xref: /freebsd/sys/powerpc/booke/pmap.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_kstack_pages.h"
55 
56 #include <sys/param.h>
57 #include <sys/conf.h>
58 #include <sys/malloc.h>
59 #include <sys/ktr.h>
60 #include <sys/proc.h>
61 #include <sys/user.h>
62 #include <sys/queue.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/kerneldump.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/lock.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #include <sys/smp.h>
73 #include <sys/vmmeter.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/uma.h>
85 
86 #include <machine/cpu.h>
87 #include <machine/pcb.h>
88 #include <machine/platform.h>
89 
90 #include <machine/tlb.h>
91 #include <machine/spr.h>
92 #include <machine/md_var.h>
93 #include <machine/mmuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/pte.h>
96 
97 #include "mmu_if.h"
98 
99 #ifdef  DEBUG
100 #define debugf(fmt, args...) printf(fmt, ##args)
101 #else
102 #define debugf(fmt, args...)
103 #endif
104 
105 #define TODO			panic("%s: not implemented", __func__);
106 
107 extern unsigned char _etext[];
108 extern unsigned char _end[];
109 
110 extern uint32_t *bootinfo;
111 
112 #ifdef SMP
113 extern uint32_t bp_ntlb1s;
114 #endif
115 
116 vm_paddr_t kernload;
117 vm_offset_t kernstart;
118 vm_size_t kernsize;
119 
120 /* Message buffer and tables. */
121 static vm_offset_t data_start;
122 static vm_size_t data_end;
123 
124 /* Phys/avail memory regions. */
125 static struct mem_region *availmem_regions;
126 static int availmem_regions_sz;
127 static struct mem_region *physmem_regions;
128 static int physmem_regions_sz;
129 
130 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
131 static vm_offset_t zero_page_va;
132 static struct mtx zero_page_mutex;
133 
134 static struct mtx tlbivax_mutex;
135 
136 /*
137  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
138  * by idle thred only, no lock required.
139  */
140 static vm_offset_t zero_page_idle_va;
141 
142 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
143 static vm_offset_t copy_page_src_va;
144 static vm_offset_t copy_page_dst_va;
145 static struct mtx copy_page_mutex;
146 
147 /**************************************************************************/
148 /* PMAP */
149 /**************************************************************************/
150 
151 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
152     vm_prot_t, u_int flags, int8_t psind);
153 
154 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
155 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
156 
157 /*
158  * If user pmap is processed with mmu_booke_remove and the resident count
159  * drops to 0, there are no more pages to remove, so we need not continue.
160  */
161 #define PMAP_REMOVE_DONE(pmap) \
162 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
163 
164 extern void tid_flush(tlbtid_t tid, int tlb0_ways, int tlb0_entries_per_way);
165 extern int elf32_nxstack;
166 
167 /**************************************************************************/
168 /* TLB and TID handling */
169 /**************************************************************************/
170 
171 /* Translation ID busy table */
172 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173 
174 /*
175  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176  * core revisions and should be read from h/w registers during early config.
177  */
178 uint32_t tlb0_entries;
179 uint32_t tlb0_ways;
180 uint32_t tlb0_entries_per_way;
181 
182 #define TLB0_ENTRIES		(tlb0_entries)
183 #define TLB0_WAYS		(tlb0_ways)
184 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185 
186 #define TLB1_ENTRIES 16
187 
188 /* In-ram copy of the TLB1 */
189 static tlb_entry_t tlb1[TLB1_ENTRIES];
190 
191 /* Next free entry in the TLB1 */
192 static unsigned int tlb1_idx;
193 static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
194 
195 static tlbtid_t tid_alloc(struct pmap *);
196 
197 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
198 
199 static int tlb1_set_entry(vm_offset_t, vm_paddr_t, vm_size_t, uint32_t);
200 static void tlb1_write_entry(unsigned int);
201 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
202 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
203 
204 static vm_size_t tsize2size(unsigned int);
205 static unsigned int size2tsize(vm_size_t);
206 static unsigned int ilog2(unsigned int);
207 
208 static void set_mas4_defaults(void);
209 
210 static inline void tlb0_flush_entry(vm_offset_t);
211 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
212 
213 /**************************************************************************/
214 /* Page table management */
215 /**************************************************************************/
216 
217 static struct rwlock_padalign pvh_global_lock;
218 
219 /* Data for the pv entry allocation mechanism */
220 static uma_zone_t pvzone;
221 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
222 
223 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
224 
225 #ifndef PMAP_SHPGPERPROC
226 #define PMAP_SHPGPERPROC	200
227 #endif
228 
229 static void ptbl_init(void);
230 static struct ptbl_buf *ptbl_buf_alloc(void);
231 static void ptbl_buf_free(struct ptbl_buf *);
232 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
233 
234 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
235 static void ptbl_free(mmu_t, pmap_t, unsigned int);
236 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
237 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
238 
239 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
240 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
241 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
242 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
243 
244 static pv_entry_t pv_alloc(void);
245 static void pv_free(pv_entry_t);
246 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
247 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
248 
249 static void booke_pmap_init_qpages(void);
250 
251 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
252 #define PTBL_BUFS		(128 * 16)
253 
254 struct ptbl_buf {
255 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
256 	vm_offset_t kva;		/* va of mapping */
257 };
258 
259 /* ptbl free list and a lock used for access synchronization. */
260 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
261 static struct mtx ptbl_buf_freelist_lock;
262 
263 /* Base address of kva space allocated fot ptbl bufs. */
264 static vm_offset_t ptbl_buf_pool_vabase;
265 
266 /* Pointer to ptbl_buf structures. */
267 static struct ptbl_buf *ptbl_bufs;
268 
269 #ifdef SMP
270 void pmap_bootstrap_ap(volatile uint32_t *);
271 #endif
272 
273 /*
274  * Kernel MMU interface
275  */
276 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
277 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
278     vm_size_t, vm_offset_t);
279 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
280 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
281     vm_offset_t, vm_page_t *, vm_offset_t, int);
282 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283     vm_prot_t, u_int flags, int8_t psind);
284 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
285     vm_page_t, vm_prot_t);
286 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
287     vm_prot_t);
288 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
289 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
290     vm_prot_t);
291 static void		mmu_booke_init(mmu_t);
292 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
293 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
294 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
295 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
296 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
297     int);
298 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
299     vm_paddr_t *);
300 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
301     vm_object_t, vm_pindex_t, vm_size_t);
302 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
303 static void		mmu_booke_page_init(mmu_t, vm_page_t);
304 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
305 static void		mmu_booke_pinit(mmu_t, pmap_t);
306 static void		mmu_booke_pinit0(mmu_t, pmap_t);
307 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
308     vm_prot_t);
309 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
310 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
311 static void		mmu_booke_release(mmu_t, pmap_t);
312 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
314 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
315 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
317 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
318 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
319 static void		mmu_booke_activate(mmu_t, struct thread *);
320 static void		mmu_booke_deactivate(mmu_t, struct thread *);
321 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
322 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
323 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
324 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
325 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
326 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
327 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
328 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
329 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
330 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
331     vm_size_t);
332 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
333     void **);
334 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
335     void *);
336 static void		mmu_booke_scan_init(mmu_t);
337 static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
338 static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
339 
340 static mmu_method_t mmu_booke_methods[] = {
341 	/* pmap dispatcher interface */
342 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
343 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
344 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
345 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
346 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
347 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
348 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
349 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
350 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
351 	MMUMETHOD(mmu_init,		mmu_booke_init),
352 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
353 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
354 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
355 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
356 	MMUMETHOD(mmu_map,		mmu_booke_map),
357 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
358 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
359 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
360 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
361 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
362 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
363 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
364 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
365 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
366 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
367 	MMUMETHOD(mmu_release,		mmu_booke_release),
368 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
369 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
370 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
371 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
372 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
373 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
374 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
375 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
376 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
377 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
378 	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
379 	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
380 
381 	/* Internal interfaces */
382 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
383 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
384 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
385 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
386 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
387 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
388 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
389 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
390 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
391 
392 	/* dumpsys() support */
393 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
394 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
395 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
396 
397 	{ 0, 0 }
398 };
399 
400 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
401 
402 static __inline uint32_t
403 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
404 {
405 	uint32_t attrib;
406 	int i;
407 
408 	if (ma != VM_MEMATTR_DEFAULT) {
409 		switch (ma) {
410 		case VM_MEMATTR_UNCACHEABLE:
411 			return (PTE_I | PTE_G);
412 		case VM_MEMATTR_WRITE_COMBINING:
413 		case VM_MEMATTR_WRITE_BACK:
414 		case VM_MEMATTR_PREFETCHABLE:
415 			return (PTE_I);
416 		case VM_MEMATTR_WRITE_THROUGH:
417 			return (PTE_W | PTE_M);
418 		}
419 	}
420 
421 	/*
422 	 * Assume the page is cache inhibited and access is guarded unless
423 	 * it's in our available memory array.
424 	 */
425 	attrib = _TLB_ENTRY_IO;
426 	for (i = 0; i < physmem_regions_sz; i++) {
427 		if ((pa >= physmem_regions[i].mr_start) &&
428 		    (pa < (physmem_regions[i].mr_start +
429 		     physmem_regions[i].mr_size))) {
430 			attrib = _TLB_ENTRY_MEM;
431 			break;
432 		}
433 	}
434 
435 	return (attrib);
436 }
437 
438 static inline void
439 tlb_miss_lock(void)
440 {
441 #ifdef SMP
442 	struct pcpu *pc;
443 
444 	if (!smp_started)
445 		return;
446 
447 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
448 		if (pc != pcpup) {
449 
450 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
451 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
452 
453 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
454 			    ("tlb_miss_lock: tried to lock self"));
455 
456 			tlb_lock(pc->pc_booke_tlb_lock);
457 
458 			CTR1(KTR_PMAP, "%s: locked", __func__);
459 		}
460 	}
461 #endif
462 }
463 
464 static inline void
465 tlb_miss_unlock(void)
466 {
467 #ifdef SMP
468 	struct pcpu *pc;
469 
470 	if (!smp_started)
471 		return;
472 
473 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
474 		if (pc != pcpup) {
475 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
476 			    __func__, pc->pc_cpuid);
477 
478 			tlb_unlock(pc->pc_booke_tlb_lock);
479 
480 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
481 		}
482 	}
483 #endif
484 }
485 
486 /* Return number of entries in TLB0. */
487 static __inline void
488 tlb0_get_tlbconf(void)
489 {
490 	uint32_t tlb0_cfg;
491 
492 	tlb0_cfg = mfspr(SPR_TLB0CFG);
493 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
494 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
495 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
496 }
497 
498 /* Initialize pool of kva ptbl buffers. */
499 static void
500 ptbl_init(void)
501 {
502 	int i;
503 
504 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
505 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
506 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
507 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
508 
509 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
510 	TAILQ_INIT(&ptbl_buf_freelist);
511 
512 	for (i = 0; i < PTBL_BUFS; i++) {
513 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
514 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
515 	}
516 }
517 
518 /* Get a ptbl_buf from the freelist. */
519 static struct ptbl_buf *
520 ptbl_buf_alloc(void)
521 {
522 	struct ptbl_buf *buf;
523 
524 	mtx_lock(&ptbl_buf_freelist_lock);
525 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
526 	if (buf != NULL)
527 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
528 	mtx_unlock(&ptbl_buf_freelist_lock);
529 
530 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
531 
532 	return (buf);
533 }
534 
535 /* Return ptbl buff to free pool. */
536 static void
537 ptbl_buf_free(struct ptbl_buf *buf)
538 {
539 
540 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
541 
542 	mtx_lock(&ptbl_buf_freelist_lock);
543 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
544 	mtx_unlock(&ptbl_buf_freelist_lock);
545 }
546 
547 /*
548  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
549  */
550 static void
551 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
552 {
553 	struct ptbl_buf *pbuf;
554 
555 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
556 
557 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
558 
559 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
560 		if (pbuf->kva == (vm_offset_t)ptbl) {
561 			/* Remove from pmap ptbl buf list. */
562 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
563 
564 			/* Free corresponding ptbl buf. */
565 			ptbl_buf_free(pbuf);
566 			break;
567 		}
568 }
569 
570 /* Allocate page table. */
571 static pte_t *
572 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
573 {
574 	vm_page_t mtbl[PTBL_PAGES];
575 	vm_page_t m;
576 	struct ptbl_buf *pbuf;
577 	unsigned int pidx;
578 	pte_t *ptbl;
579 	int i, j;
580 
581 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
582 	    (pmap == kernel_pmap), pdir_idx);
583 
584 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
585 	    ("ptbl_alloc: invalid pdir_idx"));
586 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
587 	    ("pte_alloc: valid ptbl entry exists!"));
588 
589 	pbuf = ptbl_buf_alloc();
590 	if (pbuf == NULL)
591 		panic("pte_alloc: couldn't alloc kernel virtual memory");
592 
593 	ptbl = (pte_t *)pbuf->kva;
594 
595 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
596 
597 	/* Allocate ptbl pages, this will sleep! */
598 	for (i = 0; i < PTBL_PAGES; i++) {
599 		pidx = (PTBL_PAGES * pdir_idx) + i;
600 		while ((m = vm_page_alloc(NULL, pidx,
601 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
602 			PMAP_UNLOCK(pmap);
603 			rw_wunlock(&pvh_global_lock);
604 			if (nosleep) {
605 				ptbl_free_pmap_ptbl(pmap, ptbl);
606 				for (j = 0; j < i; j++)
607 					vm_page_free(mtbl[j]);
608 				atomic_subtract_int(&vm_cnt.v_wire_count, i);
609 				return (NULL);
610 			}
611 			VM_WAIT;
612 			rw_wlock(&pvh_global_lock);
613 			PMAP_LOCK(pmap);
614 		}
615 		mtbl[i] = m;
616 	}
617 
618 	/* Map allocated pages into kernel_pmap. */
619 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
620 
621 	/* Zero whole ptbl. */
622 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
623 
624 	/* Add pbuf to the pmap ptbl bufs list. */
625 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
626 
627 	return (ptbl);
628 }
629 
630 /* Free ptbl pages and invalidate pdir entry. */
631 static void
632 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
633 {
634 	pte_t *ptbl;
635 	vm_paddr_t pa;
636 	vm_offset_t va;
637 	vm_page_t m;
638 	int i;
639 
640 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
641 	    (pmap == kernel_pmap), pdir_idx);
642 
643 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
644 	    ("ptbl_free: invalid pdir_idx"));
645 
646 	ptbl = pmap->pm_pdir[pdir_idx];
647 
648 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
649 
650 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
651 
652 	/*
653 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
654 	 * don't attempt to look up the page tables we are releasing.
655 	 */
656 	mtx_lock_spin(&tlbivax_mutex);
657 	tlb_miss_lock();
658 
659 	pmap->pm_pdir[pdir_idx] = NULL;
660 
661 	tlb_miss_unlock();
662 	mtx_unlock_spin(&tlbivax_mutex);
663 
664 	for (i = 0; i < PTBL_PAGES; i++) {
665 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
666 		pa = pte_vatopa(mmu, kernel_pmap, va);
667 		m = PHYS_TO_VM_PAGE(pa);
668 		vm_page_free_zero(m);
669 		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
670 		mmu_booke_kremove(mmu, va);
671 	}
672 
673 	ptbl_free_pmap_ptbl(pmap, ptbl);
674 }
675 
676 /*
677  * Decrement ptbl pages hold count and attempt to free ptbl pages.
678  * Called when removing pte entry from ptbl.
679  *
680  * Return 1 if ptbl pages were freed.
681  */
682 static int
683 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
684 {
685 	pte_t *ptbl;
686 	vm_paddr_t pa;
687 	vm_page_t m;
688 	int i;
689 
690 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
691 	    (pmap == kernel_pmap), pdir_idx);
692 
693 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
694 	    ("ptbl_unhold: invalid pdir_idx"));
695 	KASSERT((pmap != kernel_pmap),
696 	    ("ptbl_unhold: unholding kernel ptbl!"));
697 
698 	ptbl = pmap->pm_pdir[pdir_idx];
699 
700 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
701 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
702 	    ("ptbl_unhold: non kva ptbl"));
703 
704 	/* decrement hold count */
705 	for (i = 0; i < PTBL_PAGES; i++) {
706 		pa = pte_vatopa(mmu, kernel_pmap,
707 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
708 		m = PHYS_TO_VM_PAGE(pa);
709 		m->wire_count--;
710 	}
711 
712 	/*
713 	 * Free ptbl pages if there are no pte etries in this ptbl.
714 	 * wire_count has the same value for all ptbl pages, so check the last
715 	 * page.
716 	 */
717 	if (m->wire_count == 0) {
718 		ptbl_free(mmu, pmap, pdir_idx);
719 
720 		//debugf("ptbl_unhold: e (freed ptbl)\n");
721 		return (1);
722 	}
723 
724 	return (0);
725 }
726 
727 /*
728  * Increment hold count for ptbl pages. This routine is used when a new pte
729  * entry is being inserted into the ptbl.
730  */
731 static void
732 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
733 {
734 	vm_paddr_t pa;
735 	pte_t *ptbl;
736 	vm_page_t m;
737 	int i;
738 
739 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
740 	    pdir_idx);
741 
742 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
743 	    ("ptbl_hold: invalid pdir_idx"));
744 	KASSERT((pmap != kernel_pmap),
745 	    ("ptbl_hold: holding kernel ptbl!"));
746 
747 	ptbl = pmap->pm_pdir[pdir_idx];
748 
749 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
750 
751 	for (i = 0; i < PTBL_PAGES; i++) {
752 		pa = pte_vatopa(mmu, kernel_pmap,
753 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
754 		m = PHYS_TO_VM_PAGE(pa);
755 		m->wire_count++;
756 	}
757 }
758 
759 /* Allocate pv_entry structure. */
760 pv_entry_t
761 pv_alloc(void)
762 {
763 	pv_entry_t pv;
764 
765 	pv_entry_count++;
766 	if (pv_entry_count > pv_entry_high_water)
767 		pagedaemon_wakeup();
768 	pv = uma_zalloc(pvzone, M_NOWAIT);
769 
770 	return (pv);
771 }
772 
773 /* Free pv_entry structure. */
774 static __inline void
775 pv_free(pv_entry_t pve)
776 {
777 
778 	pv_entry_count--;
779 	uma_zfree(pvzone, pve);
780 }
781 
782 
783 /* Allocate and initialize pv_entry structure. */
784 static void
785 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
786 {
787 	pv_entry_t pve;
788 
789 	//int su = (pmap == kernel_pmap);
790 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
791 	//	(u_int32_t)pmap, va, (u_int32_t)m);
792 
793 	pve = pv_alloc();
794 	if (pve == NULL)
795 		panic("pv_insert: no pv entries!");
796 
797 	pve->pv_pmap = pmap;
798 	pve->pv_va = va;
799 
800 	/* add to pv_list */
801 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
802 	rw_assert(&pvh_global_lock, RA_WLOCKED);
803 
804 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
805 
806 	//debugf("pv_insert: e\n");
807 }
808 
809 /* Destroy pv entry. */
810 static void
811 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
812 {
813 	pv_entry_t pve;
814 
815 	//int su = (pmap == kernel_pmap);
816 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
817 
818 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
819 	rw_assert(&pvh_global_lock, RA_WLOCKED);
820 
821 	/* find pv entry */
822 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
823 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
824 			/* remove from pv_list */
825 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
826 			if (TAILQ_EMPTY(&m->md.pv_list))
827 				vm_page_aflag_clear(m, PGA_WRITEABLE);
828 
829 			/* free pv entry struct */
830 			pv_free(pve);
831 			break;
832 		}
833 	}
834 
835 	//debugf("pv_remove: e\n");
836 }
837 
838 /*
839  * Clean pte entry, try to free page table page if requested.
840  *
841  * Return 1 if ptbl pages were freed, otherwise return 0.
842  */
843 static int
844 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
845 {
846 	unsigned int pdir_idx = PDIR_IDX(va);
847 	unsigned int ptbl_idx = PTBL_IDX(va);
848 	vm_page_t m;
849 	pte_t *ptbl;
850 	pte_t *pte;
851 
852 	//int su = (pmap == kernel_pmap);
853 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
854 	//		su, (u_int32_t)pmap, va, flags);
855 
856 	ptbl = pmap->pm_pdir[pdir_idx];
857 	KASSERT(ptbl, ("pte_remove: null ptbl"));
858 
859 	pte = &ptbl[ptbl_idx];
860 
861 	if (pte == NULL || !PTE_ISVALID(pte))
862 		return (0);
863 
864 	if (PTE_ISWIRED(pte))
865 		pmap->pm_stats.wired_count--;
866 
867 	/* Handle managed entry. */
868 	if (PTE_ISMANAGED(pte)) {
869 		/* Get vm_page_t for mapped pte. */
870 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
871 
872 		if (PTE_ISMODIFIED(pte))
873 			vm_page_dirty(m);
874 
875 		if (PTE_ISREFERENCED(pte))
876 			vm_page_aflag_set(m, PGA_REFERENCED);
877 
878 		pv_remove(pmap, va, m);
879 	}
880 
881 	mtx_lock_spin(&tlbivax_mutex);
882 	tlb_miss_lock();
883 
884 	tlb0_flush_entry(va);
885 	pte->flags = 0;
886 	pte->rpn = 0;
887 
888 	tlb_miss_unlock();
889 	mtx_unlock_spin(&tlbivax_mutex);
890 
891 	pmap->pm_stats.resident_count--;
892 
893 	if (flags & PTBL_UNHOLD) {
894 		//debugf("pte_remove: e (unhold)\n");
895 		return (ptbl_unhold(mmu, pmap, pdir_idx));
896 	}
897 
898 	//debugf("pte_remove: e\n");
899 	return (0);
900 }
901 
902 /*
903  * Insert PTE for a given page and virtual address.
904  */
905 static int
906 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
907     boolean_t nosleep)
908 {
909 	unsigned int pdir_idx = PDIR_IDX(va);
910 	unsigned int ptbl_idx = PTBL_IDX(va);
911 	pte_t *ptbl, *pte;
912 
913 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
914 	    pmap == kernel_pmap, pmap, va);
915 
916 	/* Get the page table pointer. */
917 	ptbl = pmap->pm_pdir[pdir_idx];
918 
919 	if (ptbl == NULL) {
920 		/* Allocate page table pages. */
921 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
922 		if (ptbl == NULL) {
923 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
924 			return (ENOMEM);
925 		}
926 	} else {
927 		/*
928 		 * Check if there is valid mapping for requested
929 		 * va, if there is, remove it.
930 		 */
931 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
932 		if (PTE_ISVALID(pte)) {
933 			pte_remove(mmu, pmap, va, PTBL_HOLD);
934 		} else {
935 			/*
936 			 * pte is not used, increment hold count
937 			 * for ptbl pages.
938 			 */
939 			if (pmap != kernel_pmap)
940 				ptbl_hold(mmu, pmap, pdir_idx);
941 		}
942 	}
943 
944 	/*
945 	 * Insert pv_entry into pv_list for mapped page if part of managed
946 	 * memory.
947 	 */
948 	if ((m->oflags & VPO_UNMANAGED) == 0) {
949 		flags |= PTE_MANAGED;
950 
951 		/* Create and insert pv entry. */
952 		pv_insert(pmap, va, m);
953 	}
954 
955 	pmap->pm_stats.resident_count++;
956 
957 	mtx_lock_spin(&tlbivax_mutex);
958 	tlb_miss_lock();
959 
960 	tlb0_flush_entry(va);
961 	if (pmap->pm_pdir[pdir_idx] == NULL) {
962 		/*
963 		 * If we just allocated a new page table, hook it in
964 		 * the pdir.
965 		 */
966 		pmap->pm_pdir[pdir_idx] = ptbl;
967 	}
968 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
969 	pte->rpn = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
970 	pte->flags |= (PTE_VALID | flags);
971 
972 	tlb_miss_unlock();
973 	mtx_unlock_spin(&tlbivax_mutex);
974 	return (0);
975 }
976 
977 /* Return the pa for the given pmap/va. */
978 static vm_paddr_t
979 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
980 {
981 	vm_paddr_t pa = 0;
982 	pte_t *pte;
983 
984 	pte = pte_find(mmu, pmap, va);
985 	if ((pte != NULL) && PTE_ISVALID(pte))
986 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
987 	return (pa);
988 }
989 
990 /* Get a pointer to a PTE in a page table. */
991 static pte_t *
992 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
993 {
994 	unsigned int pdir_idx = PDIR_IDX(va);
995 	unsigned int ptbl_idx = PTBL_IDX(va);
996 
997 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
998 
999 	if (pmap->pm_pdir[pdir_idx])
1000 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1001 
1002 	return (NULL);
1003 }
1004 
1005 /**************************************************************************/
1006 /* PMAP related */
1007 /**************************************************************************/
1008 
1009 /*
1010  * This is called during booke_init, before the system is really initialized.
1011  */
1012 static void
1013 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1014 {
1015 	vm_offset_t phys_kernelend;
1016 	struct mem_region *mp, *mp1;
1017 	int cnt, i, j;
1018 	u_int s, e, sz;
1019 	u_int phys_avail_count;
1020 	vm_size_t physsz, hwphyssz, kstack0_sz;
1021 	vm_offset_t kernel_pdir, kstack0, va;
1022 	vm_paddr_t kstack0_phys;
1023 	void *dpcpu;
1024 	pte_t *pte;
1025 
1026 	debugf("mmu_booke_bootstrap: entered\n");
1027 
1028 	/* Set interesting system properties */
1029 	hw_direct_map = 0;
1030 	elf32_nxstack = 1;
1031 
1032 	/* Initialize invalidation mutex */
1033 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1034 
1035 	/* Read TLB0 size and associativity. */
1036 	tlb0_get_tlbconf();
1037 
1038 	/*
1039 	 * Align kernel start and end address (kernel image).
1040 	 * Note that kernel end does not necessarily relate to kernsize.
1041 	 * kernsize is the size of the kernel that is actually mapped.
1042 	 */
1043 	kernstart = trunc_page(start);
1044 	data_start = round_page(kernelend);
1045 	data_end = data_start;
1046 
1047 	/*
1048 	 * Addresses of preloaded modules (like file systems) use
1049 	 * physical addresses. Make sure we relocate those into
1050 	 * virtual addresses.
1051 	 */
1052 	preload_addr_relocate = kernstart - kernload;
1053 
1054 	/* Allocate the dynamic per-cpu area. */
1055 	dpcpu = (void *)data_end;
1056 	data_end += DPCPU_SIZE;
1057 
1058 	/* Allocate space for the message buffer. */
1059 	msgbufp = (struct msgbuf *)data_end;
1060 	data_end += msgbufsize;
1061 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1062 	    data_end);
1063 
1064 	data_end = round_page(data_end);
1065 
1066 	/* Allocate space for ptbl_bufs. */
1067 	ptbl_bufs = (struct ptbl_buf *)data_end;
1068 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1069 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1070 	    data_end);
1071 
1072 	data_end = round_page(data_end);
1073 
1074 	/* Allocate PTE tables for kernel KVA. */
1075 	kernel_pdir = data_end;
1076 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1077 	    PDIR_SIZE - 1) / PDIR_SIZE;
1078 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1079 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1080 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1081 
1082 	debugf(" data_end: 0x%08x\n", data_end);
1083 	if (data_end - kernstart > kernsize) {
1084 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1085 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1086 	}
1087 	data_end = kernstart + kernsize;
1088 	debugf(" updated data_end: 0x%08x\n", data_end);
1089 
1090 	/*
1091 	 * Clear the structures - note we can only do it safely after the
1092 	 * possible additional TLB1 translations are in place (above) so that
1093 	 * all range up to the currently calculated 'data_end' is covered.
1094 	 */
1095 	dpcpu_init(dpcpu, 0);
1096 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1097 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1098 
1099 	/*******************************************************/
1100 	/* Set the start and end of kva. */
1101 	/*******************************************************/
1102 	virtual_avail = round_page(data_end);
1103 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1104 
1105 	/* Allocate KVA space for page zero/copy operations. */
1106 	zero_page_va = virtual_avail;
1107 	virtual_avail += PAGE_SIZE;
1108 	zero_page_idle_va = virtual_avail;
1109 	virtual_avail += PAGE_SIZE;
1110 	copy_page_src_va = virtual_avail;
1111 	virtual_avail += PAGE_SIZE;
1112 	copy_page_dst_va = virtual_avail;
1113 	virtual_avail += PAGE_SIZE;
1114 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1115 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1116 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1117 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1118 
1119 	/* Initialize page zero/copy mutexes. */
1120 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1121 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1122 
1123 	/* Allocate KVA space for ptbl bufs. */
1124 	ptbl_buf_pool_vabase = virtual_avail;
1125 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1126 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1127 	    ptbl_buf_pool_vabase, virtual_avail);
1128 
1129 	/* Calculate corresponding physical addresses for the kernel region. */
1130 	phys_kernelend = kernload + kernsize;
1131 	debugf("kernel image and allocated data:\n");
1132 	debugf(" kernload    = 0x%09llx\n", (uint64_t)kernload);
1133 	debugf(" kernstart   = 0x%08x\n", kernstart);
1134 	debugf(" kernsize    = 0x%08x\n", kernsize);
1135 
1136 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1137 		panic("mmu_booke_bootstrap: phys_avail too small");
1138 
1139 	/*
1140 	 * Remove kernel physical address range from avail regions list. Page
1141 	 * align all regions.  Non-page aligned memory isn't very interesting
1142 	 * to us.  Also, sort the entries for ascending addresses.
1143 	 */
1144 
1145 	/* Retrieve phys/avail mem regions */
1146 	mem_regions(&physmem_regions, &physmem_regions_sz,
1147 	    &availmem_regions, &availmem_regions_sz);
1148 	sz = 0;
1149 	cnt = availmem_regions_sz;
1150 	debugf("processing avail regions:\n");
1151 	for (mp = availmem_regions; mp->mr_size; mp++) {
1152 		s = mp->mr_start;
1153 		e = mp->mr_start + mp->mr_size;
1154 		debugf(" %08x-%08x -> ", s, e);
1155 		/* Check whether this region holds all of the kernel. */
1156 		if (s < kernload && e > phys_kernelend) {
1157 			availmem_regions[cnt].mr_start = phys_kernelend;
1158 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1159 			e = kernload;
1160 		}
1161 		/* Look whether this regions starts within the kernel. */
1162 		if (s >= kernload && s < phys_kernelend) {
1163 			if (e <= phys_kernelend)
1164 				goto empty;
1165 			s = phys_kernelend;
1166 		}
1167 		/* Now look whether this region ends within the kernel. */
1168 		if (e > kernload && e <= phys_kernelend) {
1169 			if (s >= kernload)
1170 				goto empty;
1171 			e = kernload;
1172 		}
1173 		/* Now page align the start and size of the region. */
1174 		s = round_page(s);
1175 		e = trunc_page(e);
1176 		if (e < s)
1177 			e = s;
1178 		sz = e - s;
1179 		debugf("%08x-%08x = %x\n", s, e, sz);
1180 
1181 		/* Check whether some memory is left here. */
1182 		if (sz == 0) {
1183 		empty:
1184 			memmove(mp, mp + 1,
1185 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1186 			cnt--;
1187 			mp--;
1188 			continue;
1189 		}
1190 
1191 		/* Do an insertion sort. */
1192 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1193 			if (s < mp1->mr_start)
1194 				break;
1195 		if (mp1 < mp) {
1196 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1197 			mp1->mr_start = s;
1198 			mp1->mr_size = sz;
1199 		} else {
1200 			mp->mr_start = s;
1201 			mp->mr_size = sz;
1202 		}
1203 	}
1204 	availmem_regions_sz = cnt;
1205 
1206 	/*******************************************************/
1207 	/* Steal physical memory for kernel stack from the end */
1208 	/* of the first avail region                           */
1209 	/*******************************************************/
1210 	kstack0_sz = kstack_pages * PAGE_SIZE;
1211 	kstack0_phys = availmem_regions[0].mr_start +
1212 	    availmem_regions[0].mr_size;
1213 	kstack0_phys -= kstack0_sz;
1214 	availmem_regions[0].mr_size -= kstack0_sz;
1215 
1216 	/*******************************************************/
1217 	/* Fill in phys_avail table, based on availmem_regions */
1218 	/*******************************************************/
1219 	phys_avail_count = 0;
1220 	physsz = 0;
1221 	hwphyssz = 0;
1222 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1223 
1224 	debugf("fill in phys_avail:\n");
1225 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1226 
1227 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1228 		    availmem_regions[i].mr_start,
1229 		    availmem_regions[i].mr_start +
1230 		        availmem_regions[i].mr_size,
1231 		    availmem_regions[i].mr_size);
1232 
1233 		if (hwphyssz != 0 &&
1234 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1235 			debugf(" hw.physmem adjust\n");
1236 			if (physsz < hwphyssz) {
1237 				phys_avail[j] = availmem_regions[i].mr_start;
1238 				phys_avail[j + 1] =
1239 				    availmem_regions[i].mr_start +
1240 				    hwphyssz - physsz;
1241 				physsz = hwphyssz;
1242 				phys_avail_count++;
1243 			}
1244 			break;
1245 		}
1246 
1247 		phys_avail[j] = availmem_regions[i].mr_start;
1248 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1249 		    availmem_regions[i].mr_size;
1250 		phys_avail_count++;
1251 		physsz += availmem_regions[i].mr_size;
1252 	}
1253 	physmem = btoc(physsz);
1254 
1255 	/* Calculate the last available physical address. */
1256 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1257 		;
1258 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1259 
1260 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1261 	debugf("phys_avail_count = %d\n", phys_avail_count);
1262 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1263 	    physmem);
1264 
1265 	/*******************************************************/
1266 	/* Initialize (statically allocated) kernel pmap. */
1267 	/*******************************************************/
1268 	PMAP_LOCK_INIT(kernel_pmap);
1269 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1270 
1271 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1272 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1273 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1274 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1275 
1276 	/* Initialize kernel pdir */
1277 	for (i = 0; i < kernel_ptbls; i++)
1278 		kernel_pmap->pm_pdir[kptbl_min + i] =
1279 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1280 
1281 	for (i = 0; i < MAXCPU; i++) {
1282 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1283 
1284 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1285 		tidbusy[i][TID_KERNEL] = kernel_pmap;
1286 	}
1287 
1288 	/*
1289 	 * Fill in PTEs covering kernel code and data. They are not required
1290 	 * for address translation, as this area is covered by static TLB1
1291 	 * entries, but for pte_vatopa() to work correctly with kernel area
1292 	 * addresses.
1293 	 */
1294 	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1295 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1296 		pte->rpn = kernload + (va - kernstart);
1297 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1298 		    PTE_VALID;
1299 	}
1300 	/* Mark kernel_pmap active on all CPUs */
1301 	CPU_FILL(&kernel_pmap->pm_active);
1302 
1303  	/*
1304 	 * Initialize the global pv list lock.
1305 	 */
1306 	rw_init(&pvh_global_lock, "pmap pv global");
1307 
1308 	/*******************************************************/
1309 	/* Final setup */
1310 	/*******************************************************/
1311 
1312 	/* Enter kstack0 into kernel map, provide guard page */
1313 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1314 	thread0.td_kstack = kstack0;
1315 	thread0.td_kstack_pages = kstack_pages;
1316 
1317 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1318 	debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1319 	    kstack0_phys, kstack0_phys + kstack0_sz);
1320 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1321 
1322 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1323 	for (i = 0; i < kstack_pages; i++) {
1324 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1325 		kstack0 += PAGE_SIZE;
1326 		kstack0_phys += PAGE_SIZE;
1327 	}
1328 
1329 	pmap_bootstrapped = 1;
1330 
1331 	debugf("virtual_avail = %08x\n", virtual_avail);
1332 	debugf("virtual_end   = %08x\n", virtual_end);
1333 
1334 	debugf("mmu_booke_bootstrap: exit\n");
1335 }
1336 
1337 #ifdef SMP
1338 void
1339 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1340 {
1341 	int i;
1342 
1343 	/*
1344 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1345 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1346 	 * these values directly to (re)program AP's TLB1 hardware.
1347 	 */
1348 	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1349 		/* Skip invalid entries */
1350 		if (!(tlb1[i].mas1 & MAS1_VALID))
1351 			continue;
1352 
1353 		tlb1_write_entry(i);
1354 	}
1355 
1356 	set_mas4_defaults();
1357 }
1358 #endif
1359 
1360 static void
1361 booke_pmap_init_qpages(void)
1362 {
1363 	struct pcpu *pc;
1364 	int i;
1365 
1366 	CPU_FOREACH(i) {
1367 		pc = pcpu_find(i);
1368 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1369 		if (pc->pc_qmap_addr == 0)
1370 			panic("pmap_init_qpages: unable to allocate KVA");
1371 	}
1372 }
1373 
1374 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1375 
1376 /*
1377  * Get the physical page address for the given pmap/virtual address.
1378  */
1379 static vm_paddr_t
1380 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1381 {
1382 	vm_paddr_t pa;
1383 
1384 	PMAP_LOCK(pmap);
1385 	pa = pte_vatopa(mmu, pmap, va);
1386 	PMAP_UNLOCK(pmap);
1387 
1388 	return (pa);
1389 }
1390 
1391 /*
1392  * Extract the physical page address associated with the given
1393  * kernel virtual address.
1394  */
1395 static vm_paddr_t
1396 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1397 {
1398 	int i;
1399 
1400 	/* Check TLB1 mappings */
1401 	for (i = 0; i < tlb1_idx; i++) {
1402 		if (!(tlb1[i].mas1 & MAS1_VALID))
1403 			continue;
1404 		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1405 			return (tlb1[i].phys + (va - tlb1[i].virt));
1406 	}
1407 
1408 	return (pte_vatopa(mmu, kernel_pmap, va));
1409 }
1410 
1411 /*
1412  * Initialize the pmap module.
1413  * Called by vm_init, to initialize any structures that the pmap
1414  * system needs to map virtual memory.
1415  */
1416 static void
1417 mmu_booke_init(mmu_t mmu)
1418 {
1419 	int shpgperproc = PMAP_SHPGPERPROC;
1420 
1421 	/*
1422 	 * Initialize the address space (zone) for the pv entries.  Set a
1423 	 * high water mark so that the system can recover from excessive
1424 	 * numbers of pv entries.
1425 	 */
1426 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1427 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1428 
1429 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1430 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1431 
1432 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1433 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1434 
1435 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1436 
1437 	/* Pre-fill pvzone with initial number of pv entries. */
1438 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1439 
1440 	/* Initialize ptbl allocation. */
1441 	ptbl_init();
1442 }
1443 
1444 /*
1445  * Map a list of wired pages into kernel virtual address space.  This is
1446  * intended for temporary mappings which do not need page modification or
1447  * references recorded.  Existing mappings in the region are overwritten.
1448  */
1449 static void
1450 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1451 {
1452 	vm_offset_t va;
1453 
1454 	va = sva;
1455 	while (count-- > 0) {
1456 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1457 		va += PAGE_SIZE;
1458 		m++;
1459 	}
1460 }
1461 
1462 /*
1463  * Remove page mappings from kernel virtual address space.  Intended for
1464  * temporary mappings entered by mmu_booke_qenter.
1465  */
1466 static void
1467 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1468 {
1469 	vm_offset_t va;
1470 
1471 	va = sva;
1472 	while (count-- > 0) {
1473 		mmu_booke_kremove(mmu, va);
1474 		va += PAGE_SIZE;
1475 	}
1476 }
1477 
1478 /*
1479  * Map a wired page into kernel virtual address space.
1480  */
1481 static void
1482 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1483 {
1484 
1485 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1486 }
1487 
1488 static void
1489 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1490 {
1491 	unsigned int pdir_idx = PDIR_IDX(va);
1492 	unsigned int ptbl_idx = PTBL_IDX(va);
1493 	uint32_t flags;
1494 	pte_t *pte;
1495 
1496 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1497 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1498 
1499 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1500 	flags |= tlb_calc_wimg(pa, ma);
1501 
1502 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1503 
1504 	mtx_lock_spin(&tlbivax_mutex);
1505 	tlb_miss_lock();
1506 
1507 	if (PTE_ISVALID(pte)) {
1508 
1509 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1510 
1511 		/* Flush entry from TLB0 */
1512 		tlb0_flush_entry(va);
1513 	}
1514 
1515 	pte->rpn = PTE_RPN_FROM_PA(pa);
1516 	pte->flags = flags;
1517 
1518 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1519 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1520 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1521 
1522 	/* Flush the real memory from the instruction cache. */
1523 	if ((flags & (PTE_I | PTE_G)) == 0) {
1524 		__syncicache((void *)va, PAGE_SIZE);
1525 	}
1526 
1527 	tlb_miss_unlock();
1528 	mtx_unlock_spin(&tlbivax_mutex);
1529 }
1530 
1531 /*
1532  * Remove a page from kernel page table.
1533  */
1534 static void
1535 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1536 {
1537 	unsigned int pdir_idx = PDIR_IDX(va);
1538 	unsigned int ptbl_idx = PTBL_IDX(va);
1539 	pte_t *pte;
1540 
1541 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1542 
1543 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1544 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1545 	    ("mmu_booke_kremove: invalid va"));
1546 
1547 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1548 
1549 	if (!PTE_ISVALID(pte)) {
1550 
1551 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1552 
1553 		return;
1554 	}
1555 
1556 	mtx_lock_spin(&tlbivax_mutex);
1557 	tlb_miss_lock();
1558 
1559 	/* Invalidate entry in TLB0, update PTE. */
1560 	tlb0_flush_entry(va);
1561 	pte->flags = 0;
1562 	pte->rpn = 0;
1563 
1564 	tlb_miss_unlock();
1565 	mtx_unlock_spin(&tlbivax_mutex);
1566 }
1567 
1568 /*
1569  * Initialize pmap associated with process 0.
1570  */
1571 static void
1572 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1573 {
1574 
1575 	PMAP_LOCK_INIT(pmap);
1576 	mmu_booke_pinit(mmu, pmap);
1577 	PCPU_SET(curpmap, pmap);
1578 }
1579 
1580 /*
1581  * Initialize a preallocated and zeroed pmap structure,
1582  * such as one in a vmspace structure.
1583  */
1584 static void
1585 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1586 {
1587 	int i;
1588 
1589 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1590 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1591 
1592 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1593 
1594 	for (i = 0; i < MAXCPU; i++)
1595 		pmap->pm_tid[i] = TID_NONE;
1596 	CPU_ZERO(&kernel_pmap->pm_active);
1597 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1598 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1599 	TAILQ_INIT(&pmap->pm_ptbl_list);
1600 }
1601 
1602 /*
1603  * Release any resources held by the given physical map.
1604  * Called when a pmap initialized by mmu_booke_pinit is being released.
1605  * Should only be called if the map contains no valid mappings.
1606  */
1607 static void
1608 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1609 {
1610 
1611 	KASSERT(pmap->pm_stats.resident_count == 0,
1612 	    ("pmap_release: pmap resident count %ld != 0",
1613 	    pmap->pm_stats.resident_count));
1614 }
1615 
1616 /*
1617  * Insert the given physical page at the specified virtual address in the
1618  * target physical map with the protection requested. If specified the page
1619  * will be wired down.
1620  */
1621 static int
1622 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1623     vm_prot_t prot, u_int flags, int8_t psind)
1624 {
1625 	int error;
1626 
1627 	rw_wlock(&pvh_global_lock);
1628 	PMAP_LOCK(pmap);
1629 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1630 	rw_wunlock(&pvh_global_lock);
1631 	PMAP_UNLOCK(pmap);
1632 	return (error);
1633 }
1634 
1635 static int
1636 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1637     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1638 {
1639 	pte_t *pte;
1640 	vm_paddr_t pa;
1641 	uint32_t flags;
1642 	int error, su, sync;
1643 
1644 	pa = VM_PAGE_TO_PHYS(m);
1645 	su = (pmap == kernel_pmap);
1646 	sync = 0;
1647 
1648 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1649 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1650 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1651 	//		(u_int32_t)m, va, pa, prot, flags);
1652 
1653 	if (su) {
1654 		KASSERT(((va >= virtual_avail) &&
1655 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1656 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1657 	} else {
1658 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1659 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1660 	}
1661 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1662 		VM_OBJECT_ASSERT_LOCKED(m->object);
1663 
1664 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1665 
1666 	/*
1667 	 * If there is an existing mapping, and the physical address has not
1668 	 * changed, must be protection or wiring change.
1669 	 */
1670 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1671 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1672 
1673 		/*
1674 		 * Before actually updating pte->flags we calculate and
1675 		 * prepare its new value in a helper var.
1676 		 */
1677 		flags = pte->flags;
1678 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1679 
1680 		/* Wiring change, just update stats. */
1681 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1682 			if (!PTE_ISWIRED(pte)) {
1683 				flags |= PTE_WIRED;
1684 				pmap->pm_stats.wired_count++;
1685 			}
1686 		} else {
1687 			if (PTE_ISWIRED(pte)) {
1688 				flags &= ~PTE_WIRED;
1689 				pmap->pm_stats.wired_count--;
1690 			}
1691 		}
1692 
1693 		if (prot & VM_PROT_WRITE) {
1694 			/* Add write permissions. */
1695 			flags |= PTE_SW;
1696 			if (!su)
1697 				flags |= PTE_UW;
1698 
1699 			if ((flags & PTE_MANAGED) != 0)
1700 				vm_page_aflag_set(m, PGA_WRITEABLE);
1701 		} else {
1702 			/* Handle modified pages, sense modify status. */
1703 
1704 			/*
1705 			 * The PTE_MODIFIED flag could be set by underlying
1706 			 * TLB misses since we last read it (above), possibly
1707 			 * other CPUs could update it so we check in the PTE
1708 			 * directly rather than rely on that saved local flags
1709 			 * copy.
1710 			 */
1711 			if (PTE_ISMODIFIED(pte))
1712 				vm_page_dirty(m);
1713 		}
1714 
1715 		if (prot & VM_PROT_EXECUTE) {
1716 			flags |= PTE_SX;
1717 			if (!su)
1718 				flags |= PTE_UX;
1719 
1720 			/*
1721 			 * Check existing flags for execute permissions: if we
1722 			 * are turning execute permissions on, icache should
1723 			 * be flushed.
1724 			 */
1725 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1726 				sync++;
1727 		}
1728 
1729 		flags &= ~PTE_REFERENCED;
1730 
1731 		/*
1732 		 * The new flags value is all calculated -- only now actually
1733 		 * update the PTE.
1734 		 */
1735 		mtx_lock_spin(&tlbivax_mutex);
1736 		tlb_miss_lock();
1737 
1738 		tlb0_flush_entry(va);
1739 		pte->flags = flags;
1740 
1741 		tlb_miss_unlock();
1742 		mtx_unlock_spin(&tlbivax_mutex);
1743 
1744 	} else {
1745 		/*
1746 		 * If there is an existing mapping, but it's for a different
1747 		 * physical address, pte_enter() will delete the old mapping.
1748 		 */
1749 		//if ((pte != NULL) && PTE_ISVALID(pte))
1750 		//	debugf("mmu_booke_enter_locked: replace\n");
1751 		//else
1752 		//	debugf("mmu_booke_enter_locked: new\n");
1753 
1754 		/* Now set up the flags and install the new mapping. */
1755 		flags = (PTE_SR | PTE_VALID);
1756 		flags |= PTE_M;
1757 
1758 		if (!su)
1759 			flags |= PTE_UR;
1760 
1761 		if (prot & VM_PROT_WRITE) {
1762 			flags |= PTE_SW;
1763 			if (!su)
1764 				flags |= PTE_UW;
1765 
1766 			if ((m->oflags & VPO_UNMANAGED) == 0)
1767 				vm_page_aflag_set(m, PGA_WRITEABLE);
1768 		}
1769 
1770 		if (prot & VM_PROT_EXECUTE) {
1771 			flags |= PTE_SX;
1772 			if (!su)
1773 				flags |= PTE_UX;
1774 		}
1775 
1776 		/* If its wired update stats. */
1777 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1778 			flags |= PTE_WIRED;
1779 
1780 		error = pte_enter(mmu, pmap, m, va, flags,
1781 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1782 		if (error != 0)
1783 			return (KERN_RESOURCE_SHORTAGE);
1784 
1785 		if ((flags & PMAP_ENTER_WIRED) != 0)
1786 			pmap->pm_stats.wired_count++;
1787 
1788 		/* Flush the real memory from the instruction cache. */
1789 		if (prot & VM_PROT_EXECUTE)
1790 			sync++;
1791 	}
1792 
1793 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1794 		__syncicache((void *)va, PAGE_SIZE);
1795 		sync = 0;
1796 	}
1797 
1798 	return (KERN_SUCCESS);
1799 }
1800 
1801 /*
1802  * Maps a sequence of resident pages belonging to the same object.
1803  * The sequence begins with the given page m_start.  This page is
1804  * mapped at the given virtual address start.  Each subsequent page is
1805  * mapped at a virtual address that is offset from start by the same
1806  * amount as the page is offset from m_start within the object.  The
1807  * last page in the sequence is the page with the largest offset from
1808  * m_start that can be mapped at a virtual address less than the given
1809  * virtual address end.  Not every virtual page between start and end
1810  * is mapped; only those for which a resident page exists with the
1811  * corresponding offset from m_start are mapped.
1812  */
1813 static void
1814 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1815     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1816 {
1817 	vm_page_t m;
1818 	vm_pindex_t diff, psize;
1819 
1820 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1821 
1822 	psize = atop(end - start);
1823 	m = m_start;
1824 	rw_wlock(&pvh_global_lock);
1825 	PMAP_LOCK(pmap);
1826 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1827 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1828 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1829 		    PMAP_ENTER_NOSLEEP, 0);
1830 		m = TAILQ_NEXT(m, listq);
1831 	}
1832 	rw_wunlock(&pvh_global_lock);
1833 	PMAP_UNLOCK(pmap);
1834 }
1835 
1836 static void
1837 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1838     vm_prot_t prot)
1839 {
1840 
1841 	rw_wlock(&pvh_global_lock);
1842 	PMAP_LOCK(pmap);
1843 	mmu_booke_enter_locked(mmu, pmap, va, m,
1844 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1845 	    0);
1846 	rw_wunlock(&pvh_global_lock);
1847 	PMAP_UNLOCK(pmap);
1848 }
1849 
1850 /*
1851  * Remove the given range of addresses from the specified map.
1852  *
1853  * It is assumed that the start and end are properly rounded to the page size.
1854  */
1855 static void
1856 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1857 {
1858 	pte_t *pte;
1859 	uint8_t hold_flag;
1860 
1861 	int su = (pmap == kernel_pmap);
1862 
1863 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1864 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1865 
1866 	if (su) {
1867 		KASSERT(((va >= virtual_avail) &&
1868 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1869 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1870 	} else {
1871 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1872 		    ("mmu_booke_remove: user pmap, non user va"));
1873 	}
1874 
1875 	if (PMAP_REMOVE_DONE(pmap)) {
1876 		//debugf("mmu_booke_remove: e (empty)\n");
1877 		return;
1878 	}
1879 
1880 	hold_flag = PTBL_HOLD_FLAG(pmap);
1881 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1882 
1883 	rw_wlock(&pvh_global_lock);
1884 	PMAP_LOCK(pmap);
1885 	for (; va < endva; va += PAGE_SIZE) {
1886 		pte = pte_find(mmu, pmap, va);
1887 		if ((pte != NULL) && PTE_ISVALID(pte))
1888 			pte_remove(mmu, pmap, va, hold_flag);
1889 	}
1890 	PMAP_UNLOCK(pmap);
1891 	rw_wunlock(&pvh_global_lock);
1892 
1893 	//debugf("mmu_booke_remove: e\n");
1894 }
1895 
1896 /*
1897  * Remove physical page from all pmaps in which it resides.
1898  */
1899 static void
1900 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1901 {
1902 	pv_entry_t pv, pvn;
1903 	uint8_t hold_flag;
1904 
1905 	rw_wlock(&pvh_global_lock);
1906 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1907 		pvn = TAILQ_NEXT(pv, pv_link);
1908 
1909 		PMAP_LOCK(pv->pv_pmap);
1910 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1911 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1912 		PMAP_UNLOCK(pv->pv_pmap);
1913 	}
1914 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1915 	rw_wunlock(&pvh_global_lock);
1916 }
1917 
1918 /*
1919  * Map a range of physical addresses into kernel virtual address space.
1920  */
1921 static vm_offset_t
1922 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1923     vm_paddr_t pa_end, int prot)
1924 {
1925 	vm_offset_t sva = *virt;
1926 	vm_offset_t va = sva;
1927 
1928 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1929 	//		sva, pa_start, pa_end);
1930 
1931 	while (pa_start < pa_end) {
1932 		mmu_booke_kenter(mmu, va, pa_start);
1933 		va += PAGE_SIZE;
1934 		pa_start += PAGE_SIZE;
1935 	}
1936 	*virt = va;
1937 
1938 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1939 	return (sva);
1940 }
1941 
1942 /*
1943  * The pmap must be activated before it's address space can be accessed in any
1944  * way.
1945  */
1946 static void
1947 mmu_booke_activate(mmu_t mmu, struct thread *td)
1948 {
1949 	pmap_t pmap;
1950 	u_int cpuid;
1951 
1952 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1953 
1954 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1955 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1956 
1957 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1958 
1959 	sched_pin();
1960 
1961 	cpuid = PCPU_GET(cpuid);
1962 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1963 	PCPU_SET(curpmap, pmap);
1964 
1965 	if (pmap->pm_tid[cpuid] == TID_NONE)
1966 		tid_alloc(pmap);
1967 
1968 	/* Load PID0 register with pmap tid value. */
1969 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1970 	__asm __volatile("isync");
1971 
1972 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1973 
1974 	sched_unpin();
1975 
1976 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1977 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1978 }
1979 
1980 /*
1981  * Deactivate the specified process's address space.
1982  */
1983 static void
1984 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1985 {
1986 	pmap_t pmap;
1987 
1988 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1989 
1990 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1991 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1992 
1993 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1994 
1995 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1996 	PCPU_SET(curpmap, NULL);
1997 }
1998 
1999 /*
2000  * Copy the range specified by src_addr/len
2001  * from the source map to the range dst_addr/len
2002  * in the destination map.
2003  *
2004  * This routine is only advisory and need not do anything.
2005  */
2006 static void
2007 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2008     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2009 {
2010 
2011 }
2012 
2013 /*
2014  * Set the physical protection on the specified range of this map as requested.
2015  */
2016 static void
2017 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2018     vm_prot_t prot)
2019 {
2020 	vm_offset_t va;
2021 	vm_page_t m;
2022 	pte_t *pte;
2023 
2024 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2025 		mmu_booke_remove(mmu, pmap, sva, eva);
2026 		return;
2027 	}
2028 
2029 	if (prot & VM_PROT_WRITE)
2030 		return;
2031 
2032 	PMAP_LOCK(pmap);
2033 	for (va = sva; va < eva; va += PAGE_SIZE) {
2034 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2035 			if (PTE_ISVALID(pte)) {
2036 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2037 
2038 				mtx_lock_spin(&tlbivax_mutex);
2039 				tlb_miss_lock();
2040 
2041 				/* Handle modified pages. */
2042 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2043 					vm_page_dirty(m);
2044 
2045 				tlb0_flush_entry(va);
2046 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2047 
2048 				tlb_miss_unlock();
2049 				mtx_unlock_spin(&tlbivax_mutex);
2050 			}
2051 		}
2052 	}
2053 	PMAP_UNLOCK(pmap);
2054 }
2055 
2056 /*
2057  * Clear the write and modified bits in each of the given page's mappings.
2058  */
2059 static void
2060 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2061 {
2062 	pv_entry_t pv;
2063 	pte_t *pte;
2064 
2065 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2066 	    ("mmu_booke_remove_write: page %p is not managed", m));
2067 
2068 	/*
2069 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2070 	 * set by another thread while the object is locked.  Thus,
2071 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2072 	 */
2073 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2074 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2075 		return;
2076 	rw_wlock(&pvh_global_lock);
2077 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2078 		PMAP_LOCK(pv->pv_pmap);
2079 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2080 			if (PTE_ISVALID(pte)) {
2081 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2082 
2083 				mtx_lock_spin(&tlbivax_mutex);
2084 				tlb_miss_lock();
2085 
2086 				/* Handle modified pages. */
2087 				if (PTE_ISMODIFIED(pte))
2088 					vm_page_dirty(m);
2089 
2090 				/* Flush mapping from TLB0. */
2091 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2092 
2093 				tlb_miss_unlock();
2094 				mtx_unlock_spin(&tlbivax_mutex);
2095 			}
2096 		}
2097 		PMAP_UNLOCK(pv->pv_pmap);
2098 	}
2099 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2100 	rw_wunlock(&pvh_global_lock);
2101 }
2102 
2103 static void
2104 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2105 {
2106 	pte_t *pte;
2107 	pmap_t pmap;
2108 	vm_page_t m;
2109 	vm_offset_t addr;
2110 	vm_paddr_t pa = 0;
2111 	int active, valid;
2112 
2113 	va = trunc_page(va);
2114 	sz = round_page(sz);
2115 
2116 	rw_wlock(&pvh_global_lock);
2117 	pmap = PCPU_GET(curpmap);
2118 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2119 	while (sz > 0) {
2120 		PMAP_LOCK(pm);
2121 		pte = pte_find(mmu, pm, va);
2122 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2123 		if (valid)
2124 			pa = PTE_PA(pte);
2125 		PMAP_UNLOCK(pm);
2126 		if (valid) {
2127 			if (!active) {
2128 				/* Create a mapping in the active pmap. */
2129 				addr = 0;
2130 				m = PHYS_TO_VM_PAGE(pa);
2131 				PMAP_LOCK(pmap);
2132 				pte_enter(mmu, pmap, m, addr,
2133 				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2134 				__syncicache((void *)addr, PAGE_SIZE);
2135 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2136 				PMAP_UNLOCK(pmap);
2137 			} else
2138 				__syncicache((void *)va, PAGE_SIZE);
2139 		}
2140 		va += PAGE_SIZE;
2141 		sz -= PAGE_SIZE;
2142 	}
2143 	rw_wunlock(&pvh_global_lock);
2144 }
2145 
2146 /*
2147  * Atomically extract and hold the physical page with the given
2148  * pmap and virtual address pair if that mapping permits the given
2149  * protection.
2150  */
2151 static vm_page_t
2152 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2153     vm_prot_t prot)
2154 {
2155 	pte_t *pte;
2156 	vm_page_t m;
2157 	uint32_t pte_wbit;
2158 	vm_paddr_t pa;
2159 
2160 	m = NULL;
2161 	pa = 0;
2162 	PMAP_LOCK(pmap);
2163 retry:
2164 	pte = pte_find(mmu, pmap, va);
2165 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2166 		if (pmap == kernel_pmap)
2167 			pte_wbit = PTE_SW;
2168 		else
2169 			pte_wbit = PTE_UW;
2170 
2171 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2172 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2173 				goto retry;
2174 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2175 			vm_page_hold(m);
2176 		}
2177 	}
2178 
2179 	PA_UNLOCK_COND(pa);
2180 	PMAP_UNLOCK(pmap);
2181 	return (m);
2182 }
2183 
2184 /*
2185  * Initialize a vm_page's machine-dependent fields.
2186  */
2187 static void
2188 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2189 {
2190 
2191 	TAILQ_INIT(&m->md.pv_list);
2192 }
2193 
2194 /*
2195  * mmu_booke_zero_page_area zeros the specified hardware page by
2196  * mapping it into virtual memory and using bzero to clear
2197  * its contents.
2198  *
2199  * off and size must reside within a single page.
2200  */
2201 static void
2202 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2203 {
2204 	vm_offset_t va;
2205 
2206 	/* XXX KASSERT off and size are within a single page? */
2207 
2208 	mtx_lock(&zero_page_mutex);
2209 	va = zero_page_va;
2210 
2211 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2212 	bzero((caddr_t)va + off, size);
2213 	mmu_booke_kremove(mmu, va);
2214 
2215 	mtx_unlock(&zero_page_mutex);
2216 }
2217 
2218 /*
2219  * mmu_booke_zero_page zeros the specified hardware page.
2220  */
2221 static void
2222 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2223 {
2224 
2225 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2226 }
2227 
2228 /*
2229  * mmu_booke_copy_page copies the specified (machine independent) page by
2230  * mapping the page into virtual memory and using memcopy to copy the page,
2231  * one machine dependent page at a time.
2232  */
2233 static void
2234 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2235 {
2236 	vm_offset_t sva, dva;
2237 
2238 	sva = copy_page_src_va;
2239 	dva = copy_page_dst_va;
2240 
2241 	mtx_lock(&copy_page_mutex);
2242 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2243 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2244 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2245 	mmu_booke_kremove(mmu, dva);
2246 	mmu_booke_kremove(mmu, sva);
2247 	mtx_unlock(&copy_page_mutex);
2248 }
2249 
2250 static inline void
2251 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2252     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2253 {
2254 	void *a_cp, *b_cp;
2255 	vm_offset_t a_pg_offset, b_pg_offset;
2256 	int cnt;
2257 
2258 	mtx_lock(&copy_page_mutex);
2259 	while (xfersize > 0) {
2260 		a_pg_offset = a_offset & PAGE_MASK;
2261 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2262 		mmu_booke_kenter(mmu, copy_page_src_va,
2263 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2264 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2265 		b_pg_offset = b_offset & PAGE_MASK;
2266 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2267 		mmu_booke_kenter(mmu, copy_page_dst_va,
2268 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2269 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2270 		bcopy(a_cp, b_cp, cnt);
2271 		mmu_booke_kremove(mmu, copy_page_dst_va);
2272 		mmu_booke_kremove(mmu, copy_page_src_va);
2273 		a_offset += cnt;
2274 		b_offset += cnt;
2275 		xfersize -= cnt;
2276 	}
2277 	mtx_unlock(&copy_page_mutex);
2278 }
2279 
2280 /*
2281  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2282  * into virtual memory and using bzero to clear its contents. This is intended
2283  * to be called from the vm_pagezero process only and outside of Giant. No
2284  * lock is required.
2285  */
2286 static void
2287 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2288 {
2289 	vm_offset_t va;
2290 
2291 	va = zero_page_idle_va;
2292 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2293 	bzero((caddr_t)va, PAGE_SIZE);
2294 	mmu_booke_kremove(mmu, va);
2295 }
2296 
2297 static vm_offset_t
2298 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2299 {
2300 	vm_paddr_t paddr;
2301 	vm_offset_t qaddr;
2302 	uint32_t flags;
2303 	pte_t *pte;
2304 
2305 	paddr = VM_PAGE_TO_PHYS(m);
2306 
2307 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2308 	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m));
2309 
2310 	critical_enter();
2311 	qaddr = PCPU_GET(qmap_addr);
2312 
2313 	pte = &(kernel_pmap->pm_pdir[PDIR_IDX(qaddr)][PTBL_IDX(qaddr)]);
2314 
2315 	KASSERT(pte->flags == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2316 
2317 	/*
2318 	 * XXX: tlbivax is broadcast to other cores, but qaddr should
2319  	 * not be present in other TLBs.  Is there a better instruction
2320 	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2321 	 */
2322 	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2323 	__asm __volatile("isync; msync");
2324 
2325 	pte->rpn = paddr & ~PTE_PA_MASK;
2326 	pte->flags = flags;
2327 
2328 	/* Flush the real memory from the instruction cache. */
2329 	if ((flags & (PTE_I | PTE_G)) == 0)
2330 		__syncicache((void *)qaddr, PAGE_SIZE);
2331 
2332 	return (qaddr);
2333 }
2334 
2335 static void
2336 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
2337 {
2338 	pte_t *pte;
2339 
2340 	pte = &(kernel_pmap->pm_pdir[PDIR_IDX(addr)][PTBL_IDX(addr)]);
2341 
2342 	KASSERT(PCPU_GET(qmap_addr) == addr,
2343 	    ("mmu_booke_quick_remove_page: invalid address"));
2344 	KASSERT(pte->flags != 0,
2345 	    ("mmu_booke_quick_remove_page: PTE not in use"));
2346 
2347 	pte->flags = 0;
2348 	pte->rpn = 0;
2349 	critical_exit();
2350 }
2351 
2352 /*
2353  * Return whether or not the specified physical page was modified
2354  * in any of physical maps.
2355  */
2356 static boolean_t
2357 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2358 {
2359 	pte_t *pte;
2360 	pv_entry_t pv;
2361 	boolean_t rv;
2362 
2363 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2364 	    ("mmu_booke_is_modified: page %p is not managed", m));
2365 	rv = FALSE;
2366 
2367 	/*
2368 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2369 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2370 	 * is clear, no PTEs can be modified.
2371 	 */
2372 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2373 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2374 		return (rv);
2375 	rw_wlock(&pvh_global_lock);
2376 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2377 		PMAP_LOCK(pv->pv_pmap);
2378 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2379 		    PTE_ISVALID(pte)) {
2380 			if (PTE_ISMODIFIED(pte))
2381 				rv = TRUE;
2382 		}
2383 		PMAP_UNLOCK(pv->pv_pmap);
2384 		if (rv)
2385 			break;
2386 	}
2387 	rw_wunlock(&pvh_global_lock);
2388 	return (rv);
2389 }
2390 
2391 /*
2392  * Return whether or not the specified virtual address is eligible
2393  * for prefault.
2394  */
2395 static boolean_t
2396 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2397 {
2398 
2399 	return (FALSE);
2400 }
2401 
2402 /*
2403  * Return whether or not the specified physical page was referenced
2404  * in any physical maps.
2405  */
2406 static boolean_t
2407 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2408 {
2409 	pte_t *pte;
2410 	pv_entry_t pv;
2411 	boolean_t rv;
2412 
2413 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2414 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2415 	rv = FALSE;
2416 	rw_wlock(&pvh_global_lock);
2417 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2418 		PMAP_LOCK(pv->pv_pmap);
2419 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2420 		    PTE_ISVALID(pte)) {
2421 			if (PTE_ISREFERENCED(pte))
2422 				rv = TRUE;
2423 		}
2424 		PMAP_UNLOCK(pv->pv_pmap);
2425 		if (rv)
2426 			break;
2427 	}
2428 	rw_wunlock(&pvh_global_lock);
2429 	return (rv);
2430 }
2431 
2432 /*
2433  * Clear the modify bits on the specified physical page.
2434  */
2435 static void
2436 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2437 {
2438 	pte_t *pte;
2439 	pv_entry_t pv;
2440 
2441 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2442 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2443 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2444 	KASSERT(!vm_page_xbusied(m),
2445 	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2446 
2447 	/*
2448 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2449 	 * If the object containing the page is locked and the page is not
2450 	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2451 	 */
2452 	if ((m->aflags & PGA_WRITEABLE) == 0)
2453 		return;
2454 	rw_wlock(&pvh_global_lock);
2455 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2456 		PMAP_LOCK(pv->pv_pmap);
2457 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2458 		    PTE_ISVALID(pte)) {
2459 			mtx_lock_spin(&tlbivax_mutex);
2460 			tlb_miss_lock();
2461 
2462 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2463 				tlb0_flush_entry(pv->pv_va);
2464 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2465 				    PTE_REFERENCED);
2466 			}
2467 
2468 			tlb_miss_unlock();
2469 			mtx_unlock_spin(&tlbivax_mutex);
2470 		}
2471 		PMAP_UNLOCK(pv->pv_pmap);
2472 	}
2473 	rw_wunlock(&pvh_global_lock);
2474 }
2475 
2476 /*
2477  * Return a count of reference bits for a page, clearing those bits.
2478  * It is not necessary for every reference bit to be cleared, but it
2479  * is necessary that 0 only be returned when there are truly no
2480  * reference bits set.
2481  *
2482  * XXX: The exact number of bits to check and clear is a matter that
2483  * should be tested and standardized at some point in the future for
2484  * optimal aging of shared pages.
2485  */
2486 static int
2487 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2488 {
2489 	pte_t *pte;
2490 	pv_entry_t pv;
2491 	int count;
2492 
2493 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2494 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2495 	count = 0;
2496 	rw_wlock(&pvh_global_lock);
2497 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2498 		PMAP_LOCK(pv->pv_pmap);
2499 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2500 		    PTE_ISVALID(pte)) {
2501 			if (PTE_ISREFERENCED(pte)) {
2502 				mtx_lock_spin(&tlbivax_mutex);
2503 				tlb_miss_lock();
2504 
2505 				tlb0_flush_entry(pv->pv_va);
2506 				pte->flags &= ~PTE_REFERENCED;
2507 
2508 				tlb_miss_unlock();
2509 				mtx_unlock_spin(&tlbivax_mutex);
2510 
2511 				if (++count > 4) {
2512 					PMAP_UNLOCK(pv->pv_pmap);
2513 					break;
2514 				}
2515 			}
2516 		}
2517 		PMAP_UNLOCK(pv->pv_pmap);
2518 	}
2519 	rw_wunlock(&pvh_global_lock);
2520 	return (count);
2521 }
2522 
2523 /*
2524  * Clear the wired attribute from the mappings for the specified range of
2525  * addresses in the given pmap.  Every valid mapping within that range must
2526  * have the wired attribute set.  In contrast, invalid mappings cannot have
2527  * the wired attribute set, so they are ignored.
2528  *
2529  * The wired attribute of the page table entry is not a hardware feature, so
2530  * there is no need to invalidate any TLB entries.
2531  */
2532 static void
2533 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2534 {
2535 	vm_offset_t va;
2536 	pte_t *pte;
2537 
2538 	PMAP_LOCK(pmap);
2539 	for (va = sva; va < eva; va += PAGE_SIZE) {
2540 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2541 		    PTE_ISVALID(pte)) {
2542 			if (!PTE_ISWIRED(pte))
2543 				panic("mmu_booke_unwire: pte %p isn't wired",
2544 				    pte);
2545 			pte->flags &= ~PTE_WIRED;
2546 			pmap->pm_stats.wired_count--;
2547 		}
2548 	}
2549 	PMAP_UNLOCK(pmap);
2550 
2551 }
2552 
2553 /*
2554  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2555  * page.  This count may be changed upwards or downwards in the future; it is
2556  * only necessary that true be returned for a small subset of pmaps for proper
2557  * page aging.
2558  */
2559 static boolean_t
2560 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2561 {
2562 	pv_entry_t pv;
2563 	int loops;
2564 	boolean_t rv;
2565 
2566 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2567 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2568 	loops = 0;
2569 	rv = FALSE;
2570 	rw_wlock(&pvh_global_lock);
2571 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2572 		if (pv->pv_pmap == pmap) {
2573 			rv = TRUE;
2574 			break;
2575 		}
2576 		if (++loops >= 16)
2577 			break;
2578 	}
2579 	rw_wunlock(&pvh_global_lock);
2580 	return (rv);
2581 }
2582 
2583 /*
2584  * Return the number of managed mappings to the given physical page that are
2585  * wired.
2586  */
2587 static int
2588 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2589 {
2590 	pv_entry_t pv;
2591 	pte_t *pte;
2592 	int count = 0;
2593 
2594 	if ((m->oflags & VPO_UNMANAGED) != 0)
2595 		return (count);
2596 	rw_wlock(&pvh_global_lock);
2597 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2598 		PMAP_LOCK(pv->pv_pmap);
2599 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2600 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2601 				count++;
2602 		PMAP_UNLOCK(pv->pv_pmap);
2603 	}
2604 	rw_wunlock(&pvh_global_lock);
2605 	return (count);
2606 }
2607 
2608 static int
2609 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2610 {
2611 	int i;
2612 	vm_offset_t va;
2613 
2614 	/*
2615 	 * This currently does not work for entries that
2616 	 * overlap TLB1 entries.
2617 	 */
2618 	for (i = 0; i < tlb1_idx; i ++) {
2619 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2620 			return (0);
2621 	}
2622 
2623 	return (EFAULT);
2624 }
2625 
2626 void
2627 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2628 {
2629 	vm_paddr_t ppa;
2630 	vm_offset_t ofs;
2631 	vm_size_t gran;
2632 
2633 	/* Minidumps are based on virtual memory addresses. */
2634 	if (do_minidump) {
2635 		*va = (void *)(vm_offset_t)pa;
2636 		return;
2637 	}
2638 
2639 	/* Raw physical memory dumps don't have a virtual address. */
2640 	/* We always map a 256MB page at 256M. */
2641 	gran = 256 * 1024 * 1024;
2642 	ppa = pa & ~(gran - 1);
2643 	ofs = pa - ppa;
2644 	*va = (void *)gran;
2645 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2646 
2647 	if (sz > (gran - ofs))
2648 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2649 		    _TLB_ENTRY_IO);
2650 }
2651 
2652 void
2653 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
2654 {
2655 	vm_paddr_t ppa;
2656 	vm_offset_t ofs;
2657 	vm_size_t gran;
2658 
2659 	/* Minidumps are based on virtual memory addresses. */
2660 	/* Nothing to do... */
2661 	if (do_minidump)
2662 		return;
2663 
2664 	/* Raw physical memory dumps don't have a virtual address. */
2665 	tlb1_idx--;
2666 	tlb1[tlb1_idx].mas1 = 0;
2667 	tlb1[tlb1_idx].mas2 = 0;
2668 	tlb1[tlb1_idx].mas3 = 0;
2669 	tlb1_write_entry(tlb1_idx);
2670 
2671 	gran = 256 * 1024 * 1024;
2672 	ppa = pa & ~(gran - 1);
2673 	ofs = pa - ppa;
2674 	if (sz > (gran - ofs)) {
2675 		tlb1_idx--;
2676 		tlb1[tlb1_idx].mas1 = 0;
2677 		tlb1[tlb1_idx].mas2 = 0;
2678 		tlb1[tlb1_idx].mas3 = 0;
2679 		tlb1_write_entry(tlb1_idx);
2680 	}
2681 }
2682 
2683 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2684 
2685 void
2686 mmu_booke_scan_init(mmu_t mmu)
2687 {
2688 	vm_offset_t va;
2689 	pte_t *pte;
2690 	int i;
2691 
2692 	if (!do_minidump) {
2693 		/* Initialize phys. segments for dumpsys(). */
2694 		memset(&dump_map, 0, sizeof(dump_map));
2695 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2696 		    &availmem_regions_sz);
2697 		for (i = 0; i < physmem_regions_sz; i++) {
2698 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2699 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2700 		}
2701 		return;
2702 	}
2703 
2704 	/* Virtual segments for minidumps: */
2705 	memset(&dump_map, 0, sizeof(dump_map));
2706 
2707 	/* 1st: kernel .data and .bss. */
2708 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2709 	dump_map[0].pa_size =
2710 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2711 
2712 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2713 	dump_map[1].pa_start = data_start;
2714 	dump_map[1].pa_size = data_end - data_start;
2715 
2716 	/* 3rd: kernel VM. */
2717 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2718 	/* Find start of next chunk (from va). */
2719 	while (va < virtual_end) {
2720 		/* Don't dump the buffer cache. */
2721 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2722 			va = kmi.buffer_eva;
2723 			continue;
2724 		}
2725 		pte = pte_find(mmu, kernel_pmap, va);
2726 		if (pte != NULL && PTE_ISVALID(pte))
2727 			break;
2728 		va += PAGE_SIZE;
2729 	}
2730 	if (va < virtual_end) {
2731 		dump_map[2].pa_start = va;
2732 		va += PAGE_SIZE;
2733 		/* Find last page in chunk. */
2734 		while (va < virtual_end) {
2735 			/* Don't run into the buffer cache. */
2736 			if (va == kmi.buffer_sva)
2737 				break;
2738 			pte = pte_find(mmu, kernel_pmap, va);
2739 			if (pte == NULL || !PTE_ISVALID(pte))
2740 				break;
2741 			va += PAGE_SIZE;
2742 		}
2743 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2744 	}
2745 }
2746 
2747 /*
2748  * Map a set of physical memory pages into the kernel virtual address space.
2749  * Return a pointer to where it is mapped. This routine is intended to be used
2750  * for mapping device memory, NOT real memory.
2751  */
2752 static void *
2753 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2754 {
2755 
2756 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2757 }
2758 
2759 static void *
2760 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2761 {
2762 	void *res;
2763 	uintptr_t va;
2764 	vm_size_t sz;
2765 	int i;
2766 
2767 	/*
2768 	 * Check if this is premapped in TLB1. Note: this should probably also
2769 	 * check whether a sequence of TLB1 entries exist that match the
2770 	 * requirement, but now only checks the easy case.
2771 	 */
2772 	if (ma == VM_MEMATTR_DEFAULT) {
2773 		for (i = 0; i < tlb1_idx; i++) {
2774 			if (!(tlb1[i].mas1 & MAS1_VALID))
2775 				continue;
2776 			if (pa >= tlb1[i].phys &&
2777 			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2778 				return (void *)(tlb1[i].virt +
2779 				    (vm_offset_t)(pa - tlb1[i].phys));
2780 		}
2781 	}
2782 
2783 	size = roundup(size, PAGE_SIZE);
2784 
2785 	/*
2786 	 * We leave a hole for device direct mapping between the maximum user
2787 	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2788 	 * devices are in there, just map them 1:1. If not, map them to the
2789 	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2790 	 * addresses should be pulled from an allocator, but since we do not
2791 	 * ever free TLB1 entries, it is safe just to increment a counter.
2792 	 * Note that there isn't a lot of address space here (128 MB) and it
2793 	 * is not at all difficult to imagine running out, since that is a 4:1
2794 	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2795 	 * mapped there.
2796 	 */
2797 	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2798 	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2799 		va = pa;
2800 	else
2801 		va = atomic_fetchadd_int(&tlb1_map_base, size);
2802 	res = (void *)va;
2803 
2804 	do {
2805 		sz = 1 << (ilog2(size) & ~1);
2806 		if (bootverbose)
2807 			printf("Wiring VA=%x to PA=%llx (size=%x), "
2808 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2809 		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2810 		size -= sz;
2811 		pa += sz;
2812 		va += sz;
2813 	} while (size > 0);
2814 
2815 	return (res);
2816 }
2817 
2818 /*
2819  * 'Unmap' a range mapped by mmu_booke_mapdev().
2820  */
2821 static void
2822 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2823 {
2824 #ifdef SUPPORTS_SHRINKING_TLB1
2825 	vm_offset_t base, offset;
2826 
2827 	/*
2828 	 * Unmap only if this is inside kernel virtual space.
2829 	 */
2830 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2831 		base = trunc_page(va);
2832 		offset = va & PAGE_MASK;
2833 		size = roundup(offset + size, PAGE_SIZE);
2834 		kva_free(base, size);
2835 	}
2836 #endif
2837 }
2838 
2839 /*
2840  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2841  * specified pmap. This eliminates the blast of soft faults on process startup
2842  * and immediately after an mmap.
2843  */
2844 static void
2845 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2846     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2847 {
2848 
2849 	VM_OBJECT_ASSERT_WLOCKED(object);
2850 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2851 	    ("mmu_booke_object_init_pt: non-device object"));
2852 }
2853 
2854 /*
2855  * Perform the pmap work for mincore.
2856  */
2857 static int
2858 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2859     vm_paddr_t *locked_pa)
2860 {
2861 
2862 	/* XXX: this should be implemented at some point */
2863 	return (0);
2864 }
2865 
2866 /**************************************************************************/
2867 /* TID handling */
2868 /**************************************************************************/
2869 
2870 /*
2871  * Allocate a TID. If necessary, steal one from someone else.
2872  * The new TID is flushed from the TLB before returning.
2873  */
2874 static tlbtid_t
2875 tid_alloc(pmap_t pmap)
2876 {
2877 	tlbtid_t tid;
2878 	int thiscpu;
2879 
2880 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2881 
2882 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2883 
2884 	thiscpu = PCPU_GET(cpuid);
2885 
2886 	tid = PCPU_GET(tid_next);
2887 	if (tid > TID_MAX)
2888 		tid = TID_MIN;
2889 	PCPU_SET(tid_next, tid + 1);
2890 
2891 	/* If we are stealing TID then clear the relevant pmap's field */
2892 	if (tidbusy[thiscpu][tid] != NULL) {
2893 
2894 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2895 
2896 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2897 
2898 		/* Flush all entries from TLB0 matching this TID. */
2899 		tid_flush(tid, tlb0_ways, tlb0_entries_per_way);
2900 	}
2901 
2902 	tidbusy[thiscpu][tid] = pmap;
2903 	pmap->pm_tid[thiscpu] = tid;
2904 	__asm __volatile("msync; isync");
2905 
2906 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2907 	    PCPU_GET(tid_next));
2908 
2909 	return (tid);
2910 }
2911 
2912 /**************************************************************************/
2913 /* TLB0 handling */
2914 /**************************************************************************/
2915 
2916 static void
2917 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2918     uint32_t mas7)
2919 {
2920 	int as;
2921 	char desc[3];
2922 	tlbtid_t tid;
2923 	vm_size_t size;
2924 	unsigned int tsize;
2925 
2926 	desc[2] = '\0';
2927 	if (mas1 & MAS1_VALID)
2928 		desc[0] = 'V';
2929 	else
2930 		desc[0] = ' ';
2931 
2932 	if (mas1 & MAS1_IPROT)
2933 		desc[1] = 'P';
2934 	else
2935 		desc[1] = ' ';
2936 
2937 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2938 	tid = MAS1_GETTID(mas1);
2939 
2940 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2941 	size = 0;
2942 	if (tsize)
2943 		size = tsize2size(tsize);
2944 
2945 	debugf("%3d: (%s) [AS=%d] "
2946 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2947 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2948 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2949 }
2950 
2951 /* Convert TLB0 va and way number to tlb0[] table index. */
2952 static inline unsigned int
2953 tlb0_tableidx(vm_offset_t va, unsigned int way)
2954 {
2955 	unsigned int idx;
2956 
2957 	idx = (way * TLB0_ENTRIES_PER_WAY);
2958 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2959 	return (idx);
2960 }
2961 
2962 /*
2963  * Invalidate TLB0 entry.
2964  */
2965 static inline void
2966 tlb0_flush_entry(vm_offset_t va)
2967 {
2968 
2969 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2970 
2971 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2972 
2973 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2974 	__asm __volatile("isync; msync");
2975 	__asm __volatile("tlbsync; msync");
2976 
2977 	CTR1(KTR_PMAP, "%s: e", __func__);
2978 }
2979 
2980 /* Print out contents of the MAS registers for each TLB0 entry */
2981 void
2982 tlb0_print_tlbentries(void)
2983 {
2984 	uint32_t mas0, mas1, mas2, mas3, mas7;
2985 	int entryidx, way, idx;
2986 
2987 	debugf("TLB0 entries:\n");
2988 	for (way = 0; way < TLB0_WAYS; way ++)
2989 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2990 
2991 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2992 			mtspr(SPR_MAS0, mas0);
2993 			__asm __volatile("isync");
2994 
2995 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2996 			mtspr(SPR_MAS2, mas2);
2997 
2998 			__asm __volatile("isync; tlbre");
2999 
3000 			mas1 = mfspr(SPR_MAS1);
3001 			mas2 = mfspr(SPR_MAS2);
3002 			mas3 = mfspr(SPR_MAS3);
3003 			mas7 = mfspr(SPR_MAS7);
3004 
3005 			idx = tlb0_tableidx(mas2, way);
3006 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3007 		}
3008 }
3009 
3010 /**************************************************************************/
3011 /* TLB1 handling */
3012 /**************************************************************************/
3013 
3014 /*
3015  * TLB1 mapping notes:
3016  *
3017  * TLB1[0]	Kernel text and data.
3018  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3019  *		windows, other devices mappings.
3020  */
3021 
3022 /*
3023  * Write given entry to TLB1 hardware.
3024  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
3025  */
3026 static void
3027 tlb1_write_entry(unsigned int idx)
3028 {
3029 	uint32_t mas0;
3030 
3031 	//debugf("tlb1_write_entry: s\n");
3032 
3033 	/* Select entry */
3034 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
3035 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
3036 
3037 	mtspr(SPR_MAS0, mas0);
3038 	__asm __volatile("isync");
3039 	mtspr(SPR_MAS1, tlb1[idx].mas1);
3040 	__asm __volatile("isync");
3041 	mtspr(SPR_MAS2, tlb1[idx].mas2);
3042 	__asm __volatile("isync");
3043 	mtspr(SPR_MAS3, tlb1[idx].mas3);
3044 	__asm __volatile("isync");
3045 	mtspr(SPR_MAS7, tlb1[idx].mas7);
3046 	__asm __volatile("isync; tlbwe; isync; msync");
3047 
3048 	//debugf("tlb1_write_entry: e\n");
3049 }
3050 
3051 /*
3052  * Return the largest uint value log such that 2^log <= num.
3053  */
3054 static unsigned int
3055 ilog2(unsigned int num)
3056 {
3057 	int lz;
3058 
3059 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3060 	return (31 - lz);
3061 }
3062 
3063 /*
3064  * Convert TLB TSIZE value to mapped region size.
3065  */
3066 static vm_size_t
3067 tsize2size(unsigned int tsize)
3068 {
3069 
3070 	/*
3071 	 * size = 4^tsize KB
3072 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3073 	 */
3074 
3075 	return ((1 << (2 * tsize)) * 1024);
3076 }
3077 
3078 /*
3079  * Convert region size (must be power of 4) to TLB TSIZE value.
3080  */
3081 static unsigned int
3082 size2tsize(vm_size_t size)
3083 {
3084 
3085 	return (ilog2(size) / 2 - 5);
3086 }
3087 
3088 /*
3089  * Register permanent kernel mapping in TLB1.
3090  *
3091  * Entries are created starting from index 0 (current free entry is
3092  * kept in tlb1_idx) and are not supposed to be invalidated.
3093  */
3094 static int
3095 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3096     uint32_t flags)
3097 {
3098 	uint32_t ts, tid;
3099 	int tsize, index;
3100 
3101 	index = atomic_fetchadd_int(&tlb1_idx, 1);
3102 	if (index >= TLB1_ENTRIES) {
3103 		printf("tlb1_set_entry: TLB1 full!\n");
3104 		return (-1);
3105 	}
3106 
3107 	/* Convert size to TSIZE */
3108 	tsize = size2tsize(size);
3109 
3110 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3111 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3112 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3113 
3114 	/*
3115 	 * Atomicity is preserved by the atomic increment above since nothing
3116 	 * is ever removed from tlb1.
3117 	 */
3118 
3119 	tlb1[index].phys = pa;
3120 	tlb1[index].virt = va;
3121 	tlb1[index].size = size;
3122 	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3123 	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3124 	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3125 
3126 	/* Set supervisor RWX permission bits */
3127 	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3128 	tlb1[index].mas7 = (pa >> 32) & MAS7_RPN;
3129 
3130 	tlb1_write_entry(index);
3131 
3132 	/*
3133 	 * XXX in general TLB1 updates should be propagated between CPUs,
3134 	 * since current design assumes to have the same TLB1 set-up on all
3135 	 * cores.
3136 	 */
3137 	return (0);
3138 }
3139 
3140 /*
3141  * Map in contiguous RAM region into the TLB1 using maximum of
3142  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3143  *
3144  * If necessary round up last entry size and return total size
3145  * used by all allocated entries.
3146  */
3147 vm_size_t
3148 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3149 {
3150 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3151 	vm_size_t mapped, pgsz, base, mask;
3152 	int idx, nents;
3153 
3154 	/* Round up to the next 1M */
3155 	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3156 
3157 	mapped = 0;
3158 	idx = 0;
3159 	base = va;
3160 	pgsz = 64*1024*1024;
3161 	while (mapped < size) {
3162 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3163 			while (pgsz > (size - mapped))
3164 				pgsz >>= 2;
3165 			pgs[idx++] = pgsz;
3166 			mapped += pgsz;
3167 		}
3168 
3169 		/* We under-map. Correct for this. */
3170 		if (mapped < size) {
3171 			while (pgs[idx - 1] == pgsz) {
3172 				idx--;
3173 				mapped -= pgsz;
3174 			}
3175 			/* XXX We may increase beyond out starting point. */
3176 			pgsz <<= 2;
3177 			pgs[idx++] = pgsz;
3178 			mapped += pgsz;
3179 		}
3180 	}
3181 
3182 	nents = idx;
3183 	mask = pgs[0] - 1;
3184 	/* Align address to the boundary */
3185 	if (va & mask) {
3186 		va = (va + mask) & ~mask;
3187 		pa = (pa + mask) & ~mask;
3188 	}
3189 
3190 	for (idx = 0; idx < nents; idx++) {
3191 		pgsz = pgs[idx];
3192 		debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz);
3193 		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3194 		pa += pgsz;
3195 		va += pgsz;
3196 	}
3197 
3198 	mapped = (va - base);
3199 	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3200 	    mapped, mapped - size);
3201 	return (mapped);
3202 }
3203 
3204 /*
3205  * TLB1 initialization routine, to be called after the very first
3206  * assembler level setup done in locore.S.
3207  */
3208 void
3209 tlb1_init()
3210 {
3211 	uint32_t mas0, mas1, mas2, mas3, mas7;
3212 	uint32_t tsz;
3213 	u_int i;
3214 
3215 	if (bootinfo != NULL && bootinfo[0] != 1) {
3216 		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3217 	} else
3218 		tlb1_idx = 1;
3219 
3220 	/* The first entry/entries are used to map the kernel. */
3221 	for (i = 0; i < tlb1_idx; i++) {
3222 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3223 		mtspr(SPR_MAS0, mas0);
3224 		__asm __volatile("isync; tlbre");
3225 
3226 		mas1 = mfspr(SPR_MAS1);
3227 		if ((mas1 & MAS1_VALID) == 0)
3228 			continue;
3229 
3230 		mas2 = mfspr(SPR_MAS2);
3231 		mas3 = mfspr(SPR_MAS3);
3232 		mas7 = mfspr(SPR_MAS7);
3233 
3234 		tlb1[i].mas1 = mas1;
3235 		tlb1[i].mas2 = mfspr(SPR_MAS2);
3236 		tlb1[i].mas3 = mas3;
3237 		tlb1[i].mas7 = mas7;
3238 		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3239 		tlb1[i].phys =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
3240 		    (mas3 & MAS3_RPN);
3241 
3242 		if (i == 0)
3243 			kernload = tlb1[i].phys;
3244 
3245 		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3246 		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3247 		kernsize += tlb1[i].size;
3248 	}
3249 
3250 #ifdef SMP
3251 	bp_ntlb1s = tlb1_idx;
3252 #endif
3253 
3254 	/* Purge the remaining entries */
3255 	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3256 		tlb1_write_entry(i);
3257 
3258 	/* Setup TLB miss defaults */
3259 	set_mas4_defaults();
3260 }
3261 
3262 vm_offset_t
3263 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3264 {
3265 	vm_paddr_t pa_base;
3266 	vm_offset_t va, sz;
3267 	int i;
3268 
3269 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3270 
3271 	for (i = 0; i < tlb1_idx; i++) {
3272 		if (!(tlb1[i].mas1 & MAS1_VALID))
3273 			continue;
3274 		if (pa >= tlb1[i].phys && (pa + size) <=
3275 		    (tlb1[i].phys + tlb1[i].size))
3276 			return (tlb1[i].virt + (pa - tlb1[i].phys));
3277 	}
3278 
3279 	pa_base = trunc_page(pa);
3280 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3281 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3282 	va = tlb1_map_base + (pa - pa_base);
3283 
3284 	do {
3285 		sz = 1 << (ilog2(size) & ~1);
3286 		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3287 		size -= sz;
3288 		pa_base += sz;
3289 		tlb1_map_base += sz;
3290 	} while (size > 0);
3291 
3292 #ifdef SMP
3293 	bp_ntlb1s = tlb1_idx;
3294 #endif
3295 
3296 	return (va);
3297 }
3298 
3299 /*
3300  * Setup MAS4 defaults.
3301  * These values are loaded to MAS0-2 on a TLB miss.
3302  */
3303 static void
3304 set_mas4_defaults(void)
3305 {
3306 	uint32_t mas4;
3307 
3308 	/* Defaults: TLB0, PID0, TSIZED=4K */
3309 	mas4 = MAS4_TLBSELD0;
3310 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3311 #ifdef SMP
3312 	mas4 |= MAS4_MD;
3313 #endif
3314 	mtspr(SPR_MAS4, mas4);
3315 	__asm __volatile("isync");
3316 }
3317 
3318 /*
3319  * Print out contents of the MAS registers for each TLB1 entry
3320  */
3321 void
3322 tlb1_print_tlbentries(void)
3323 {
3324 	uint32_t mas0, mas1, mas2, mas3, mas7;
3325 	int i;
3326 
3327 	debugf("TLB1 entries:\n");
3328 	for (i = 0; i < TLB1_ENTRIES; i++) {
3329 
3330 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3331 		mtspr(SPR_MAS0, mas0);
3332 
3333 		__asm __volatile("isync; tlbre");
3334 
3335 		mas1 = mfspr(SPR_MAS1);
3336 		mas2 = mfspr(SPR_MAS2);
3337 		mas3 = mfspr(SPR_MAS3);
3338 		mas7 = mfspr(SPR_MAS7);
3339 
3340 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3341 	}
3342 }
3343 
3344 /*
3345  * Print out contents of the in-ram tlb1 table.
3346  */
3347 void
3348 tlb1_print_entries(void)
3349 {
3350 	int i;
3351 
3352 	debugf("tlb1[] table entries:\n");
3353 	for (i = 0; i < TLB1_ENTRIES; i++)
3354 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3,
3355 		    tlb1[i].mas7);
3356 }
3357 
3358 /*
3359  * Return 0 if the physical IO range is encompassed by one of the
3360  * the TLB1 entries, otherwise return related error code.
3361  */
3362 static int
3363 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3364 {
3365 	uint32_t prot;
3366 	vm_paddr_t pa_start;
3367 	vm_paddr_t pa_end;
3368 	unsigned int entry_tsize;
3369 	vm_size_t entry_size;
3370 
3371 	*va = (vm_offset_t)NULL;
3372 
3373 	/* Skip invalid entries */
3374 	if (!(tlb1[i].mas1 & MAS1_VALID))
3375 		return (EINVAL);
3376 
3377 	/*
3378 	 * The entry must be cache-inhibited, guarded, and r/w
3379 	 * so it can function as an i/o page
3380 	 */
3381 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3382 	if (prot != (MAS2_I | MAS2_G))
3383 		return (EPERM);
3384 
3385 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3386 	if (prot != (MAS3_SR | MAS3_SW))
3387 		return (EPERM);
3388 
3389 	/* The address should be within the entry range. */
3390 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3391 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3392 
3393 	entry_size = tsize2size(entry_tsize);
3394 	pa_start = (((vm_paddr_t)tlb1[i].mas7 & MAS7_RPN) << 32) |
3395 	    (tlb1[i].mas3 & MAS3_RPN);
3396 	pa_end = pa_start + entry_size;
3397 
3398 	if ((pa < pa_start) || ((pa + size) > pa_end))
3399 		return (ERANGE);
3400 
3401 	/* Return virtual address of this mapping. */
3402 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3403 	return (0);
3404 }
3405