1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * Virtual address space layout: 38 * ----------------------------- 39 * 0x0000_0000 - 0xafff_ffff : user process 40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 43 * 0xc100_0000 - 0xfeef_ffff : KVA 44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include <sys/types.h> 55 #include <sys/param.h> 56 #include <sys/malloc.h> 57 #include <sys/ktr.h> 58 #include <sys/proc.h> 59 #include <sys/user.h> 60 #include <sys/queue.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/msgbuf.h> 64 #include <sys/lock.h> 65 #include <sys/mutex.h> 66 #include <sys/smp.h> 67 #include <sys/vmmeter.h> 68 69 #include <vm/vm.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_kern.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_extern.h> 74 #include <vm/vm_object.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_pager.h> 78 #include <vm/uma.h> 79 80 #include <machine/bootinfo.h> 81 #include <machine/cpu.h> 82 #include <machine/pcb.h> 83 #include <machine/platform.h> 84 85 #include <machine/tlb.h> 86 #include <machine/spr.h> 87 #include <machine/vmparam.h> 88 #include <machine/md_var.h> 89 #include <machine/mmuvar.h> 90 #include <machine/pmap.h> 91 #include <machine/pte.h> 92 93 #include "mmu_if.h" 94 95 #define DEBUG 96 #undef DEBUG 97 98 #ifdef DEBUG 99 #define debugf(fmt, args...) printf(fmt, ##args) 100 #else 101 #define debugf(fmt, args...) 102 #endif 103 104 #define TODO panic("%s: not implemented", __func__); 105 106 #include "opt_sched.h" 107 #ifndef SCHED_4BSD 108 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock." 109 #endif 110 extern struct mtx sched_lock; 111 112 extern int dumpsys_minidump; 113 114 extern unsigned char _etext[]; 115 extern unsigned char _end[]; 116 117 /* Kernel physical load address. */ 118 extern uint32_t kernload; 119 vm_offset_t kernstart; 120 vm_size_t kernsize; 121 122 /* Message buffer and tables. */ 123 static vm_offset_t data_start; 124 static vm_size_t data_end; 125 126 /* Phys/avail memory regions. */ 127 static struct mem_region *availmem_regions; 128 static int availmem_regions_sz; 129 static struct mem_region *physmem_regions; 130 static int physmem_regions_sz; 131 132 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 133 static vm_offset_t zero_page_va; 134 static struct mtx zero_page_mutex; 135 136 static struct mtx tlbivax_mutex; 137 138 /* 139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used 140 * by idle thred only, no lock required. 141 */ 142 static vm_offset_t zero_page_idle_va; 143 144 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 145 static vm_offset_t copy_page_src_va; 146 static vm_offset_t copy_page_dst_va; 147 static struct mtx copy_page_mutex; 148 149 /**************************************************************************/ 150 /* PMAP */ 151 /**************************************************************************/ 152 153 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 154 vm_prot_t, boolean_t); 155 156 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 157 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 158 159 /* 160 * If user pmap is processed with mmu_booke_remove and the resident count 161 * drops to 0, there are no more pages to remove, so we need not continue. 162 */ 163 #define PMAP_REMOVE_DONE(pmap) \ 164 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 165 166 extern void tlb_lock(uint32_t *); 167 extern void tlb_unlock(uint32_t *); 168 extern void tid_flush(tlbtid_t); 169 170 /**************************************************************************/ 171 /* TLB and TID handling */ 172 /**************************************************************************/ 173 174 /* Translation ID busy table */ 175 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 176 177 /* 178 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 179 * core revisions and should be read from h/w registers during early config. 180 */ 181 uint32_t tlb0_entries; 182 uint32_t tlb0_ways; 183 uint32_t tlb0_entries_per_way; 184 185 #define TLB0_ENTRIES (tlb0_entries) 186 #define TLB0_WAYS (tlb0_ways) 187 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 188 189 #define TLB1_ENTRIES 16 190 191 /* In-ram copy of the TLB1 */ 192 static tlb_entry_t tlb1[TLB1_ENTRIES]; 193 194 /* Next free entry in the TLB1 */ 195 static unsigned int tlb1_idx; 196 197 static tlbtid_t tid_alloc(struct pmap *); 198 199 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 200 201 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t); 202 static void tlb1_write_entry(unsigned int); 203 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 204 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t); 205 206 static vm_size_t tsize2size(unsigned int); 207 static unsigned int size2tsize(vm_size_t); 208 static unsigned int ilog2(unsigned int); 209 210 static void set_mas4_defaults(void); 211 212 static inline void tlb0_flush_entry(vm_offset_t); 213 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 214 215 /**************************************************************************/ 216 /* Page table management */ 217 /**************************************************************************/ 218 219 /* Data for the pv entry allocation mechanism */ 220 static uma_zone_t pvzone; 221 static struct vm_object pvzone_obj; 222 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 223 224 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 225 226 #ifndef PMAP_SHPGPERPROC 227 #define PMAP_SHPGPERPROC 200 228 #endif 229 230 static void ptbl_init(void); 231 static struct ptbl_buf *ptbl_buf_alloc(void); 232 static void ptbl_buf_free(struct ptbl_buf *); 233 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 234 235 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int); 236 static void ptbl_free(mmu_t, pmap_t, unsigned int); 237 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 238 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 239 240 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 241 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 242 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t); 243 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 244 245 static pv_entry_t pv_alloc(void); 246 static void pv_free(pv_entry_t); 247 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 248 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 249 250 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 251 #define PTBL_BUFS (128 * 16) 252 253 struct ptbl_buf { 254 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 255 vm_offset_t kva; /* va of mapping */ 256 }; 257 258 /* ptbl free list and a lock used for access synchronization. */ 259 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 260 static struct mtx ptbl_buf_freelist_lock; 261 262 /* Base address of kva space allocated fot ptbl bufs. */ 263 static vm_offset_t ptbl_buf_pool_vabase; 264 265 /* Pointer to ptbl_buf structures. */ 266 static struct ptbl_buf *ptbl_bufs; 267 268 void pmap_bootstrap_ap(volatile uint32_t *); 269 270 /* 271 * Kernel MMU interface 272 */ 273 static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 274 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 275 static void mmu_booke_clear_reference(mmu_t, vm_page_t); 276 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 277 vm_size_t, vm_offset_t); 278 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 279 static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 280 vm_prot_t, boolean_t); 281 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 282 vm_page_t, vm_prot_t); 283 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 284 vm_prot_t); 285 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 286 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 287 vm_prot_t); 288 static void mmu_booke_init(mmu_t); 289 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 290 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 291 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 292 static boolean_t mmu_booke_ts_referenced(mmu_t, vm_page_t); 293 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, 294 int); 295 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t); 296 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 297 vm_object_t, vm_pindex_t, vm_size_t); 298 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 299 static void mmu_booke_page_init(mmu_t, vm_page_t); 300 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 301 static void mmu_booke_pinit(mmu_t, pmap_t); 302 static void mmu_booke_pinit0(mmu_t, pmap_t); 303 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 304 vm_prot_t); 305 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 306 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 307 static void mmu_booke_release(mmu_t, pmap_t); 308 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 309 static void mmu_booke_remove_all(mmu_t, vm_page_t); 310 static void mmu_booke_remove_write(mmu_t, vm_page_t); 311 static void mmu_booke_zero_page(mmu_t, vm_page_t); 312 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 313 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t); 314 static void mmu_booke_activate(mmu_t, struct thread *); 315 static void mmu_booke_deactivate(mmu_t, struct thread *); 316 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 317 static void *mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t); 318 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 319 static vm_offset_t mmu_booke_kextract(mmu_t, vm_offset_t); 320 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t); 321 static void mmu_booke_kremove(mmu_t, vm_offset_t); 322 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t); 323 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 324 vm_size_t); 325 static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *, 326 vm_size_t, vm_size_t *); 327 static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *, 328 vm_size_t, vm_offset_t); 329 static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *); 330 331 static mmu_method_t mmu_booke_methods[] = { 332 /* pmap dispatcher interface */ 333 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring), 334 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 335 MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference), 336 MMUMETHOD(mmu_copy, mmu_booke_copy), 337 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 338 MMUMETHOD(mmu_enter, mmu_booke_enter), 339 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 340 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 341 MMUMETHOD(mmu_extract, mmu_booke_extract), 342 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 343 MMUMETHOD(mmu_init, mmu_booke_init), 344 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 345 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 346 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 347 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 348 MMUMETHOD(mmu_map, mmu_booke_map), 349 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 350 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 351 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 352 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 353 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 354 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 355 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 356 MMUMETHOD(mmu_protect, mmu_booke_protect), 357 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 358 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 359 MMUMETHOD(mmu_release, mmu_booke_release), 360 MMUMETHOD(mmu_remove, mmu_booke_remove), 361 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 362 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 363 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 364 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 365 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 366 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle), 367 MMUMETHOD(mmu_activate, mmu_booke_activate), 368 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 369 370 /* Internal interfaces */ 371 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 372 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 373 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 374 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 375 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 376 /* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */ 377 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 378 379 /* dumpsys() support */ 380 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 381 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 382 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md), 383 384 { 0, 0 } 385 }; 386 387 static mmu_def_t booke_mmu = { 388 MMU_TYPE_BOOKE, 389 mmu_booke_methods, 390 0 391 }; 392 MMU_DEF(booke_mmu); 393 394 static inline void 395 tlb_miss_lock(void) 396 { 397 #ifdef SMP 398 struct pcpu *pc; 399 400 if (!smp_started) 401 return; 402 403 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 404 if (pc != pcpup) { 405 406 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 407 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 408 409 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 410 ("tlb_miss_lock: tried to lock self")); 411 412 tlb_lock(pc->pc_booke_tlb_lock); 413 414 CTR1(KTR_PMAP, "%s: locked", __func__); 415 } 416 } 417 #endif 418 } 419 420 static inline void 421 tlb_miss_unlock(void) 422 { 423 #ifdef SMP 424 struct pcpu *pc; 425 426 if (!smp_started) 427 return; 428 429 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 430 if (pc != pcpup) { 431 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 432 __func__, pc->pc_cpuid); 433 434 tlb_unlock(pc->pc_booke_tlb_lock); 435 436 CTR1(KTR_PMAP, "%s: unlocked", __func__); 437 } 438 } 439 #endif 440 } 441 442 /* Return number of entries in TLB0. */ 443 static __inline void 444 tlb0_get_tlbconf(void) 445 { 446 uint32_t tlb0_cfg; 447 448 tlb0_cfg = mfspr(SPR_TLB0CFG); 449 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 450 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 451 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 452 } 453 454 /* Initialize pool of kva ptbl buffers. */ 455 static void 456 ptbl_init(void) 457 { 458 int i; 459 460 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 461 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 462 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 463 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 464 465 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 466 TAILQ_INIT(&ptbl_buf_freelist); 467 468 for (i = 0; i < PTBL_BUFS; i++) { 469 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 470 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 471 } 472 } 473 474 /* Get a ptbl_buf from the freelist. */ 475 static struct ptbl_buf * 476 ptbl_buf_alloc(void) 477 { 478 struct ptbl_buf *buf; 479 480 mtx_lock(&ptbl_buf_freelist_lock); 481 buf = TAILQ_FIRST(&ptbl_buf_freelist); 482 if (buf != NULL) 483 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 484 mtx_unlock(&ptbl_buf_freelist_lock); 485 486 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 487 488 return (buf); 489 } 490 491 /* Return ptbl buff to free pool. */ 492 static void 493 ptbl_buf_free(struct ptbl_buf *buf) 494 { 495 496 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 497 498 mtx_lock(&ptbl_buf_freelist_lock); 499 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 500 mtx_unlock(&ptbl_buf_freelist_lock); 501 } 502 503 /* 504 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 505 */ 506 static void 507 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 508 { 509 struct ptbl_buf *pbuf; 510 511 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 512 513 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 514 515 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 516 if (pbuf->kva == (vm_offset_t)ptbl) { 517 /* Remove from pmap ptbl buf list. */ 518 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 519 520 /* Free corresponding ptbl buf. */ 521 ptbl_buf_free(pbuf); 522 break; 523 } 524 } 525 526 /* Allocate page table. */ 527 static pte_t * 528 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 529 { 530 vm_page_t mtbl[PTBL_PAGES]; 531 vm_page_t m; 532 struct ptbl_buf *pbuf; 533 unsigned int pidx; 534 pte_t *ptbl; 535 int i; 536 537 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 538 (pmap == kernel_pmap), pdir_idx); 539 540 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 541 ("ptbl_alloc: invalid pdir_idx")); 542 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 543 ("pte_alloc: valid ptbl entry exists!")); 544 545 pbuf = ptbl_buf_alloc(); 546 if (pbuf == NULL) 547 panic("pte_alloc: couldn't alloc kernel virtual memory"); 548 549 ptbl = (pte_t *)pbuf->kva; 550 551 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 552 553 /* Allocate ptbl pages, this will sleep! */ 554 for (i = 0; i < PTBL_PAGES; i++) { 555 pidx = (PTBL_PAGES * pdir_idx) + i; 556 while ((m = vm_page_alloc(NULL, pidx, 557 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 558 559 PMAP_UNLOCK(pmap); 560 vm_page_unlock_queues(); 561 VM_WAIT; 562 vm_page_lock_queues(); 563 PMAP_LOCK(pmap); 564 } 565 mtbl[i] = m; 566 } 567 568 /* Map allocated pages into kernel_pmap. */ 569 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 570 571 /* Zero whole ptbl. */ 572 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 573 574 /* Add pbuf to the pmap ptbl bufs list. */ 575 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 576 577 return (ptbl); 578 } 579 580 /* Free ptbl pages and invalidate pdir entry. */ 581 static void 582 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 583 { 584 pte_t *ptbl; 585 vm_paddr_t pa; 586 vm_offset_t va; 587 vm_page_t m; 588 int i; 589 590 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 591 (pmap == kernel_pmap), pdir_idx); 592 593 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 594 ("ptbl_free: invalid pdir_idx")); 595 596 ptbl = pmap->pm_pdir[pdir_idx]; 597 598 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 599 600 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 601 602 /* 603 * Invalidate the pdir entry as soon as possible, so that other CPUs 604 * don't attempt to look up the page tables we are releasing. 605 */ 606 mtx_lock_spin(&tlbivax_mutex); 607 tlb_miss_lock(); 608 609 pmap->pm_pdir[pdir_idx] = NULL; 610 611 tlb_miss_unlock(); 612 mtx_unlock_spin(&tlbivax_mutex); 613 614 for (i = 0; i < PTBL_PAGES; i++) { 615 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 616 pa = pte_vatopa(mmu, kernel_pmap, va); 617 m = PHYS_TO_VM_PAGE(pa); 618 vm_page_free_zero(m); 619 atomic_subtract_int(&cnt.v_wire_count, 1); 620 mmu_booke_kremove(mmu, va); 621 } 622 623 ptbl_free_pmap_ptbl(pmap, ptbl); 624 } 625 626 /* 627 * Decrement ptbl pages hold count and attempt to free ptbl pages. 628 * Called when removing pte entry from ptbl. 629 * 630 * Return 1 if ptbl pages were freed. 631 */ 632 static int 633 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 634 { 635 pte_t *ptbl; 636 vm_paddr_t pa; 637 vm_page_t m; 638 int i; 639 640 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 641 (pmap == kernel_pmap), pdir_idx); 642 643 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 644 ("ptbl_unhold: invalid pdir_idx")); 645 KASSERT((pmap != kernel_pmap), 646 ("ptbl_unhold: unholding kernel ptbl!")); 647 648 ptbl = pmap->pm_pdir[pdir_idx]; 649 650 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 651 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 652 ("ptbl_unhold: non kva ptbl")); 653 654 /* decrement hold count */ 655 for (i = 0; i < PTBL_PAGES; i++) { 656 pa = pte_vatopa(mmu, kernel_pmap, 657 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 658 m = PHYS_TO_VM_PAGE(pa); 659 m->wire_count--; 660 } 661 662 /* 663 * Free ptbl pages if there are no pte etries in this ptbl. 664 * wire_count has the same value for all ptbl pages, so check the last 665 * page. 666 */ 667 if (m->wire_count == 0) { 668 ptbl_free(mmu, pmap, pdir_idx); 669 670 //debugf("ptbl_unhold: e (freed ptbl)\n"); 671 return (1); 672 } 673 674 return (0); 675 } 676 677 /* 678 * Increment hold count for ptbl pages. This routine is used when a new pte 679 * entry is being inserted into the ptbl. 680 */ 681 static void 682 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 683 { 684 vm_paddr_t pa; 685 pte_t *ptbl; 686 vm_page_t m; 687 int i; 688 689 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 690 pdir_idx); 691 692 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 693 ("ptbl_hold: invalid pdir_idx")); 694 KASSERT((pmap != kernel_pmap), 695 ("ptbl_hold: holding kernel ptbl!")); 696 697 ptbl = pmap->pm_pdir[pdir_idx]; 698 699 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 700 701 for (i = 0; i < PTBL_PAGES; i++) { 702 pa = pte_vatopa(mmu, kernel_pmap, 703 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 704 m = PHYS_TO_VM_PAGE(pa); 705 m->wire_count++; 706 } 707 } 708 709 /* Allocate pv_entry structure. */ 710 pv_entry_t 711 pv_alloc(void) 712 { 713 pv_entry_t pv; 714 715 pv_entry_count++; 716 if (pv_entry_count > pv_entry_high_water) 717 pagedaemon_wakeup(); 718 pv = uma_zalloc(pvzone, M_NOWAIT); 719 720 return (pv); 721 } 722 723 /* Free pv_entry structure. */ 724 static __inline void 725 pv_free(pv_entry_t pve) 726 { 727 728 pv_entry_count--; 729 uma_zfree(pvzone, pve); 730 } 731 732 733 /* Allocate and initialize pv_entry structure. */ 734 static void 735 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 736 { 737 pv_entry_t pve; 738 739 //int su = (pmap == kernel_pmap); 740 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 741 // (u_int32_t)pmap, va, (u_int32_t)m); 742 743 pve = pv_alloc(); 744 if (pve == NULL) 745 panic("pv_insert: no pv entries!"); 746 747 pve->pv_pmap = pmap; 748 pve->pv_va = va; 749 750 /* add to pv_list */ 751 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 752 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 753 754 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 755 756 //debugf("pv_insert: e\n"); 757 } 758 759 /* Destroy pv entry. */ 760 static void 761 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 762 { 763 pv_entry_t pve; 764 765 //int su = (pmap == kernel_pmap); 766 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 767 768 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 769 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 770 771 /* find pv entry */ 772 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 773 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 774 /* remove from pv_list */ 775 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 776 if (TAILQ_EMPTY(&m->md.pv_list)) 777 vm_page_flag_clear(m, PG_WRITEABLE); 778 779 /* free pv entry struct */ 780 pv_free(pve); 781 break; 782 } 783 } 784 785 //debugf("pv_remove: e\n"); 786 } 787 788 /* 789 * Clean pte entry, try to free page table page if requested. 790 * 791 * Return 1 if ptbl pages were freed, otherwise return 0. 792 */ 793 static int 794 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 795 { 796 unsigned int pdir_idx = PDIR_IDX(va); 797 unsigned int ptbl_idx = PTBL_IDX(va); 798 vm_page_t m; 799 pte_t *ptbl; 800 pte_t *pte; 801 802 //int su = (pmap == kernel_pmap); 803 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 804 // su, (u_int32_t)pmap, va, flags); 805 806 ptbl = pmap->pm_pdir[pdir_idx]; 807 KASSERT(ptbl, ("pte_remove: null ptbl")); 808 809 pte = &ptbl[ptbl_idx]; 810 811 if (pte == NULL || !PTE_ISVALID(pte)) 812 return (0); 813 814 if (PTE_ISWIRED(pte)) 815 pmap->pm_stats.wired_count--; 816 817 /* Handle managed entry. */ 818 if (PTE_ISMANAGED(pte)) { 819 /* Get vm_page_t for mapped pte. */ 820 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 821 822 if (PTE_ISMODIFIED(pte)) 823 vm_page_dirty(m); 824 825 if (PTE_ISREFERENCED(pte)) 826 vm_page_flag_set(m, PG_REFERENCED); 827 828 pv_remove(pmap, va, m); 829 } 830 831 mtx_lock_spin(&tlbivax_mutex); 832 tlb_miss_lock(); 833 834 tlb0_flush_entry(va); 835 pte->flags = 0; 836 pte->rpn = 0; 837 838 tlb_miss_unlock(); 839 mtx_unlock_spin(&tlbivax_mutex); 840 841 pmap->pm_stats.resident_count--; 842 843 if (flags & PTBL_UNHOLD) { 844 //debugf("pte_remove: e (unhold)\n"); 845 return (ptbl_unhold(mmu, pmap, pdir_idx)); 846 } 847 848 //debugf("pte_remove: e\n"); 849 return (0); 850 } 851 852 /* 853 * Insert PTE for a given page and virtual address. 854 */ 855 static void 856 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags) 857 { 858 unsigned int pdir_idx = PDIR_IDX(va); 859 unsigned int ptbl_idx = PTBL_IDX(va); 860 pte_t *ptbl, *pte; 861 862 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 863 pmap == kernel_pmap, pmap, va); 864 865 /* Get the page table pointer. */ 866 ptbl = pmap->pm_pdir[pdir_idx]; 867 868 if (ptbl == NULL) { 869 /* Allocate page table pages. */ 870 ptbl = ptbl_alloc(mmu, pmap, pdir_idx); 871 } else { 872 /* 873 * Check if there is valid mapping for requested 874 * va, if there is, remove it. 875 */ 876 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 877 if (PTE_ISVALID(pte)) { 878 pte_remove(mmu, pmap, va, PTBL_HOLD); 879 } else { 880 /* 881 * pte is not used, increment hold count 882 * for ptbl pages. 883 */ 884 if (pmap != kernel_pmap) 885 ptbl_hold(mmu, pmap, pdir_idx); 886 } 887 } 888 889 /* 890 * Insert pv_entry into pv_list for mapped page if part of managed 891 * memory. 892 */ 893 if ((m->flags & PG_FICTITIOUS) == 0) { 894 if ((m->flags & PG_UNMANAGED) == 0) { 895 flags |= PTE_MANAGED; 896 897 /* Create and insert pv entry. */ 898 pv_insert(pmap, va, m); 899 } 900 } 901 902 pmap->pm_stats.resident_count++; 903 904 mtx_lock_spin(&tlbivax_mutex); 905 tlb_miss_lock(); 906 907 tlb0_flush_entry(va); 908 if (pmap->pm_pdir[pdir_idx] == NULL) { 909 /* 910 * If we just allocated a new page table, hook it in 911 * the pdir. 912 */ 913 pmap->pm_pdir[pdir_idx] = ptbl; 914 } 915 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 916 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK; 917 pte->flags |= (PTE_VALID | flags); 918 919 tlb_miss_unlock(); 920 mtx_unlock_spin(&tlbivax_mutex); 921 } 922 923 /* Return the pa for the given pmap/va. */ 924 static vm_paddr_t 925 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 926 { 927 vm_paddr_t pa = 0; 928 pte_t *pte; 929 930 pte = pte_find(mmu, pmap, va); 931 if ((pte != NULL) && PTE_ISVALID(pte)) 932 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 933 return (pa); 934 } 935 936 /* Get a pointer to a PTE in a page table. */ 937 static pte_t * 938 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 939 { 940 unsigned int pdir_idx = PDIR_IDX(va); 941 unsigned int ptbl_idx = PTBL_IDX(va); 942 943 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 944 945 if (pmap->pm_pdir[pdir_idx]) 946 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 947 948 return (NULL); 949 } 950 951 /**************************************************************************/ 952 /* PMAP related */ 953 /**************************************************************************/ 954 955 /* 956 * This is called during e500_init, before the system is really initialized. 957 */ 958 static void 959 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 960 { 961 vm_offset_t phys_kernelend; 962 struct mem_region *mp, *mp1; 963 int cnt, i, j; 964 u_int s, e, sz; 965 u_int phys_avail_count; 966 vm_size_t physsz, hwphyssz, kstack0_sz; 967 vm_offset_t kernel_pdir, kstack0, va; 968 vm_paddr_t kstack0_phys; 969 void *dpcpu; 970 pte_t *pte; 971 972 debugf("mmu_booke_bootstrap: entered\n"); 973 974 /* Initialize invalidation mutex */ 975 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 976 977 /* Read TLB0 size and associativity. */ 978 tlb0_get_tlbconf(); 979 980 /* Align kernel start and end address (kernel image). */ 981 kernstart = trunc_page(start); 982 data_start = round_page(kernelend); 983 kernsize = data_start - kernstart; 984 985 data_end = data_start; 986 987 /* Allocate space for the message buffer. */ 988 msgbufp = (struct msgbuf *)data_end; 989 data_end += MSGBUF_SIZE; 990 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, 991 data_end); 992 993 data_end = round_page(data_end); 994 995 /* Allocate the dynamic per-cpu area. */ 996 dpcpu = (void *)data_end; 997 data_end += DPCPU_SIZE; 998 dpcpu_init(dpcpu, 0); 999 1000 /* Allocate space for ptbl_bufs. */ 1001 ptbl_bufs = (struct ptbl_buf *)data_end; 1002 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1003 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, 1004 data_end); 1005 1006 data_end = round_page(data_end); 1007 1008 /* Allocate PTE tables for kernel KVA. */ 1009 kernel_pdir = data_end; 1010 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS + 1011 PDIR_SIZE - 1) / PDIR_SIZE; 1012 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1013 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1014 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); 1015 1016 debugf(" data_end: 0x%08x\n", data_end); 1017 if (data_end - kernstart > 0x1000000) { 1018 data_end = (data_end + 0x3fffff) & ~0x3fffff; 1019 tlb1_mapin_region(kernstart + 0x1000000, 1020 kernload + 0x1000000, data_end - kernstart - 0x1000000); 1021 } else 1022 data_end = (data_end + 0xffffff) & ~0xffffff; 1023 1024 debugf(" updated data_end: 0x%08x\n", data_end); 1025 1026 kernsize += data_end - data_start; 1027 1028 /* 1029 * Clear the structures - note we can only do it safely after the 1030 * possible additional TLB1 translations are in place (above) so that 1031 * all range up to the currently calculated 'data_end' is covered. 1032 */ 1033 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1034 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1035 1036 /*******************************************************/ 1037 /* Set the start and end of kva. */ 1038 /*******************************************************/ 1039 virtual_avail = round_page(data_end); 1040 virtual_end = VM_MAX_KERNEL_ADDRESS; 1041 1042 /* Allocate KVA space for page zero/copy operations. */ 1043 zero_page_va = virtual_avail; 1044 virtual_avail += PAGE_SIZE; 1045 zero_page_idle_va = virtual_avail; 1046 virtual_avail += PAGE_SIZE; 1047 copy_page_src_va = virtual_avail; 1048 virtual_avail += PAGE_SIZE; 1049 copy_page_dst_va = virtual_avail; 1050 virtual_avail += PAGE_SIZE; 1051 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1052 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va); 1053 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1054 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1055 1056 /* Initialize page zero/copy mutexes. */ 1057 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1058 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1059 1060 /* Allocate KVA space for ptbl bufs. */ 1061 ptbl_buf_pool_vabase = virtual_avail; 1062 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1063 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1064 ptbl_buf_pool_vabase, virtual_avail); 1065 1066 /* Calculate corresponding physical addresses for the kernel region. */ 1067 phys_kernelend = kernload + kernsize; 1068 debugf("kernel image and allocated data:\n"); 1069 debugf(" kernload = 0x%08x\n", kernload); 1070 debugf(" kernstart = 0x%08x\n", kernstart); 1071 debugf(" kernsize = 0x%08x\n", kernsize); 1072 1073 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1074 panic("mmu_booke_bootstrap: phys_avail too small"); 1075 1076 /* 1077 * Remove kernel physical address range from avail regions list. Page 1078 * align all regions. Non-page aligned memory isn't very interesting 1079 * to us. Also, sort the entries for ascending addresses. 1080 */ 1081 1082 /* Retrieve phys/avail mem regions */ 1083 mem_regions(&physmem_regions, &physmem_regions_sz, 1084 &availmem_regions, &availmem_regions_sz); 1085 sz = 0; 1086 cnt = availmem_regions_sz; 1087 debugf("processing avail regions:\n"); 1088 for (mp = availmem_regions; mp->mr_size; mp++) { 1089 s = mp->mr_start; 1090 e = mp->mr_start + mp->mr_size; 1091 debugf(" %08x-%08x -> ", s, e); 1092 /* Check whether this region holds all of the kernel. */ 1093 if (s < kernload && e > phys_kernelend) { 1094 availmem_regions[cnt].mr_start = phys_kernelend; 1095 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1096 e = kernload; 1097 } 1098 /* Look whether this regions starts within the kernel. */ 1099 if (s >= kernload && s < phys_kernelend) { 1100 if (e <= phys_kernelend) 1101 goto empty; 1102 s = phys_kernelend; 1103 } 1104 /* Now look whether this region ends within the kernel. */ 1105 if (e > kernload && e <= phys_kernelend) { 1106 if (s >= kernload) 1107 goto empty; 1108 e = kernload; 1109 } 1110 /* Now page align the start and size of the region. */ 1111 s = round_page(s); 1112 e = trunc_page(e); 1113 if (e < s) 1114 e = s; 1115 sz = e - s; 1116 debugf("%08x-%08x = %x\n", s, e, sz); 1117 1118 /* Check whether some memory is left here. */ 1119 if (sz == 0) { 1120 empty: 1121 memmove(mp, mp + 1, 1122 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1123 cnt--; 1124 mp--; 1125 continue; 1126 } 1127 1128 /* Do an insertion sort. */ 1129 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1130 if (s < mp1->mr_start) 1131 break; 1132 if (mp1 < mp) { 1133 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1134 mp1->mr_start = s; 1135 mp1->mr_size = sz; 1136 } else { 1137 mp->mr_start = s; 1138 mp->mr_size = sz; 1139 } 1140 } 1141 availmem_regions_sz = cnt; 1142 1143 /*******************************************************/ 1144 /* Steal physical memory for kernel stack from the end */ 1145 /* of the first avail region */ 1146 /*******************************************************/ 1147 kstack0_sz = KSTACK_PAGES * PAGE_SIZE; 1148 kstack0_phys = availmem_regions[0].mr_start + 1149 availmem_regions[0].mr_size; 1150 kstack0_phys -= kstack0_sz; 1151 availmem_regions[0].mr_size -= kstack0_sz; 1152 1153 /*******************************************************/ 1154 /* Fill in phys_avail table, based on availmem_regions */ 1155 /*******************************************************/ 1156 phys_avail_count = 0; 1157 physsz = 0; 1158 hwphyssz = 0; 1159 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1160 1161 debugf("fill in phys_avail:\n"); 1162 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1163 1164 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", 1165 availmem_regions[i].mr_start, 1166 availmem_regions[i].mr_start + 1167 availmem_regions[i].mr_size, 1168 availmem_regions[i].mr_size); 1169 1170 if (hwphyssz != 0 && 1171 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1172 debugf(" hw.physmem adjust\n"); 1173 if (physsz < hwphyssz) { 1174 phys_avail[j] = availmem_regions[i].mr_start; 1175 phys_avail[j + 1] = 1176 availmem_regions[i].mr_start + 1177 hwphyssz - physsz; 1178 physsz = hwphyssz; 1179 phys_avail_count++; 1180 } 1181 break; 1182 } 1183 1184 phys_avail[j] = availmem_regions[i].mr_start; 1185 phys_avail[j + 1] = availmem_regions[i].mr_start + 1186 availmem_regions[i].mr_size; 1187 phys_avail_count++; 1188 physsz += availmem_regions[i].mr_size; 1189 } 1190 physmem = btoc(physsz); 1191 1192 /* Calculate the last available physical address. */ 1193 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1194 ; 1195 Maxmem = powerpc_btop(phys_avail[i + 1]); 1196 1197 debugf("Maxmem = 0x%08lx\n", Maxmem); 1198 debugf("phys_avail_count = %d\n", phys_avail_count); 1199 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem, 1200 physmem); 1201 1202 /*******************************************************/ 1203 /* Initialize (statically allocated) kernel pmap. */ 1204 /*******************************************************/ 1205 PMAP_LOCK_INIT(kernel_pmap); 1206 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1207 1208 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); 1209 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); 1210 debugf("kernel pdir range: 0x%08x - 0x%08x\n", 1211 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); 1212 1213 /* Initialize kernel pdir */ 1214 for (i = 0; i < kernel_ptbls; i++) 1215 kernel_pmap->pm_pdir[kptbl_min + i] = 1216 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1217 1218 for (i = 0; i < MAXCPU; i++) { 1219 kernel_pmap->pm_tid[i] = TID_KERNEL; 1220 1221 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1222 tidbusy[i][0] = kernel_pmap; 1223 } 1224 1225 /* 1226 * Fill in PTEs covering kernel code and data. They are not required 1227 * for address translation, as this area is covered by static TLB1 1228 * entries, but for pte_vatopa() to work correctly with kernel area 1229 * addresses. 1230 */ 1231 for (va = KERNBASE; va < data_end; va += PAGE_SIZE) { 1232 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1233 pte->rpn = kernload + (va - KERNBASE); 1234 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1235 PTE_VALID; 1236 } 1237 /* Mark kernel_pmap active on all CPUs */ 1238 kernel_pmap->pm_active = ~0; 1239 1240 /*******************************************************/ 1241 /* Final setup */ 1242 /*******************************************************/ 1243 1244 /* Enter kstack0 into kernel map, provide guard page */ 1245 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1246 thread0.td_kstack = kstack0; 1247 thread0.td_kstack_pages = KSTACK_PAGES; 1248 1249 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1250 debugf("kstack0_phys at 0x%08x - 0x%08x\n", 1251 kstack0_phys, kstack0_phys + kstack0_sz); 1252 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); 1253 1254 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 1255 for (i = 0; i < KSTACK_PAGES; i++) { 1256 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 1257 kstack0 += PAGE_SIZE; 1258 kstack0_phys += PAGE_SIZE; 1259 } 1260 1261 debugf("virtual_avail = %08x\n", virtual_avail); 1262 debugf("virtual_end = %08x\n", virtual_end); 1263 1264 debugf("mmu_booke_bootstrap: exit\n"); 1265 } 1266 1267 void 1268 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 1269 { 1270 int i; 1271 1272 /* 1273 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 1274 * have the snapshot of its contents in the s/w tlb1[] table, so use 1275 * these values directly to (re)program AP's TLB1 hardware. 1276 */ 1277 for (i = 0; i < tlb1_idx; i ++) { 1278 /* Skip invalid entries */ 1279 if (!(tlb1[i].mas1 & MAS1_VALID)) 1280 continue; 1281 1282 tlb1_write_entry(i); 1283 } 1284 1285 set_mas4_defaults(); 1286 } 1287 1288 /* 1289 * Get the physical page address for the given pmap/virtual address. 1290 */ 1291 static vm_paddr_t 1292 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1293 { 1294 vm_paddr_t pa; 1295 1296 PMAP_LOCK(pmap); 1297 pa = pte_vatopa(mmu, pmap, va); 1298 PMAP_UNLOCK(pmap); 1299 1300 return (pa); 1301 } 1302 1303 /* 1304 * Extract the physical page address associated with the given 1305 * kernel virtual address. 1306 */ 1307 static vm_paddr_t 1308 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 1309 { 1310 1311 return (pte_vatopa(mmu, kernel_pmap, va)); 1312 } 1313 1314 /* 1315 * Initialize the pmap module. 1316 * Called by vm_init, to initialize any structures that the pmap 1317 * system needs to map virtual memory. 1318 */ 1319 static void 1320 mmu_booke_init(mmu_t mmu) 1321 { 1322 int shpgperproc = PMAP_SHPGPERPROC; 1323 1324 /* 1325 * Initialize the address space (zone) for the pv entries. Set a 1326 * high water mark so that the system can recover from excessive 1327 * numbers of pv entries. 1328 */ 1329 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 1330 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 1331 1332 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 1333 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; 1334 1335 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 1336 pv_entry_high_water = 9 * (pv_entry_max / 10); 1337 1338 uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max); 1339 1340 /* Pre-fill pvzone with initial number of pv entries. */ 1341 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 1342 1343 /* Initialize ptbl allocation. */ 1344 ptbl_init(); 1345 } 1346 1347 /* 1348 * Map a list of wired pages into kernel virtual address space. This is 1349 * intended for temporary mappings which do not need page modification or 1350 * references recorded. Existing mappings in the region are overwritten. 1351 */ 1352 static void 1353 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1354 { 1355 vm_offset_t va; 1356 1357 va = sva; 1358 while (count-- > 0) { 1359 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1360 va += PAGE_SIZE; 1361 m++; 1362 } 1363 } 1364 1365 /* 1366 * Remove page mappings from kernel virtual address space. Intended for 1367 * temporary mappings entered by mmu_booke_qenter. 1368 */ 1369 static void 1370 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 1371 { 1372 vm_offset_t va; 1373 1374 va = sva; 1375 while (count-- > 0) { 1376 mmu_booke_kremove(mmu, va); 1377 va += PAGE_SIZE; 1378 } 1379 } 1380 1381 /* 1382 * Map a wired page into kernel virtual address space. 1383 */ 1384 static void 1385 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa) 1386 { 1387 unsigned int pdir_idx = PDIR_IDX(va); 1388 unsigned int ptbl_idx = PTBL_IDX(va); 1389 uint32_t flags; 1390 pte_t *pte; 1391 1392 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1393 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 1394 1395 flags = 0; 1396 flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID); 1397 flags |= PTE_M; 1398 1399 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1400 1401 mtx_lock_spin(&tlbivax_mutex); 1402 tlb_miss_lock(); 1403 1404 if (PTE_ISVALID(pte)) { 1405 1406 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 1407 1408 /* Flush entry from TLB0 */ 1409 tlb0_flush_entry(va); 1410 } 1411 1412 pte->rpn = pa & ~PTE_PA_MASK; 1413 pte->flags = flags; 1414 1415 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 1416 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 1417 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 1418 1419 /* Flush the real memory from the instruction cache. */ 1420 if ((flags & (PTE_I | PTE_G)) == 0) { 1421 __syncicache((void *)va, PAGE_SIZE); 1422 } 1423 1424 tlb_miss_unlock(); 1425 mtx_unlock_spin(&tlbivax_mutex); 1426 } 1427 1428 /* 1429 * Remove a page from kernel page table. 1430 */ 1431 static void 1432 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 1433 { 1434 unsigned int pdir_idx = PDIR_IDX(va); 1435 unsigned int ptbl_idx = PTBL_IDX(va); 1436 pte_t *pte; 1437 1438 // CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va)); 1439 1440 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1441 (va <= VM_MAX_KERNEL_ADDRESS)), 1442 ("mmu_booke_kremove: invalid va")); 1443 1444 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1445 1446 if (!PTE_ISVALID(pte)) { 1447 1448 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 1449 1450 return; 1451 } 1452 1453 mtx_lock_spin(&tlbivax_mutex); 1454 tlb_miss_lock(); 1455 1456 /* Invalidate entry in TLB0, update PTE. */ 1457 tlb0_flush_entry(va); 1458 pte->flags = 0; 1459 pte->rpn = 0; 1460 1461 tlb_miss_unlock(); 1462 mtx_unlock_spin(&tlbivax_mutex); 1463 } 1464 1465 /* 1466 * Initialize pmap associated with process 0. 1467 */ 1468 static void 1469 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 1470 { 1471 1472 mmu_booke_pinit(mmu, pmap); 1473 PCPU_SET(curpmap, pmap); 1474 } 1475 1476 /* 1477 * Initialize a preallocated and zeroed pmap structure, 1478 * such as one in a vmspace structure. 1479 */ 1480 static void 1481 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 1482 { 1483 int i; 1484 1485 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 1486 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 1487 1488 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 1489 1490 PMAP_LOCK_INIT(pmap); 1491 for (i = 0; i < MAXCPU; i++) 1492 pmap->pm_tid[i] = TID_NONE; 1493 pmap->pm_active = 0; 1494 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 1495 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 1496 TAILQ_INIT(&pmap->pm_ptbl_list); 1497 } 1498 1499 /* 1500 * Release any resources held by the given physical map. 1501 * Called when a pmap initialized by mmu_booke_pinit is being released. 1502 * Should only be called if the map contains no valid mappings. 1503 */ 1504 static void 1505 mmu_booke_release(mmu_t mmu, pmap_t pmap) 1506 { 1507 1508 printf("mmu_booke_release: s\n"); 1509 1510 KASSERT(pmap->pm_stats.resident_count == 0, 1511 ("pmap_release: pmap resident count %ld != 0", 1512 pmap->pm_stats.resident_count)); 1513 1514 PMAP_LOCK_DESTROY(pmap); 1515 } 1516 1517 /* 1518 * Insert the given physical page at the specified virtual address in the 1519 * target physical map with the protection requested. If specified the page 1520 * will be wired down. 1521 */ 1522 static void 1523 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1524 vm_prot_t prot, boolean_t wired) 1525 { 1526 1527 vm_page_lock_queues(); 1528 PMAP_LOCK(pmap); 1529 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired); 1530 vm_page_unlock_queues(); 1531 PMAP_UNLOCK(pmap); 1532 } 1533 1534 static void 1535 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1536 vm_prot_t prot, boolean_t wired) 1537 { 1538 pte_t *pte; 1539 vm_paddr_t pa; 1540 uint32_t flags; 1541 int su, sync; 1542 1543 pa = VM_PAGE_TO_PHYS(m); 1544 su = (pmap == kernel_pmap); 1545 sync = 0; 1546 1547 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 1548 // "pa=0x%08x prot=0x%08x wired=%d)\n", 1549 // (u_int32_t)pmap, su, pmap->pm_tid, 1550 // (u_int32_t)m, va, pa, prot, wired); 1551 1552 if (su) { 1553 KASSERT(((va >= virtual_avail) && 1554 (va <= VM_MAX_KERNEL_ADDRESS)), 1555 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 1556 } else { 1557 KASSERT((va <= VM_MAXUSER_ADDRESS), 1558 ("mmu_booke_enter_locked: user pmap, non user va")); 1559 } 1560 1561 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1562 1563 /* 1564 * If there is an existing mapping, and the physical address has not 1565 * changed, must be protection or wiring change. 1566 */ 1567 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 1568 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 1569 1570 /* 1571 * Before actually updating pte->flags we calculate and 1572 * prepare its new value in a helper var. 1573 */ 1574 flags = pte->flags; 1575 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 1576 1577 /* Wiring change, just update stats. */ 1578 if (wired) { 1579 if (!PTE_ISWIRED(pte)) { 1580 flags |= PTE_WIRED; 1581 pmap->pm_stats.wired_count++; 1582 } 1583 } else { 1584 if (PTE_ISWIRED(pte)) { 1585 flags &= ~PTE_WIRED; 1586 pmap->pm_stats.wired_count--; 1587 } 1588 } 1589 1590 if (prot & VM_PROT_WRITE) { 1591 /* Add write permissions. */ 1592 flags |= PTE_SW; 1593 if (!su) 1594 flags |= PTE_UW; 1595 1596 vm_page_flag_set(m, PG_WRITEABLE); 1597 } else { 1598 /* Handle modified pages, sense modify status. */ 1599 1600 /* 1601 * The PTE_MODIFIED flag could be set by underlying 1602 * TLB misses since we last read it (above), possibly 1603 * other CPUs could update it so we check in the PTE 1604 * directly rather than rely on that saved local flags 1605 * copy. 1606 */ 1607 if (PTE_ISMODIFIED(pte)) 1608 vm_page_dirty(m); 1609 } 1610 1611 if (prot & VM_PROT_EXECUTE) { 1612 flags |= PTE_SX; 1613 if (!su) 1614 flags |= PTE_UX; 1615 1616 /* 1617 * Check existing flags for execute permissions: if we 1618 * are turning execute permissions on, icache should 1619 * be flushed. 1620 */ 1621 if ((flags & (PTE_UX | PTE_SX)) == 0) 1622 sync++; 1623 } 1624 1625 flags &= ~PTE_REFERENCED; 1626 1627 /* 1628 * The new flags value is all calculated -- only now actually 1629 * update the PTE. 1630 */ 1631 mtx_lock_spin(&tlbivax_mutex); 1632 tlb_miss_lock(); 1633 1634 tlb0_flush_entry(va); 1635 pte->flags = flags; 1636 1637 tlb_miss_unlock(); 1638 mtx_unlock_spin(&tlbivax_mutex); 1639 1640 } else { 1641 /* 1642 * If there is an existing mapping, but it's for a different 1643 * physical address, pte_enter() will delete the old mapping. 1644 */ 1645 //if ((pte != NULL) && PTE_ISVALID(pte)) 1646 // debugf("mmu_booke_enter_locked: replace\n"); 1647 //else 1648 // debugf("mmu_booke_enter_locked: new\n"); 1649 1650 /* Now set up the flags and install the new mapping. */ 1651 flags = (PTE_SR | PTE_VALID); 1652 flags |= PTE_M; 1653 1654 if (!su) 1655 flags |= PTE_UR; 1656 1657 if (prot & VM_PROT_WRITE) { 1658 flags |= PTE_SW; 1659 if (!su) 1660 flags |= PTE_UW; 1661 1662 vm_page_flag_set(m, PG_WRITEABLE); 1663 } 1664 1665 if (prot & VM_PROT_EXECUTE) { 1666 flags |= PTE_SX; 1667 if (!su) 1668 flags |= PTE_UX; 1669 } 1670 1671 /* If its wired update stats. */ 1672 if (wired) { 1673 pmap->pm_stats.wired_count++; 1674 flags |= PTE_WIRED; 1675 } 1676 1677 pte_enter(mmu, pmap, m, va, flags); 1678 1679 /* Flush the real memory from the instruction cache. */ 1680 if (prot & VM_PROT_EXECUTE) 1681 sync++; 1682 } 1683 1684 if (sync && (su || pmap == PCPU_GET(curpmap))) { 1685 __syncicache((void *)va, PAGE_SIZE); 1686 sync = 0; 1687 } 1688 } 1689 1690 /* 1691 * Maps a sequence of resident pages belonging to the same object. 1692 * The sequence begins with the given page m_start. This page is 1693 * mapped at the given virtual address start. Each subsequent page is 1694 * mapped at a virtual address that is offset from start by the same 1695 * amount as the page is offset from m_start within the object. The 1696 * last page in the sequence is the page with the largest offset from 1697 * m_start that can be mapped at a virtual address less than the given 1698 * virtual address end. Not every virtual page between start and end 1699 * is mapped; only those for which a resident page exists with the 1700 * corresponding offset from m_start are mapped. 1701 */ 1702 static void 1703 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 1704 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 1705 { 1706 vm_page_t m; 1707 vm_pindex_t diff, psize; 1708 1709 psize = atop(end - start); 1710 m = m_start; 1711 PMAP_LOCK(pmap); 1712 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1713 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 1714 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1715 m = TAILQ_NEXT(m, listq); 1716 } 1717 PMAP_UNLOCK(pmap); 1718 } 1719 1720 static void 1721 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1722 vm_prot_t prot) 1723 { 1724 1725 PMAP_LOCK(pmap); 1726 mmu_booke_enter_locked(mmu, pmap, va, m, 1727 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1728 PMAP_UNLOCK(pmap); 1729 } 1730 1731 /* 1732 * Remove the given range of addresses from the specified map. 1733 * 1734 * It is assumed that the start and end are properly rounded to the page size. 1735 */ 1736 static void 1737 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 1738 { 1739 pte_t *pte; 1740 uint8_t hold_flag; 1741 1742 int su = (pmap == kernel_pmap); 1743 1744 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 1745 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 1746 1747 if (su) { 1748 KASSERT(((va >= virtual_avail) && 1749 (va <= VM_MAX_KERNEL_ADDRESS)), 1750 ("mmu_booke_remove: kernel pmap, non kernel va")); 1751 } else { 1752 KASSERT((va <= VM_MAXUSER_ADDRESS), 1753 ("mmu_booke_remove: user pmap, non user va")); 1754 } 1755 1756 if (PMAP_REMOVE_DONE(pmap)) { 1757 //debugf("mmu_booke_remove: e (empty)\n"); 1758 return; 1759 } 1760 1761 hold_flag = PTBL_HOLD_FLAG(pmap); 1762 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 1763 1764 vm_page_lock_queues(); 1765 PMAP_LOCK(pmap); 1766 for (; va < endva; va += PAGE_SIZE) { 1767 pte = pte_find(mmu, pmap, va); 1768 if ((pte != NULL) && PTE_ISVALID(pte)) 1769 pte_remove(mmu, pmap, va, hold_flag); 1770 } 1771 PMAP_UNLOCK(pmap); 1772 vm_page_unlock_queues(); 1773 1774 //debugf("mmu_booke_remove: e\n"); 1775 } 1776 1777 /* 1778 * Remove physical page from all pmaps in which it resides. 1779 */ 1780 static void 1781 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 1782 { 1783 pv_entry_t pv, pvn; 1784 uint8_t hold_flag; 1785 1786 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1787 1788 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 1789 pvn = TAILQ_NEXT(pv, pv_link); 1790 1791 PMAP_LOCK(pv->pv_pmap); 1792 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 1793 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 1794 PMAP_UNLOCK(pv->pv_pmap); 1795 } 1796 vm_page_flag_clear(m, PG_WRITEABLE); 1797 } 1798 1799 /* 1800 * Map a range of physical addresses into kernel virtual address space. 1801 */ 1802 static vm_offset_t 1803 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start, 1804 vm_offset_t pa_end, int prot) 1805 { 1806 vm_offset_t sva = *virt; 1807 vm_offset_t va = sva; 1808 1809 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 1810 // sva, pa_start, pa_end); 1811 1812 while (pa_start < pa_end) { 1813 mmu_booke_kenter(mmu, va, pa_start); 1814 va += PAGE_SIZE; 1815 pa_start += PAGE_SIZE; 1816 } 1817 *virt = va; 1818 1819 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 1820 return (sva); 1821 } 1822 1823 /* 1824 * The pmap must be activated before it's address space can be accessed in any 1825 * way. 1826 */ 1827 static void 1828 mmu_booke_activate(mmu_t mmu, struct thread *td) 1829 { 1830 pmap_t pmap; 1831 1832 pmap = &td->td_proc->p_vmspace->vm_pmap; 1833 1834 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 1835 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1836 1837 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 1838 1839 mtx_lock_spin(&sched_lock); 1840 1841 atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask)); 1842 PCPU_SET(curpmap, pmap); 1843 1844 if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE) 1845 tid_alloc(pmap); 1846 1847 /* Load PID0 register with pmap tid value. */ 1848 mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]); 1849 __asm __volatile("isync"); 1850 1851 mtx_unlock_spin(&sched_lock); 1852 1853 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 1854 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 1855 } 1856 1857 /* 1858 * Deactivate the specified process's address space. 1859 */ 1860 static void 1861 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 1862 { 1863 pmap_t pmap; 1864 1865 pmap = &td->td_proc->p_vmspace->vm_pmap; 1866 1867 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 1868 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1869 1870 atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask)); 1871 PCPU_SET(curpmap, NULL); 1872 } 1873 1874 /* 1875 * Copy the range specified by src_addr/len 1876 * from the source map to the range dst_addr/len 1877 * in the destination map. 1878 * 1879 * This routine is only advisory and need not do anything. 1880 */ 1881 static void 1882 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 1883 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 1884 { 1885 1886 } 1887 1888 /* 1889 * Set the physical protection on the specified range of this map as requested. 1890 */ 1891 static void 1892 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 1893 vm_prot_t prot) 1894 { 1895 vm_offset_t va; 1896 vm_page_t m; 1897 pte_t *pte; 1898 1899 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1900 mmu_booke_remove(mmu, pmap, sva, eva); 1901 return; 1902 } 1903 1904 if (prot & VM_PROT_WRITE) 1905 return; 1906 1907 vm_page_lock_queues(); 1908 PMAP_LOCK(pmap); 1909 for (va = sva; va < eva; va += PAGE_SIZE) { 1910 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 1911 if (PTE_ISVALID(pte)) { 1912 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1913 1914 mtx_lock_spin(&tlbivax_mutex); 1915 tlb_miss_lock(); 1916 1917 /* Handle modified pages. */ 1918 if (PTE_ISMODIFIED(pte)) 1919 vm_page_dirty(m); 1920 1921 /* Referenced pages. */ 1922 if (PTE_ISREFERENCED(pte)) 1923 vm_page_flag_set(m, PG_REFERENCED); 1924 1925 tlb0_flush_entry(va); 1926 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED | 1927 PTE_REFERENCED); 1928 1929 tlb_miss_unlock(); 1930 mtx_unlock_spin(&tlbivax_mutex); 1931 } 1932 } 1933 } 1934 PMAP_UNLOCK(pmap); 1935 vm_page_unlock_queues(); 1936 } 1937 1938 /* 1939 * Clear the write and modified bits in each of the given page's mappings. 1940 */ 1941 static void 1942 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 1943 { 1944 pv_entry_t pv; 1945 pte_t *pte; 1946 1947 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1948 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 || 1949 (m->flags & PG_WRITEABLE) == 0) 1950 return; 1951 1952 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 1953 PMAP_LOCK(pv->pv_pmap); 1954 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 1955 if (PTE_ISVALID(pte)) { 1956 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1957 1958 mtx_lock_spin(&tlbivax_mutex); 1959 tlb_miss_lock(); 1960 1961 /* Handle modified pages. */ 1962 if (PTE_ISMODIFIED(pte)) 1963 vm_page_dirty(m); 1964 1965 /* Referenced pages. */ 1966 if (PTE_ISREFERENCED(pte)) 1967 vm_page_flag_set(m, PG_REFERENCED); 1968 1969 /* Flush mapping from TLB0. */ 1970 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED | 1971 PTE_REFERENCED); 1972 1973 tlb_miss_unlock(); 1974 mtx_unlock_spin(&tlbivax_mutex); 1975 } 1976 } 1977 PMAP_UNLOCK(pv->pv_pmap); 1978 } 1979 vm_page_flag_clear(m, PG_WRITEABLE); 1980 } 1981 1982 static void 1983 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 1984 { 1985 pte_t *pte; 1986 pmap_t pmap; 1987 vm_page_t m; 1988 vm_offset_t addr; 1989 vm_paddr_t pa; 1990 int active, valid; 1991 1992 va = trunc_page(va); 1993 sz = round_page(sz); 1994 1995 vm_page_lock_queues(); 1996 pmap = PCPU_GET(curpmap); 1997 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 1998 while (sz > 0) { 1999 PMAP_LOCK(pm); 2000 pte = pte_find(mmu, pm, va); 2001 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2002 if (valid) 2003 pa = PTE_PA(pte); 2004 PMAP_UNLOCK(pm); 2005 if (valid) { 2006 if (!active) { 2007 /* Create a mapping in the active pmap. */ 2008 addr = 0; 2009 m = PHYS_TO_VM_PAGE(pa); 2010 PMAP_LOCK(pmap); 2011 pte_enter(mmu, pmap, m, addr, 2012 PTE_SR | PTE_VALID | PTE_UR); 2013 __syncicache((void *)addr, PAGE_SIZE); 2014 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2015 PMAP_UNLOCK(pmap); 2016 } else 2017 __syncicache((void *)va, PAGE_SIZE); 2018 } 2019 va += PAGE_SIZE; 2020 sz -= PAGE_SIZE; 2021 } 2022 vm_page_unlock_queues(); 2023 } 2024 2025 /* 2026 * Atomically extract and hold the physical page with the given 2027 * pmap and virtual address pair if that mapping permits the given 2028 * protection. 2029 */ 2030 static vm_page_t 2031 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2032 vm_prot_t prot) 2033 { 2034 pte_t *pte; 2035 vm_page_t m; 2036 uint32_t pte_wbit; 2037 2038 m = NULL; 2039 vm_page_lock_queues(); 2040 PMAP_LOCK(pmap); 2041 2042 pte = pte_find(mmu, pmap, va); 2043 if ((pte != NULL) && PTE_ISVALID(pte)) { 2044 if (pmap == kernel_pmap) 2045 pte_wbit = PTE_SW; 2046 else 2047 pte_wbit = PTE_UW; 2048 2049 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2050 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2051 vm_page_hold(m); 2052 } 2053 } 2054 2055 vm_page_unlock_queues(); 2056 PMAP_UNLOCK(pmap); 2057 return (m); 2058 } 2059 2060 /* 2061 * Initialize a vm_page's machine-dependent fields. 2062 */ 2063 static void 2064 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2065 { 2066 2067 TAILQ_INIT(&m->md.pv_list); 2068 } 2069 2070 /* 2071 * mmu_booke_zero_page_area zeros the specified hardware page by 2072 * mapping it into virtual memory and using bzero to clear 2073 * its contents. 2074 * 2075 * off and size must reside within a single page. 2076 */ 2077 static void 2078 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2079 { 2080 vm_offset_t va; 2081 2082 /* XXX KASSERT off and size are within a single page? */ 2083 2084 mtx_lock(&zero_page_mutex); 2085 va = zero_page_va; 2086 2087 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2088 bzero((caddr_t)va + off, size); 2089 mmu_booke_kremove(mmu, va); 2090 2091 mtx_unlock(&zero_page_mutex); 2092 } 2093 2094 /* 2095 * mmu_booke_zero_page zeros the specified hardware page. 2096 */ 2097 static void 2098 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2099 { 2100 2101 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE); 2102 } 2103 2104 /* 2105 * mmu_booke_copy_page copies the specified (machine independent) page by 2106 * mapping the page into virtual memory and using memcopy to copy the page, 2107 * one machine dependent page at a time. 2108 */ 2109 static void 2110 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2111 { 2112 vm_offset_t sva, dva; 2113 2114 sva = copy_page_src_va; 2115 dva = copy_page_dst_va; 2116 2117 mtx_lock(©_page_mutex); 2118 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2119 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2120 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2121 mmu_booke_kremove(mmu, dva); 2122 mmu_booke_kremove(mmu, sva); 2123 mtx_unlock(©_page_mutex); 2124 } 2125 2126 /* 2127 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it 2128 * into virtual memory and using bzero to clear its contents. This is intended 2129 * to be called from the vm_pagezero process only and outside of Giant. No 2130 * lock is required. 2131 */ 2132 static void 2133 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m) 2134 { 2135 vm_offset_t va; 2136 2137 va = zero_page_idle_va; 2138 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2139 bzero((caddr_t)va, PAGE_SIZE); 2140 mmu_booke_kremove(mmu, va); 2141 } 2142 2143 /* 2144 * Return whether or not the specified physical page was modified 2145 * in any of physical maps. 2146 */ 2147 static boolean_t 2148 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 2149 { 2150 pte_t *pte; 2151 pv_entry_t pv; 2152 2153 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2154 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2155 return (FALSE); 2156 2157 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2158 PMAP_LOCK(pv->pv_pmap); 2159 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2160 if (!PTE_ISVALID(pte)) 2161 goto make_sure_to_unlock; 2162 2163 if (PTE_ISMODIFIED(pte)) { 2164 PMAP_UNLOCK(pv->pv_pmap); 2165 return (TRUE); 2166 } 2167 } 2168 make_sure_to_unlock: 2169 PMAP_UNLOCK(pv->pv_pmap); 2170 } 2171 return (FALSE); 2172 } 2173 2174 /* 2175 * Return whether or not the specified virtual address is eligible 2176 * for prefault. 2177 */ 2178 static boolean_t 2179 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2180 { 2181 2182 return (FALSE); 2183 } 2184 2185 /* 2186 * Return whether or not the specified physical page was referenced 2187 * in any physical maps. 2188 */ 2189 static boolean_t 2190 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 2191 { 2192 pte_t *pte; 2193 pv_entry_t pv; 2194 boolean_t rv; 2195 2196 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2197 rv = FALSE; 2198 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2199 return (rv); 2200 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2201 PMAP_LOCK(pv->pv_pmap); 2202 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2203 PTE_ISVALID(pte)) 2204 rv = PTE_ISREFERENCED(pte) ? TRUE : FALSE; 2205 PMAP_UNLOCK(pv->pv_pmap); 2206 if (rv) 2207 break; 2208 } 2209 return (rv); 2210 } 2211 2212 /* 2213 * Clear the modify bits on the specified physical page. 2214 */ 2215 static void 2216 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 2217 { 2218 pte_t *pte; 2219 pv_entry_t pv; 2220 2221 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2222 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2223 return; 2224 2225 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2226 PMAP_LOCK(pv->pv_pmap); 2227 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2228 if (!PTE_ISVALID(pte)) 2229 goto make_sure_to_unlock; 2230 2231 mtx_lock_spin(&tlbivax_mutex); 2232 tlb_miss_lock(); 2233 2234 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 2235 tlb0_flush_entry(pv->pv_va); 2236 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 2237 PTE_REFERENCED); 2238 } 2239 2240 tlb_miss_unlock(); 2241 mtx_unlock_spin(&tlbivax_mutex); 2242 } 2243 make_sure_to_unlock: 2244 PMAP_UNLOCK(pv->pv_pmap); 2245 } 2246 } 2247 2248 /* 2249 * Return a count of reference bits for a page, clearing those bits. 2250 * It is not necessary for every reference bit to be cleared, but it 2251 * is necessary that 0 only be returned when there are truly no 2252 * reference bits set. 2253 * 2254 * XXX: The exact number of bits to check and clear is a matter that 2255 * should be tested and standardized at some point in the future for 2256 * optimal aging of shared pages. 2257 */ 2258 static int 2259 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 2260 { 2261 pte_t *pte; 2262 pv_entry_t pv; 2263 int count; 2264 2265 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2266 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2267 return (0); 2268 2269 count = 0; 2270 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2271 PMAP_LOCK(pv->pv_pmap); 2272 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2273 if (!PTE_ISVALID(pte)) 2274 goto make_sure_to_unlock; 2275 2276 if (PTE_ISREFERENCED(pte)) { 2277 mtx_lock_spin(&tlbivax_mutex); 2278 tlb_miss_lock(); 2279 2280 tlb0_flush_entry(pv->pv_va); 2281 pte->flags &= ~PTE_REFERENCED; 2282 2283 tlb_miss_unlock(); 2284 mtx_unlock_spin(&tlbivax_mutex); 2285 2286 if (++count > 4) { 2287 PMAP_UNLOCK(pv->pv_pmap); 2288 break; 2289 } 2290 } 2291 } 2292 make_sure_to_unlock: 2293 PMAP_UNLOCK(pv->pv_pmap); 2294 } 2295 return (count); 2296 } 2297 2298 /* 2299 * Clear the reference bit on the specified physical page. 2300 */ 2301 static void 2302 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m) 2303 { 2304 pte_t *pte; 2305 pv_entry_t pv; 2306 2307 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2308 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2309 return; 2310 2311 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2312 PMAP_LOCK(pv->pv_pmap); 2313 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2314 if (!PTE_ISVALID(pte)) 2315 goto make_sure_to_unlock; 2316 2317 if (PTE_ISREFERENCED(pte)) { 2318 mtx_lock_spin(&tlbivax_mutex); 2319 tlb_miss_lock(); 2320 2321 tlb0_flush_entry(pv->pv_va); 2322 pte->flags &= ~PTE_REFERENCED; 2323 2324 tlb_miss_unlock(); 2325 mtx_unlock_spin(&tlbivax_mutex); 2326 } 2327 } 2328 make_sure_to_unlock: 2329 PMAP_UNLOCK(pv->pv_pmap); 2330 } 2331 } 2332 2333 /* 2334 * Change wiring attribute for a map/virtual-address pair. 2335 */ 2336 static void 2337 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired) 2338 { 2339 pte_t *pte; 2340 2341 PMAP_LOCK(pmap); 2342 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2343 if (wired) { 2344 if (!PTE_ISWIRED(pte)) { 2345 pte->flags |= PTE_WIRED; 2346 pmap->pm_stats.wired_count++; 2347 } 2348 } else { 2349 if (PTE_ISWIRED(pte)) { 2350 pte->flags &= ~PTE_WIRED; 2351 pmap->pm_stats.wired_count--; 2352 } 2353 } 2354 } 2355 PMAP_UNLOCK(pmap); 2356 } 2357 2358 /* 2359 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 2360 * page. This count may be changed upwards or downwards in the future; it is 2361 * only necessary that true be returned for a small subset of pmaps for proper 2362 * page aging. 2363 */ 2364 static boolean_t 2365 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 2366 { 2367 pv_entry_t pv; 2368 int loops; 2369 2370 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2371 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2372 return (FALSE); 2373 2374 loops = 0; 2375 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2376 if (pv->pv_pmap == pmap) 2377 return (TRUE); 2378 2379 if (++loops >= 16) 2380 break; 2381 } 2382 return (FALSE); 2383 } 2384 2385 /* 2386 * Return the number of managed mappings to the given physical page that are 2387 * wired. 2388 */ 2389 static int 2390 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 2391 { 2392 pv_entry_t pv; 2393 pte_t *pte; 2394 int count = 0; 2395 2396 if ((m->flags & PG_FICTITIOUS) != 0) 2397 return (count); 2398 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2399 2400 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2401 PMAP_LOCK(pv->pv_pmap); 2402 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 2403 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 2404 count++; 2405 PMAP_UNLOCK(pv->pv_pmap); 2406 } 2407 2408 return (count); 2409 } 2410 2411 static int 2412 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size) 2413 { 2414 int i; 2415 vm_offset_t va; 2416 2417 /* 2418 * This currently does not work for entries that 2419 * overlap TLB1 entries. 2420 */ 2421 for (i = 0; i < tlb1_idx; i ++) { 2422 if (tlb1_iomapped(i, pa, size, &va) == 0) 2423 return (0); 2424 } 2425 2426 return (EFAULT); 2427 } 2428 2429 vm_offset_t 2430 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2431 vm_size_t *sz) 2432 { 2433 vm_paddr_t pa, ppa; 2434 vm_offset_t va; 2435 vm_size_t gran; 2436 2437 /* Raw physical memory dumps don't have a virtual address. */ 2438 if (md->md_vaddr == ~0UL) { 2439 /* We always map a 256MB page at 256M. */ 2440 gran = 256 * 1024 * 1024; 2441 pa = md->md_paddr + ofs; 2442 ppa = pa & ~(gran - 1); 2443 ofs = pa - ppa; 2444 va = gran; 2445 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO); 2446 if (*sz > (gran - ofs)) 2447 *sz = gran - ofs; 2448 return (va + ofs); 2449 } 2450 2451 /* Minidumps are based on virtual memory addresses. */ 2452 va = md->md_vaddr + ofs; 2453 if (va >= kernstart + kernsize) { 2454 gran = PAGE_SIZE - (va & PAGE_MASK); 2455 if (*sz > gran) 2456 *sz = gran; 2457 } 2458 return (va); 2459 } 2460 2461 void 2462 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2463 vm_offset_t va) 2464 { 2465 2466 /* Raw physical memory dumps don't have a virtual address. */ 2467 if (md->md_vaddr == ~0UL) { 2468 tlb1_idx--; 2469 tlb1[tlb1_idx].mas1 = 0; 2470 tlb1[tlb1_idx].mas2 = 0; 2471 tlb1[tlb1_idx].mas3 = 0; 2472 tlb1_write_entry(tlb1_idx); 2473 return; 2474 } 2475 2476 /* Minidumps are based on virtual memory addresses. */ 2477 /* Nothing to do... */ 2478 } 2479 2480 struct pmap_md * 2481 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev) 2482 { 2483 static struct pmap_md md; 2484 struct bi_mem_region *mr; 2485 pte_t *pte; 2486 vm_offset_t va; 2487 2488 if (dumpsys_minidump) { 2489 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2490 if (prev == NULL) { 2491 /* 1st: kernel .data and .bss. */ 2492 md.md_index = 1; 2493 md.md_vaddr = trunc_page((uintptr_t)_etext); 2494 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2495 return (&md); 2496 } 2497 switch (prev->md_index) { 2498 case 1: 2499 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2500 md.md_index = 2; 2501 md.md_vaddr = data_start; 2502 md.md_size = data_end - data_start; 2503 break; 2504 case 2: 2505 /* 3rd: kernel VM. */ 2506 va = prev->md_vaddr + prev->md_size; 2507 /* Find start of next chunk (from va). */ 2508 while (va < virtual_end) { 2509 /* Don't dump the buffer cache. */ 2510 if (va >= kmi.buffer_sva && 2511 va < kmi.buffer_eva) { 2512 va = kmi.buffer_eva; 2513 continue; 2514 } 2515 pte = pte_find(mmu, kernel_pmap, va); 2516 if (pte != NULL && PTE_ISVALID(pte)) 2517 break; 2518 va += PAGE_SIZE; 2519 } 2520 if (va < virtual_end) { 2521 md.md_vaddr = va; 2522 va += PAGE_SIZE; 2523 /* Find last page in chunk. */ 2524 while (va < virtual_end) { 2525 /* Don't run into the buffer cache. */ 2526 if (va == kmi.buffer_sva) 2527 break; 2528 pte = pte_find(mmu, kernel_pmap, va); 2529 if (pte == NULL || !PTE_ISVALID(pte)) 2530 break; 2531 va += PAGE_SIZE; 2532 } 2533 md.md_size = va - md.md_vaddr; 2534 break; 2535 } 2536 md.md_index = 3; 2537 /* FALLTHROUGH */ 2538 default: 2539 return (NULL); 2540 } 2541 } else { /* minidumps */ 2542 mr = bootinfo_mr(); 2543 if (prev == NULL) { 2544 /* first physical chunk. */ 2545 md.md_paddr = mr->mem_base; 2546 md.md_size = mr->mem_size; 2547 md.md_vaddr = ~0UL; 2548 md.md_index = 1; 2549 } else if (md.md_index < bootinfo->bi_mem_reg_no) { 2550 md.md_paddr = mr[md.md_index].mem_base; 2551 md.md_size = mr[md.md_index].mem_size; 2552 md.md_vaddr = ~0UL; 2553 md.md_index++; 2554 } else { 2555 /* There's no next physical chunk. */ 2556 return (NULL); 2557 } 2558 } 2559 2560 return (&md); 2561 } 2562 2563 /* 2564 * Map a set of physical memory pages into the kernel virtual address space. 2565 * Return a pointer to where it is mapped. This routine is intended to be used 2566 * for mapping device memory, NOT real memory. 2567 */ 2568 static void * 2569 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size) 2570 { 2571 void *res; 2572 uintptr_t va; 2573 vm_size_t sz; 2574 2575 va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa); 2576 res = (void *)va; 2577 2578 do { 2579 sz = 1 << (ilog2(size) & ~1); 2580 if (bootverbose) 2581 printf("Wiring VA=%x to PA=%x (size=%x), " 2582 "using TLB1[%d]\n", va, pa, sz, tlb1_idx); 2583 tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO); 2584 size -= sz; 2585 pa += sz; 2586 va += sz; 2587 } while (size > 0); 2588 2589 return (res); 2590 } 2591 2592 /* 2593 * 'Unmap' a range mapped by mmu_booke_mapdev(). 2594 */ 2595 static void 2596 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2597 { 2598 vm_offset_t base, offset; 2599 2600 /* 2601 * Unmap only if this is inside kernel virtual space. 2602 */ 2603 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 2604 base = trunc_page(va); 2605 offset = va & PAGE_MASK; 2606 size = roundup(offset + size, PAGE_SIZE); 2607 kmem_free(kernel_map, base, size); 2608 } 2609 } 2610 2611 /* 2612 * mmu_booke_object_init_pt preloads the ptes for a given object into the 2613 * specified pmap. This eliminates the blast of soft faults on process startup 2614 * and immediately after an mmap. 2615 */ 2616 static void 2617 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2618 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 2619 { 2620 2621 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2622 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 2623 ("mmu_booke_object_init_pt: non-device object")); 2624 } 2625 2626 /* 2627 * Perform the pmap work for mincore. 2628 */ 2629 static int 2630 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2631 { 2632 2633 TODO; 2634 return (0); 2635 } 2636 2637 /**************************************************************************/ 2638 /* TID handling */ 2639 /**************************************************************************/ 2640 2641 /* 2642 * Allocate a TID. If necessary, steal one from someone else. 2643 * The new TID is flushed from the TLB before returning. 2644 */ 2645 static tlbtid_t 2646 tid_alloc(pmap_t pmap) 2647 { 2648 tlbtid_t tid; 2649 int thiscpu; 2650 2651 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 2652 2653 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 2654 2655 thiscpu = PCPU_GET(cpuid); 2656 2657 tid = PCPU_GET(tid_next); 2658 if (tid > TID_MAX) 2659 tid = TID_MIN; 2660 PCPU_SET(tid_next, tid + 1); 2661 2662 /* If we are stealing TID then clear the relevant pmap's field */ 2663 if (tidbusy[thiscpu][tid] != NULL) { 2664 2665 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 2666 2667 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 2668 2669 /* Flush all entries from TLB0 matching this TID. */ 2670 tid_flush(tid); 2671 } 2672 2673 tidbusy[thiscpu][tid] = pmap; 2674 pmap->pm_tid[thiscpu] = tid; 2675 __asm __volatile("msync; isync"); 2676 2677 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 2678 PCPU_GET(tid_next)); 2679 2680 return (tid); 2681 } 2682 2683 /**************************************************************************/ 2684 /* TLB0 handling */ 2685 /**************************************************************************/ 2686 2687 static void 2688 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 2689 uint32_t mas7) 2690 { 2691 int as; 2692 char desc[3]; 2693 tlbtid_t tid; 2694 vm_size_t size; 2695 unsigned int tsize; 2696 2697 desc[2] = '\0'; 2698 if (mas1 & MAS1_VALID) 2699 desc[0] = 'V'; 2700 else 2701 desc[0] = ' '; 2702 2703 if (mas1 & MAS1_IPROT) 2704 desc[1] = 'P'; 2705 else 2706 desc[1] = ' '; 2707 2708 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 2709 tid = MAS1_GETTID(mas1); 2710 2711 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 2712 size = 0; 2713 if (tsize) 2714 size = tsize2size(tsize); 2715 2716 debugf("%3d: (%s) [AS=%d] " 2717 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 2718 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", 2719 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 2720 } 2721 2722 /* Convert TLB0 va and way number to tlb0[] table index. */ 2723 static inline unsigned int 2724 tlb0_tableidx(vm_offset_t va, unsigned int way) 2725 { 2726 unsigned int idx; 2727 2728 idx = (way * TLB0_ENTRIES_PER_WAY); 2729 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 2730 return (idx); 2731 } 2732 2733 /* 2734 * Invalidate TLB0 entry. 2735 */ 2736 static inline void 2737 tlb0_flush_entry(vm_offset_t va) 2738 { 2739 2740 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 2741 2742 mtx_assert(&tlbivax_mutex, MA_OWNED); 2743 2744 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 2745 __asm __volatile("isync; msync"); 2746 __asm __volatile("tlbsync; msync"); 2747 2748 CTR1(KTR_PMAP, "%s: e", __func__); 2749 } 2750 2751 /* Print out contents of the MAS registers for each TLB0 entry */ 2752 void 2753 tlb0_print_tlbentries(void) 2754 { 2755 uint32_t mas0, mas1, mas2, mas3, mas7; 2756 int entryidx, way, idx; 2757 2758 debugf("TLB0 entries:\n"); 2759 for (way = 0; way < TLB0_WAYS; way ++) 2760 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 2761 2762 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 2763 mtspr(SPR_MAS0, mas0); 2764 __asm __volatile("isync"); 2765 2766 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 2767 mtspr(SPR_MAS2, mas2); 2768 2769 __asm __volatile("isync; tlbre"); 2770 2771 mas1 = mfspr(SPR_MAS1); 2772 mas2 = mfspr(SPR_MAS2); 2773 mas3 = mfspr(SPR_MAS3); 2774 mas7 = mfspr(SPR_MAS7); 2775 2776 idx = tlb0_tableidx(mas2, way); 2777 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 2778 } 2779 } 2780 2781 /**************************************************************************/ 2782 /* TLB1 handling */ 2783 /**************************************************************************/ 2784 2785 /* 2786 * TLB1 mapping notes: 2787 * 2788 * TLB1[0] CCSRBAR 2789 * TLB1[1] Kernel text and data. 2790 * TLB1[2-15] Additional kernel text and data mappings (if required), PCI 2791 * windows, other devices mappings. 2792 */ 2793 2794 /* 2795 * Write given entry to TLB1 hardware. 2796 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 2797 */ 2798 static void 2799 tlb1_write_entry(unsigned int idx) 2800 { 2801 uint32_t mas0, mas7; 2802 2803 //debugf("tlb1_write_entry: s\n"); 2804 2805 /* Clear high order RPN bits */ 2806 mas7 = 0; 2807 2808 /* Select entry */ 2809 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 2810 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 2811 2812 mtspr(SPR_MAS0, mas0); 2813 __asm __volatile("isync"); 2814 mtspr(SPR_MAS1, tlb1[idx].mas1); 2815 __asm __volatile("isync"); 2816 mtspr(SPR_MAS2, tlb1[idx].mas2); 2817 __asm __volatile("isync"); 2818 mtspr(SPR_MAS3, tlb1[idx].mas3); 2819 __asm __volatile("isync"); 2820 mtspr(SPR_MAS7, mas7); 2821 __asm __volatile("isync; tlbwe; isync; msync"); 2822 2823 //debugf("tlb1_write_entry: e\n"); 2824 } 2825 2826 /* 2827 * Return the largest uint value log such that 2^log <= num. 2828 */ 2829 static unsigned int 2830 ilog2(unsigned int num) 2831 { 2832 int lz; 2833 2834 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 2835 return (31 - lz); 2836 } 2837 2838 /* 2839 * Convert TLB TSIZE value to mapped region size. 2840 */ 2841 static vm_size_t 2842 tsize2size(unsigned int tsize) 2843 { 2844 2845 /* 2846 * size = 4^tsize KB 2847 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 2848 */ 2849 2850 return ((1 << (2 * tsize)) * 1024); 2851 } 2852 2853 /* 2854 * Convert region size (must be power of 4) to TLB TSIZE value. 2855 */ 2856 static unsigned int 2857 size2tsize(vm_size_t size) 2858 { 2859 2860 return (ilog2(size) / 2 - 5); 2861 } 2862 2863 /* 2864 * Register permanent kernel mapping in TLB1. 2865 * 2866 * Entries are created starting from index 0 (current free entry is 2867 * kept in tlb1_idx) and are not supposed to be invalidated. 2868 */ 2869 static int 2870 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size, 2871 uint32_t flags) 2872 { 2873 uint32_t ts, tid; 2874 int tsize; 2875 2876 if (tlb1_idx >= TLB1_ENTRIES) { 2877 printf("tlb1_set_entry: TLB1 full!\n"); 2878 return (-1); 2879 } 2880 2881 /* Convert size to TSIZE */ 2882 tsize = size2tsize(size); 2883 2884 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 2885 /* XXX TS is hard coded to 0 for now as we only use single address space */ 2886 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 2887 2888 /* XXX LOCK tlb1[] */ 2889 2890 tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 2891 tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 2892 tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags; 2893 2894 /* Set supervisor RWX permission bits */ 2895 tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 2896 2897 tlb1_write_entry(tlb1_idx++); 2898 2899 /* XXX UNLOCK tlb1[] */ 2900 2901 /* 2902 * XXX in general TLB1 updates should be propagated between CPUs, 2903 * since current design assumes to have the same TLB1 set-up on all 2904 * cores. 2905 */ 2906 return (0); 2907 } 2908 2909 static int 2910 tlb1_entry_size_cmp(const void *a, const void *b) 2911 { 2912 const vm_size_t *sza; 2913 const vm_size_t *szb; 2914 2915 sza = a; 2916 szb = b; 2917 if (*sza > *szb) 2918 return (-1); 2919 else if (*sza < *szb) 2920 return (1); 2921 else 2922 return (0); 2923 } 2924 2925 /* 2926 * Map in contiguous RAM region into the TLB1 using maximum of 2927 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 2928 * 2929 * If necessary round up last entry size and return total size 2930 * used by all allocated entries. 2931 */ 2932 vm_size_t 2933 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size) 2934 { 2935 vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES]; 2936 vm_size_t mapped_size, sz, esz; 2937 unsigned int log; 2938 int i; 2939 2940 CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x", 2941 __func__, size, va, pa); 2942 2943 mapped_size = 0; 2944 sz = size; 2945 memset(entry_size, 0, sizeof(entry_size)); 2946 2947 /* Calculate entry sizes. */ 2948 for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) { 2949 2950 /* Largest region that is power of 4 and fits within size */ 2951 log = ilog2(sz) / 2; 2952 esz = 1 << (2 * log); 2953 2954 /* If this is last entry cover remaining size. */ 2955 if (i == KERNEL_REGION_MAX_TLB_ENTRIES - 1) { 2956 while (esz < sz) 2957 esz = esz << 2; 2958 } 2959 2960 entry_size[i] = esz; 2961 mapped_size += esz; 2962 if (esz < sz) 2963 sz -= esz; 2964 else 2965 sz = 0; 2966 } 2967 2968 /* Sort entry sizes, required to get proper entry address alignment. */ 2969 qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES, 2970 sizeof(vm_size_t), tlb1_entry_size_cmp); 2971 2972 /* Load TLB1 entries. */ 2973 for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) { 2974 esz = entry_size[i]; 2975 if (!esz) 2976 break; 2977 2978 CTR5(KTR_PMAP, "%s: entry %d: sz = 0x%08x (va = 0x%08x " 2979 "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa); 2980 2981 tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM); 2982 2983 va += esz; 2984 pa += esz; 2985 } 2986 2987 CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)", 2988 __func__, mapped_size, mapped_size - size); 2989 2990 return (mapped_size); 2991 } 2992 2993 /* 2994 * TLB1 initialization routine, to be called after the very first 2995 * assembler level setup done in locore.S. 2996 */ 2997 void 2998 tlb1_init(vm_offset_t ccsrbar) 2999 { 3000 uint32_t mas0; 3001 3002 /* TLB1[1] is used to map the kernel. Save that entry. */ 3003 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1); 3004 mtspr(SPR_MAS0, mas0); 3005 __asm __volatile("isync; tlbre"); 3006 3007 tlb1[1].mas1 = mfspr(SPR_MAS1); 3008 tlb1[1].mas2 = mfspr(SPR_MAS2); 3009 tlb1[1].mas3 = mfspr(SPR_MAS3); 3010 3011 /* Map in CCSRBAR in TLB1[0] */ 3012 tlb1_idx = 0; 3013 tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO); 3014 /* 3015 * Set the next available TLB1 entry index. Note TLB[1] is reserved 3016 * for initial mapping of kernel text+data, which was set early in 3017 * locore, we need to skip this [busy] entry. 3018 */ 3019 tlb1_idx = 2; 3020 3021 /* Setup TLB miss defaults */ 3022 set_mas4_defaults(); 3023 } 3024 3025 /* 3026 * Setup MAS4 defaults. 3027 * These values are loaded to MAS0-2 on a TLB miss. 3028 */ 3029 static void 3030 set_mas4_defaults(void) 3031 { 3032 uint32_t mas4; 3033 3034 /* Defaults: TLB0, PID0, TSIZED=4K */ 3035 mas4 = MAS4_TLBSELD0; 3036 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 3037 #ifdef SMP 3038 mas4 |= MAS4_MD; 3039 #endif 3040 mtspr(SPR_MAS4, mas4); 3041 __asm __volatile("isync"); 3042 } 3043 3044 /* 3045 * Print out contents of the MAS registers for each TLB1 entry 3046 */ 3047 void 3048 tlb1_print_tlbentries(void) 3049 { 3050 uint32_t mas0, mas1, mas2, mas3, mas7; 3051 int i; 3052 3053 debugf("TLB1 entries:\n"); 3054 for (i = 0; i < TLB1_ENTRIES; i++) { 3055 3056 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3057 mtspr(SPR_MAS0, mas0); 3058 3059 __asm __volatile("isync; tlbre"); 3060 3061 mas1 = mfspr(SPR_MAS1); 3062 mas2 = mfspr(SPR_MAS2); 3063 mas3 = mfspr(SPR_MAS3); 3064 mas7 = mfspr(SPR_MAS7); 3065 3066 tlb_print_entry(i, mas1, mas2, mas3, mas7); 3067 } 3068 } 3069 3070 /* 3071 * Print out contents of the in-ram tlb1 table. 3072 */ 3073 void 3074 tlb1_print_entries(void) 3075 { 3076 int i; 3077 3078 debugf("tlb1[] table entries:\n"); 3079 for (i = 0; i < TLB1_ENTRIES; i++) 3080 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0); 3081 } 3082 3083 /* 3084 * Return 0 if the physical IO range is encompassed by one of the 3085 * the TLB1 entries, otherwise return related error code. 3086 */ 3087 static int 3088 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 3089 { 3090 uint32_t prot; 3091 vm_paddr_t pa_start; 3092 vm_paddr_t pa_end; 3093 unsigned int entry_tsize; 3094 vm_size_t entry_size; 3095 3096 *va = (vm_offset_t)NULL; 3097 3098 /* Skip invalid entries */ 3099 if (!(tlb1[i].mas1 & MAS1_VALID)) 3100 return (EINVAL); 3101 3102 /* 3103 * The entry must be cache-inhibited, guarded, and r/w 3104 * so it can function as an i/o page 3105 */ 3106 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G); 3107 if (prot != (MAS2_I | MAS2_G)) 3108 return (EPERM); 3109 3110 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW); 3111 if (prot != (MAS3_SR | MAS3_SW)) 3112 return (EPERM); 3113 3114 /* The address should be within the entry range. */ 3115 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3116 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 3117 3118 entry_size = tsize2size(entry_tsize); 3119 pa_start = tlb1[i].mas3 & MAS3_RPN; 3120 pa_end = pa_start + entry_size - 1; 3121 3122 if ((pa < pa_start) || ((pa + size) > pa_end)) 3123 return (ERANGE); 3124 3125 /* Return virtual address of this mapping. */ 3126 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start); 3127 return (0); 3128 } 3129