1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 5 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 20 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 22 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 23 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 24 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 25 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 26 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Some hw specific parts of this pmap were derived or influenced 29 * by NetBSD's ibm4xx pmap module. More generic code is shared with 30 * a few other pmap modules from the FreeBSD tree. 31 */ 32 33 /* 34 * VM layout notes: 35 * 36 * Kernel and user threads run within one common virtual address space 37 * defined by AS=0. 38 * 39 * 32-bit pmap: 40 * Virtual address space layout: 41 * ----------------------------- 42 * 0x0000_0000 - 0x7fff_ffff : user process 43 * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 44 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 45 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 46 * 0xc100_0000 - 0xffff_ffff : KVA 47 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 48 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 49 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 50 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 51 * 52 * 64-bit pmap: 53 * Virtual address space layout: 54 * ----------------------------- 55 * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : user process 56 * 0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff : text, data, heap, maps, libraries 57 * 0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff : mmio region 58 * 0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : stack 59 * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff : kernel reserved 60 * 0xc000_0000_0000_0000 - endkernel-1 : kernel code & data 61 * endkernel - msgbufp-1 : flat device tree 62 * msgbufp - ptbl_bufs-1 : message buffer 63 * ptbl_bufs - kernel_pdir-1 : kernel page tables 64 * kernel_pdir - kernel_pp2d-1 : kernel page directory 65 * kernel_pp2d - . : kernel pointers to page directory 66 * pmap_zero_copy_min - crashdumpmap-1 : reserved for page zero/copy 67 * crashdumpmap - ptbl_buf_pool_vabase-1 : reserved for ptbl bufs 68 * ptbl_buf_pool_vabase - virtual_avail-1 : user page directories and page tables 69 * virtual_avail - 0xcfff_ffff_ffff_ffff : actual free KVA space 70 * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : coprocessor region 71 * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff : mmio region 72 * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : direct map 73 * 0xf000_0000_0000_0000 - +Maxmem : physmem map 74 * - 0xffff_ffff_ffff_ffff : device direct map 75 */ 76 77 #include <sys/cdefs.h> 78 __FBSDID("$FreeBSD$"); 79 80 #include "opt_kstack_pages.h" 81 82 #include <sys/param.h> 83 #include <sys/conf.h> 84 #include <sys/malloc.h> 85 #include <sys/ktr.h> 86 #include <sys/proc.h> 87 #include <sys/user.h> 88 #include <sys/queue.h> 89 #include <sys/systm.h> 90 #include <sys/kernel.h> 91 #include <sys/kerneldump.h> 92 #include <sys/linker.h> 93 #include <sys/msgbuf.h> 94 #include <sys/lock.h> 95 #include <sys/mutex.h> 96 #include <sys/rwlock.h> 97 #include <sys/sched.h> 98 #include <sys/smp.h> 99 #include <sys/vmmeter.h> 100 101 #include <vm/vm.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_pager.h> 110 #include <vm/vm_phys.h> 111 #include <vm/vm_pagequeue.h> 112 #include <vm/uma.h> 113 114 #include <machine/_inttypes.h> 115 #include <machine/cpu.h> 116 #include <machine/pcb.h> 117 #include <machine/platform.h> 118 119 #include <machine/tlb.h> 120 #include <machine/spr.h> 121 #include <machine/md_var.h> 122 #include <machine/mmuvar.h> 123 #include <machine/pmap.h> 124 #include <machine/pte.h> 125 126 #include "mmu_if.h" 127 128 #define SPARSE_MAPDEV 129 #ifdef DEBUG 130 #define debugf(fmt, args...) printf(fmt, ##args) 131 #else 132 #define debugf(fmt, args...) 133 #endif 134 135 #ifdef __powerpc64__ 136 #define PRI0ptrX "016lx" 137 #else 138 #define PRI0ptrX "08x" 139 #endif 140 141 #define TODO panic("%s: not implemented", __func__); 142 143 extern unsigned char _etext[]; 144 extern unsigned char _end[]; 145 146 extern uint32_t *bootinfo; 147 148 vm_paddr_t kernload; 149 vm_offset_t kernstart; 150 vm_size_t kernsize; 151 152 /* Message buffer and tables. */ 153 static vm_offset_t data_start; 154 static vm_size_t data_end; 155 156 /* Phys/avail memory regions. */ 157 static struct mem_region *availmem_regions; 158 static int availmem_regions_sz; 159 static struct mem_region *physmem_regions; 160 static int physmem_regions_sz; 161 162 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 163 static vm_offset_t zero_page_va; 164 static struct mtx zero_page_mutex; 165 166 static struct mtx tlbivax_mutex; 167 168 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 169 static vm_offset_t copy_page_src_va; 170 static vm_offset_t copy_page_dst_va; 171 static struct mtx copy_page_mutex; 172 173 /**************************************************************************/ 174 /* PMAP */ 175 /**************************************************************************/ 176 177 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 178 vm_prot_t, u_int flags, int8_t psind); 179 180 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 181 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 182 #ifdef __powerpc64__ 183 unsigned int kernel_pdirs; 184 #endif 185 186 /* 187 * If user pmap is processed with mmu_booke_remove and the resident count 188 * drops to 0, there are no more pages to remove, so we need not continue. 189 */ 190 #define PMAP_REMOVE_DONE(pmap) \ 191 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 192 193 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) 194 extern int elf32_nxstack; 195 #endif 196 197 /**************************************************************************/ 198 /* TLB and TID handling */ 199 /**************************************************************************/ 200 201 /* Translation ID busy table */ 202 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 203 204 /* 205 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 206 * core revisions and should be read from h/w registers during early config. 207 */ 208 uint32_t tlb0_entries; 209 uint32_t tlb0_ways; 210 uint32_t tlb0_entries_per_way; 211 uint32_t tlb1_entries; 212 213 #define TLB0_ENTRIES (tlb0_entries) 214 #define TLB0_WAYS (tlb0_ways) 215 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 216 217 #define TLB1_ENTRIES (tlb1_entries) 218 219 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE; 220 221 static tlbtid_t tid_alloc(struct pmap *); 222 static void tid_flush(tlbtid_t tid); 223 224 #ifdef __powerpc64__ 225 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t); 226 #else 227 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 228 #endif 229 230 static void tlb1_read_entry(tlb_entry_t *, unsigned int); 231 static void tlb1_write_entry(tlb_entry_t *, unsigned int); 232 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 233 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); 234 235 static vm_size_t tsize2size(unsigned int); 236 static unsigned int size2tsize(vm_size_t); 237 static unsigned int ilog2(unsigned long); 238 239 static void set_mas4_defaults(void); 240 241 static inline void tlb0_flush_entry(vm_offset_t); 242 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 243 244 /**************************************************************************/ 245 /* Page table management */ 246 /**************************************************************************/ 247 248 static struct rwlock_padalign pvh_global_lock; 249 250 /* Data for the pv entry allocation mechanism */ 251 static uma_zone_t pvzone; 252 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 253 254 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 255 256 #ifndef PMAP_SHPGPERPROC 257 #define PMAP_SHPGPERPROC 200 258 #endif 259 260 static void ptbl_init(void); 261 static struct ptbl_buf *ptbl_buf_alloc(void); 262 static void ptbl_buf_free(struct ptbl_buf *); 263 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 264 265 #ifdef __powerpc64__ 266 static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **, 267 unsigned int, boolean_t); 268 static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int); 269 static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int); 270 static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t); 271 #else 272 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); 273 static void ptbl_free(mmu_t, pmap_t, unsigned int); 274 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 275 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 276 #endif 277 278 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 279 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); 280 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 281 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 282 static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t); 283 284 static pv_entry_t pv_alloc(void); 285 static void pv_free(pv_entry_t); 286 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 287 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 288 289 static void booke_pmap_init_qpages(void); 290 291 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 292 #ifdef __powerpc64__ 293 #define PTBL_BUFS (16UL * 16 * 16) 294 #else 295 #define PTBL_BUFS (128 * 16) 296 #endif 297 298 struct ptbl_buf { 299 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 300 vm_offset_t kva; /* va of mapping */ 301 }; 302 303 /* ptbl free list and a lock used for access synchronization. */ 304 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 305 static struct mtx ptbl_buf_freelist_lock; 306 307 /* Base address of kva space allocated fot ptbl bufs. */ 308 static vm_offset_t ptbl_buf_pool_vabase; 309 310 /* Pointer to ptbl_buf structures. */ 311 static struct ptbl_buf *ptbl_bufs; 312 313 #ifdef SMP 314 extern tlb_entry_t __boot_tlb1[]; 315 void pmap_bootstrap_ap(volatile uint32_t *); 316 #endif 317 318 /* 319 * Kernel MMU interface 320 */ 321 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 322 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 323 vm_size_t, vm_offset_t); 324 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 325 static void mmu_booke_copy_pages(mmu_t, vm_page_t *, 326 vm_offset_t, vm_page_t *, vm_offset_t, int); 327 static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 328 vm_prot_t, u_int flags, int8_t psind); 329 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 330 vm_page_t, vm_prot_t); 331 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 332 vm_prot_t); 333 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 334 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 335 vm_prot_t); 336 static void mmu_booke_init(mmu_t); 337 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 338 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 339 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 340 static int mmu_booke_ts_referenced(mmu_t, vm_page_t); 341 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, 342 int); 343 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, 344 vm_paddr_t *); 345 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 346 vm_object_t, vm_pindex_t, vm_size_t); 347 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 348 static void mmu_booke_page_init(mmu_t, vm_page_t); 349 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 350 static void mmu_booke_pinit(mmu_t, pmap_t); 351 static void mmu_booke_pinit0(mmu_t, pmap_t); 352 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 353 vm_prot_t); 354 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 355 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 356 static void mmu_booke_release(mmu_t, pmap_t); 357 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 358 static void mmu_booke_remove_all(mmu_t, vm_page_t); 359 static void mmu_booke_remove_write(mmu_t, vm_page_t); 360 static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 361 static void mmu_booke_zero_page(mmu_t, vm_page_t); 362 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 363 static void mmu_booke_activate(mmu_t, struct thread *); 364 static void mmu_booke_deactivate(mmu_t, struct thread *); 365 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 366 static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); 367 static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); 368 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 369 static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); 370 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); 371 static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); 372 static void mmu_booke_kremove(mmu_t, vm_offset_t); 373 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 374 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 375 vm_size_t); 376 static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, 377 void **); 378 static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, 379 void *); 380 static void mmu_booke_scan_init(mmu_t); 381 static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m); 382 static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr); 383 static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, 384 vm_size_t sz, vm_memattr_t mode); 385 static int mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, 386 volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); 387 static int mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, 388 int *is_user, vm_offset_t *decoded_addr); 389 390 391 static mmu_method_t mmu_booke_methods[] = { 392 /* pmap dispatcher interface */ 393 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 394 MMUMETHOD(mmu_copy, mmu_booke_copy), 395 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 396 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), 397 MMUMETHOD(mmu_enter, mmu_booke_enter), 398 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 399 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 400 MMUMETHOD(mmu_extract, mmu_booke_extract), 401 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 402 MMUMETHOD(mmu_init, mmu_booke_init), 403 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 404 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 405 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 406 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 407 MMUMETHOD(mmu_map, mmu_booke_map), 408 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 409 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 410 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 411 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 412 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 413 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 414 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 415 MMUMETHOD(mmu_protect, mmu_booke_protect), 416 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 417 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 418 MMUMETHOD(mmu_release, mmu_booke_release), 419 MMUMETHOD(mmu_remove, mmu_booke_remove), 420 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 421 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 422 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 423 MMUMETHOD(mmu_unwire, mmu_booke_unwire), 424 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 425 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 426 MMUMETHOD(mmu_activate, mmu_booke_activate), 427 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 428 MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page), 429 MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page), 430 431 /* Internal interfaces */ 432 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 433 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 434 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 435 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), 436 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 437 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), 438 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 439 MMUMETHOD(mmu_kremove, mmu_booke_kremove), 440 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 441 MMUMETHOD(mmu_change_attr, mmu_booke_change_attr), 442 MMUMETHOD(mmu_map_user_ptr, mmu_booke_map_user_ptr), 443 MMUMETHOD(mmu_decode_kernel_ptr, mmu_booke_decode_kernel_ptr), 444 445 /* dumpsys() support */ 446 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 447 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 448 MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), 449 450 { 0, 0 } 451 }; 452 453 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); 454 455 static __inline uint32_t 456 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) 457 { 458 uint32_t attrib; 459 int i; 460 461 if (ma != VM_MEMATTR_DEFAULT) { 462 switch (ma) { 463 case VM_MEMATTR_UNCACHEABLE: 464 return (MAS2_I | MAS2_G); 465 case VM_MEMATTR_WRITE_COMBINING: 466 case VM_MEMATTR_WRITE_BACK: 467 case VM_MEMATTR_PREFETCHABLE: 468 return (MAS2_I); 469 case VM_MEMATTR_WRITE_THROUGH: 470 return (MAS2_W | MAS2_M); 471 case VM_MEMATTR_CACHEABLE: 472 return (MAS2_M); 473 } 474 } 475 476 /* 477 * Assume the page is cache inhibited and access is guarded unless 478 * it's in our available memory array. 479 */ 480 attrib = _TLB_ENTRY_IO; 481 for (i = 0; i < physmem_regions_sz; i++) { 482 if ((pa >= physmem_regions[i].mr_start) && 483 (pa < (physmem_regions[i].mr_start + 484 physmem_regions[i].mr_size))) { 485 attrib = _TLB_ENTRY_MEM; 486 break; 487 } 488 } 489 490 return (attrib); 491 } 492 493 static inline void 494 tlb_miss_lock(void) 495 { 496 #ifdef SMP 497 struct pcpu *pc; 498 499 if (!smp_started) 500 return; 501 502 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 503 if (pc != pcpup) { 504 505 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 506 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock); 507 508 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 509 ("tlb_miss_lock: tried to lock self")); 510 511 tlb_lock(pc->pc_booke.tlb_lock); 512 513 CTR1(KTR_PMAP, "%s: locked", __func__); 514 } 515 } 516 #endif 517 } 518 519 static inline void 520 tlb_miss_unlock(void) 521 { 522 #ifdef SMP 523 struct pcpu *pc; 524 525 if (!smp_started) 526 return; 527 528 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 529 if (pc != pcpup) { 530 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 531 __func__, pc->pc_cpuid); 532 533 tlb_unlock(pc->pc_booke.tlb_lock); 534 535 CTR1(KTR_PMAP, "%s: unlocked", __func__); 536 } 537 } 538 #endif 539 } 540 541 /* Return number of entries in TLB0. */ 542 static __inline void 543 tlb0_get_tlbconf(void) 544 { 545 uint32_t tlb0_cfg; 546 547 tlb0_cfg = mfspr(SPR_TLB0CFG); 548 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 549 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 550 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 551 } 552 553 /* Return number of entries in TLB1. */ 554 static __inline void 555 tlb1_get_tlbconf(void) 556 { 557 uint32_t tlb1_cfg; 558 559 tlb1_cfg = mfspr(SPR_TLB1CFG); 560 tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; 561 } 562 563 /**************************************************************************/ 564 /* Page table related */ 565 /**************************************************************************/ 566 567 #ifdef __powerpc64__ 568 /* Initialize pool of kva ptbl buffers. */ 569 static void 570 ptbl_init(void) 571 { 572 int i; 573 574 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 575 TAILQ_INIT(&ptbl_buf_freelist); 576 577 for (i = 0; i < PTBL_BUFS; i++) { 578 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + 579 i * MAX(PTBL_PAGES,PDIR_PAGES) * PAGE_SIZE; 580 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 581 } 582 } 583 584 /* Get an sf_buf from the freelist. */ 585 static struct ptbl_buf * 586 ptbl_buf_alloc(void) 587 { 588 struct ptbl_buf *buf; 589 590 mtx_lock(&ptbl_buf_freelist_lock); 591 buf = TAILQ_FIRST(&ptbl_buf_freelist); 592 if (buf != NULL) 593 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 594 mtx_unlock(&ptbl_buf_freelist_lock); 595 596 return (buf); 597 } 598 599 /* Return ptbl buff to free pool. */ 600 static void 601 ptbl_buf_free(struct ptbl_buf *buf) 602 { 603 mtx_lock(&ptbl_buf_freelist_lock); 604 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 605 mtx_unlock(&ptbl_buf_freelist_lock); 606 } 607 608 /* 609 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 610 */ 611 static void 612 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t * ptbl) 613 { 614 struct ptbl_buf *pbuf; 615 616 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) { 617 if (pbuf->kva == (vm_offset_t) ptbl) { 618 /* Remove from pmap ptbl buf list. */ 619 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 620 621 /* Free corresponding ptbl buf. */ 622 ptbl_buf_free(pbuf); 623 624 break; 625 } 626 } 627 } 628 629 /* Get a pointer to a PTE in a page table. */ 630 static __inline pte_t * 631 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 632 { 633 pte_t **pdir; 634 pte_t *ptbl; 635 636 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 637 638 pdir = pmap->pm_pp2d[PP2D_IDX(va)]; 639 if (!pdir) 640 return NULL; 641 ptbl = pdir[PDIR_IDX(va)]; 642 return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL); 643 } 644 645 /* 646 * Search the list of allocated pdir bufs and find on list of allocated pdirs 647 */ 648 static void 649 ptbl_free_pmap_pdir(mmu_t mmu, pmap_t pmap, pte_t ** pdir) 650 { 651 struct ptbl_buf *pbuf; 652 653 TAILQ_FOREACH(pbuf, &pmap->pm_pdir_list, link) { 654 if (pbuf->kva == (vm_offset_t) pdir) { 655 /* Remove from pmap ptbl buf list. */ 656 TAILQ_REMOVE(&pmap->pm_pdir_list, pbuf, link); 657 658 /* Free corresponding pdir buf. */ 659 ptbl_buf_free(pbuf); 660 661 break; 662 } 663 } 664 } 665 /* Free pdir pages and invalidate pdir entry. */ 666 static void 667 pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx) 668 { 669 pte_t **pdir; 670 vm_paddr_t pa; 671 vm_offset_t va; 672 vm_page_t m; 673 int i; 674 675 pdir = pmap->pm_pp2d[pp2d_idx]; 676 677 KASSERT((pdir != NULL), ("pdir_free: null pdir")); 678 679 pmap->pm_pp2d[pp2d_idx] = NULL; 680 681 for (i = 0; i < PDIR_PAGES; i++) { 682 va = ((vm_offset_t) pdir + (i * PAGE_SIZE)); 683 pa = pte_vatopa(mmu, kernel_pmap, va); 684 m = PHYS_TO_VM_PAGE(pa); 685 vm_page_free_zero(m); 686 vm_wire_sub(1); 687 pmap_kremove(va); 688 } 689 690 ptbl_free_pmap_pdir(mmu, pmap, pdir); 691 } 692 693 /* 694 * Decrement pdir pages hold count and attempt to free pdir pages. Called 695 * when removing directory entry from pdir. 696 * 697 * Return 1 if pdir pages were freed. 698 */ 699 static int 700 pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx) 701 { 702 pte_t **pdir; 703 vm_paddr_t pa; 704 vm_page_t m; 705 int i; 706 707 KASSERT((pmap != kernel_pmap), 708 ("pdir_unhold: unholding kernel pdir!")); 709 710 pdir = pmap->pm_pp2d[pp2d_idx]; 711 712 KASSERT(((vm_offset_t) pdir >= VM_MIN_KERNEL_ADDRESS), 713 ("pdir_unhold: non kva pdir")); 714 715 /* decrement hold count */ 716 for (i = 0; i < PDIR_PAGES; i++) { 717 pa = pte_vatopa(mmu, kernel_pmap, 718 (vm_offset_t) pdir + (i * PAGE_SIZE)); 719 m = PHYS_TO_VM_PAGE(pa); 720 m->wire_count--; 721 } 722 723 /* 724 * Free pdir pages if there are no dir entries in this pdir. 725 * wire_count has the same value for all ptbl pages, so check the 726 * last page. 727 */ 728 if (m->wire_count == 0) { 729 pdir_free(mmu, pmap, pp2d_idx); 730 return (1); 731 } 732 return (0); 733 } 734 735 /* 736 * Increment hold count for pdir pages. This routine is used when new ptlb 737 * entry is being inserted into pdir. 738 */ 739 static void 740 pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir) 741 { 742 vm_paddr_t pa; 743 vm_page_t m; 744 int i; 745 746 KASSERT((pmap != kernel_pmap), 747 ("pdir_hold: holding kernel pdir!")); 748 749 KASSERT((pdir != NULL), ("pdir_hold: null pdir")); 750 751 for (i = 0; i < PDIR_PAGES; i++) { 752 pa = pte_vatopa(mmu, kernel_pmap, 753 (vm_offset_t) pdir + (i * PAGE_SIZE)); 754 m = PHYS_TO_VM_PAGE(pa); 755 m->wire_count++; 756 } 757 } 758 759 /* Allocate page table. */ 760 static pte_t * 761 ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, 762 boolean_t nosleep) 763 { 764 vm_page_t mtbl [PTBL_PAGES]; 765 vm_page_t m; 766 struct ptbl_buf *pbuf; 767 unsigned int pidx; 768 pte_t *ptbl; 769 int i, j; 770 int req; 771 772 KASSERT((pdir[pdir_idx] == NULL), 773 ("%s: valid ptbl entry exists!", __func__)); 774 775 pbuf = ptbl_buf_alloc(); 776 if (pbuf == NULL) 777 panic("%s: couldn't alloc kernel virtual memory", __func__); 778 779 ptbl = (pte_t *) pbuf->kva; 780 781 for (i = 0; i < PTBL_PAGES; i++) { 782 pidx = (PTBL_PAGES * pdir_idx) + i; 783 req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; 784 while ((m = vm_page_alloc(NULL, pidx, req)) == NULL) { 785 PMAP_UNLOCK(pmap); 786 rw_wunlock(&pvh_global_lock); 787 if (nosleep) { 788 ptbl_free_pmap_ptbl(pmap, ptbl); 789 for (j = 0; j < i; j++) 790 vm_page_free(mtbl[j]); 791 vm_wire_sub(i); 792 return (NULL); 793 } 794 vm_wait(NULL); 795 rw_wlock(&pvh_global_lock); 796 PMAP_LOCK(pmap); 797 } 798 mtbl[i] = m; 799 } 800 801 /* Mapin allocated pages into kernel_pmap. */ 802 mmu_booke_qenter(mmu, (vm_offset_t) ptbl, mtbl, PTBL_PAGES); 803 /* Zero whole ptbl. */ 804 bzero((caddr_t) ptbl, PTBL_PAGES * PAGE_SIZE); 805 806 /* Add pbuf to the pmap ptbl bufs list. */ 807 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 808 809 return (ptbl); 810 } 811 812 /* Free ptbl pages and invalidate pdir entry. */ 813 static void 814 ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) 815 { 816 pte_t *ptbl; 817 vm_paddr_t pa; 818 vm_offset_t va; 819 vm_page_t m; 820 int i; 821 822 ptbl = pdir[pdir_idx]; 823 824 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 825 826 pdir[pdir_idx] = NULL; 827 828 for (i = 0; i < PTBL_PAGES; i++) { 829 va = ((vm_offset_t) ptbl + (i * PAGE_SIZE)); 830 pa = pte_vatopa(mmu, kernel_pmap, va); 831 m = PHYS_TO_VM_PAGE(pa); 832 vm_page_free_zero(m); 833 vm_wire_sub(1); 834 pmap_kremove(va); 835 } 836 837 ptbl_free_pmap_ptbl(pmap, ptbl); 838 } 839 840 /* 841 * Decrement ptbl pages hold count and attempt to free ptbl pages. Called 842 * when removing pte entry from ptbl. 843 * 844 * Return 1 if ptbl pages were freed. 845 */ 846 static int 847 ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va) 848 { 849 pte_t *ptbl; 850 vm_paddr_t pa; 851 vm_page_t m; 852 u_int pp2d_idx; 853 pte_t **pdir; 854 u_int pdir_idx; 855 int i; 856 857 pp2d_idx = PP2D_IDX(va); 858 pdir_idx = PDIR_IDX(va); 859 860 KASSERT((pmap != kernel_pmap), 861 ("ptbl_unhold: unholding kernel ptbl!")); 862 863 pdir = pmap->pm_pp2d[pp2d_idx]; 864 ptbl = pdir[pdir_idx]; 865 866 KASSERT(((vm_offset_t) ptbl >= VM_MIN_KERNEL_ADDRESS), 867 ("ptbl_unhold: non kva ptbl")); 868 869 /* decrement hold count */ 870 for (i = 0; i < PTBL_PAGES; i++) { 871 pa = pte_vatopa(mmu, kernel_pmap, 872 (vm_offset_t) ptbl + (i * PAGE_SIZE)); 873 m = PHYS_TO_VM_PAGE(pa); 874 m->wire_count--; 875 } 876 877 /* 878 * Free ptbl pages if there are no pte entries in this ptbl. 879 * wire_count has the same value for all ptbl pages, so check the 880 * last page. 881 */ 882 if (m->wire_count == 0) { 883 /* A pair of indirect entries might point to this ptbl page */ 884 #if 0 885 tlb_flush_entry(pmap, va & ~((2UL * PAGE_SIZE_1M) - 1), 886 TLB_SIZE_1M, MAS6_SIND); 887 tlb_flush_entry(pmap, (va & ~((2UL * PAGE_SIZE_1M) - 1)) | PAGE_SIZE_1M, 888 TLB_SIZE_1M, MAS6_SIND); 889 #endif 890 ptbl_free(mmu, pmap, pdir, pdir_idx); 891 pdir_unhold(mmu, pmap, pp2d_idx); 892 return (1); 893 } 894 return (0); 895 } 896 897 /* 898 * Increment hold count for ptbl pages. This routine is used when new pte 899 * entry is being inserted into ptbl. 900 */ 901 static void 902 ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) 903 { 904 vm_paddr_t pa; 905 pte_t *ptbl; 906 vm_page_t m; 907 int i; 908 909 KASSERT((pmap != kernel_pmap), 910 ("ptbl_hold: holding kernel ptbl!")); 911 912 ptbl = pdir[pdir_idx]; 913 914 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 915 916 for (i = 0; i < PTBL_PAGES; i++) { 917 pa = pte_vatopa(mmu, kernel_pmap, 918 (vm_offset_t) ptbl + (i * PAGE_SIZE)); 919 m = PHYS_TO_VM_PAGE(pa); 920 m->wire_count++; 921 } 922 } 923 #else 924 925 /* Initialize pool of kva ptbl buffers. */ 926 static void 927 ptbl_init(void) 928 { 929 int i; 930 931 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 932 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 933 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 934 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 935 936 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 937 TAILQ_INIT(&ptbl_buf_freelist); 938 939 for (i = 0; i < PTBL_BUFS; i++) { 940 ptbl_bufs[i].kva = 941 ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 942 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 943 } 944 } 945 946 /* Get a ptbl_buf from the freelist. */ 947 static struct ptbl_buf * 948 ptbl_buf_alloc(void) 949 { 950 struct ptbl_buf *buf; 951 952 mtx_lock(&ptbl_buf_freelist_lock); 953 buf = TAILQ_FIRST(&ptbl_buf_freelist); 954 if (buf != NULL) 955 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 956 mtx_unlock(&ptbl_buf_freelist_lock); 957 958 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 959 960 return (buf); 961 } 962 963 /* Return ptbl buff to free pool. */ 964 static void 965 ptbl_buf_free(struct ptbl_buf *buf) 966 { 967 968 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 969 970 mtx_lock(&ptbl_buf_freelist_lock); 971 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 972 mtx_unlock(&ptbl_buf_freelist_lock); 973 } 974 975 /* 976 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 977 */ 978 static void 979 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 980 { 981 struct ptbl_buf *pbuf; 982 983 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 984 985 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 986 987 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 988 if (pbuf->kva == (vm_offset_t)ptbl) { 989 /* Remove from pmap ptbl buf list. */ 990 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 991 992 /* Free corresponding ptbl buf. */ 993 ptbl_buf_free(pbuf); 994 break; 995 } 996 } 997 998 /* Allocate page table. */ 999 static pte_t * 1000 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) 1001 { 1002 vm_page_t mtbl[PTBL_PAGES]; 1003 vm_page_t m; 1004 struct ptbl_buf *pbuf; 1005 unsigned int pidx; 1006 pte_t *ptbl; 1007 int i, j; 1008 1009 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 1010 (pmap == kernel_pmap), pdir_idx); 1011 1012 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1013 ("ptbl_alloc: invalid pdir_idx")); 1014 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 1015 ("pte_alloc: valid ptbl entry exists!")); 1016 1017 pbuf = ptbl_buf_alloc(); 1018 if (pbuf == NULL) 1019 panic("pte_alloc: couldn't alloc kernel virtual memory"); 1020 1021 ptbl = (pte_t *)pbuf->kva; 1022 1023 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 1024 1025 for (i = 0; i < PTBL_PAGES; i++) { 1026 pidx = (PTBL_PAGES * pdir_idx) + i; 1027 while ((m = vm_page_alloc(NULL, pidx, 1028 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 1029 PMAP_UNLOCK(pmap); 1030 rw_wunlock(&pvh_global_lock); 1031 if (nosleep) { 1032 ptbl_free_pmap_ptbl(pmap, ptbl); 1033 for (j = 0; j < i; j++) 1034 vm_page_free(mtbl[j]); 1035 vm_wire_sub(i); 1036 return (NULL); 1037 } 1038 vm_wait(NULL); 1039 rw_wlock(&pvh_global_lock); 1040 PMAP_LOCK(pmap); 1041 } 1042 mtbl[i] = m; 1043 } 1044 1045 /* Map allocated pages into kernel_pmap. */ 1046 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 1047 1048 /* Zero whole ptbl. */ 1049 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 1050 1051 /* Add pbuf to the pmap ptbl bufs list. */ 1052 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 1053 1054 return (ptbl); 1055 } 1056 1057 /* Free ptbl pages and invalidate pdir entry. */ 1058 static void 1059 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 1060 { 1061 pte_t *ptbl; 1062 vm_paddr_t pa; 1063 vm_offset_t va; 1064 vm_page_t m; 1065 int i; 1066 1067 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 1068 (pmap == kernel_pmap), pdir_idx); 1069 1070 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1071 ("ptbl_free: invalid pdir_idx")); 1072 1073 ptbl = pmap->pm_pdir[pdir_idx]; 1074 1075 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 1076 1077 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 1078 1079 /* 1080 * Invalidate the pdir entry as soon as possible, so that other CPUs 1081 * don't attempt to look up the page tables we are releasing. 1082 */ 1083 mtx_lock_spin(&tlbivax_mutex); 1084 tlb_miss_lock(); 1085 1086 pmap->pm_pdir[pdir_idx] = NULL; 1087 1088 tlb_miss_unlock(); 1089 mtx_unlock_spin(&tlbivax_mutex); 1090 1091 for (i = 0; i < PTBL_PAGES; i++) { 1092 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 1093 pa = pte_vatopa(mmu, kernel_pmap, va); 1094 m = PHYS_TO_VM_PAGE(pa); 1095 vm_page_free_zero(m); 1096 vm_wire_sub(1); 1097 mmu_booke_kremove(mmu, va); 1098 } 1099 1100 ptbl_free_pmap_ptbl(pmap, ptbl); 1101 } 1102 1103 /* 1104 * Decrement ptbl pages hold count and attempt to free ptbl pages. 1105 * Called when removing pte entry from ptbl. 1106 * 1107 * Return 1 if ptbl pages were freed. 1108 */ 1109 static int 1110 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 1111 { 1112 pte_t *ptbl; 1113 vm_paddr_t pa; 1114 vm_page_t m; 1115 int i; 1116 1117 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 1118 (pmap == kernel_pmap), pdir_idx); 1119 1120 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1121 ("ptbl_unhold: invalid pdir_idx")); 1122 KASSERT((pmap != kernel_pmap), 1123 ("ptbl_unhold: unholding kernel ptbl!")); 1124 1125 ptbl = pmap->pm_pdir[pdir_idx]; 1126 1127 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 1128 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 1129 ("ptbl_unhold: non kva ptbl")); 1130 1131 /* decrement hold count */ 1132 for (i = 0; i < PTBL_PAGES; i++) { 1133 pa = pte_vatopa(mmu, kernel_pmap, 1134 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 1135 m = PHYS_TO_VM_PAGE(pa); 1136 m->wire_count--; 1137 } 1138 1139 /* 1140 * Free ptbl pages if there are no pte etries in this ptbl. 1141 * wire_count has the same value for all ptbl pages, so check the last 1142 * page. 1143 */ 1144 if (m->wire_count == 0) { 1145 ptbl_free(mmu, pmap, pdir_idx); 1146 1147 //debugf("ptbl_unhold: e (freed ptbl)\n"); 1148 return (1); 1149 } 1150 1151 return (0); 1152 } 1153 1154 /* 1155 * Increment hold count for ptbl pages. This routine is used when a new pte 1156 * entry is being inserted into the ptbl. 1157 */ 1158 static void 1159 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 1160 { 1161 vm_paddr_t pa; 1162 pte_t *ptbl; 1163 vm_page_t m; 1164 int i; 1165 1166 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 1167 pdir_idx); 1168 1169 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1170 ("ptbl_hold: invalid pdir_idx")); 1171 KASSERT((pmap != kernel_pmap), 1172 ("ptbl_hold: holding kernel ptbl!")); 1173 1174 ptbl = pmap->pm_pdir[pdir_idx]; 1175 1176 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 1177 1178 for (i = 0; i < PTBL_PAGES; i++) { 1179 pa = pte_vatopa(mmu, kernel_pmap, 1180 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 1181 m = PHYS_TO_VM_PAGE(pa); 1182 m->wire_count++; 1183 } 1184 } 1185 #endif 1186 1187 /* Allocate pv_entry structure. */ 1188 pv_entry_t 1189 pv_alloc(void) 1190 { 1191 pv_entry_t pv; 1192 1193 pv_entry_count++; 1194 if (pv_entry_count > pv_entry_high_water) 1195 pagedaemon_wakeup(0); /* XXX powerpc NUMA */ 1196 pv = uma_zalloc(pvzone, M_NOWAIT); 1197 1198 return (pv); 1199 } 1200 1201 /* Free pv_entry structure. */ 1202 static __inline void 1203 pv_free(pv_entry_t pve) 1204 { 1205 1206 pv_entry_count--; 1207 uma_zfree(pvzone, pve); 1208 } 1209 1210 1211 /* Allocate and initialize pv_entry structure. */ 1212 static void 1213 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 1214 { 1215 pv_entry_t pve; 1216 1217 //int su = (pmap == kernel_pmap); 1218 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 1219 // (u_int32_t)pmap, va, (u_int32_t)m); 1220 1221 pve = pv_alloc(); 1222 if (pve == NULL) 1223 panic("pv_insert: no pv entries!"); 1224 1225 pve->pv_pmap = pmap; 1226 pve->pv_va = va; 1227 1228 /* add to pv_list */ 1229 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1230 rw_assert(&pvh_global_lock, RA_WLOCKED); 1231 1232 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 1233 1234 //debugf("pv_insert: e\n"); 1235 } 1236 1237 /* Destroy pv entry. */ 1238 static void 1239 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 1240 { 1241 pv_entry_t pve; 1242 1243 //int su = (pmap == kernel_pmap); 1244 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 1245 1246 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1247 rw_assert(&pvh_global_lock, RA_WLOCKED); 1248 1249 /* find pv entry */ 1250 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 1251 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 1252 /* remove from pv_list */ 1253 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 1254 if (TAILQ_EMPTY(&m->md.pv_list)) 1255 vm_page_aflag_clear(m, PGA_WRITEABLE); 1256 1257 /* free pv entry struct */ 1258 pv_free(pve); 1259 break; 1260 } 1261 } 1262 1263 //debugf("pv_remove: e\n"); 1264 } 1265 1266 #ifdef __powerpc64__ 1267 /* 1268 * Clean pte entry, try to free page table page if requested. 1269 * 1270 * Return 1 if ptbl pages were freed, otherwise return 0. 1271 */ 1272 static int 1273 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags) 1274 { 1275 vm_page_t m; 1276 pte_t *pte; 1277 1278 pte = pte_find(mmu, pmap, va); 1279 KASSERT(pte != NULL, ("%s: NULL pte", __func__)); 1280 1281 if (!PTE_ISVALID(pte)) 1282 return (0); 1283 1284 /* Get vm_page_t for mapped pte. */ 1285 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1286 1287 if (PTE_ISWIRED(pte)) 1288 pmap->pm_stats.wired_count--; 1289 1290 /* Handle managed entry. */ 1291 if (PTE_ISMANAGED(pte)) { 1292 1293 /* Handle modified pages. */ 1294 if (PTE_ISMODIFIED(pte)) 1295 vm_page_dirty(m); 1296 1297 /* Referenced pages. */ 1298 if (PTE_ISREFERENCED(pte)) 1299 vm_page_aflag_set(m, PGA_REFERENCED); 1300 1301 /* Remove pv_entry from pv_list. */ 1302 pv_remove(pmap, va, m); 1303 } else if (m->md.pv_tracked) { 1304 pv_remove(pmap, va, m); 1305 if (TAILQ_EMPTY(&m->md.pv_list)) 1306 m->md.pv_tracked = false; 1307 } 1308 mtx_lock_spin(&tlbivax_mutex); 1309 tlb_miss_lock(); 1310 1311 tlb0_flush_entry(va); 1312 *pte = 0; 1313 1314 tlb_miss_unlock(); 1315 mtx_unlock_spin(&tlbivax_mutex); 1316 1317 pmap->pm_stats.resident_count--; 1318 1319 if (flags & PTBL_UNHOLD) { 1320 return (ptbl_unhold(mmu, pmap, va)); 1321 } 1322 return (0); 1323 } 1324 1325 /* 1326 * allocate a page of pointers to page directories, do not preallocate the 1327 * page tables 1328 */ 1329 static pte_t ** 1330 pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep) 1331 { 1332 vm_page_t mtbl [PDIR_PAGES]; 1333 vm_page_t m; 1334 struct ptbl_buf *pbuf; 1335 pte_t **pdir; 1336 unsigned int pidx; 1337 int i; 1338 int req; 1339 1340 pbuf = ptbl_buf_alloc(); 1341 1342 if (pbuf == NULL) 1343 panic("%s: couldn't alloc kernel virtual memory", __func__); 1344 1345 /* Allocate pdir pages, this will sleep! */ 1346 for (i = 0; i < PDIR_PAGES; i++) { 1347 pidx = (PDIR_PAGES * pp2d_idx) + i; 1348 req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; 1349 while ((m = vm_page_alloc(NULL, pidx, req)) == NULL) { 1350 PMAP_UNLOCK(pmap); 1351 vm_wait(NULL); 1352 PMAP_LOCK(pmap); 1353 } 1354 mtbl[i] = m; 1355 } 1356 1357 /* Mapin allocated pages into kernel_pmap. */ 1358 pdir = (pte_t **) pbuf->kva; 1359 pmap_qenter((vm_offset_t) pdir, mtbl, PDIR_PAGES); 1360 1361 /* Zero whole pdir. */ 1362 bzero((caddr_t) pdir, PDIR_PAGES * PAGE_SIZE); 1363 1364 /* Add pdir to the pmap pdir bufs list. */ 1365 TAILQ_INSERT_TAIL(&pmap->pm_pdir_list, pbuf, link); 1366 1367 return pdir; 1368 } 1369 1370 /* 1371 * Insert PTE for a given page and virtual address. 1372 */ 1373 static int 1374 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 1375 boolean_t nosleep) 1376 { 1377 unsigned int pp2d_idx = PP2D_IDX(va); 1378 unsigned int pdir_idx = PDIR_IDX(va); 1379 unsigned int ptbl_idx = PTBL_IDX(va); 1380 pte_t *ptbl, *pte; 1381 pte_t **pdir; 1382 1383 /* Get the page directory pointer. */ 1384 pdir = pmap->pm_pp2d[pp2d_idx]; 1385 if (pdir == NULL) 1386 pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep); 1387 1388 /* Get the page table pointer. */ 1389 ptbl = pdir[pdir_idx]; 1390 1391 if (ptbl == NULL) { 1392 /* Allocate page table pages. */ 1393 ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep); 1394 if (ptbl == NULL) { 1395 KASSERT(nosleep, ("nosleep and NULL ptbl")); 1396 return (ENOMEM); 1397 } 1398 } else { 1399 /* 1400 * Check if there is valid mapping for requested va, if there 1401 * is, remove it. 1402 */ 1403 pte = &pdir[pdir_idx][ptbl_idx]; 1404 if (PTE_ISVALID(pte)) { 1405 pte_remove(mmu, pmap, va, PTBL_HOLD); 1406 } else { 1407 /* 1408 * pte is not used, increment hold count for ptbl 1409 * pages. 1410 */ 1411 if (pmap != kernel_pmap) 1412 ptbl_hold(mmu, pmap, pdir, pdir_idx); 1413 } 1414 } 1415 1416 if (pdir[pdir_idx] == NULL) { 1417 if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL) 1418 pdir_hold(mmu, pmap, pdir); 1419 pdir[pdir_idx] = ptbl; 1420 } 1421 if (pmap->pm_pp2d[pp2d_idx] == NULL) 1422 pmap->pm_pp2d[pp2d_idx] = pdir; 1423 1424 /* 1425 * Insert pv_entry into pv_list for mapped page if part of managed 1426 * memory. 1427 */ 1428 if ((m->oflags & VPO_UNMANAGED) == 0) { 1429 flags |= PTE_MANAGED; 1430 1431 /* Create and insert pv entry. */ 1432 pv_insert(pmap, va, m); 1433 } 1434 1435 mtx_lock_spin(&tlbivax_mutex); 1436 tlb_miss_lock(); 1437 1438 tlb0_flush_entry(va); 1439 pmap->pm_stats.resident_count++; 1440 pte = &pdir[pdir_idx][ptbl_idx]; 1441 *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 1442 *pte |= (PTE_VALID | flags); 1443 1444 tlb_miss_unlock(); 1445 mtx_unlock_spin(&tlbivax_mutex); 1446 1447 return (0); 1448 } 1449 1450 /* Return the pa for the given pmap/va. */ 1451 static vm_paddr_t 1452 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1453 { 1454 vm_paddr_t pa = 0; 1455 pte_t *pte; 1456 1457 pte = pte_find(mmu, pmap, va); 1458 if ((pte != NULL) && PTE_ISVALID(pte)) 1459 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 1460 return (pa); 1461 } 1462 1463 1464 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */ 1465 static void 1466 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) 1467 { 1468 int i, j; 1469 vm_offset_t va; 1470 pte_t *pte; 1471 1472 va = addr; 1473 /* Initialize kernel pdir */ 1474 for (i = 0; i < kernel_pdirs; i++) { 1475 kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] = 1476 (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES)); 1477 for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES)); 1478 j < PDIR_NENTRIES; j++) { 1479 kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] = 1480 (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE * PDIR_PAGES) + 1481 (((i * PDIR_NENTRIES) + j) * PAGE_SIZE * PTBL_PAGES)); 1482 } 1483 } 1484 1485 /* 1486 * Fill in PTEs covering kernel code and data. They are not required 1487 * for address translation, as this area is covered by static TLB1 1488 * entries, but for pte_vatopa() to work correctly with kernel area 1489 * addresses. 1490 */ 1491 for (va = addr; va < data_end; va += PAGE_SIZE) { 1492 pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]); 1493 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 1494 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1495 PTE_VALID | PTE_PS_4KB; 1496 } 1497 } 1498 #else 1499 /* 1500 * Clean pte entry, try to free page table page if requested. 1501 * 1502 * Return 1 if ptbl pages were freed, otherwise return 0. 1503 */ 1504 static int 1505 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 1506 { 1507 unsigned int pdir_idx = PDIR_IDX(va); 1508 unsigned int ptbl_idx = PTBL_IDX(va); 1509 vm_page_t m; 1510 pte_t *ptbl; 1511 pte_t *pte; 1512 1513 //int su = (pmap == kernel_pmap); 1514 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 1515 // su, (u_int32_t)pmap, va, flags); 1516 1517 ptbl = pmap->pm_pdir[pdir_idx]; 1518 KASSERT(ptbl, ("pte_remove: null ptbl")); 1519 1520 pte = &ptbl[ptbl_idx]; 1521 1522 if (pte == NULL || !PTE_ISVALID(pte)) 1523 return (0); 1524 1525 if (PTE_ISWIRED(pte)) 1526 pmap->pm_stats.wired_count--; 1527 1528 /* Get vm_page_t for mapped pte. */ 1529 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1530 1531 /* Handle managed entry. */ 1532 if (PTE_ISMANAGED(pte)) { 1533 1534 if (PTE_ISMODIFIED(pte)) 1535 vm_page_dirty(m); 1536 1537 if (PTE_ISREFERENCED(pte)) 1538 vm_page_aflag_set(m, PGA_REFERENCED); 1539 1540 pv_remove(pmap, va, m); 1541 } else if (m->md.pv_tracked) { 1542 /* 1543 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is 1544 * used. This is needed by the NCSW support code for fast 1545 * VA<->PA translation. 1546 */ 1547 pv_remove(pmap, va, m); 1548 if (TAILQ_EMPTY(&m->md.pv_list)) 1549 m->md.pv_tracked = false; 1550 } 1551 1552 mtx_lock_spin(&tlbivax_mutex); 1553 tlb_miss_lock(); 1554 1555 tlb0_flush_entry(va); 1556 *pte = 0; 1557 1558 tlb_miss_unlock(); 1559 mtx_unlock_spin(&tlbivax_mutex); 1560 1561 pmap->pm_stats.resident_count--; 1562 1563 if (flags & PTBL_UNHOLD) { 1564 //debugf("pte_remove: e (unhold)\n"); 1565 return (ptbl_unhold(mmu, pmap, pdir_idx)); 1566 } 1567 1568 //debugf("pte_remove: e\n"); 1569 return (0); 1570 } 1571 1572 /* 1573 * Insert PTE for a given page and virtual address. 1574 */ 1575 static int 1576 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 1577 boolean_t nosleep) 1578 { 1579 unsigned int pdir_idx = PDIR_IDX(va); 1580 unsigned int ptbl_idx = PTBL_IDX(va); 1581 pte_t *ptbl, *pte; 1582 1583 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 1584 pmap == kernel_pmap, pmap, va); 1585 1586 /* Get the page table pointer. */ 1587 ptbl = pmap->pm_pdir[pdir_idx]; 1588 1589 if (ptbl == NULL) { 1590 /* Allocate page table pages. */ 1591 ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); 1592 if (ptbl == NULL) { 1593 KASSERT(nosleep, ("nosleep and NULL ptbl")); 1594 return (ENOMEM); 1595 } 1596 } else { 1597 /* 1598 * Check if there is valid mapping for requested 1599 * va, if there is, remove it. 1600 */ 1601 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 1602 if (PTE_ISVALID(pte)) { 1603 pte_remove(mmu, pmap, va, PTBL_HOLD); 1604 } else { 1605 /* 1606 * pte is not used, increment hold count 1607 * for ptbl pages. 1608 */ 1609 if (pmap != kernel_pmap) 1610 ptbl_hold(mmu, pmap, pdir_idx); 1611 } 1612 } 1613 1614 /* 1615 * Insert pv_entry into pv_list for mapped page if part of managed 1616 * memory. 1617 */ 1618 if ((m->oflags & VPO_UNMANAGED) == 0) { 1619 flags |= PTE_MANAGED; 1620 1621 /* Create and insert pv entry. */ 1622 pv_insert(pmap, va, m); 1623 } 1624 1625 pmap->pm_stats.resident_count++; 1626 1627 mtx_lock_spin(&tlbivax_mutex); 1628 tlb_miss_lock(); 1629 1630 tlb0_flush_entry(va); 1631 if (pmap->pm_pdir[pdir_idx] == NULL) { 1632 /* 1633 * If we just allocated a new page table, hook it in 1634 * the pdir. 1635 */ 1636 pmap->pm_pdir[pdir_idx] = ptbl; 1637 } 1638 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 1639 *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 1640 *pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ 1641 1642 tlb_miss_unlock(); 1643 mtx_unlock_spin(&tlbivax_mutex); 1644 return (0); 1645 } 1646 1647 /* Return the pa for the given pmap/va. */ 1648 static vm_paddr_t 1649 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1650 { 1651 vm_paddr_t pa = 0; 1652 pte_t *pte; 1653 1654 pte = pte_find(mmu, pmap, va); 1655 if ((pte != NULL) && PTE_ISVALID(pte)) 1656 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 1657 return (pa); 1658 } 1659 1660 /* Get a pointer to a PTE in a page table. */ 1661 static pte_t * 1662 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1663 { 1664 unsigned int pdir_idx = PDIR_IDX(va); 1665 unsigned int ptbl_idx = PTBL_IDX(va); 1666 1667 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 1668 1669 if (pmap->pm_pdir[pdir_idx]) 1670 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 1671 1672 return (NULL); 1673 } 1674 1675 /* Set up kernel page tables. */ 1676 static void 1677 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) 1678 { 1679 int i; 1680 vm_offset_t va; 1681 pte_t *pte; 1682 1683 /* Initialize kernel pdir */ 1684 for (i = 0; i < kernel_ptbls; i++) 1685 kernel_pmap->pm_pdir[kptbl_min + i] = 1686 (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1687 1688 /* 1689 * Fill in PTEs covering kernel code and data. They are not required 1690 * for address translation, as this area is covered by static TLB1 1691 * entries, but for pte_vatopa() to work correctly with kernel area 1692 * addresses. 1693 */ 1694 for (va = addr; va < data_end; va += PAGE_SIZE) { 1695 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1696 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 1697 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1698 PTE_VALID | PTE_PS_4KB; 1699 } 1700 } 1701 #endif 1702 1703 /**************************************************************************/ 1704 /* PMAP related */ 1705 /**************************************************************************/ 1706 1707 /* 1708 * This is called during booke_init, before the system is really initialized. 1709 */ 1710 static void 1711 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 1712 { 1713 vm_paddr_t phys_kernelend; 1714 struct mem_region *mp, *mp1; 1715 int cnt, i, j; 1716 vm_paddr_t s, e, sz; 1717 vm_paddr_t physsz, hwphyssz; 1718 u_int phys_avail_count; 1719 vm_size_t kstack0_sz; 1720 vm_offset_t kernel_pdir, kstack0; 1721 vm_paddr_t kstack0_phys; 1722 void *dpcpu; 1723 1724 debugf("mmu_booke_bootstrap: entered\n"); 1725 1726 /* Set interesting system properties */ 1727 #ifdef __powerpc64__ 1728 hw_direct_map = 1; 1729 #else 1730 hw_direct_map = 0; 1731 #endif 1732 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) 1733 elf32_nxstack = 1; 1734 #endif 1735 1736 /* Initialize invalidation mutex */ 1737 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 1738 1739 /* Read TLB0 size and associativity. */ 1740 tlb0_get_tlbconf(); 1741 1742 /* 1743 * Align kernel start and end address (kernel image). 1744 * Note that kernel end does not necessarily relate to kernsize. 1745 * kernsize is the size of the kernel that is actually mapped. 1746 */ 1747 kernstart = trunc_page(start); 1748 data_start = round_page(kernelend); 1749 data_end = data_start; 1750 1751 /* 1752 * Addresses of preloaded modules (like file systems) use 1753 * physical addresses. Make sure we relocate those into 1754 * virtual addresses. 1755 */ 1756 preload_addr_relocate = kernstart - kernload; 1757 1758 /* Allocate the dynamic per-cpu area. */ 1759 dpcpu = (void *)data_end; 1760 data_end += DPCPU_SIZE; 1761 1762 /* Allocate space for the message buffer. */ 1763 msgbufp = (struct msgbuf *)data_end; 1764 data_end += msgbufsize; 1765 debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 1766 (uintptr_t)msgbufp, data_end); 1767 1768 data_end = round_page(data_end); 1769 1770 /* Allocate space for ptbl_bufs. */ 1771 ptbl_bufs = (struct ptbl_buf *)data_end; 1772 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1773 debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 1774 (uintptr_t)ptbl_bufs, data_end); 1775 1776 data_end = round_page(data_end); 1777 1778 /* Allocate PTE tables for kernel KVA. */ 1779 kernel_pdir = data_end; 1780 kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, 1781 PDIR_SIZE); 1782 #ifdef __powerpc64__ 1783 kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES); 1784 data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE; 1785 #endif 1786 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1787 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1788 debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 1789 kernel_pdir, data_end); 1790 1791 debugf(" data_end: 0x%"PRI0ptrX"\n", data_end); 1792 if (data_end - kernstart > kernsize) { 1793 kernsize += tlb1_mapin_region(kernstart + kernsize, 1794 kernload + kernsize, (data_end - kernstart) - kernsize); 1795 } 1796 data_end = kernstart + kernsize; 1797 debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end); 1798 1799 /* 1800 * Clear the structures - note we can only do it safely after the 1801 * possible additional TLB1 translations are in place (above) so that 1802 * all range up to the currently calculated 'data_end' is covered. 1803 */ 1804 dpcpu_init(dpcpu, 0); 1805 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1806 #ifdef __powerpc64__ 1807 memset((void *)kernel_pdir, 0, 1808 kernel_pdirs * PDIR_PAGES * PAGE_SIZE + 1809 kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1810 #else 1811 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1812 #endif 1813 1814 /*******************************************************/ 1815 /* Set the start and end of kva. */ 1816 /*******************************************************/ 1817 virtual_avail = round_page(data_end); 1818 virtual_end = VM_MAX_KERNEL_ADDRESS; 1819 1820 /* Allocate KVA space for page zero/copy operations. */ 1821 zero_page_va = virtual_avail; 1822 virtual_avail += PAGE_SIZE; 1823 copy_page_src_va = virtual_avail; 1824 virtual_avail += PAGE_SIZE; 1825 copy_page_dst_va = virtual_avail; 1826 virtual_avail += PAGE_SIZE; 1827 debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va); 1828 debugf("copy_page_src_va = 0x"PRI0ptrX"\n", copy_page_src_va); 1829 debugf("copy_page_dst_va = 0x"PRI0ptrX"\n", copy_page_dst_va); 1830 1831 /* Initialize page zero/copy mutexes. */ 1832 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1833 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1834 1835 /* Allocate KVA space for ptbl bufs. */ 1836 ptbl_buf_pool_vabase = virtual_avail; 1837 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1838 debugf("ptbl_buf_pool_vabase = 0x"PRI0ptrX" end = 0x"PRI0ptrX"\n", 1839 ptbl_buf_pool_vabase, virtual_avail); 1840 1841 /* Calculate corresponding physical addresses for the kernel region. */ 1842 phys_kernelend = kernload + kernsize; 1843 debugf("kernel image and allocated data:\n"); 1844 debugf(" kernload = 0x%09llx\n", (uint64_t)kernload); 1845 debugf(" kernstart = 0x"PRI0ptrX"\n", kernstart); 1846 debugf(" kernsize = 0x"PRI0ptrX"\n", kernsize); 1847 1848 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1849 panic("mmu_booke_bootstrap: phys_avail too small"); 1850 1851 /* 1852 * Remove kernel physical address range from avail regions list. Page 1853 * align all regions. Non-page aligned memory isn't very interesting 1854 * to us. Also, sort the entries for ascending addresses. 1855 */ 1856 1857 /* Retrieve phys/avail mem regions */ 1858 mem_regions(&physmem_regions, &physmem_regions_sz, 1859 &availmem_regions, &availmem_regions_sz); 1860 sz = 0; 1861 cnt = availmem_regions_sz; 1862 debugf("processing avail regions:\n"); 1863 for (mp = availmem_regions; mp->mr_size; mp++) { 1864 s = mp->mr_start; 1865 e = mp->mr_start + mp->mr_size; 1866 debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e); 1867 /* Check whether this region holds all of the kernel. */ 1868 if (s < kernload && e > phys_kernelend) { 1869 availmem_regions[cnt].mr_start = phys_kernelend; 1870 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1871 e = kernload; 1872 } 1873 /* Look whether this regions starts within the kernel. */ 1874 if (s >= kernload && s < phys_kernelend) { 1875 if (e <= phys_kernelend) 1876 goto empty; 1877 s = phys_kernelend; 1878 } 1879 /* Now look whether this region ends within the kernel. */ 1880 if (e > kernload && e <= phys_kernelend) { 1881 if (s >= kernload) 1882 goto empty; 1883 e = kernload; 1884 } 1885 /* Now page align the start and size of the region. */ 1886 s = round_page(s); 1887 e = trunc_page(e); 1888 if (e < s) 1889 e = s; 1890 sz = e - s; 1891 debugf("%09jx-%09jx = %jx\n", 1892 (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz); 1893 1894 /* Check whether some memory is left here. */ 1895 if (sz == 0) { 1896 empty: 1897 memmove(mp, mp + 1, 1898 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1899 cnt--; 1900 mp--; 1901 continue; 1902 } 1903 1904 /* Do an insertion sort. */ 1905 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1906 if (s < mp1->mr_start) 1907 break; 1908 if (mp1 < mp) { 1909 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1910 mp1->mr_start = s; 1911 mp1->mr_size = sz; 1912 } else { 1913 mp->mr_start = s; 1914 mp->mr_size = sz; 1915 } 1916 } 1917 availmem_regions_sz = cnt; 1918 1919 /*******************************************************/ 1920 /* Steal physical memory for kernel stack from the end */ 1921 /* of the first avail region */ 1922 /*******************************************************/ 1923 kstack0_sz = kstack_pages * PAGE_SIZE; 1924 kstack0_phys = availmem_regions[0].mr_start + 1925 availmem_regions[0].mr_size; 1926 kstack0_phys -= kstack0_sz; 1927 availmem_regions[0].mr_size -= kstack0_sz; 1928 1929 /*******************************************************/ 1930 /* Fill in phys_avail table, based on availmem_regions */ 1931 /*******************************************************/ 1932 phys_avail_count = 0; 1933 physsz = 0; 1934 hwphyssz = 0; 1935 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1936 1937 debugf("fill in phys_avail:\n"); 1938 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1939 1940 debugf(" region: 0x%jx - 0x%jx (0x%jx)\n", 1941 (uintmax_t)availmem_regions[i].mr_start, 1942 (uintmax_t)availmem_regions[i].mr_start + 1943 availmem_regions[i].mr_size, 1944 (uintmax_t)availmem_regions[i].mr_size); 1945 1946 if (hwphyssz != 0 && 1947 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1948 debugf(" hw.physmem adjust\n"); 1949 if (physsz < hwphyssz) { 1950 phys_avail[j] = availmem_regions[i].mr_start; 1951 phys_avail[j + 1] = 1952 availmem_regions[i].mr_start + 1953 hwphyssz - physsz; 1954 physsz = hwphyssz; 1955 phys_avail_count++; 1956 } 1957 break; 1958 } 1959 1960 phys_avail[j] = availmem_regions[i].mr_start; 1961 phys_avail[j + 1] = availmem_regions[i].mr_start + 1962 availmem_regions[i].mr_size; 1963 phys_avail_count++; 1964 physsz += availmem_regions[i].mr_size; 1965 } 1966 physmem = btoc(physsz); 1967 1968 /* Calculate the last available physical address. */ 1969 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1970 ; 1971 Maxmem = powerpc_btop(phys_avail[i + 1]); 1972 1973 debugf("Maxmem = 0x%08lx\n", Maxmem); 1974 debugf("phys_avail_count = %d\n", phys_avail_count); 1975 debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n", 1976 (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem); 1977 1978 #ifdef __powerpc64__ 1979 /* 1980 * Map the physical memory contiguously in TLB1. 1981 * Round so it fits into a single mapping. 1982 */ 1983 tlb1_mapin_region(DMAP_BASE_ADDRESS, 0, 1984 phys_avail[i + 1]); 1985 #endif 1986 1987 /*******************************************************/ 1988 /* Initialize (statically allocated) kernel pmap. */ 1989 /*******************************************************/ 1990 PMAP_LOCK_INIT(kernel_pmap); 1991 #ifndef __powerpc64__ 1992 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1993 #endif 1994 1995 debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap); 1996 kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir); 1997 for (i = 0; i < MAXCPU; i++) { 1998 kernel_pmap->pm_tid[i] = TID_KERNEL; 1999 2000 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 2001 tidbusy[i][TID_KERNEL] = kernel_pmap; 2002 } 2003 2004 /* Mark kernel_pmap active on all CPUs */ 2005 CPU_FILL(&kernel_pmap->pm_active); 2006 2007 /* 2008 * Initialize the global pv list lock. 2009 */ 2010 rw_init(&pvh_global_lock, "pmap pv global"); 2011 2012 /*******************************************************/ 2013 /* Final setup */ 2014 /*******************************************************/ 2015 2016 /* Enter kstack0 into kernel map, provide guard page */ 2017 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 2018 thread0.td_kstack = kstack0; 2019 thread0.td_kstack_pages = kstack_pages; 2020 2021 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 2022 debugf("kstack0_phys at 0x%09llx - 0x%09llx\n", 2023 kstack0_phys, kstack0_phys + kstack0_sz); 2024 debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n", 2025 kstack0, kstack0 + kstack0_sz); 2026 2027 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 2028 for (i = 0; i < kstack_pages; i++) { 2029 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 2030 kstack0 += PAGE_SIZE; 2031 kstack0_phys += PAGE_SIZE; 2032 } 2033 2034 pmap_bootstrapped = 1; 2035 2036 debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail); 2037 debugf("virtual_end = %"PRI0ptrX"\n", virtual_end); 2038 2039 debugf("mmu_booke_bootstrap: exit\n"); 2040 } 2041 2042 #ifdef SMP 2043 void 2044 tlb1_ap_prep(void) 2045 { 2046 tlb_entry_t *e, tmp; 2047 unsigned int i; 2048 2049 /* Prepare TLB1 image for AP processors */ 2050 e = __boot_tlb1; 2051 for (i = 0; i < TLB1_ENTRIES; i++) { 2052 tlb1_read_entry(&tmp, i); 2053 2054 if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED)) 2055 memcpy(e++, &tmp, sizeof(tmp)); 2056 } 2057 } 2058 2059 void 2060 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 2061 { 2062 int i; 2063 2064 /* 2065 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 2066 * have the snapshot of its contents in the s/w __boot_tlb1[] table 2067 * created by tlb1_ap_prep(), so use these values directly to 2068 * (re)program AP's TLB1 hardware. 2069 * 2070 * Start at index 1 because index 0 has the kernel map. 2071 */ 2072 for (i = 1; i < TLB1_ENTRIES; i++) { 2073 if (__boot_tlb1[i].mas1 & MAS1_VALID) 2074 tlb1_write_entry(&__boot_tlb1[i], i); 2075 } 2076 2077 set_mas4_defaults(); 2078 } 2079 #endif 2080 2081 static void 2082 booke_pmap_init_qpages(void) 2083 { 2084 struct pcpu *pc; 2085 int i; 2086 2087 CPU_FOREACH(i) { 2088 pc = pcpu_find(i); 2089 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); 2090 if (pc->pc_qmap_addr == 0) 2091 panic("pmap_init_qpages: unable to allocate KVA"); 2092 } 2093 } 2094 2095 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL); 2096 2097 /* 2098 * Get the physical page address for the given pmap/virtual address. 2099 */ 2100 static vm_paddr_t 2101 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 2102 { 2103 vm_paddr_t pa; 2104 2105 PMAP_LOCK(pmap); 2106 pa = pte_vatopa(mmu, pmap, va); 2107 PMAP_UNLOCK(pmap); 2108 2109 return (pa); 2110 } 2111 2112 /* 2113 * Extract the physical page address associated with the given 2114 * kernel virtual address. 2115 */ 2116 static vm_paddr_t 2117 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 2118 { 2119 tlb_entry_t e; 2120 vm_paddr_t p = 0; 2121 int i; 2122 2123 if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS) 2124 p = pte_vatopa(mmu, kernel_pmap, va); 2125 2126 if (p == 0) { 2127 /* Check TLB1 mappings */ 2128 for (i = 0; i < TLB1_ENTRIES; i++) { 2129 tlb1_read_entry(&e, i); 2130 if (!(e.mas1 & MAS1_VALID)) 2131 continue; 2132 if (va >= e.virt && va < e.virt + e.size) 2133 return (e.phys + (va - e.virt)); 2134 } 2135 } 2136 2137 return (p); 2138 } 2139 2140 /* 2141 * Initialize the pmap module. 2142 * Called by vm_init, to initialize any structures that the pmap 2143 * system needs to map virtual memory. 2144 */ 2145 static void 2146 mmu_booke_init(mmu_t mmu) 2147 { 2148 int shpgperproc = PMAP_SHPGPERPROC; 2149 2150 /* 2151 * Initialize the address space (zone) for the pv entries. Set a 2152 * high water mark so that the system can recover from excessive 2153 * numbers of pv entries. 2154 */ 2155 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 2156 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 2157 2158 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 2159 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; 2160 2161 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 2162 pv_entry_high_water = 9 * (pv_entry_max / 10); 2163 2164 uma_zone_reserve_kva(pvzone, pv_entry_max); 2165 2166 /* Pre-fill pvzone with initial number of pv entries. */ 2167 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 2168 2169 /* Initialize ptbl allocation. */ 2170 ptbl_init(); 2171 } 2172 2173 /* 2174 * Map a list of wired pages into kernel virtual address space. This is 2175 * intended for temporary mappings which do not need page modification or 2176 * references recorded. Existing mappings in the region are overwritten. 2177 */ 2178 static void 2179 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 2180 { 2181 vm_offset_t va; 2182 2183 va = sva; 2184 while (count-- > 0) { 2185 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 2186 va += PAGE_SIZE; 2187 m++; 2188 } 2189 } 2190 2191 /* 2192 * Remove page mappings from kernel virtual address space. Intended for 2193 * temporary mappings entered by mmu_booke_qenter. 2194 */ 2195 static void 2196 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 2197 { 2198 vm_offset_t va; 2199 2200 va = sva; 2201 while (count-- > 0) { 2202 mmu_booke_kremove(mmu, va); 2203 va += PAGE_SIZE; 2204 } 2205 } 2206 2207 /* 2208 * Map a wired page into kernel virtual address space. 2209 */ 2210 static void 2211 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 2212 { 2213 2214 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 2215 } 2216 2217 static void 2218 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 2219 { 2220 uint32_t flags; 2221 pte_t *pte; 2222 2223 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 2224 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 2225 2226 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 2227 flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT; 2228 flags |= PTE_PS_4KB; 2229 2230 pte = pte_find(mmu, kernel_pmap, va); 2231 KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va. NULL PTE")); 2232 2233 mtx_lock_spin(&tlbivax_mutex); 2234 tlb_miss_lock(); 2235 2236 if (PTE_ISVALID(pte)) { 2237 2238 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 2239 2240 /* Flush entry from TLB0 */ 2241 tlb0_flush_entry(va); 2242 } 2243 2244 *pte = PTE_RPN_FROM_PA(pa) | flags; 2245 2246 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 2247 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 2248 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 2249 2250 /* Flush the real memory from the instruction cache. */ 2251 if ((flags & (PTE_I | PTE_G)) == 0) 2252 __syncicache((void *)va, PAGE_SIZE); 2253 2254 tlb_miss_unlock(); 2255 mtx_unlock_spin(&tlbivax_mutex); 2256 } 2257 2258 /* 2259 * Remove a page from kernel page table. 2260 */ 2261 static void 2262 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 2263 { 2264 pte_t *pte; 2265 2266 CTR2(KTR_PMAP,"%s: s (va = 0x"PRI0ptrX")\n", __func__, va); 2267 2268 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 2269 (va <= VM_MAX_KERNEL_ADDRESS)), 2270 ("mmu_booke_kremove: invalid va")); 2271 2272 pte = pte_find(mmu, kernel_pmap, va); 2273 2274 if (!PTE_ISVALID(pte)) { 2275 2276 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 2277 2278 return; 2279 } 2280 2281 mtx_lock_spin(&tlbivax_mutex); 2282 tlb_miss_lock(); 2283 2284 /* Invalidate entry in TLB0, update PTE. */ 2285 tlb0_flush_entry(va); 2286 *pte = 0; 2287 2288 tlb_miss_unlock(); 2289 mtx_unlock_spin(&tlbivax_mutex); 2290 } 2291 2292 /* 2293 * Provide a kernel pointer corresponding to a given userland pointer. 2294 * The returned pointer is valid until the next time this function is 2295 * called in this thread. This is used internally in copyin/copyout. 2296 */ 2297 int 2298 mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr, 2299 void **kaddr, size_t ulen, size_t *klen) 2300 { 2301 2302 if ((uintptr_t)uaddr + ulen > VM_MAXUSER_ADDRESS + PAGE_SIZE) 2303 return (EFAULT); 2304 2305 *kaddr = (void *)(uintptr_t)uaddr; 2306 if (klen) 2307 *klen = ulen; 2308 2309 return (0); 2310 } 2311 2312 /* 2313 * Figure out where a given kernel pointer (usually in a fault) points 2314 * to from the VM's perspective, potentially remapping into userland's 2315 * address space. 2316 */ 2317 static int 2318 mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user, 2319 vm_offset_t *decoded_addr) 2320 { 2321 2322 if (addr < VM_MAXUSER_ADDRESS) 2323 *is_user = 1; 2324 else 2325 *is_user = 0; 2326 2327 *decoded_addr = addr; 2328 return (0); 2329 } 2330 2331 /* 2332 * Initialize pmap associated with process 0. 2333 */ 2334 static void 2335 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 2336 { 2337 2338 PMAP_LOCK_INIT(pmap); 2339 mmu_booke_pinit(mmu, pmap); 2340 PCPU_SET(curpmap, pmap); 2341 } 2342 2343 /* 2344 * Initialize a preallocated and zeroed pmap structure, 2345 * such as one in a vmspace structure. 2346 */ 2347 static void 2348 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 2349 { 2350 int i; 2351 2352 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 2353 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 2354 2355 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 2356 2357 for (i = 0; i < MAXCPU; i++) 2358 pmap->pm_tid[i] = TID_NONE; 2359 CPU_ZERO(&kernel_pmap->pm_active); 2360 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 2361 #ifdef __powerpc64__ 2362 bzero(&pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES); 2363 TAILQ_INIT(&pmap->pm_pdir_list); 2364 #else 2365 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 2366 #endif 2367 TAILQ_INIT(&pmap->pm_ptbl_list); 2368 } 2369 2370 /* 2371 * Release any resources held by the given physical map. 2372 * Called when a pmap initialized by mmu_booke_pinit is being released. 2373 * Should only be called if the map contains no valid mappings. 2374 */ 2375 static void 2376 mmu_booke_release(mmu_t mmu, pmap_t pmap) 2377 { 2378 2379 KASSERT(pmap->pm_stats.resident_count == 0, 2380 ("pmap_release: pmap resident count %ld != 0", 2381 pmap->pm_stats.resident_count)); 2382 } 2383 2384 /* 2385 * Insert the given physical page at the specified virtual address in the 2386 * target physical map with the protection requested. If specified the page 2387 * will be wired down. 2388 */ 2389 static int 2390 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 2391 vm_prot_t prot, u_int flags, int8_t psind) 2392 { 2393 int error; 2394 2395 rw_wlock(&pvh_global_lock); 2396 PMAP_LOCK(pmap); 2397 error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); 2398 PMAP_UNLOCK(pmap); 2399 rw_wunlock(&pvh_global_lock); 2400 return (error); 2401 } 2402 2403 static int 2404 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 2405 vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) 2406 { 2407 pte_t *pte; 2408 vm_paddr_t pa; 2409 uint32_t flags; 2410 int error, su, sync; 2411 2412 pa = VM_PAGE_TO_PHYS(m); 2413 su = (pmap == kernel_pmap); 2414 sync = 0; 2415 2416 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 2417 // "pa=0x%08x prot=0x%08x flags=%#x)\n", 2418 // (u_int32_t)pmap, su, pmap->pm_tid, 2419 // (u_int32_t)m, va, pa, prot, flags); 2420 2421 if (su) { 2422 KASSERT(((va >= virtual_avail) && 2423 (va <= VM_MAX_KERNEL_ADDRESS)), 2424 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 2425 } else { 2426 KASSERT((va <= VM_MAXUSER_ADDRESS), 2427 ("mmu_booke_enter_locked: user pmap, non user va")); 2428 } 2429 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 2430 VM_OBJECT_ASSERT_LOCKED(m->object); 2431 2432 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 2433 2434 /* 2435 * If there is an existing mapping, and the physical address has not 2436 * changed, must be protection or wiring change. 2437 */ 2438 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 2439 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 2440 2441 /* 2442 * Before actually updating pte->flags we calculate and 2443 * prepare its new value in a helper var. 2444 */ 2445 flags = *pte; 2446 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 2447 2448 /* Wiring change, just update stats. */ 2449 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { 2450 if (!PTE_ISWIRED(pte)) { 2451 flags |= PTE_WIRED; 2452 pmap->pm_stats.wired_count++; 2453 } 2454 } else { 2455 if (PTE_ISWIRED(pte)) { 2456 flags &= ~PTE_WIRED; 2457 pmap->pm_stats.wired_count--; 2458 } 2459 } 2460 2461 if (prot & VM_PROT_WRITE) { 2462 /* Add write permissions. */ 2463 flags |= PTE_SW; 2464 if (!su) 2465 flags |= PTE_UW; 2466 2467 if ((flags & PTE_MANAGED) != 0) 2468 vm_page_aflag_set(m, PGA_WRITEABLE); 2469 } else { 2470 /* Handle modified pages, sense modify status. */ 2471 2472 /* 2473 * The PTE_MODIFIED flag could be set by underlying 2474 * TLB misses since we last read it (above), possibly 2475 * other CPUs could update it so we check in the PTE 2476 * directly rather than rely on that saved local flags 2477 * copy. 2478 */ 2479 if (PTE_ISMODIFIED(pte)) 2480 vm_page_dirty(m); 2481 } 2482 2483 if (prot & VM_PROT_EXECUTE) { 2484 flags |= PTE_SX; 2485 if (!su) 2486 flags |= PTE_UX; 2487 2488 /* 2489 * Check existing flags for execute permissions: if we 2490 * are turning execute permissions on, icache should 2491 * be flushed. 2492 */ 2493 if ((*pte & (PTE_UX | PTE_SX)) == 0) 2494 sync++; 2495 } 2496 2497 flags &= ~PTE_REFERENCED; 2498 2499 /* 2500 * The new flags value is all calculated -- only now actually 2501 * update the PTE. 2502 */ 2503 mtx_lock_spin(&tlbivax_mutex); 2504 tlb_miss_lock(); 2505 2506 tlb0_flush_entry(va); 2507 *pte &= ~PTE_FLAGS_MASK; 2508 *pte |= flags; 2509 2510 tlb_miss_unlock(); 2511 mtx_unlock_spin(&tlbivax_mutex); 2512 2513 } else { 2514 /* 2515 * If there is an existing mapping, but it's for a different 2516 * physical address, pte_enter() will delete the old mapping. 2517 */ 2518 //if ((pte != NULL) && PTE_ISVALID(pte)) 2519 // debugf("mmu_booke_enter_locked: replace\n"); 2520 //else 2521 // debugf("mmu_booke_enter_locked: new\n"); 2522 2523 /* Now set up the flags and install the new mapping. */ 2524 flags = (PTE_SR | PTE_VALID); 2525 flags |= PTE_M; 2526 2527 if (!su) 2528 flags |= PTE_UR; 2529 2530 if (prot & VM_PROT_WRITE) { 2531 flags |= PTE_SW; 2532 if (!su) 2533 flags |= PTE_UW; 2534 2535 if ((m->oflags & VPO_UNMANAGED) == 0) 2536 vm_page_aflag_set(m, PGA_WRITEABLE); 2537 } 2538 2539 if (prot & VM_PROT_EXECUTE) { 2540 flags |= PTE_SX; 2541 if (!su) 2542 flags |= PTE_UX; 2543 } 2544 2545 /* If its wired update stats. */ 2546 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) 2547 flags |= PTE_WIRED; 2548 2549 error = pte_enter(mmu, pmap, m, va, flags, 2550 (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); 2551 if (error != 0) 2552 return (KERN_RESOURCE_SHORTAGE); 2553 2554 if ((flags & PMAP_ENTER_WIRED) != 0) 2555 pmap->pm_stats.wired_count++; 2556 2557 /* Flush the real memory from the instruction cache. */ 2558 if (prot & VM_PROT_EXECUTE) 2559 sync++; 2560 } 2561 2562 if (sync && (su || pmap == PCPU_GET(curpmap))) { 2563 __syncicache((void *)va, PAGE_SIZE); 2564 sync = 0; 2565 } 2566 2567 return (KERN_SUCCESS); 2568 } 2569 2570 /* 2571 * Maps a sequence of resident pages belonging to the same object. 2572 * The sequence begins with the given page m_start. This page is 2573 * mapped at the given virtual address start. Each subsequent page is 2574 * mapped at a virtual address that is offset from start by the same 2575 * amount as the page is offset from m_start within the object. The 2576 * last page in the sequence is the page with the largest offset from 2577 * m_start that can be mapped at a virtual address less than the given 2578 * virtual address end. Not every virtual page between start and end 2579 * is mapped; only those for which a resident page exists with the 2580 * corresponding offset from m_start are mapped. 2581 */ 2582 static void 2583 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 2584 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 2585 { 2586 vm_page_t m; 2587 vm_pindex_t diff, psize; 2588 2589 VM_OBJECT_ASSERT_LOCKED(m_start->object); 2590 2591 psize = atop(end - start); 2592 m = m_start; 2593 rw_wlock(&pvh_global_lock); 2594 PMAP_LOCK(pmap); 2595 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 2596 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 2597 prot & (VM_PROT_READ | VM_PROT_EXECUTE), 2598 PMAP_ENTER_NOSLEEP, 0); 2599 m = TAILQ_NEXT(m, listq); 2600 } 2601 rw_wunlock(&pvh_global_lock); 2602 PMAP_UNLOCK(pmap); 2603 } 2604 2605 static void 2606 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 2607 vm_prot_t prot) 2608 { 2609 2610 rw_wlock(&pvh_global_lock); 2611 PMAP_LOCK(pmap); 2612 mmu_booke_enter_locked(mmu, pmap, va, m, 2613 prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 2614 0); 2615 rw_wunlock(&pvh_global_lock); 2616 PMAP_UNLOCK(pmap); 2617 } 2618 2619 /* 2620 * Remove the given range of addresses from the specified map. 2621 * 2622 * It is assumed that the start and end are properly rounded to the page size. 2623 */ 2624 static void 2625 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 2626 { 2627 pte_t *pte; 2628 uint8_t hold_flag; 2629 2630 int su = (pmap == kernel_pmap); 2631 2632 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 2633 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 2634 2635 if (su) { 2636 KASSERT(((va >= virtual_avail) && 2637 (va <= VM_MAX_KERNEL_ADDRESS)), 2638 ("mmu_booke_remove: kernel pmap, non kernel va")); 2639 } else { 2640 KASSERT((va <= VM_MAXUSER_ADDRESS), 2641 ("mmu_booke_remove: user pmap, non user va")); 2642 } 2643 2644 if (PMAP_REMOVE_DONE(pmap)) { 2645 //debugf("mmu_booke_remove: e (empty)\n"); 2646 return; 2647 } 2648 2649 hold_flag = PTBL_HOLD_FLAG(pmap); 2650 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 2651 2652 rw_wlock(&pvh_global_lock); 2653 PMAP_LOCK(pmap); 2654 for (; va < endva; va += PAGE_SIZE) { 2655 pte = pte_find(mmu, pmap, va); 2656 if ((pte != NULL) && PTE_ISVALID(pte)) 2657 pte_remove(mmu, pmap, va, hold_flag); 2658 } 2659 PMAP_UNLOCK(pmap); 2660 rw_wunlock(&pvh_global_lock); 2661 2662 //debugf("mmu_booke_remove: e\n"); 2663 } 2664 2665 /* 2666 * Remove physical page from all pmaps in which it resides. 2667 */ 2668 static void 2669 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 2670 { 2671 pv_entry_t pv, pvn; 2672 uint8_t hold_flag; 2673 2674 rw_wlock(&pvh_global_lock); 2675 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 2676 pvn = TAILQ_NEXT(pv, pv_link); 2677 2678 PMAP_LOCK(pv->pv_pmap); 2679 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 2680 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 2681 PMAP_UNLOCK(pv->pv_pmap); 2682 } 2683 vm_page_aflag_clear(m, PGA_WRITEABLE); 2684 rw_wunlock(&pvh_global_lock); 2685 } 2686 2687 /* 2688 * Map a range of physical addresses into kernel virtual address space. 2689 */ 2690 static vm_offset_t 2691 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 2692 vm_paddr_t pa_end, int prot) 2693 { 2694 vm_offset_t sva = *virt; 2695 vm_offset_t va = sva; 2696 2697 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 2698 // sva, pa_start, pa_end); 2699 2700 while (pa_start < pa_end) { 2701 mmu_booke_kenter(mmu, va, pa_start); 2702 va += PAGE_SIZE; 2703 pa_start += PAGE_SIZE; 2704 } 2705 *virt = va; 2706 2707 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 2708 return (sva); 2709 } 2710 2711 /* 2712 * The pmap must be activated before it's address space can be accessed in any 2713 * way. 2714 */ 2715 static void 2716 mmu_booke_activate(mmu_t mmu, struct thread *td) 2717 { 2718 pmap_t pmap; 2719 u_int cpuid; 2720 2721 pmap = &td->td_proc->p_vmspace->vm_pmap; 2722 2723 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x"PRI0ptrX")", 2724 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 2725 2726 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 2727 2728 sched_pin(); 2729 2730 cpuid = PCPU_GET(cpuid); 2731 CPU_SET_ATOMIC(cpuid, &pmap->pm_active); 2732 PCPU_SET(curpmap, pmap); 2733 2734 if (pmap->pm_tid[cpuid] == TID_NONE) 2735 tid_alloc(pmap); 2736 2737 /* Load PID0 register with pmap tid value. */ 2738 mtspr(SPR_PID0, pmap->pm_tid[cpuid]); 2739 __asm __volatile("isync"); 2740 2741 mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); 2742 2743 sched_unpin(); 2744 2745 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 2746 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 2747 } 2748 2749 /* 2750 * Deactivate the specified process's address space. 2751 */ 2752 static void 2753 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 2754 { 2755 pmap_t pmap; 2756 2757 pmap = &td->td_proc->p_vmspace->vm_pmap; 2758 2759 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x"PRI0ptrX, 2760 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 2761 2762 td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); 2763 2764 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); 2765 PCPU_SET(curpmap, NULL); 2766 } 2767 2768 /* 2769 * Copy the range specified by src_addr/len 2770 * from the source map to the range dst_addr/len 2771 * in the destination map. 2772 * 2773 * This routine is only advisory and need not do anything. 2774 */ 2775 static void 2776 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 2777 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 2778 { 2779 2780 } 2781 2782 /* 2783 * Set the physical protection on the specified range of this map as requested. 2784 */ 2785 static void 2786 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 2787 vm_prot_t prot) 2788 { 2789 vm_offset_t va; 2790 vm_page_t m; 2791 pte_t *pte; 2792 2793 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2794 mmu_booke_remove(mmu, pmap, sva, eva); 2795 return; 2796 } 2797 2798 if (prot & VM_PROT_WRITE) 2799 return; 2800 2801 PMAP_LOCK(pmap); 2802 for (va = sva; va < eva; va += PAGE_SIZE) { 2803 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2804 if (PTE_ISVALID(pte)) { 2805 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2806 2807 mtx_lock_spin(&tlbivax_mutex); 2808 tlb_miss_lock(); 2809 2810 /* Handle modified pages. */ 2811 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) 2812 vm_page_dirty(m); 2813 2814 tlb0_flush_entry(va); 2815 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2816 2817 tlb_miss_unlock(); 2818 mtx_unlock_spin(&tlbivax_mutex); 2819 } 2820 } 2821 } 2822 PMAP_UNLOCK(pmap); 2823 } 2824 2825 /* 2826 * Clear the write and modified bits in each of the given page's mappings. 2827 */ 2828 static void 2829 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 2830 { 2831 pv_entry_t pv; 2832 pte_t *pte; 2833 2834 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2835 ("mmu_booke_remove_write: page %p is not managed", m)); 2836 2837 /* 2838 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 2839 * set by another thread while the object is locked. Thus, 2840 * if PGA_WRITEABLE is clear, no page table entries need updating. 2841 */ 2842 VM_OBJECT_ASSERT_WLOCKED(m->object); 2843 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 2844 return; 2845 rw_wlock(&pvh_global_lock); 2846 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2847 PMAP_LOCK(pv->pv_pmap); 2848 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2849 if (PTE_ISVALID(pte)) { 2850 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2851 2852 mtx_lock_spin(&tlbivax_mutex); 2853 tlb_miss_lock(); 2854 2855 /* Handle modified pages. */ 2856 if (PTE_ISMODIFIED(pte)) 2857 vm_page_dirty(m); 2858 2859 /* Flush mapping from TLB0. */ 2860 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2861 2862 tlb_miss_unlock(); 2863 mtx_unlock_spin(&tlbivax_mutex); 2864 } 2865 } 2866 PMAP_UNLOCK(pv->pv_pmap); 2867 } 2868 vm_page_aflag_clear(m, PGA_WRITEABLE); 2869 rw_wunlock(&pvh_global_lock); 2870 } 2871 2872 static void 2873 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2874 { 2875 pte_t *pte; 2876 pmap_t pmap; 2877 vm_page_t m; 2878 vm_offset_t addr; 2879 vm_paddr_t pa = 0; 2880 int active, valid; 2881 2882 va = trunc_page(va); 2883 sz = round_page(sz); 2884 2885 rw_wlock(&pvh_global_lock); 2886 pmap = PCPU_GET(curpmap); 2887 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 2888 while (sz > 0) { 2889 PMAP_LOCK(pm); 2890 pte = pte_find(mmu, pm, va); 2891 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2892 if (valid) 2893 pa = PTE_PA(pte); 2894 PMAP_UNLOCK(pm); 2895 if (valid) { 2896 if (!active) { 2897 /* Create a mapping in the active pmap. */ 2898 addr = 0; 2899 m = PHYS_TO_VM_PAGE(pa); 2900 PMAP_LOCK(pmap); 2901 pte_enter(mmu, pmap, m, addr, 2902 PTE_SR | PTE_VALID | PTE_UR, FALSE); 2903 __syncicache((void *)addr, PAGE_SIZE); 2904 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2905 PMAP_UNLOCK(pmap); 2906 } else 2907 __syncicache((void *)va, PAGE_SIZE); 2908 } 2909 va += PAGE_SIZE; 2910 sz -= PAGE_SIZE; 2911 } 2912 rw_wunlock(&pvh_global_lock); 2913 } 2914 2915 /* 2916 * Atomically extract and hold the physical page with the given 2917 * pmap and virtual address pair if that mapping permits the given 2918 * protection. 2919 */ 2920 static vm_page_t 2921 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2922 vm_prot_t prot) 2923 { 2924 pte_t *pte; 2925 vm_page_t m; 2926 uint32_t pte_wbit; 2927 vm_paddr_t pa; 2928 2929 m = NULL; 2930 pa = 0; 2931 PMAP_LOCK(pmap); 2932 retry: 2933 pte = pte_find(mmu, pmap, va); 2934 if ((pte != NULL) && PTE_ISVALID(pte)) { 2935 if (pmap == kernel_pmap) 2936 pte_wbit = PTE_SW; 2937 else 2938 pte_wbit = PTE_UW; 2939 2940 if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2941 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) 2942 goto retry; 2943 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2944 vm_page_hold(m); 2945 } 2946 } 2947 2948 PA_UNLOCK_COND(pa); 2949 PMAP_UNLOCK(pmap); 2950 return (m); 2951 } 2952 2953 /* 2954 * Initialize a vm_page's machine-dependent fields. 2955 */ 2956 static void 2957 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2958 { 2959 2960 m->md.pv_tracked = 0; 2961 TAILQ_INIT(&m->md.pv_list); 2962 } 2963 2964 /* 2965 * mmu_booke_zero_page_area zeros the specified hardware page by 2966 * mapping it into virtual memory and using bzero to clear 2967 * its contents. 2968 * 2969 * off and size must reside within a single page. 2970 */ 2971 static void 2972 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2973 { 2974 vm_offset_t va; 2975 2976 /* XXX KASSERT off and size are within a single page? */ 2977 2978 mtx_lock(&zero_page_mutex); 2979 va = zero_page_va; 2980 2981 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2982 bzero((caddr_t)va + off, size); 2983 mmu_booke_kremove(mmu, va); 2984 2985 mtx_unlock(&zero_page_mutex); 2986 } 2987 2988 /* 2989 * mmu_booke_zero_page zeros the specified hardware page. 2990 */ 2991 static void 2992 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2993 { 2994 vm_offset_t off, va; 2995 2996 mtx_lock(&zero_page_mutex); 2997 va = zero_page_va; 2998 2999 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 3000 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 3001 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 3002 mmu_booke_kremove(mmu, va); 3003 3004 mtx_unlock(&zero_page_mutex); 3005 } 3006 3007 /* 3008 * mmu_booke_copy_page copies the specified (machine independent) page by 3009 * mapping the page into virtual memory and using memcopy to copy the page, 3010 * one machine dependent page at a time. 3011 */ 3012 static void 3013 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 3014 { 3015 vm_offset_t sva, dva; 3016 3017 sva = copy_page_src_va; 3018 dva = copy_page_dst_va; 3019 3020 mtx_lock(©_page_mutex); 3021 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 3022 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 3023 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 3024 mmu_booke_kremove(mmu, dva); 3025 mmu_booke_kremove(mmu, sva); 3026 mtx_unlock(©_page_mutex); 3027 } 3028 3029 static inline void 3030 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 3031 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 3032 { 3033 void *a_cp, *b_cp; 3034 vm_offset_t a_pg_offset, b_pg_offset; 3035 int cnt; 3036 3037 mtx_lock(©_page_mutex); 3038 while (xfersize > 0) { 3039 a_pg_offset = a_offset & PAGE_MASK; 3040 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 3041 mmu_booke_kenter(mmu, copy_page_src_va, 3042 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 3043 a_cp = (char *)copy_page_src_va + a_pg_offset; 3044 b_pg_offset = b_offset & PAGE_MASK; 3045 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 3046 mmu_booke_kenter(mmu, copy_page_dst_va, 3047 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 3048 b_cp = (char *)copy_page_dst_va + b_pg_offset; 3049 bcopy(a_cp, b_cp, cnt); 3050 mmu_booke_kremove(mmu, copy_page_dst_va); 3051 mmu_booke_kremove(mmu, copy_page_src_va); 3052 a_offset += cnt; 3053 b_offset += cnt; 3054 xfersize -= cnt; 3055 } 3056 mtx_unlock(©_page_mutex); 3057 } 3058 3059 static vm_offset_t 3060 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) 3061 { 3062 vm_paddr_t paddr; 3063 vm_offset_t qaddr; 3064 uint32_t flags; 3065 pte_t *pte; 3066 3067 paddr = VM_PAGE_TO_PHYS(m); 3068 3069 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 3070 flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; 3071 flags |= PTE_PS_4KB; 3072 3073 critical_enter(); 3074 qaddr = PCPU_GET(qmap_addr); 3075 3076 pte = pte_find(mmu, kernel_pmap, qaddr); 3077 3078 KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); 3079 3080 /* 3081 * XXX: tlbivax is broadcast to other cores, but qaddr should 3082 * not be present in other TLBs. Is there a better instruction 3083 * sequence to use? Or just forget it & use mmu_booke_kenter()... 3084 */ 3085 __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); 3086 __asm __volatile("isync; msync"); 3087 3088 *pte = PTE_RPN_FROM_PA(paddr) | flags; 3089 3090 /* Flush the real memory from the instruction cache. */ 3091 if ((flags & (PTE_I | PTE_G)) == 0) 3092 __syncicache((void *)qaddr, PAGE_SIZE); 3093 3094 return (qaddr); 3095 } 3096 3097 static void 3098 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) 3099 { 3100 pte_t *pte; 3101 3102 pte = pte_find(mmu, kernel_pmap, addr); 3103 3104 KASSERT(PCPU_GET(qmap_addr) == addr, 3105 ("mmu_booke_quick_remove_page: invalid address")); 3106 KASSERT(*pte != 0, 3107 ("mmu_booke_quick_remove_page: PTE not in use")); 3108 3109 *pte = 0; 3110 critical_exit(); 3111 } 3112 3113 /* 3114 * Return whether or not the specified physical page was modified 3115 * in any of physical maps. 3116 */ 3117 static boolean_t 3118 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 3119 { 3120 pte_t *pte; 3121 pv_entry_t pv; 3122 boolean_t rv; 3123 3124 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3125 ("mmu_booke_is_modified: page %p is not managed", m)); 3126 rv = FALSE; 3127 3128 /* 3129 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 3130 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 3131 * is clear, no PTEs can be modified. 3132 */ 3133 VM_OBJECT_ASSERT_WLOCKED(m->object); 3134 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 3135 return (rv); 3136 rw_wlock(&pvh_global_lock); 3137 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3138 PMAP_LOCK(pv->pv_pmap); 3139 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3140 PTE_ISVALID(pte)) { 3141 if (PTE_ISMODIFIED(pte)) 3142 rv = TRUE; 3143 } 3144 PMAP_UNLOCK(pv->pv_pmap); 3145 if (rv) 3146 break; 3147 } 3148 rw_wunlock(&pvh_global_lock); 3149 return (rv); 3150 } 3151 3152 /* 3153 * Return whether or not the specified virtual address is eligible 3154 * for prefault. 3155 */ 3156 static boolean_t 3157 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 3158 { 3159 3160 return (FALSE); 3161 } 3162 3163 /* 3164 * Return whether or not the specified physical page was referenced 3165 * in any physical maps. 3166 */ 3167 static boolean_t 3168 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 3169 { 3170 pte_t *pte; 3171 pv_entry_t pv; 3172 boolean_t rv; 3173 3174 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3175 ("mmu_booke_is_referenced: page %p is not managed", m)); 3176 rv = FALSE; 3177 rw_wlock(&pvh_global_lock); 3178 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3179 PMAP_LOCK(pv->pv_pmap); 3180 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3181 PTE_ISVALID(pte)) { 3182 if (PTE_ISREFERENCED(pte)) 3183 rv = TRUE; 3184 } 3185 PMAP_UNLOCK(pv->pv_pmap); 3186 if (rv) 3187 break; 3188 } 3189 rw_wunlock(&pvh_global_lock); 3190 return (rv); 3191 } 3192 3193 /* 3194 * Clear the modify bits on the specified physical page. 3195 */ 3196 static void 3197 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 3198 { 3199 pte_t *pte; 3200 pv_entry_t pv; 3201 3202 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3203 ("mmu_booke_clear_modify: page %p is not managed", m)); 3204 VM_OBJECT_ASSERT_WLOCKED(m->object); 3205 KASSERT(!vm_page_xbusied(m), 3206 ("mmu_booke_clear_modify: page %p is exclusive busied", m)); 3207 3208 /* 3209 * If the page is not PG_AWRITEABLE, then no PTEs can be modified. 3210 * If the object containing the page is locked and the page is not 3211 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set. 3212 */ 3213 if ((m->aflags & PGA_WRITEABLE) == 0) 3214 return; 3215 rw_wlock(&pvh_global_lock); 3216 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3217 PMAP_LOCK(pv->pv_pmap); 3218 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3219 PTE_ISVALID(pte)) { 3220 mtx_lock_spin(&tlbivax_mutex); 3221 tlb_miss_lock(); 3222 3223 if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 3224 tlb0_flush_entry(pv->pv_va); 3225 *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 3226 PTE_REFERENCED); 3227 } 3228 3229 tlb_miss_unlock(); 3230 mtx_unlock_spin(&tlbivax_mutex); 3231 } 3232 PMAP_UNLOCK(pv->pv_pmap); 3233 } 3234 rw_wunlock(&pvh_global_lock); 3235 } 3236 3237 /* 3238 * Return a count of reference bits for a page, clearing those bits. 3239 * It is not necessary for every reference bit to be cleared, but it 3240 * is necessary that 0 only be returned when there are truly no 3241 * reference bits set. 3242 * 3243 * As an optimization, update the page's dirty field if a modified bit is 3244 * found while counting reference bits. This opportunistic update can be 3245 * performed at low cost and can eliminate the need for some future calls 3246 * to pmap_is_modified(). However, since this function stops after 3247 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some 3248 * dirty pages. Those dirty pages will only be detected by a future call 3249 * to pmap_is_modified(). 3250 */ 3251 static int 3252 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 3253 { 3254 pte_t *pte; 3255 pv_entry_t pv; 3256 int count; 3257 3258 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3259 ("mmu_booke_ts_referenced: page %p is not managed", m)); 3260 count = 0; 3261 rw_wlock(&pvh_global_lock); 3262 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3263 PMAP_LOCK(pv->pv_pmap); 3264 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3265 PTE_ISVALID(pte)) { 3266 if (PTE_ISMODIFIED(pte)) 3267 vm_page_dirty(m); 3268 if (PTE_ISREFERENCED(pte)) { 3269 mtx_lock_spin(&tlbivax_mutex); 3270 tlb_miss_lock(); 3271 3272 tlb0_flush_entry(pv->pv_va); 3273 *pte &= ~PTE_REFERENCED; 3274 3275 tlb_miss_unlock(); 3276 mtx_unlock_spin(&tlbivax_mutex); 3277 3278 if (++count >= PMAP_TS_REFERENCED_MAX) { 3279 PMAP_UNLOCK(pv->pv_pmap); 3280 break; 3281 } 3282 } 3283 } 3284 PMAP_UNLOCK(pv->pv_pmap); 3285 } 3286 rw_wunlock(&pvh_global_lock); 3287 return (count); 3288 } 3289 3290 /* 3291 * Clear the wired attribute from the mappings for the specified range of 3292 * addresses in the given pmap. Every valid mapping within that range must 3293 * have the wired attribute set. In contrast, invalid mappings cannot have 3294 * the wired attribute set, so they are ignored. 3295 * 3296 * The wired attribute of the page table entry is not a hardware feature, so 3297 * there is no need to invalidate any TLB entries. 3298 */ 3299 static void 3300 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) 3301 { 3302 vm_offset_t va; 3303 pte_t *pte; 3304 3305 PMAP_LOCK(pmap); 3306 for (va = sva; va < eva; va += PAGE_SIZE) { 3307 if ((pte = pte_find(mmu, pmap, va)) != NULL && 3308 PTE_ISVALID(pte)) { 3309 if (!PTE_ISWIRED(pte)) 3310 panic("mmu_booke_unwire: pte %p isn't wired", 3311 pte); 3312 *pte &= ~PTE_WIRED; 3313 pmap->pm_stats.wired_count--; 3314 } 3315 } 3316 PMAP_UNLOCK(pmap); 3317 3318 } 3319 3320 /* 3321 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 3322 * page. This count may be changed upwards or downwards in the future; it is 3323 * only necessary that true be returned for a small subset of pmaps for proper 3324 * page aging. 3325 */ 3326 static boolean_t 3327 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 3328 { 3329 pv_entry_t pv; 3330 int loops; 3331 boolean_t rv; 3332 3333 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3334 ("mmu_booke_page_exists_quick: page %p is not managed", m)); 3335 loops = 0; 3336 rv = FALSE; 3337 rw_wlock(&pvh_global_lock); 3338 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3339 if (pv->pv_pmap == pmap) { 3340 rv = TRUE; 3341 break; 3342 } 3343 if (++loops >= 16) 3344 break; 3345 } 3346 rw_wunlock(&pvh_global_lock); 3347 return (rv); 3348 } 3349 3350 /* 3351 * Return the number of managed mappings to the given physical page that are 3352 * wired. 3353 */ 3354 static int 3355 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 3356 { 3357 pv_entry_t pv; 3358 pte_t *pte; 3359 int count = 0; 3360 3361 if ((m->oflags & VPO_UNMANAGED) != 0) 3362 return (count); 3363 rw_wlock(&pvh_global_lock); 3364 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3365 PMAP_LOCK(pv->pv_pmap); 3366 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 3367 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 3368 count++; 3369 PMAP_UNLOCK(pv->pv_pmap); 3370 } 3371 rw_wunlock(&pvh_global_lock); 3372 return (count); 3373 } 3374 3375 static int 3376 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 3377 { 3378 int i; 3379 vm_offset_t va; 3380 3381 /* 3382 * This currently does not work for entries that 3383 * overlap TLB1 entries. 3384 */ 3385 for (i = 0; i < TLB1_ENTRIES; i ++) { 3386 if (tlb1_iomapped(i, pa, size, &va) == 0) 3387 return (0); 3388 } 3389 3390 return (EFAULT); 3391 } 3392 3393 void 3394 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) 3395 { 3396 vm_paddr_t ppa; 3397 vm_offset_t ofs; 3398 vm_size_t gran; 3399 3400 /* Minidumps are based on virtual memory addresses. */ 3401 if (do_minidump) { 3402 *va = (void *)(vm_offset_t)pa; 3403 return; 3404 } 3405 3406 /* Raw physical memory dumps don't have a virtual address. */ 3407 /* We always map a 256MB page at 256M. */ 3408 gran = 256 * 1024 * 1024; 3409 ppa = rounddown2(pa, gran); 3410 ofs = pa - ppa; 3411 *va = (void *)gran; 3412 tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); 3413 3414 if (sz > (gran - ofs)) 3415 tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, 3416 _TLB_ENTRY_IO); 3417 } 3418 3419 void 3420 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) 3421 { 3422 vm_paddr_t ppa; 3423 vm_offset_t ofs; 3424 vm_size_t gran; 3425 tlb_entry_t e; 3426 int i; 3427 3428 /* Minidumps are based on virtual memory addresses. */ 3429 /* Nothing to do... */ 3430 if (do_minidump) 3431 return; 3432 3433 for (i = 0; i < TLB1_ENTRIES; i++) { 3434 tlb1_read_entry(&e, i); 3435 if (!(e.mas1 & MAS1_VALID)) 3436 break; 3437 } 3438 3439 /* Raw physical memory dumps don't have a virtual address. */ 3440 i--; 3441 e.mas1 = 0; 3442 e.mas2 = 0; 3443 e.mas3 = 0; 3444 tlb1_write_entry(&e, i); 3445 3446 gran = 256 * 1024 * 1024; 3447 ppa = rounddown2(pa, gran); 3448 ofs = pa - ppa; 3449 if (sz > (gran - ofs)) { 3450 i--; 3451 e.mas1 = 0; 3452 e.mas2 = 0; 3453 e.mas3 = 0; 3454 tlb1_write_entry(&e, i); 3455 } 3456 } 3457 3458 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 3459 3460 void 3461 mmu_booke_scan_init(mmu_t mmu) 3462 { 3463 vm_offset_t va; 3464 pte_t *pte; 3465 int i; 3466 3467 if (!do_minidump) { 3468 /* Initialize phys. segments for dumpsys(). */ 3469 memset(&dump_map, 0, sizeof(dump_map)); 3470 mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, 3471 &availmem_regions_sz); 3472 for (i = 0; i < physmem_regions_sz; i++) { 3473 dump_map[i].pa_start = physmem_regions[i].mr_start; 3474 dump_map[i].pa_size = physmem_regions[i].mr_size; 3475 } 3476 return; 3477 } 3478 3479 /* Virtual segments for minidumps: */ 3480 memset(&dump_map, 0, sizeof(dump_map)); 3481 3482 /* 1st: kernel .data and .bss. */ 3483 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 3484 dump_map[0].pa_size = 3485 round_page((uintptr_t)_end) - dump_map[0].pa_start; 3486 3487 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 3488 dump_map[1].pa_start = data_start; 3489 dump_map[1].pa_size = data_end - data_start; 3490 3491 /* 3rd: kernel VM. */ 3492 va = dump_map[1].pa_start + dump_map[1].pa_size; 3493 /* Find start of next chunk (from va). */ 3494 while (va < virtual_end) { 3495 /* Don't dump the buffer cache. */ 3496 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 3497 va = kmi.buffer_eva; 3498 continue; 3499 } 3500 pte = pte_find(mmu, kernel_pmap, va); 3501 if (pte != NULL && PTE_ISVALID(pte)) 3502 break; 3503 va += PAGE_SIZE; 3504 } 3505 if (va < virtual_end) { 3506 dump_map[2].pa_start = va; 3507 va += PAGE_SIZE; 3508 /* Find last page in chunk. */ 3509 while (va < virtual_end) { 3510 /* Don't run into the buffer cache. */ 3511 if (va == kmi.buffer_sva) 3512 break; 3513 pte = pte_find(mmu, kernel_pmap, va); 3514 if (pte == NULL || !PTE_ISVALID(pte)) 3515 break; 3516 va += PAGE_SIZE; 3517 } 3518 dump_map[2].pa_size = va - dump_map[2].pa_start; 3519 } 3520 } 3521 3522 /* 3523 * Map a set of physical memory pages into the kernel virtual address space. 3524 * Return a pointer to where it is mapped. This routine is intended to be used 3525 * for mapping device memory, NOT real memory. 3526 */ 3527 static void * 3528 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 3529 { 3530 3531 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); 3532 } 3533 3534 static void * 3535 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 3536 { 3537 tlb_entry_t e; 3538 void *res; 3539 uintptr_t va, tmpva; 3540 vm_size_t sz; 3541 int i; 3542 3543 /* 3544 * Check if this is premapped in TLB1. Note: this should probably also 3545 * check whether a sequence of TLB1 entries exist that match the 3546 * requirement, but now only checks the easy case. 3547 */ 3548 for (i = 0; i < TLB1_ENTRIES; i++) { 3549 tlb1_read_entry(&e, i); 3550 if (!(e.mas1 & MAS1_VALID)) 3551 continue; 3552 if (pa >= e.phys && 3553 (pa + size) <= (e.phys + e.size) && 3554 (ma == VM_MEMATTR_DEFAULT || 3555 tlb_calc_wimg(pa, ma) == 3556 (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))) 3557 return (void *)(e.virt + 3558 (vm_offset_t)(pa - e.phys)); 3559 } 3560 3561 size = roundup(size, PAGE_SIZE); 3562 3563 /* 3564 * The device mapping area is between VM_MAXUSER_ADDRESS and 3565 * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing. 3566 */ 3567 #ifdef SPARSE_MAPDEV 3568 /* 3569 * With a sparse mapdev, align to the largest starting region. This 3570 * could feasibly be optimized for a 'best-fit' alignment, but that 3571 * calculation could be very costly. 3572 * Align to the smaller of: 3573 * - first set bit in overlap of (pa & size mask) 3574 * - largest size envelope 3575 * 3576 * It's possible the device mapping may start at a PA that's not larger 3577 * than the size mask, so we need to offset in to maximize the TLB entry 3578 * range and minimize the number of used TLB entries. 3579 */ 3580 do { 3581 tmpva = tlb1_map_base; 3582 sz = ffsl(((1 << flsl(size-1)) - 1) & pa); 3583 sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1; 3584 va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa); 3585 #ifdef __powerpc64__ 3586 } while (!atomic_cmpset_long(&tlb1_map_base, tmpva, va + size)); 3587 #else 3588 } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size)); 3589 #endif 3590 #else 3591 #ifdef __powerpc64__ 3592 va = atomic_fetchadd_long(&tlb1_map_base, size); 3593 #else 3594 va = atomic_fetchadd_int(&tlb1_map_base, size); 3595 #endif 3596 #endif 3597 res = (void *)va; 3598 3599 do { 3600 sz = 1 << (ilog2(size) & ~1); 3601 /* Align size to PA */ 3602 if (pa % sz != 0) { 3603 do { 3604 sz >>= 2; 3605 } while (pa % sz != 0); 3606 } 3607 /* Now align from there to VA */ 3608 if (va % sz != 0) { 3609 do { 3610 sz >>= 2; 3611 } while (va % sz != 0); 3612 } 3613 if (bootverbose) 3614 printf("Wiring VA=%lx to PA=%jx (size=%lx)\n", 3615 va, (uintmax_t)pa, sz); 3616 if (tlb1_set_entry(va, pa, sz, 3617 _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)) < 0) 3618 return (NULL); 3619 size -= sz; 3620 pa += sz; 3621 va += sz; 3622 } while (size > 0); 3623 3624 return (res); 3625 } 3626 3627 /* 3628 * 'Unmap' a range mapped by mmu_booke_mapdev(). 3629 */ 3630 static void 3631 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 3632 { 3633 #ifdef SUPPORTS_SHRINKING_TLB1 3634 vm_offset_t base, offset; 3635 3636 /* 3637 * Unmap only if this is inside kernel virtual space. 3638 */ 3639 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 3640 base = trunc_page(va); 3641 offset = va & PAGE_MASK; 3642 size = roundup(offset + size, PAGE_SIZE); 3643 kva_free(base, size); 3644 } 3645 #endif 3646 } 3647 3648 /* 3649 * mmu_booke_object_init_pt preloads the ptes for a given object into the 3650 * specified pmap. This eliminates the blast of soft faults on process startup 3651 * and immediately after an mmap. 3652 */ 3653 static void 3654 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 3655 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 3656 { 3657 3658 VM_OBJECT_ASSERT_WLOCKED(object); 3659 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 3660 ("mmu_booke_object_init_pt: non-device object")); 3661 } 3662 3663 /* 3664 * Perform the pmap work for mincore. 3665 */ 3666 static int 3667 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 3668 vm_paddr_t *locked_pa) 3669 { 3670 3671 /* XXX: this should be implemented at some point */ 3672 return (0); 3673 } 3674 3675 static int 3676 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, 3677 vm_memattr_t mode) 3678 { 3679 vm_offset_t va; 3680 pte_t *pte; 3681 int i, j; 3682 tlb_entry_t e; 3683 3684 /* Check TLB1 mappings */ 3685 for (i = 0; i < TLB1_ENTRIES; i++) { 3686 tlb1_read_entry(&e, i); 3687 if (!(e.mas1 & MAS1_VALID)) 3688 continue; 3689 if (addr >= e.virt && addr < e.virt + e.size) 3690 break; 3691 } 3692 if (i < TLB1_ENTRIES) { 3693 /* Only allow full mappings to be modified for now. */ 3694 /* Validate the range. */ 3695 for (j = i, va = addr; va < addr + sz; va += e.size, j++) { 3696 tlb1_read_entry(&e, j); 3697 if (va != e.virt || (sz - (va - addr) < e.size)) 3698 return (EINVAL); 3699 } 3700 for (va = addr; va < addr + sz; va += e.size, i++) { 3701 tlb1_read_entry(&e, i); 3702 e.mas2 &= ~MAS2_WIMGE_MASK; 3703 e.mas2 |= tlb_calc_wimg(e.phys, mode); 3704 3705 /* 3706 * Write it out to the TLB. Should really re-sync with other 3707 * cores. 3708 */ 3709 tlb1_write_entry(&e, i); 3710 } 3711 return (0); 3712 } 3713 3714 /* Not in TLB1, try through pmap */ 3715 /* First validate the range. */ 3716 for (va = addr; va < addr + sz; va += PAGE_SIZE) { 3717 pte = pte_find(mmu, kernel_pmap, va); 3718 if (pte == NULL || !PTE_ISVALID(pte)) 3719 return (EINVAL); 3720 } 3721 3722 mtx_lock_spin(&tlbivax_mutex); 3723 tlb_miss_lock(); 3724 for (va = addr; va < addr + sz; va += PAGE_SIZE) { 3725 pte = pte_find(mmu, kernel_pmap, va); 3726 *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT); 3727 *pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT; 3728 tlb0_flush_entry(va); 3729 } 3730 tlb_miss_unlock(); 3731 mtx_unlock_spin(&tlbivax_mutex); 3732 3733 return (0); 3734 } 3735 3736 /**************************************************************************/ 3737 /* TID handling */ 3738 /**************************************************************************/ 3739 3740 /* 3741 * Allocate a TID. If necessary, steal one from someone else. 3742 * The new TID is flushed from the TLB before returning. 3743 */ 3744 static tlbtid_t 3745 tid_alloc(pmap_t pmap) 3746 { 3747 tlbtid_t tid; 3748 int thiscpu; 3749 3750 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 3751 3752 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 3753 3754 thiscpu = PCPU_GET(cpuid); 3755 3756 tid = PCPU_GET(booke.tid_next); 3757 if (tid > TID_MAX) 3758 tid = TID_MIN; 3759 PCPU_SET(booke.tid_next, tid + 1); 3760 3761 /* If we are stealing TID then clear the relevant pmap's field */ 3762 if (tidbusy[thiscpu][tid] != NULL) { 3763 3764 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 3765 3766 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 3767 3768 /* Flush all entries from TLB0 matching this TID. */ 3769 tid_flush(tid); 3770 } 3771 3772 tidbusy[thiscpu][tid] = pmap; 3773 pmap->pm_tid[thiscpu] = tid; 3774 __asm __volatile("msync; isync"); 3775 3776 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 3777 PCPU_GET(booke.tid_next)); 3778 3779 return (tid); 3780 } 3781 3782 /**************************************************************************/ 3783 /* TLB0 handling */ 3784 /**************************************************************************/ 3785 3786 static void 3787 #ifdef __powerpc64__ 3788 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3, 3789 #else 3790 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 3791 #endif 3792 uint32_t mas7) 3793 { 3794 int as; 3795 char desc[3]; 3796 tlbtid_t tid; 3797 vm_size_t size; 3798 unsigned int tsize; 3799 3800 desc[2] = '\0'; 3801 if (mas1 & MAS1_VALID) 3802 desc[0] = 'V'; 3803 else 3804 desc[0] = ' '; 3805 3806 if (mas1 & MAS1_IPROT) 3807 desc[1] = 'P'; 3808 else 3809 desc[1] = ' '; 3810 3811 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 3812 tid = MAS1_GETTID(mas1); 3813 3814 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3815 size = 0; 3816 if (tsize) 3817 size = tsize2size(tsize); 3818 3819 debugf("%3d: (%s) [AS=%d] " 3820 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 3821 "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n", 3822 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 3823 } 3824 3825 /* Convert TLB0 va and way number to tlb0[] table index. */ 3826 static inline unsigned int 3827 tlb0_tableidx(vm_offset_t va, unsigned int way) 3828 { 3829 unsigned int idx; 3830 3831 idx = (way * TLB0_ENTRIES_PER_WAY); 3832 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 3833 return (idx); 3834 } 3835 3836 /* 3837 * Invalidate TLB0 entry. 3838 */ 3839 static inline void 3840 tlb0_flush_entry(vm_offset_t va) 3841 { 3842 3843 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 3844 3845 mtx_assert(&tlbivax_mutex, MA_OWNED); 3846 3847 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 3848 __asm __volatile("isync; msync"); 3849 __asm __volatile("tlbsync; msync"); 3850 3851 CTR1(KTR_PMAP, "%s: e", __func__); 3852 } 3853 3854 /* Print out contents of the MAS registers for each TLB0 entry */ 3855 void 3856 tlb0_print_tlbentries(void) 3857 { 3858 uint32_t mas0, mas1, mas3, mas7; 3859 #ifdef __powerpc64__ 3860 uint64_t mas2; 3861 #else 3862 uint32_t mas2; 3863 #endif 3864 int entryidx, way, idx; 3865 3866 debugf("TLB0 entries:\n"); 3867 for (way = 0; way < TLB0_WAYS; way ++) 3868 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 3869 3870 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 3871 mtspr(SPR_MAS0, mas0); 3872 __asm __volatile("isync"); 3873 3874 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 3875 mtspr(SPR_MAS2, mas2); 3876 3877 __asm __volatile("isync; tlbre"); 3878 3879 mas1 = mfspr(SPR_MAS1); 3880 mas2 = mfspr(SPR_MAS2); 3881 mas3 = mfspr(SPR_MAS3); 3882 mas7 = mfspr(SPR_MAS7); 3883 3884 idx = tlb0_tableidx(mas2, way); 3885 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 3886 } 3887 } 3888 3889 /**************************************************************************/ 3890 /* TLB1 handling */ 3891 /**************************************************************************/ 3892 3893 /* 3894 * TLB1 mapping notes: 3895 * 3896 * TLB1[0] Kernel text and data. 3897 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI 3898 * windows, other devices mappings. 3899 */ 3900 3901 /* 3902 * Read an entry from given TLB1 slot. 3903 */ 3904 void 3905 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot) 3906 { 3907 register_t msr; 3908 uint32_t mas0; 3909 3910 KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__)); 3911 3912 msr = mfmsr(); 3913 __asm __volatile("wrteei 0"); 3914 3915 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot); 3916 mtspr(SPR_MAS0, mas0); 3917 __asm __volatile("isync; tlbre"); 3918 3919 entry->mas1 = mfspr(SPR_MAS1); 3920 entry->mas2 = mfspr(SPR_MAS2); 3921 entry->mas3 = mfspr(SPR_MAS3); 3922 3923 switch ((mfpvr() >> 16) & 0xFFFF) { 3924 case FSL_E500v2: 3925 case FSL_E500mc: 3926 case FSL_E5500: 3927 case FSL_E6500: 3928 entry->mas7 = mfspr(SPR_MAS7); 3929 break; 3930 default: 3931 entry->mas7 = 0; 3932 break; 3933 } 3934 mtmsr(msr); 3935 3936 entry->virt = entry->mas2 & MAS2_EPN_MASK; 3937 entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) | 3938 (entry->mas3 & MAS3_RPN); 3939 entry->size = 3940 tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT); 3941 } 3942 3943 struct tlbwrite_args { 3944 tlb_entry_t *e; 3945 unsigned int idx; 3946 }; 3947 3948 static void 3949 tlb1_write_entry_int(void *arg) 3950 { 3951 struct tlbwrite_args *args = arg; 3952 uint32_t mas0; 3953 3954 /* Select entry */ 3955 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(args->idx); 3956 3957 mtspr(SPR_MAS0, mas0); 3958 __asm __volatile("isync"); 3959 mtspr(SPR_MAS1, args->e->mas1); 3960 __asm __volatile("isync"); 3961 mtspr(SPR_MAS2, args->e->mas2); 3962 __asm __volatile("isync"); 3963 mtspr(SPR_MAS3, args->e->mas3); 3964 __asm __volatile("isync"); 3965 switch ((mfpvr() >> 16) & 0xFFFF) { 3966 case FSL_E500mc: 3967 case FSL_E5500: 3968 case FSL_E6500: 3969 mtspr(SPR_MAS8, 0); 3970 __asm __volatile("isync"); 3971 /* FALLTHROUGH */ 3972 case FSL_E500v2: 3973 mtspr(SPR_MAS7, args->e->mas7); 3974 __asm __volatile("isync"); 3975 break; 3976 default: 3977 break; 3978 } 3979 3980 __asm __volatile("tlbwe; isync; msync"); 3981 3982 } 3983 3984 static void 3985 tlb1_write_entry_sync(void *arg) 3986 { 3987 /* Empty synchronization point for smp_rendezvous(). */ 3988 } 3989 3990 /* 3991 * Write given entry to TLB1 hardware. 3992 */ 3993 static void 3994 tlb1_write_entry(tlb_entry_t *e, unsigned int idx) 3995 { 3996 struct tlbwrite_args args; 3997 3998 args.e = e; 3999 args.idx = idx; 4000 4001 #ifdef SMP 4002 if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) { 4003 mb(); 4004 smp_rendezvous(tlb1_write_entry_sync, 4005 tlb1_write_entry_int, 4006 tlb1_write_entry_sync, &args); 4007 } else 4008 #endif 4009 { 4010 register_t msr; 4011 4012 msr = mfmsr(); 4013 __asm __volatile("wrteei 0"); 4014 tlb1_write_entry_int(&args); 4015 mtmsr(msr); 4016 } 4017 } 4018 4019 /* 4020 * Return the largest uint value log such that 2^log <= num. 4021 */ 4022 static unsigned int 4023 ilog2(unsigned long num) 4024 { 4025 long lz; 4026 4027 #ifdef __powerpc64__ 4028 __asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num)); 4029 return (63 - lz); 4030 #else 4031 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 4032 return (31 - lz); 4033 #endif 4034 } 4035 4036 /* 4037 * Convert TLB TSIZE value to mapped region size. 4038 */ 4039 static vm_size_t 4040 tsize2size(unsigned int tsize) 4041 { 4042 4043 /* 4044 * size = 4^tsize KB 4045 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 4046 */ 4047 4048 return ((1 << (2 * tsize)) * 1024); 4049 } 4050 4051 /* 4052 * Convert region size (must be power of 4) to TLB TSIZE value. 4053 */ 4054 static unsigned int 4055 size2tsize(vm_size_t size) 4056 { 4057 4058 return (ilog2(size) / 2 - 5); 4059 } 4060 4061 /* 4062 * Register permanent kernel mapping in TLB1. 4063 * 4064 * Entries are created starting from index 0 (current free entry is 4065 * kept in tlb1_idx) and are not supposed to be invalidated. 4066 */ 4067 int 4068 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size, 4069 uint32_t flags) 4070 { 4071 tlb_entry_t e; 4072 uint32_t ts, tid; 4073 int tsize, index; 4074 4075 for (index = 0; index < TLB1_ENTRIES; index++) { 4076 tlb1_read_entry(&e, index); 4077 if ((e.mas1 & MAS1_VALID) == 0) 4078 break; 4079 /* Check if we're just updating the flags, and update them. */ 4080 if (e.phys == pa && e.virt == va && e.size == size) { 4081 e.mas2 = (va & MAS2_EPN_MASK) | flags; 4082 tlb1_write_entry(&e, index); 4083 return (0); 4084 } 4085 } 4086 if (index >= TLB1_ENTRIES) { 4087 printf("tlb1_set_entry: TLB1 full!\n"); 4088 return (-1); 4089 } 4090 4091 /* Convert size to TSIZE */ 4092 tsize = size2tsize(size); 4093 4094 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 4095 /* XXX TS is hard coded to 0 for now as we only use single address space */ 4096 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 4097 4098 e.phys = pa; 4099 e.virt = va; 4100 e.size = size; 4101 e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 4102 e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 4103 e.mas2 = (va & MAS2_EPN_MASK) | flags; 4104 4105 /* Set supervisor RWX permission bits */ 4106 e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 4107 e.mas7 = (pa >> 32) & MAS7_RPN; 4108 4109 tlb1_write_entry(&e, index); 4110 4111 /* 4112 * XXX in general TLB1 updates should be propagated between CPUs, 4113 * since current design assumes to have the same TLB1 set-up on all 4114 * cores. 4115 */ 4116 return (0); 4117 } 4118 4119 /* 4120 * Map in contiguous RAM region into the TLB1 using maximum of 4121 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 4122 * 4123 * If necessary round up last entry size and return total size 4124 * used by all allocated entries. 4125 */ 4126 vm_size_t 4127 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) 4128 { 4129 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; 4130 vm_size_t mapped, pgsz, base, mask; 4131 int idx, nents; 4132 4133 /* Round up to the next 1M */ 4134 size = roundup2(size, 1 << 20); 4135 4136 mapped = 0; 4137 idx = 0; 4138 base = va; 4139 pgsz = 64*1024*1024; 4140 while (mapped < size) { 4141 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { 4142 while (pgsz > (size - mapped)) 4143 pgsz >>= 2; 4144 pgs[idx++] = pgsz; 4145 mapped += pgsz; 4146 } 4147 4148 /* We under-map. Correct for this. */ 4149 if (mapped < size) { 4150 while (pgs[idx - 1] == pgsz) { 4151 idx--; 4152 mapped -= pgsz; 4153 } 4154 /* XXX We may increase beyond out starting point. */ 4155 pgsz <<= 2; 4156 pgs[idx++] = pgsz; 4157 mapped += pgsz; 4158 } 4159 } 4160 4161 nents = idx; 4162 mask = pgs[0] - 1; 4163 /* Align address to the boundary */ 4164 if (va & mask) { 4165 va = (va + mask) & ~mask; 4166 pa = (pa + mask) & ~mask; 4167 } 4168 4169 for (idx = 0; idx < nents; idx++) { 4170 pgsz = pgs[idx]; 4171 debugf("%u: %llx -> %jx, size=%jx\n", idx, pa, 4172 (uintmax_t)va, (uintmax_t)pgsz); 4173 tlb1_set_entry(va, pa, pgsz, 4174 _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM); 4175 pa += pgsz; 4176 va += pgsz; 4177 } 4178 4179 mapped = (va - base); 4180 printf("mapped size 0x%"PRI0ptrX" (wasted space 0x%"PRIxPTR")\n", 4181 mapped, mapped - size); 4182 return (mapped); 4183 } 4184 4185 /* 4186 * TLB1 initialization routine, to be called after the very first 4187 * assembler level setup done in locore.S. 4188 */ 4189 void 4190 tlb1_init() 4191 { 4192 uint32_t mas0, mas1, mas2, mas3, mas7; 4193 uint32_t tsz; 4194 4195 tlb1_get_tlbconf(); 4196 4197 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0); 4198 mtspr(SPR_MAS0, mas0); 4199 __asm __volatile("isync; tlbre"); 4200 4201 mas1 = mfspr(SPR_MAS1); 4202 mas2 = mfspr(SPR_MAS2); 4203 mas3 = mfspr(SPR_MAS3); 4204 mas7 = mfspr(SPR_MAS7); 4205 4206 kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) | 4207 (mas3 & MAS3_RPN); 4208 4209 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 4210 kernsize += (tsz > 0) ? tsize2size(tsz) : 0; 4211 4212 /* Setup TLB miss defaults */ 4213 set_mas4_defaults(); 4214 } 4215 4216 /* 4217 * pmap_early_io_unmap() should be used in short conjunction with 4218 * pmap_early_io_map(), as in the following snippet: 4219 * 4220 * x = pmap_early_io_map(...); 4221 * <do something with x> 4222 * pmap_early_io_unmap(x, size); 4223 * 4224 * And avoiding more allocations between. 4225 */ 4226 void 4227 pmap_early_io_unmap(vm_offset_t va, vm_size_t size) 4228 { 4229 int i; 4230 tlb_entry_t e; 4231 vm_size_t isize; 4232 4233 size = roundup(size, PAGE_SIZE); 4234 isize = size; 4235 for (i = 0; i < TLB1_ENTRIES && size > 0; i++) { 4236 tlb1_read_entry(&e, i); 4237 if (!(e.mas1 & MAS1_VALID)) 4238 continue; 4239 if (va <= e.virt && (va + isize) >= (e.virt + e.size)) { 4240 size -= e.size; 4241 e.mas1 &= ~MAS1_VALID; 4242 tlb1_write_entry(&e, i); 4243 } 4244 } 4245 if (tlb1_map_base == va + isize) 4246 tlb1_map_base -= isize; 4247 } 4248 4249 vm_offset_t 4250 pmap_early_io_map(vm_paddr_t pa, vm_size_t size) 4251 { 4252 vm_paddr_t pa_base; 4253 vm_offset_t va, sz; 4254 int i; 4255 tlb_entry_t e; 4256 4257 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); 4258 4259 for (i = 0; i < TLB1_ENTRIES; i++) { 4260 tlb1_read_entry(&e, i); 4261 if (!(e.mas1 & MAS1_VALID)) 4262 continue; 4263 if (pa >= e.phys && (pa + size) <= 4264 (e.phys + e.size)) 4265 return (e.virt + (pa - e.phys)); 4266 } 4267 4268 pa_base = rounddown(pa, PAGE_SIZE); 4269 size = roundup(size + (pa - pa_base), PAGE_SIZE); 4270 tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); 4271 va = tlb1_map_base + (pa - pa_base); 4272 4273 do { 4274 sz = 1 << (ilog2(size) & ~1); 4275 tlb1_set_entry(tlb1_map_base, pa_base, sz, 4276 _TLB_ENTRY_SHARED | _TLB_ENTRY_IO); 4277 size -= sz; 4278 pa_base += sz; 4279 tlb1_map_base += sz; 4280 } while (size > 0); 4281 4282 return (va); 4283 } 4284 4285 void 4286 pmap_track_page(pmap_t pmap, vm_offset_t va) 4287 { 4288 vm_paddr_t pa; 4289 vm_page_t page; 4290 struct pv_entry *pve; 4291 4292 va = trunc_page(va); 4293 pa = pmap_kextract(va); 4294 page = PHYS_TO_VM_PAGE(pa); 4295 4296 rw_wlock(&pvh_global_lock); 4297 PMAP_LOCK(pmap); 4298 4299 TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) { 4300 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 4301 goto out; 4302 } 4303 } 4304 page->md.pv_tracked = true; 4305 pv_insert(pmap, va, page); 4306 out: 4307 PMAP_UNLOCK(pmap); 4308 rw_wunlock(&pvh_global_lock); 4309 } 4310 4311 4312 /* 4313 * Setup MAS4 defaults. 4314 * These values are loaded to MAS0-2 on a TLB miss. 4315 */ 4316 static void 4317 set_mas4_defaults(void) 4318 { 4319 uint32_t mas4; 4320 4321 /* Defaults: TLB0, PID0, TSIZED=4K */ 4322 mas4 = MAS4_TLBSELD0; 4323 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 4324 #ifdef SMP 4325 mas4 |= MAS4_MD; 4326 #endif 4327 mtspr(SPR_MAS4, mas4); 4328 __asm __volatile("isync"); 4329 } 4330 4331 /* 4332 * Print out contents of the MAS registers for each TLB1 entry 4333 */ 4334 void 4335 tlb1_print_tlbentries(void) 4336 { 4337 uint32_t mas0, mas1, mas3, mas7; 4338 #ifdef __powerpc64__ 4339 uint64_t mas2; 4340 #else 4341 uint32_t mas2; 4342 #endif 4343 int i; 4344 4345 debugf("TLB1 entries:\n"); 4346 for (i = 0; i < TLB1_ENTRIES; i++) { 4347 4348 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 4349 mtspr(SPR_MAS0, mas0); 4350 4351 __asm __volatile("isync; tlbre"); 4352 4353 mas1 = mfspr(SPR_MAS1); 4354 mas2 = mfspr(SPR_MAS2); 4355 mas3 = mfspr(SPR_MAS3); 4356 mas7 = mfspr(SPR_MAS7); 4357 4358 tlb_print_entry(i, mas1, mas2, mas3, mas7); 4359 } 4360 } 4361 4362 /* 4363 * Return 0 if the physical IO range is encompassed by one of the 4364 * the TLB1 entries, otherwise return related error code. 4365 */ 4366 static int 4367 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 4368 { 4369 uint32_t prot; 4370 vm_paddr_t pa_start; 4371 vm_paddr_t pa_end; 4372 unsigned int entry_tsize; 4373 vm_size_t entry_size; 4374 tlb_entry_t e; 4375 4376 *va = (vm_offset_t)NULL; 4377 4378 tlb1_read_entry(&e, i); 4379 /* Skip invalid entries */ 4380 if (!(e.mas1 & MAS1_VALID)) 4381 return (EINVAL); 4382 4383 /* 4384 * The entry must be cache-inhibited, guarded, and r/w 4385 * so it can function as an i/o page 4386 */ 4387 prot = e.mas2 & (MAS2_I | MAS2_G); 4388 if (prot != (MAS2_I | MAS2_G)) 4389 return (EPERM); 4390 4391 prot = e.mas3 & (MAS3_SR | MAS3_SW); 4392 if (prot != (MAS3_SR | MAS3_SW)) 4393 return (EPERM); 4394 4395 /* The address should be within the entry range. */ 4396 entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 4397 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 4398 4399 entry_size = tsize2size(entry_tsize); 4400 pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | 4401 (e.mas3 & MAS3_RPN); 4402 pa_end = pa_start + entry_size; 4403 4404 if ((pa < pa_start) || ((pa + size) > pa_end)) 4405 return (ERANGE); 4406 4407 /* Return virtual address of this mapping. */ 4408 *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start); 4409 return (0); 4410 } 4411 4412 /* 4413 * Invalidate all TLB0 entries which match the given TID. Note this is 4414 * dedicated for cases when invalidations should NOT be propagated to other 4415 * CPUs. 4416 */ 4417 static void 4418 tid_flush(tlbtid_t tid) 4419 { 4420 register_t msr; 4421 uint32_t mas0, mas1, mas2; 4422 int entry, way; 4423 4424 4425 /* Don't evict kernel translations */ 4426 if (tid == TID_KERNEL) 4427 return; 4428 4429 msr = mfmsr(); 4430 __asm __volatile("wrteei 0"); 4431 4432 for (way = 0; way < TLB0_WAYS; way++) 4433 for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { 4434 4435 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 4436 mtspr(SPR_MAS0, mas0); 4437 __asm __volatile("isync"); 4438 4439 mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; 4440 mtspr(SPR_MAS2, mas2); 4441 4442 __asm __volatile("isync; tlbre"); 4443 4444 mas1 = mfspr(SPR_MAS1); 4445 4446 if (!(mas1 & MAS1_VALID)) 4447 continue; 4448 if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) 4449 continue; 4450 mas1 &= ~MAS1_VALID; 4451 mtspr(SPR_MAS1, mas1); 4452 __asm __volatile("isync; tlbwe; isync; msync"); 4453 } 4454 mtmsr(msr); 4455 } 4456