  */
2550 static vm_offset_t
2551 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2552     vm_paddr_t pa_end, int prot)
2553 {
2554 	vm_offset_t sva = *virt;
2555 	vm_offset_t va = sva;
2556 
2557 #ifdef __powerpc64__
2558 	/* XXX: Handle memory not starting at 0x0. */
2559 	if (pa_end < ctob(Maxmem))
2560 		return (PHYS_TO_DMAP(pa_start));
2561 #endif
2562 
2563 	while (pa_start < pa_end) {
2564 		mmu_booke_kenter(mmu, va, pa_start);
2565 		va += PAGE_SIZE;
2566 		pa_start += PAGE_SIZE;
2567 	}
2568 	*virt = va;
2569 
2570 	return (sva);
2571 }
2572 
2573 /*
2574  * The pmap must be activated before it's address space can be accessed in any
2575  * way.
2576  */
2577 static void
2578 mmu_booke_activate(mmu_t mmu, struct thread *td)
2579 {
2580 	pmap_t pmap;
2581 	u_int cpuid;
2582 
2583 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2584 
2585 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
2586 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2587 
2588 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
2589 
2590 	sched_pin();
2591 
2592 	cpuid = PCPU_GET(cpuid);
2593 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2594 	PCPU_SET(curpmap, pmap);
2595 
2596 	if (pmap->pm_tid[cpuid] == TID_NONE)
2597 		tid_alloc(pmap);
2598 
2599 	/* Load PID0 register with pmap tid value. */
2600 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
2601 	__asm __volatile("isync");
2602 
2603 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
2604 
2605 	sched_unpin();
2606 
2607 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2608 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2609 }
2610 
2611 /*
2612  * Deactivate the specified process's address space.
2613  */
2614 static void
2615 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2616 {
2617 	pmap_t pmap;
2618 
2619 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2620 
2621 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
2622 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2623 
2624 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2625 
2626 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2627 	PCPU_SET(curpmap, NULL);
2628 }
2629 
2630 /*
2631  * Copy the range specified by src_addr/len
2632  * from the source map to the range dst_addr/len
2633  * in the destination map.
2634  *
2635  * This routine is only advisory and need not do anything.
2636  */
2637 static void
2638 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2639     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2640 {
2641 
2642 }
2643 
2644 /*
2645  * Set the physical protection on the specified range of this map as requested.
2646  */
2647 static void
2648 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2649     vm_prot_t prot)
2650 {
2651 	vm_offset_t va;
2652 	vm_page_t m;
2653 	pte_t *pte;
2654 
2655 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2656 		mmu_booke_remove(mmu, pmap, sva, eva);
2657 		return;
2658 	}
2659 
2660 	if (prot & VM_PROT_WRITE)
2661 		return;
2662 
2663 	PMAP_LOCK(pmap);
2664 	for (va = sva; va < eva; va += PAGE_SIZE) {
2665 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2666 			if (PTE_ISVALID(pte)) {
2667 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2668 
2669 				mtx_lock_spin(&tlbivax_mutex);
2670 				tlb_miss_lock();
2671 
2672 				/* Handle modified pages. */
2673 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2674 					vm_page_dirty(m);
2675 
2676 				tlb0_flush_entry(va);
2677 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2678 
2679 				tlb_miss_unlock();
2680 				mtx_unlock_spin(&tlbivax_mutex);
2681 			}
2682 		}
2683 	}
2684 	PMAP_UNLOCK(pmap);
2685 }
2686 
2687 /*
2688  * Clear the write and modified bits in each of the given page's mappings.
2689  */
2690 static void
2691 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2692 {
2693 	pv_entry_t pv;
2694 	pte_t *pte;
2695 
2696 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2697 	    ("mmu_booke_remove_write: page %p is not managed", m));
2698 	vm_page_assert_busied(m);
2699 
2700 	if (!pmap_page_is_write_mapped(m))
2701 	        return;
2702 	rw_wlock(&pvh_global_lock);
2703 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2704 		PMAP_LOCK(pv->pv_pmap);
2705 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2706 			if (PTE_ISVALID(pte)) {
2707 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2708 
2709 				mtx_lock_spin(&tlbivax_mutex);
2710 				tlb_miss_lock();
2711 
2712 				/* Handle modified pages. */
2713 				if (PTE_ISMODIFIED(pte))
2714 					vm_page_dirty(m);
2715 
2716 				/* Flush mapping from TLB0. */
2717 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2718 
2719 				tlb_miss_unlock();
2720 				mtx_unlock_spin(&tlbivax_mutex);
2721 			}
2722 		}
2723 		PMAP_UNLOCK(pv->pv_pmap);
2724 	}
2725 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2726 	rw_wunlock(&pvh_global_lock);
2727 }
2728 
2729 static void
2730 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2731 {
2732 	pte_t *pte;
2733 	vm_paddr_t pa = 0;
2734 	int sync_sz, valid;
2735 #ifndef __powerpc64__
2736 	pmap_t pmap;
2737 	vm_page_t m;
2738 	vm_offset_t addr;
2739 	int active;
2740 #endif
2741 
2742 #ifndef __powerpc64__
2743 	rw_wlock(&pvh_global_lock);
2744 	pmap = PCPU_GET(curpmap);
2745 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2746 #endif
2747 	while (sz > 0) {
2748 		PMAP_LOCK(pm);
2749 		pte = pte_find(mmu, pm, va);
2750 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2751 		if (valid)
2752 			pa = PTE_PA(pte);
2753 		PMAP_UNLOCK(pm);
2754 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
2755 		sync_sz = min(sync_sz, sz);
2756 		if (valid) {
2757 #ifdef __powerpc64__
2758 			pa += (va & PAGE_MASK);
2759 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
2760 #else
2761 			if (!active) {
2762 				/* Create a mapping in the active pmap. */
2763 				addr = 0;
2764 				m = PHYS_TO_VM_PAGE(pa);
2765 				PMAP_LOCK(pmap);
2766 				pte_enter(mmu, pmap, m, addr,
2767 				    PTE_SR | PTE_VALID, FALSE);
2768 				addr += (va & PAGE_MASK);
2769 				__syncicache((void *)addr, sync_sz);
2770 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2771 				PMAP_UNLOCK(pmap);
2772 			} else
2773 				__syncicache((void *)va, sync_sz);
2774 #endif
2775 		}
2776 		va += sync_sz;
2777 		sz -= sync_sz;
2778 	}
2779 #ifndef __powerpc64__
2780 	rw_wunlock(&pvh_global_lock);
2781 #endif
2782 }
2783 
2784 /*
2785  * Atomically extract and hold the physical page with the given
2786  * pmap and virtual address pair if that mapping permits the given
2787  * protection.
2788  */
2789 static vm_page_t
2790 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2791     vm_prot_t prot)
2792 {
2793 	pte_t *pte;
2794 	vm_page_t m;
2795 	uint32_t pte_wbit;
2796 
2797 	m = NULL;
2798 	PMAP_LOCK(pmap);
2799 	pte = pte_find(mmu, pmap, va);
2800 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2801 		if (pmap == kernel_pmap)
2802 			pte_wbit = PTE_SW;
2803 		else
2804 			pte_wbit = PTE_UW;
2805 
2806 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
2807 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2808 			if (!vm_page_wire_mapped(m))
2809 				m = NULL;
2810 		}
2811 	}
2812 	PMAP_UNLOCK(pmap);
2813 	return (m);
2814 }
2815 
2816 /*
2817  * Initialize a vm_page's machine-dependent fields.
2818  */
2819 static void
2820 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2821 {
2822 
2823 	m->md.pv_tracked = 0;
2824 	TAILQ_INIT(&m->md.pv_list);
2825 }
2826 
2827 /*
2828  * mmu_booke_zero_page_area zeros the specified hardware page by
2829  * mapping it into virtual memory and using bzero to clear
2830  * its contents.
2831  *
2832  * off and size must reside within a single page.
2833  */
2834 static void
2835 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2836 {
2837 	vm_offset_t va;
2838 
2839 	/* XXX KASSERT off and size are within a single page? */
2840 
2841 #ifdef __powerpc64__
2842 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2843 	bzero((caddr_t)va + off, size);
2844 #else
2845 	mtx_lock(&zero_page_mutex);
2846 	va = zero_page_va;
2847 
2848 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2849 	bzero((caddr_t)va + off, size);
2850 	mmu_booke_kremove(mmu, va);
2851 
2852 	mtx_unlock(&zero_page_mutex);
2853 #endif
2854 }
2855 
2856 /*
2857  * mmu_booke_zero_page zeros the specified hardware page.
2858  */
2859 static void
2860 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2861 {
2862 	vm_offset_t off, va;
2863 
2864 #ifdef __powerpc64__
2865 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2866 
2867 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2868 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2869 #else
2870 	va = zero_page_va;
2871 	mtx_lock(&zero_page_mutex);
2872 
2873 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2874 
2875 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2876 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2877 
2878 	mmu_booke_kremove(mmu, va);
2879 
2880 	mtx_unlock(&zero_page_mutex);
2881 #endif
2882 }
2883 
2884 /*
2885  * mmu_booke_copy_page copies the specified (machine independent) page by
2886  * mapping the page into virtual memory and using memcopy to copy the page,
2887  * one machine dependent page at a time.
2888  */
2889 static void
2890 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2891 {
2892 	vm_offset_t sva, dva;
2893 
2894 #ifdef __powerpc64__
2895 	sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm));
2896 	dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm));
2897 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2898 #else
2899 	sva = copy_page_src_va;
2900 	dva = copy_page_dst_va;
2901 
2902 	mtx_lock(&copy_page_mutex);
2903 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2904 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2905 
2906 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2907 
2908 	mmu_booke_kremove(mmu, dva);
2909 	mmu_booke_kremove(mmu, sva);
2910 	mtx_unlock(&copy_page_mutex);
2911 #endif
2912 }
2913 
2914 static inline void
2915 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2916     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2917 {
2918 	void *a_cp, *b_cp;
2919 	vm_offset_t a_pg_offset, b_pg_offset;
2920 	int cnt;
2921 
2922 #ifdef __powerpc64__
2923 	vm_page_t pa, pb;
2924 
2925 	while (xfersize > 0) {
2926 		a_pg_offset = a_offset & PAGE_MASK;
2927 		pa = ma[a_offset >> PAGE_SHIFT];
2928 		b_pg_offset = b_offset & PAGE_MASK;
2929 		pb = mb[b_offset >> PAGE_SHIFT];
2930 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2931 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2932 		a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) +
2933 		    a_pg_offset);
2934 		b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) +
2935 		    b_pg_offset);
2936 		bcopy(a_cp, b_cp, cnt);
2937 		a_offset += cnt;
2938 		b_offset += cnt;
2939 		xfersize -= cnt;
2940 	}
2941 #else
2942 	mtx_lock(&copy_page_mutex);
2943 	while (xfersize > 0) {
2944 		a_pg_offset = a_offset & PAGE_MASK;
2945 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2946 		mmu_booke_kenter(mmu, copy_page_src_va,
2947 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2948 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2949 		b_pg_offset = b_offset & PAGE_MASK;
2950 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2951 		mmu_booke_kenter(mmu, copy_page_dst_va,
2952 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2953 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2954 		bcopy(a_cp, b_cp, cnt);
2955 		mmu_booke_kremove(mmu, copy_page_dst_va);
2956 		mmu_booke_kremove(mmu, copy_page_src_va);
2957 		a_offset += cnt;
2958 		b_offset += cnt;
2959 		xfersize -= cnt;
2960 	}
2961 	mtx_unlock(&copy_page_mutex);
2962 #endif
2963 }
2964 
2965 static vm_offset_t
2966 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2967 {
2968 #ifdef __powerpc64__
2969 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
2970 #else
2971 	vm_paddr_t paddr;
2972 	vm_offset_t qaddr;
2973 	uint32_t flags;
2974 	pte_t *pte;
2975 
2976 	paddr = VM_PAGE_TO_PHYS(m);
2977 
2978 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2979 	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
2980 	flags |= PTE_PS_4KB;
2981 
2982 	critical_enter();
2983 	qaddr = PCPU_GET(qmap_addr);
2984 
2985 	pte = pte_find(mmu, kernel_pmap, qaddr);
2986 
2987 	KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2988 
2989 	/*
2990 	 * XXX: tlbivax is broadcast to other cores, but qaddr should
2991  	 * not be present in other TLBs.  Is there a better instruction
2992 	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2993 	 */
2994 	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2995 	__asm __volatile("isync; msync");
2996 
2997 	*pte = PTE_RPN_FROM_PA(paddr) | flags;
2998 
2999 	/* Flush the real memory from the instruction cache. */
3000 	if ((flags & (PTE_I | PTE_G)) == 0)
3001 		__syncicache((void *)qaddr, PAGE_SIZE);
3002 
3003 	return (qaddr);
3004 #endif
3005 }
3006 
3007 static void
3008 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
3009 {
3010 #ifndef __powerpc64__
3011 	pte_t *pte;
3012 
3013 	pte = pte_find(mmu, kernel_pmap, addr);
3014 
3015 	KASSERT(PCPU_GET(qmap_addr) == addr,
3016 	    ("mmu_booke_quick_remove_page: invalid address"));
3017 	KASSERT(*pte != 0,
3018 	    ("mmu_booke_quick_remove_page: PTE not in use"));
3019 
3020 	*pte = 0;
3021 	critical_exit();
3022 #endif
3023 }
3024 
3025 /*
3026  * Return whether or not the specified physical page was modified
3027  * in any of physical maps.
3028  */
3029 static boolean_t
3030 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
3031 {
3032 	pte_t *pte;
3033 	pv_entry_t pv;
3034 	boolean_t rv;
3035 
3036 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3037 	    ("mmu_booke_is_modified: page %p is not managed", m));
3038 	rv = FALSE;
3039 
3040 	/*
3041 	 * If the page is not busied then this check is racy.
3042 	 */
3043 	if (!pmap_page_is_write_mapped(m))
3044 		return (FALSE);
3045 
3046 	rw_wlock(&pvh_global_lock);
3047 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3048 		PMAP_LOCK(pv->pv_pmap);
3049 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3050 		    PTE_ISVALID(pte)) {
3051 			if (PTE_ISMODIFIED(pte))
3052 				rv = TRUE;
3053 		}
3054 		PMAP_UNLOCK(pv->pv_pmap);
3055 		if (rv)
3056 			break;
3057 	}
3058 	rw_wunlock(&pvh_global_lock);
3059 	return (rv);
3060 }
3061 
3062 /*
3063  * Return whether or not the specified virtual address is eligible
3064  * for prefault.
3065  */
3066 static boolean_t
3067 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
3068 {
3069 
3070 	return (FALSE);
3071 }
3072 
3073 /*
3074  * Return whether or not the specified physical page was referenced
3075  * in any physical maps.
3076  */
3077 static boolean_t
3078 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
3079 {
3080 	pte_t *pte;
3081 	pv_entry_t pv;
3082 	boolean_t rv;
3083 
3084 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3085 	    ("mmu_booke_is_referenced: page %p is not managed", m));
3086 	rv = FALSE;
3087 	rw_wlock(&pvh_global_lock);
3088 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3089 		PMAP_LOCK(pv->pv_pmap);
3090 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3091 		    PTE_ISVALID(pte)) {
3092 			if (PTE_ISREFERENCED(pte))
3093 				rv = TRUE;
3094 		}
3095 		PMAP_UNLOCK(pv->pv_pmap);
3096 		if (rv)
3097 			break;
3098 	}
3099 	rw_wunlock(&pvh_global_lock);
3100 	return (rv);
3101 }
3102 
3103 /*
3104  * Clear the modify bits on the specified physical page.
3105  */
3106 static void
3107 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
3108 {
3109 	pte_t *pte;
3110 	pv_entry_t pv;
3111 
3112 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3113 	    ("mmu_booke_clear_modify: page %p is not managed", m));
3114 	vm_page_assert_busied(m);
3115 
3116 	if (!pmap_page_is_write_mapped(m))
3117 	        return;
3118 
3119 	rw_wlock(&pvh_global_lock);
3120 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3121 		PMAP_LOCK(pv->pv_pmap);
3122 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3123 		    PTE_ISVALID(pte)) {
3124 			mtx_lock_spin(&tlbivax_mutex);
3125 			tlb_miss_lock();
3126 
3127 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
3128 				tlb0_flush_entry(pv->pv_va);
3129 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
3130 				    PTE_REFERENCED);
3131 			}
3132 
3133 			tlb_miss_unlock();
3134 			mtx_unlock_spin(&tlbivax_mutex);
3135 		}
3136 		PMAP_UNLOCK(pv->pv_pmap);
3137 	}
3138 	rw_wunlock(&pvh_global_lock);
3139 }
3140 
3141 /*
3142  * Return a count of reference bits for a page, clearing those bits.
3143  * It is not necessary for every reference bit to be cleared, but it
3144  * is necessary that 0 only be returned when there are truly no
3145  * reference bits set.
3146  *
3147  * As an optimization, update the page's dirty field if a modified bit is
3148  * found while counting reference bits.  This opportunistic update can be
3149  * performed at low cost and can eliminate the need for some future calls
3150  * to pmap_is_modified().  However, since this function stops after
3151  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3152  * dirty pages.  Those dirty pages will only be detected by a future call
3153  * to pmap_is_modified().
3154  */
3155 static int
3156 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
3157 {
3158 	pte_t *pte;
3159 	pv_entry_t pv;
3160 	int count;
3161 
3162 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3163 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
3164 	count = 0;
3165 	rw_wlock(&pvh_global_lock);
3166 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3167 		PMAP_LOCK(pv->pv_pmap);
3168 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3169 		    PTE_ISVALID(pte)) {
3170 			if (PTE_ISMODIFIED(pte))
3171 				vm_page_dirty(m);
3172 			if (PTE_ISREFERENCED(pte)) {
3173 				mtx_lock_spin(&tlbivax_mutex);
3174 				tlb_miss_lock();
3175 
3176 				tlb0_flush_entry(pv->pv_va);
3177 				*pte &= ~PTE_REFERENCED;
3178 
3179 				tlb_miss_unlock();
3180 				mtx_unlock_spin(&tlbivax_mutex);
3181 
3182 				if (++count >= PMAP_TS_REFERENCED_MAX) {
3183 					PMAP_UNLOCK(pv->pv_pmap);
3184 					break;
3185 				}
3186 			}
3187 		}
3188 		PMAP_UNLOCK(pv->pv_pmap);
3189 	}
3190 	rw_wunlock(&pvh_global_lock);
3191 	return (count);
3192 }
3193 
3194 /*
3195  * Clear the wired attribute from the mappings for the specified range of
3196  * addresses in the given pmap.  Every valid mapping within that range must
3197  * have the wired attribute set.  In contrast, invalid mappings cannot have
3198  * the wired attribute set, so they are ignored.
3199  *
3200  * The wired attribute of the page table entry is not a hardware feature, so
3201  * there is no need to invalidate any TLB entries.
3202  */
3203 static void
3204 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3205 {
3206 	vm_offset_t va;
3207 	pte_t *pte;
3208 
3209 	PMAP_LOCK(pmap);
3210 	for (va = sva; va < eva; va += PAGE_SIZE) {
3211 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
3212 		    PTE_ISVALID(pte)) {
3213 			if (!PTE_ISWIRED(pte))
3214 				panic("mmu_booke_unwire: pte %p isn't wired",
3215 				    pte);
3216 			*pte &= ~PTE_WIRED;
3217 			pmap->pm_stats.wired_count--;
3218 		}
3219 	}
3220 	PMAP_UNLOCK(pmap);
3221 
3222 }
3223 
3224 /*
3225  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
3226  * page.  This count may be changed upwards or downwards in the future; it is
3227  * only necessary that true be returned for a small subset of pmaps for proper
3228  * page aging.
3229  */
3230 static boolean_t
3231 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
3232 {
3233 	pv_entry_t pv;
3234 	int loops;
3235 	boolean_t rv;
3236 
3237 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3238 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
3239 	loops = 0;
3240 	rv = FALSE;
3241 	rw_wlock(&pvh_global_lock);
3242 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3243 		if (pv->pv_pmap == pmap) {
3244 			rv = TRUE;
3245 			break;
3246 		}
3247 		if (++loops >= 16)
3248 			break;
3249 	}
3250 	rw_wunlock(&pvh_global_lock);
3251 	return (rv);
3252 }
3253 
3254 /*
3255  * Return the number of managed mappings to the given physical page that are
3256  * wired.
3257  */
3258 static int
3259 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
3260 {
3261 	pv_entry_t pv;
3262 	pte_t *pte;
3263 	int count = 0;
3264 
3265 	if ((m->oflags & VPO_UNMANAGED) != 0)
3266 		return (count);
3267 	rw_wlock(&pvh_global_lock);
3268 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3269 		PMAP_LOCK(pv->pv_pmap);
3270 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
3271 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
3272 				count++;
3273 		PMAP_UNLOCK(pv->pv_pmap);
3274 	}
3275 	rw_wunlock(&pvh_global_lock);
3276 	return (count);
3277 }
3278 
3279 static int
3280 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
3281 {
3282 	int i;
3283 	vm_offset_t va;
3284 
3285 	/*
3286 	 * This currently does not work for entries that
3287 	 * overlap TLB1 entries.
3288 	 */
3289 	for (i = 0; i < TLB1_ENTRIES; i ++) {
3290 		if (tlb1_iomapped(i, pa, size, &va) == 0)
3291 			return (0);
3292 	}
3293 
3294 	return (EFAULT);
3295 }
3296 
3297 void
3298 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
3299 {
3300 	vm_paddr_t ppa;
3301 	vm_offset_t ofs;
3302 	vm_size_t gran;
3303 
3304 	/* Minidumps are based on virtual memory addresses. */
3305 	if (do_minidump) {
3306 		*va = (void *)(vm_offset_t)pa;
3307 		return;
3308 	}
3309 
3310 	/* Raw physical memory dumps don't have a virtual address. */
3311 	/* We always map a 256MB page at 256M. */
3312 	gran = 256 * 1024 * 1024;
3313 	ppa = rounddown2(pa, gran);
3314 	ofs = pa - ppa;
3315 	*va = (void *)gran;
3316 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
3317 
3318 	if (sz > (gran - ofs))
3319 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
3320 		    _TLB_ENTRY_IO);
3321 }
3322 
3323 void
3324 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
3325 {
3326 	vm_paddr_t ppa;
3327 	vm_offset_t ofs;
3328 	vm_size_t gran;
3329 	tlb_entry_t e;
3330 	int i;
3331 
3332 	/* Minidumps are based on virtual memory addresses. */
3333 	/* Nothing to do... */
3334 	if (do_minidump)
3335 		return;
3336 
3337 	for (i = 0; i < TLB1_ENTRIES; i++) {
3338 		tlb1_read_entry(&e, i);
3339 		if (!(e.mas1 & MAS1_VALID))
3340 			break;
3341 	}
3342 
3343 	/* Raw physical memory dumps don't have a virtual address. */
3344 	i--;
3345 	e.mas1 = 0;
3346 	e.mas2 = 0;
3347 	e.mas3 = 0;
3348 	tlb1_write_entry(&e, i);
3349 
3350 	gran = 256 * 1024 * 1024;
3351 	ppa = rounddown2(pa, gran);
3352 	ofs = pa - ppa;
3353 	if (sz > (gran - ofs)) {
3354 		i--;
3355 		e.mas1 = 0;
3356 		e.mas2 = 0;
3357 		e.mas3 = 0;
3358 		tlb1_write_entry(&e, i);
3359 	}
3360 }
3361 
3362 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3363 
3364 void
3365 mmu_booke_scan_init(mmu_t mmu)
3366 {
3367 	vm_offset_t va;
3368 	pte_t *pte;
3369 	int i;
3370 
3371 	if (!do_minidump) {
3372 		/* Initialize phys. segments for dumpsys(). */
3373 		memset(&dump_map, 0, sizeof(dump_map));
3374 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
3375 		    &availmem_regions_sz);
3376 		for (i = 0; i < physmem_regions_sz; i++) {
3377 			dump_map[i].pa_start = physmem_regions[i].mr_start;
3378 			dump_map[i].pa_size = physmem_regions[i].mr_size;
3379 		}
3380 		return;
3381 	}
3382 
3383 	/* Virtual segments for minidumps: */
3384 	memset(&dump_map, 0, sizeof(dump_map));
3385 
3386 	/* 1st: kernel .data and .bss. */
3387 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3388 	dump_map[0].pa_size =
3389 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
3390 
3391 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3392 	dump_map[1].pa_start = data_start;
3393 	dump_map[1].pa_size = data_end - data_start;
3394 
3395 	/* 3rd: kernel VM. */
3396 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3397 	/* Find start of next chunk (from va). */
3398 	while (va < virtual_end) {
3399 		/* Don't dump the buffer cache. */
3400 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3401 			va = kmi.buffer_eva;
3402 			continue;
3403 		}
3404 		pte = pte_find(mmu, kernel_pmap, va);
3405 		if (pte != NULL && PTE_ISVALID(pte))
3406 			break;
3407 		va += PAGE_SIZE;
3408 	}
3409 	if (va < virtual_end) {
3410 		dump_map[2].pa_start = va;
3411 		va += PAGE_SIZE;
3412 		/* Find last page in chunk. */
3413 		while (va < virtual_end) {
3414 			/* Don't run into the buffer cache. */
3415 			if (va == kmi.buffer_sva)
3416 				break;
3417 			pte = pte_find(mmu, kernel_pmap, va);
3418 			if (pte == NULL || !PTE_ISVALID(pte))
3419 				break;
3420 			va += PAGE_SIZE;
3421 		}
3422 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3423 	}
3424 }
3425 
3426 /*
3427  * Map a set of physical memory pages into the kernel virtual address space.
3428  * Return a pointer to where it is mapped. This routine is intended to be used
3429  * for mapping device memory, NOT real memory.
3430  */
3431 static void *
3432 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
3433 {
3434 
3435 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
3436 }
3437 
3438 static void *
3439 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3440 {
3441 	tlb_entry_t e;
3442 	void *res;
3443 	uintptr_t va, tmpva;
3444 	vm_size_t sz;
3445 	int i;
3446 
3447 	/*
3448 	 * Check if this is premapped in TLB1. Note: this should probably also
3449 	 * check whether a sequence of TLB1 entries exist that match the
3450 	 * requirement, but now only checks the easy case.
3451 	 */
3452 	for (i = 0; i < TLB1_ENTRIES; i++) {
3453 		tlb1_read_entry(&e, i);
3454 		if (!(e.mas1 & MAS1_VALID))
3455 			continue;
3456 		if (pa >= e.phys &&
3457 		    (pa + size) <= (e.phys + e.size) &&
3458 		    (ma == VM_MEMATTR_DEFAULT ||
3459 		     tlb_calc_wimg(pa, ma) ==
3460 		      (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED))))
3461 			return (void *)(e.virt +
3462 			    (vm_offset_t)(pa - e.phys));
3463 	}
3464 
3465 	size = roundup(size, PAGE_SIZE);
3466 
3467 	/*
3468 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
3469 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
3470 	 */
3471 #ifdef SPARSE_MAPDEV
3472 	/*
3473 	 * With a sparse mapdev, align to the largest starting region.  This
3474 	 * could feasibly be optimized for a 'best-fit' alignment, but that
3475 	 * calculation could be very costly.
3476 	 * Align to the smaller of:
3477 	 * - first set bit in overlap of (pa & size mask)
3478 	 * - largest size envelope
3479 	 *
3480 	 * It's possible the device mapping may start at a PA that's not larger
3481 	 * than the size mask, so we need to offset in to maximize the TLB entry
3482 	 * range and minimize the number of used TLB entries.
3483 	 */
3484 	do {
3485 	    tmpva = tlb1_map_base;
3486 	    sz = ffsl(((1 << flsl(size-1)) - 1) & pa);
3487 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
3488 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
3489 #ifdef __powerpc64__
3490 	} while (!atomic_cmpset_long(&tlb1_map_base, tmpva, va + size));
3491 #else
3492 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
3493 #endif
3494 #else
3495 #ifdef __powerpc64__
3496 	va = atomic_fetchadd_long(&tlb1_map_base, size);
3497 #else
3498 	va = atomic_fetchadd_int(&tlb1_map_base, size);
3499 #endif
3500 #endif
3501 	res = (void *)va;
3502 
3503 	do {
3504 		sz = 1 << (ilog2(size) & ~1);
3505 		/* Align size to PA */
3506 		if (pa % sz != 0) {
3507 			do {
3508 				sz >>= 2;
3509 			} while (pa % sz != 0);
3510 		}
3511 		/* Now align from there to VA */
3512 		if (va % sz != 0) {
3513 			do {
3514 				sz >>= 2;
3515 			} while (va % sz != 0);
3516 		}
3517 		if (bootverbose)
3518 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
3519 			    (void *)va, (uintmax_t)pa, (long)sz);
3520 		if (tlb1_set_entry(va, pa, sz,
3521 		    _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)) < 0)
3522 			return (NULL);
3523 		size -= sz;
3524 		pa += sz;
3525 		va += sz;
3526 	} while (size > 0);
3527 
3528 	return (res);
3529 }
3530 
3531 /*
3532  * 'Unmap' a range mapped by mmu_booke_mapdev().
3533  */
3534 static void
3535 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
3536 {
3537 #ifdef SUPPORTS_SHRINKING_TLB1
3538 	vm_offset_t base, offset;
3539 
3540 	/*
3541 	 * Unmap only if this is inside kernel virtual space.
3542 	 */
3543 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
3544 		base = trunc_page(va);
3545 		offset = va & PAGE_MASK;
3546 		size = roundup(offset + size, PAGE_SIZE);
3547 		kva_free(base, size);
3548 	}
3549 #endif
3550 }
3551 
3552 /*
3553  * mmu_booke_object_init_pt preloads the ptes for a given object into the
3554  * specified pmap. This eliminates the blast of soft faults on process startup
3555  * and immediately after an mmap.
3556  */
3557 static void
3558 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
3559     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3560 {
3561 
3562 	VM_OBJECT_ASSERT_WLOCKED(object);
3563 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3564 	    ("mmu_booke_object_init_pt: non-device object"));
3565 }
3566 
3567 /*
3568  * Perform the pmap work for mincore.
3569  */
3570 static int
3571 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
3572     vm_paddr_t *pap)
3573 {
3574 
3575 	/* XXX: this should be implemented at some point */
3576 	return (0);
3577 }
3578 
3579 static int
3580 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz,
3581     vm_memattr_t mode)
3582 {
3583 	vm_offset_t va;
3584 	pte_t *pte;
3585 	int i, j;
3586 	tlb_entry_t e;
3587 
3588 	/* Check TLB1 mappings */
3589 	for (i = 0; i < TLB1_ENTRIES; i++) {
3590 		tlb1_read_entry(&e, i);
3591 		if (!(e.mas1 & MAS1_VALID))
3592 			continue;
3593 		if (addr >= e.virt && addr < e.virt + e.size)
3594 			break;
3595 	}
3596 	if (i < TLB1_ENTRIES) {
3597 		/* Only allow full mappings to be modified for now. */
3598 		/* Validate the range. */
3599 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
3600 			tlb1_read_entry(&e, j);
3601 			if (va != e.virt || (sz - (va - addr) < e.size))
3602 				return (EINVAL);
3603 		}
3604 		for (va = addr; va < addr + sz; va += e.size, i++) {
3605 			tlb1_read_entry(&e, i);
3606 			e.mas2 &= ~MAS2_WIMGE_MASK;
3607 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
3608 
3609 			/*
3610 			 * Write it out to the TLB.  Should really re-sync with other
3611 			 * cores.
3612 			 */
3613 			tlb1_write_entry(&e, i);
3614 		}
3615 		return (0);
3616 	}
3617 
3618 	/* Not in TLB1, try through pmap */
3619 	/* First validate the range. */
3620 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
3621 		pte = pte_find(mmu, kernel_pmap, va);
3622 		if (pte == NULL || !PTE_ISVALID(pte))
3623 			return (EINVAL);
3624 	}
3625 
3626 	mtx_lock_spin(&tlbivax_mutex);
3627 	tlb_miss_lock();
3628 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
3629 		pte = pte_find(mmu, kernel_pmap, va);
3630 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
3631 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
3632 		tlb0_flush_entry(va);
3633 	}
3634 	tlb_miss_unlock();
3635 	mtx_unlock_spin(&tlbivax_mutex);
3636 
3637 	return (0);
3638 }
3639 
3640 /**************************************************************************/
3641 /* TID handling */
3642 /**************************************************************************/
3643 
3644 /*
3645  * Allocate a TID. If necessary, steal one from someone else.
3646  * The new TID is flushed from the TLB before returning.
3647  */
3648 static tlbtid_t
3649 tid_alloc(pmap_t pmap)
3650 {
3651 	tlbtid_t tid;
3652 	int thiscpu;
3653 
3654 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
3655 
3656 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
3657 
3658 	thiscpu = PCPU_GET(cpuid);
3659 
3660 	tid = PCPU_GET(booke.tid_next);
3661 	if (tid > TID_MAX)
3662 		tid = TID_MIN;
3663 	PCPU_SET(booke.tid_next, tid + 1);
3664 
3665 	/* If we are stealing TID then clear the relevant pmap's field */
3666 	if (tidbusy[thiscpu][tid] != NULL) {
3667 
3668 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
3669 
3670 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
3671 
3672 		/* Flush all entries from TLB0 matching this TID. */
3673 		tid_flush(tid);
3674 	}
3675 
3676 	tidbusy[thiscpu][tid] = pmap;
3677 	pmap->pm_tid[thiscpu] = tid;
3678 	__asm __volatile("msync; isync");
3679 
3680 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
3681 	    PCPU_GET(booke.tid_next));
3682 
3683 	return (tid);
3684 }
3685 
3686 /**************************************************************************/
3687 /* TLB0 handling */
3688 /**************************************************************************/
3689 
3690 /* Convert TLB0 va and way number to tlb0[] table index. */
3691 static inline unsigned int
3692 tlb0_tableidx(vm_offset_t va, unsigned int way)
3693 {
3694 	unsigned int idx;
3695 
3696 	idx = (way * TLB0_ENTRIES_PER_WAY);
3697 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
3698 	return (idx);
3699 }
3700 
3701 /*
3702  * Invalidate TLB0 entry.
3703  */
3704 static inline void
3705 tlb0_flush_entry(vm_offset_t va)
3706 {
3707 
3708 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3709 
3710 	mtx_assert(&tlbivax_mutex, MA_OWNED);
3711 
3712 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3713 	__asm __volatile("isync; msync");
3714 	__asm __volatile("tlbsync; msync");
3715 
3716 	CTR1(KTR_PMAP, "%s: e", __func__);
3717 }
3718 
3719 
3720 /**************************************************************************/
3721 /* TLB1 handling */
3722 /**************************************************************************/
3723 
3724 /*
3725  * TLB1 mapping notes:
3726  *
3727  * TLB1[0]	Kernel text and data.
3728  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3729  *		windows, other devices mappings.
3730  */
3731 
3732  /*
3733  * Read an entry from given TLB1 slot.
3734  */
3735 void
3736 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
3737 {
3738 	register_t msr;
3739 	uint32_t mas0;
3740 
3741 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
3742 
3743 	msr = mfmsr();
3744 	__asm __volatile("wrteei 0");
3745 
3746 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
3747 	mtspr(SPR_MAS0, mas0);
3748 	__asm __volatile("isync; tlbre");
3749 
3750 	entry->mas1 = mfspr(SPR_MAS1);
3751 	entry->mas2 = mfspr(SPR_MAS2);
3752 	entry->mas3 = mfspr(SPR_MAS3);
3753 
3754 	switch ((mfpvr() >> 16) & 0xFFFF) {
3755 	case FSL_E500v2:
3756 	case FSL_E500mc:
3757 	case FSL_E5500:
3758 	case FSL_E6500:
3759 		entry->mas7 = mfspr(SPR_MAS7);
3760 		break;
3761 	default:
3762 		entry->mas7 = 0;
3763 		break;
3764 	}
3765 	__asm __volatile("wrtee %0" :: "r"(msr));
3766 
3767 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
3768 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
3769 	    (entry->mas3 & MAS3_RPN);
3770 	entry->size =
3771 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
3772 }
3773 
3774 struct tlbwrite_args {
3775 	tlb_entry_t *e;
3776 	unsigned int idx;
3777 };
3778 
3779 static void
3780 tlb1_write_entry_int(void *arg)
3781 {
3782 	struct tlbwrite_args *args = arg;
3783 	uint32_t mas0;
3784 
3785 	/* Select entry */
3786 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(args->idx);
3787 
3788 	mtspr(SPR_MAS0, mas0);
3789 	mtspr(SPR_MAS1, args->e->mas1);
3790 	mtspr(SPR_MAS2, args->e->mas2);
3791 	mtspr(SPR_MAS3, args->e->mas3);
3792 	switch ((mfpvr() >> 16) & 0xFFFF) {
3793 	case FSL_E500mc:
3794 	case FSL_E5500:
3795 	case FSL_E6500:
3796 		mtspr(SPR_MAS8, 0);
3797 		/* FALLTHROUGH */
3798 	case FSL_E500v2:
3799 		mtspr(SPR_MAS7, args->e->mas7);
3800 		break;
3801 	default:
3802 		break;
3803 	}
3804 
3805 	__asm __volatile("isync; tlbwe; isync; msync");
3806 
3807 }
3808 
3809 static void
3810 tlb1_write_entry_sync(void *arg)
3811 {
3812 	/* Empty synchronization point for smp_rendezvous(). */
3813 }
3814 
3815 /*
3816  * Write given entry to TLB1 hardware.
3817  */
3818 static void
3819 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
3820 {
3821 	struct tlbwrite_args args;
3822 
3823 	args.e = e;
3824 	args.idx = idx;
3825 
3826 #ifdef SMP
3827 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
3828 		mb();
3829 		smp_rendezvous(tlb1_write_entry_sync,
3830 		    tlb1_write_entry_int,
3831 		    tlb1_write_entry_sync, &args);
3832 	} else
3833 #endif
3834 	{
3835 		register_t msr;
3836 
3837 		msr = mfmsr();
3838 		__asm __volatile("wrteei 0");
3839 		tlb1_write_entry_int(&args);
3840 		__asm __volatile("wrtee %0" :: "r"(msr));
3841 	}
3842 }
3843 
3844 /*
3845  * Return the largest uint value log such that 2^log <= num.
3846  */
3847 static unsigned int
3848 ilog2(unsigned long num)
3849 {
3850 	long lz;
3851 
3852 #ifdef __powerpc64__
3853 	__asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num));
3854 	return (63 - lz);
3855 #else
3856 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3857 	return (31 - lz);
3858 #endif
3859 }
3860 
3861 /*
3862  * Convert TLB TSIZE value to mapped region size.
3863  */
3864 static vm_size_t
3865 tsize2size(unsigned int tsize)
3866 {
3867 
3868 	/*
3869 	 * size = 4^tsize KB
3870 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3871 	 */
3872 
3873 	return ((1 << (2 * tsize)) * 1024);
3874 }
3875 
3876 /*
3877  * Convert region size (must be power of 4) to TLB TSIZE value.
3878  */
3879 static unsigned int
3880 size2tsize(vm_size_t size)
3881 {
3882 
3883 	return (ilog2(size) / 2 - 5);
3884 }
3885 
3886 /*
3887  * Register permanent kernel mapping in TLB1.
3888  *
3889  * Entries are created starting from index 0 (current free entry is
3890  * kept in tlb1_idx) and are not supposed to be invalidated.
3891  */
3892 int
3893 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3894     uint32_t flags)
3895 {
3896 	tlb_entry_t e;
3897 	uint32_t ts, tid;
3898 	int tsize, index;
3899 
3900 	for (index = 0; index < TLB1_ENTRIES; index++) {
3901 		tlb1_read_entry(&e, index);
3902 		if ((e.mas1 & MAS1_VALID) == 0)
3903 			break;
3904 		/* Check if we're just updating the flags, and update them. */
3905 		if (e.phys == pa && e.virt == va && e.size == size) {
3906 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
3907 			tlb1_write_entry(&e, index);
3908 			return (0);
3909 		}
3910 	}
3911 	if (index >= TLB1_ENTRIES) {
3912 		printf("tlb1_set_entry: TLB1 full!\n");
3913 		return (-1);
3914 	}
3915 
3916 	/* Convert size to TSIZE */
3917 	tsize = size2tsize(size);
3918 
3919 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3920 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3921 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3922 
3923 	e.phys = pa;
3924 	e.virt = va;
3925 	e.size = size;
3926 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3927 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3928 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
3929 
3930 	/* Set supervisor RWX permission bits */
3931 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3932 	e.mas7 = (pa >> 32) & MAS7_RPN;
3933 
3934 	tlb1_write_entry(&e, index);
3935 
3936 	/*
3937 	 * XXX in general TLB1 updates should be propagated between CPUs,
3938 	 * since current design assumes to have the same TLB1 set-up on all
3939 	 * cores.
3940 	 */
3941 	return (0);
3942 }
3943 
3944 /*
3945  * Map in contiguous RAM region into the TLB1 using maximum of
3946  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3947  *
3948  * If necessary round up last entry size and return total size
3949  * used by all allocated entries.
3950  */
3951 vm_size_t
3952 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3953 {
3954 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3955 	vm_size_t mapped, pgsz, base, mask;
3956 	int idx, nents;
3957 
3958 	/* Round up to the next 1M */
3959 	size = roundup2(size, 1 << 20);
3960 
3961 	mapped = 0;
3962 	idx = 0;
3963 	base = va;
3964 	pgsz = 64*1024*1024;
3965 	while (mapped < size) {
3966 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3967 			while (pgsz > (size - mapped))
3968 				pgsz >>= 2;
3969 			pgs[idx++] = pgsz;
3970 			mapped += pgsz;
3971 		}
3972 
3973 		/* We under-map. Correct for this. */
3974 		if (mapped < size) {
3975 			while (pgs[idx - 1] == pgsz) {
3976 				idx--;
3977 				mapped -= pgsz;
3978 			}
3979 			/* XXX We may increase beyond out starting point. */
3980 			pgsz <<= 2;
3981 			pgs[idx++] = pgsz;
3982 			mapped += pgsz;
3983 		}
3984 	}
3985 
3986 	nents = idx;
3987 	mask = pgs[0] - 1;
3988 	/* Align address to the boundary */
3989 	if (va & mask) {
3990 		va = (va + mask) & ~mask;
3991 		pa = (pa + mask) & ~mask;
3992 	}
3993 
3994 	for (idx = 0; idx < nents; idx++) {
3995 		pgsz = pgs[idx];
3996 		debugf("%u: %llx -> %jx, size=%jx\n", idx, pa,
3997 		    (uintmax_t)va, (uintmax_t)pgsz);
3998 		tlb1_set_entry(va, pa, pgsz,
3999 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM);
4000 		pa += pgsz;
4001 		va += pgsz;
4002 	}
4003 
4004 	mapped = (va - base);
4005 	if (bootverbose)
4006 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
4007 		    mapped, mapped - size);
4008 	return (mapped);
4009 }
4010 
4011 /*
4012  * TLB1 initialization routine, to be called after the very first
4013  * assembler level setup done in locore.S.
4014  */
4015 void
4016 tlb1_init()
4017 {
4018 	vm_offset_t mas2;
4019 	uint32_t mas0, mas1, mas3, mas7;
4020 	uint32_t tsz;
4021 
4022 	tlb1_get_tlbconf();
4023 
4024 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
4025 	mtspr(SPR_MAS0, mas0);
4026 	__asm __volatile("isync; tlbre");
4027 
4028 	mas1 = mfspr(SPR_MAS1);
4029 	mas2 = mfspr(SPR_MAS2);
4030 	mas3 = mfspr(SPR_MAS3);
4031 	mas7 = mfspr(SPR_MAS7);
4032 
4033 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
4034 	    (mas3 & MAS3_RPN);
4035 
4036 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4037 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
4038 	kernstart = trunc_page(mas2);
4039 
4040 	/* Setup TLB miss defaults */
4041 	set_mas4_defaults();
4042 }
4043 
4044 /*
4045  * pmap_early_io_unmap() should be used in short conjunction with
4046  * pmap_early_io_map(), as in the following snippet:
4047  *
4048  * x = pmap_early_io_map(...);
4049  * <do something with x>
4050  * pmap_early_io_unmap(x, size);
4051  *
4052  * And avoiding more allocations between.
4053  */
4054 void
4055 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
4056 {
4057 	int i;
4058 	tlb_entry_t e;
4059 	vm_size_t isize;
4060 
4061 	size = roundup(size, PAGE_SIZE);
4062 	isize = size;
4063 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
4064 		tlb1_read_entry(&e, i);
4065 		if (!(e.mas1 & MAS1_VALID))
4066 			continue;
4067 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
4068 			size -= e.size;
4069 			e.mas1 &= ~MAS1_VALID;
4070 			tlb1_write_entry(&e, i);
4071 		}
4072 	}
4073 	if (tlb1_map_base == va + isize)
4074 		tlb1_map_base -= isize;
4075 }
4076 
4077 vm_offset_t
4078 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
4079 {
4080 	vm_paddr_t pa_base;
4081 	vm_offset_t va, sz;
4082 	int i;
4083 	tlb_entry_t e;
4084 
4085 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
4086 
4087 	for (i = 0; i < TLB1_ENTRIES; i++) {
4088 		tlb1_read_entry(&e, i);
4089 		if (!(e.mas1 & MAS1_VALID))
4090 			continue;
4091 		if (pa >= e.phys && (pa + size) <=
4092 		    (e.phys + e.size))
4093 			return (e.virt + (pa - e.phys));
4094 	}
4095 
4096 	pa_base = rounddown(pa, PAGE_SIZE);
4097 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
4098 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
4099 	va = tlb1_map_base + (pa - pa_base);
4100 
4101 	do {
4102 		sz = 1 << (ilog2(size) & ~1);
4103 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
4104 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
4105 		size -= sz;
4106 		pa_base += sz;
4107 		tlb1_map_base += sz;
4108 	} while (size > 0);
4109 
4110 	return (va);
4111 }
4112 
4113 void
4114 pmap_track_page(pmap_t pmap, vm_offset_t va)
4115 {
4116 	vm_paddr_t pa;
4117 	vm_page_t page;
4118 	struct pv_entry *pve;
4119 
4120 	va = trunc_page(va);
4121 	pa = pmap_kextract(va);
4122 	page = PHYS_TO_VM_PAGE(pa);
4123 
4124 	rw_wlock(&pvh_global_lock);
4125 	PMAP_LOCK(pmap);
4126 
4127 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
4128 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
4129 			goto out;
4130 		}
4131 	}
4132 	page->md.pv_tracked = true;
4133 	pv_insert(pmap, va, page);
4134 out:
4135 	PMAP_UNLOCK(pmap);
4136 	rw_wunlock(&pvh_global_lock);
4137 }
4138 
4139 
4140 /*
4141  * Setup MAS4 defaults.
4142  * These values are loaded to MAS0-2 on a TLB miss.
4143  */
4144 static void
4145 set_mas4_defaults(void)
4146 {
4147 	uint32_t mas4;
4148 
4149 	/* Defaults: TLB0, PID0, TSIZED=4K */
4150 	mas4 = MAS4_TLBSELD0;
4151 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
4152 #ifdef SMP
4153 	mas4 |= MAS4_MD;
4154 #endif
4155 	mtspr(SPR_MAS4, mas4);
4156 	__asm __volatile("isync");
4157 }
4158 
4159 
4160 /*
4161  * Return 0 if the physical IO range is encompassed by one of the
4162  * the TLB1 entries, otherwise return related error code.
4163  */
4164 static int
4165 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
4166 {
4167 	uint32_t prot;
4168 	vm_paddr_t pa_start;
4169 	vm_paddr_t pa_end;
4170 	unsigned int entry_tsize;
4171 	vm_size_t entry_size;
4172 	tlb_entry_t e;
4173 
4174 	*va = (vm_offset_t)NULL;
4175 
4176 	tlb1_read_entry(&e, i);
4177 	/* Skip invalid entries */
4178 	if (!(e.mas1 & MAS1_VALID))
4179 		return (EINVAL);
4180 
4181 	/*
4182 	 * The entry must be cache-inhibited, guarded, and r/w
4183 	 * so it can function as an i/o page
4184 	 */
4185 	prot = e.mas2 & (MAS2_I | MAS2_G);
4186 	if (prot != (MAS2_I | MAS2_G))
4187 		return (EPERM);
4188 
4189 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
4190 	if (prot != (MAS3_SR | MAS3_SW))
4191 		return (EPERM);
4192 
4193 	/* The address should be within the entry range. */
4194 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4195 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
4196 
4197 	entry_size = tsize2size(entry_tsize);
4198 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
4199 	    (e.mas3 & MAS3_RPN);
4200 	pa_end = pa_start + entry_size;
4201 
4202 	if ((pa < pa_start) || ((pa + size) > pa_end))
4203 		return (ERANGE);
4204 
4205 	/* Return virtual address of this mapping. */
4206 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
4207 	return (0);
4208 }
4209 
4210 /*
4211  * Invalidate all TLB0 entries which match the given TID. Note this is
4212  * dedicated for cases when invalidations should NOT be propagated to other
4213  * CPUs.
4214  */
4215 static void
4216 tid_flush(tlbtid_t tid)
4217 {
4218 	register_t msr;
4219 	uint32_t mas0, mas1, mas2;
4220 	int entry, way;
4221 
4222 
4223 	/* Don't evict kernel translations */
4224 	if (tid == TID_KERNEL)
4225 		return;
4226 
4227 	msr = mfmsr();
4228 	__asm __volatile("wrteei 0");
4229 
4230 	/*
4231 	 * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use
4232 	 * it for PID invalidation.
4233 	 */
4234 	switch ((mfpvr() >> 16) & 0xffff) {
4235 	case FSL_E500mc:
4236 	case FSL_E5500:
4237 	case FSL_E6500:
4238 		mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT);
4239 		/* tlbilxpid */
4240 		__asm __volatile("isync; .long 0x7c000024; isync; msync");
4241 		__asm __volatile("wrtee %0" :: "r"(msr));
4242 		return;
4243 	}
4244 
4245 	for (way = 0; way < TLB0_WAYS; way++)
4246 		for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
4247 
4248 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
4249 			mtspr(SPR_MAS0, mas0);
4250 
4251 			mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
4252 			mtspr(SPR_MAS2, mas2);
4253 
4254 			__asm __volatile("isync; tlbre");
4255 
4256 			mas1 = mfspr(SPR_MAS1);
4257 
4258 			if (!(mas1 & MAS1_VALID))
4259 				continue;
4260 			if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
4261 				continue;
4262 			mas1 &= ~MAS1_VALID;
4263 			mtspr(SPR_MAS1, mas1);
4264 			__asm __volatile("isync; tlbwe; isync; msync");
4265 		}
4266 	__asm __volatile("wrtee %0" :: "r"(msr));
4267 }
4268 
4269 #ifdef DDB
4270 /* Print out contents of the MAS registers for each TLB0 entry */
4271 static void
4272 #ifdef __powerpc64__
4273 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
4274 #else
4275 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
4276 #endif
4277     uint32_t mas7)
4278 {
4279 	int as;
4280 	char desc[3];
4281 	tlbtid_t tid;
4282 	vm_size_t size;
4283 	unsigned int tsize;
4284 
4285 	desc[2] = '\0';
4286 	if (mas1 & MAS1_VALID)
4287 		desc[0] = 'V';
4288 	else
4289 		desc[0] = ' ';
4290 
4291 	if (mas1 & MAS1_IPROT)
4292 		desc[1] = 'P';
4293 	else
4294 		desc[1] = ' ';
4295 
4296 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
4297 	tid = MAS1_GETTID(mas1);
4298 
4299 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4300 	size = 0;
4301 	if (tsize)
4302 		size = tsize2size(tsize);
4303 
4304 	printf("%3d: (%s) [AS=%d] "
4305 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
4306 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
4307 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
4308 }
4309 
4310 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
4311 {
4312 	uint32_t mas0, mas1, mas3, mas7;
4313 #ifdef __powerpc64__
4314 	uint64_t mas2;
4315 #else
4316 	uint32_t mas2;
4317 #endif
4318 	int entryidx, way, idx;
4319 
4320 	printf("TLB0 entries:\n");
4321 	for (way = 0; way < TLB0_WAYS; way ++)
4322 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
4323 
4324 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
4325 			mtspr(SPR_MAS0, mas0);
4326 
4327 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
4328 			mtspr(SPR_MAS2, mas2);
4329 
4330 			__asm __volatile("isync; tlbre");
4331 
4332 			mas1 = mfspr(SPR_MAS1);
4333 			mas2 = mfspr(SPR_MAS2);
4334 			mas3 = mfspr(SPR_MAS3);
4335 			mas7 = mfspr(SPR_MAS7);
4336 
4337 			idx = tlb0_tableidx(mas2, way);
4338 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
4339 		}
4340 }
4341 
4342 /*
4343  * Print out contents of the MAS registers for each TLB1 entry
4344  */
4345 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
4346 {
4347 	uint32_t mas0, mas1, mas3, mas7;
4348 #ifdef __powerpc64__
4349 	uint64_t mas2;
4350 #else
4351 	uint32_t mas2;
4352 #endif
4353 	int i;
4354 
4355 	printf("TLB1 entries:\n");
4356 	for (i = 0; i < TLB1_ENTRIES; i++) {
4357 
4358 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
4359 		mtspr(SPR_MAS0, mas0);
4360 
4361 		__asm __volatile("isync; tlbre");
4362 
4363 		mas1 = mfspr(SPR_MAS1);
4364 		mas2 = mfspr(SPR_MAS2);
4365 		mas3 = mfspr(SPR_MAS3);
4366 		mas7 = mfspr(SPR_MAS7);
4367 
4368 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
4369 	}
4370 }
4371 #endif
4372