xref: /freebsd/sys/powerpc/booke/pmap.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - kernelend	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/malloc.h>
57 #include <sys/ktr.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/queue.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/msgbuf.h>
64 #include <sys/lock.h>
65 #include <sys/mutex.h>
66 #include <sys/vmmeter.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_pager.h>
77 #include <vm/uma.h>
78 
79 #include <machine/cpu.h>
80 #include <machine/pcb.h>
81 #include <machine/powerpc.h>
82 
83 #include <machine/tlb.h>
84 #include <machine/spr.h>
85 #include <machine/vmparam.h>
86 #include <machine/md_var.h>
87 #include <machine/mmuvar.h>
88 #include <machine/pmap.h>
89 #include <machine/pte.h>
90 
91 #include "mmu_if.h"
92 
93 #define DEBUG
94 #undef DEBUG
95 
96 #ifdef  DEBUG
97 #define debugf(fmt, args...) printf(fmt, ##args)
98 #else
99 #define debugf(fmt, args...)
100 #endif
101 
102 #define TODO			panic("%s: not implemented", __func__);
103 #define memmove(d, s, l)	bcopy(s, d, l)
104 
105 #include "opt_sched.h"
106 #ifndef SCHED_4BSD
107 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
108 #endif
109 extern struct mtx sched_lock;
110 
111 /* Kernel physical load address. */
112 extern uint32_t kernload;
113 
114 struct mem_region availmem_regions[MEM_REGIONS];
115 int availmem_regions_sz;
116 
117 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
118 static vm_offset_t zero_page_va;
119 static struct mtx zero_page_mutex;
120 
121 static struct mtx tlbivax_mutex;
122 
123 /*
124  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
125  * by idle thred only, no lock required.
126  */
127 static vm_offset_t zero_page_idle_va;
128 
129 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
130 static vm_offset_t copy_page_src_va;
131 static vm_offset_t copy_page_dst_va;
132 static struct mtx copy_page_mutex;
133 
134 /**************************************************************************/
135 /* PMAP */
136 /**************************************************************************/
137 
138 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
139     vm_prot_t, boolean_t);
140 
141 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
142 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
143 
144 static int pagedaemon_waken;
145 
146 /*
147  * If user pmap is processed with mmu_booke_remove and the resident count
148  * drops to 0, there are no more pages to remove, so we need not continue.
149  */
150 #define PMAP_REMOVE_DONE(pmap) \
151 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
152 
153 extern void tlb_lock(uint32_t *);
154 extern void tlb_unlock(uint32_t *);
155 extern void tid_flush(tlbtid_t);
156 
157 /**************************************************************************/
158 /* TLB and TID handling */
159 /**************************************************************************/
160 
161 /* Translation ID busy table */
162 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
163 
164 /*
165  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
166  * core revisions and should be read from h/w registers during early config.
167  */
168 uint32_t tlb0_entries;
169 uint32_t tlb0_ways;
170 uint32_t tlb0_entries_per_way;
171 
172 #define TLB0_ENTRIES		(tlb0_entries)
173 #define TLB0_WAYS		(tlb0_ways)
174 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
175 
176 #define TLB1_ENTRIES 16
177 
178 /* In-ram copy of the TLB1 */
179 static tlb_entry_t tlb1[TLB1_ENTRIES];
180 
181 /* Next free entry in the TLB1 */
182 static unsigned int tlb1_idx;
183 
184 static tlbtid_t tid_alloc(struct pmap *);
185 
186 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
187 
188 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
189 static void tlb1_write_entry(unsigned int);
190 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
191 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
192 
193 static vm_size_t tsize2size(unsigned int);
194 static unsigned int size2tsize(vm_size_t);
195 static unsigned int ilog2(unsigned int);
196 
197 static void set_mas4_defaults(void);
198 
199 static inline void tlb0_flush_entry(vm_offset_t);
200 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
201 
202 /**************************************************************************/
203 /* Page table management */
204 /**************************************************************************/
205 
206 /* Data for the pv entry allocation mechanism */
207 static uma_zone_t pvzone;
208 static struct vm_object pvzone_obj;
209 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
210 
211 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
212 
213 #ifndef PMAP_SHPGPERPROC
214 #define PMAP_SHPGPERPROC	200
215 #endif
216 
217 static void ptbl_init(void);
218 static struct ptbl_buf *ptbl_buf_alloc(void);
219 static void ptbl_buf_free(struct ptbl_buf *);
220 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
221 
222 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
223 static void ptbl_free(mmu_t, pmap_t, unsigned int);
224 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
225 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
226 
227 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
228 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
229 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
230 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
231 
232 static pv_entry_t pv_alloc(void);
233 static void pv_free(pv_entry_t);
234 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
235 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
236 
237 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
238 #define PTBL_BUFS		(128 * 16)
239 
240 struct ptbl_buf {
241 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
242 	vm_offset_t kva;		/* va of mapping */
243 };
244 
245 /* ptbl free list and a lock used for access synchronization. */
246 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
247 static struct mtx ptbl_buf_freelist_lock;
248 
249 /* Base address of kva space allocated fot ptbl bufs. */
250 static vm_offset_t ptbl_buf_pool_vabase;
251 
252 /* Pointer to ptbl_buf structures. */
253 static struct ptbl_buf *ptbl_bufs;
254 
255 /*
256  * Kernel MMU interface
257  */
258 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
259 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
260 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
261 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t,
262     vm_offset_t);
263 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
264 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
265     vm_prot_t, boolean_t);
266 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
267     vm_page_t, vm_prot_t);
268 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
269     vm_prot_t);
270 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
271 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
272     vm_prot_t);
273 static void		mmu_booke_init(mmu_t);
274 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
275 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
276 static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
277 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
278     int);
279 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
280 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
281     vm_object_t, vm_pindex_t, vm_size_t);
282 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
283 static void		mmu_booke_page_init(mmu_t, vm_page_t);
284 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
285 static void		mmu_booke_pinit(mmu_t, pmap_t);
286 static void		mmu_booke_pinit0(mmu_t, pmap_t);
287 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
288     vm_prot_t);
289 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
290 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
291 static void		mmu_booke_release(mmu_t, pmap_t);
292 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
293 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
294 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
295 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
296 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
297 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
298 static void		mmu_booke_activate(mmu_t, struct thread *);
299 static void		mmu_booke_deactivate(mmu_t, struct thread *);
300 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
301 static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
302 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
303 static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
304 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
305 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
306 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
307 static boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
308 
309 static mmu_method_t mmu_booke_methods[] = {
310 	/* pmap dispatcher interface */
311 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
312 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
313 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
314 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
315 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
316 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
317 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
318 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
319 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
320 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
321 	MMUMETHOD(mmu_init,		mmu_booke_init),
322 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
323 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
324 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
325 	MMUMETHOD(mmu_map,		mmu_booke_map),
326 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
327 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
328 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
329 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
330 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
331 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
332 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
333 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
334 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
335 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
336 	MMUMETHOD(mmu_release,		mmu_booke_release),
337 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
338 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
339 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
340 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
341 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
342 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
343 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
344 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
345 
346 	/* Internal interfaces */
347 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
348 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
349 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
350 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
351 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
352 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
353 	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
354 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
355 
356 	{ 0, 0 }
357 };
358 
359 static mmu_def_t booke_mmu = {
360 	MMU_TYPE_BOOKE,
361 	mmu_booke_methods,
362 	0
363 };
364 MMU_DEF(booke_mmu);
365 
366 /* Return number of entries in TLB0. */
367 static __inline void
368 tlb0_get_tlbconf(void)
369 {
370 	uint32_t tlb0_cfg;
371 
372 	tlb0_cfg = mfspr(SPR_TLB0CFG);
373 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
374 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
375 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
376 }
377 
378 /* Initialize pool of kva ptbl buffers. */
379 static void
380 ptbl_init(void)
381 {
382 	int i;
383 
384 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
385 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
386 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
387 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
388 
389 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
390 	TAILQ_INIT(&ptbl_buf_freelist);
391 
392 	for (i = 0; i < PTBL_BUFS; i++) {
393 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
394 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
395 	}
396 }
397 
398 /* Get a ptbl_buf from the freelist. */
399 static struct ptbl_buf *
400 ptbl_buf_alloc(void)
401 {
402 	struct ptbl_buf *buf;
403 
404 	mtx_lock(&ptbl_buf_freelist_lock);
405 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
406 	if (buf != NULL)
407 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
408 	mtx_unlock(&ptbl_buf_freelist_lock);
409 
410 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
411 
412 	return (buf);
413 }
414 
415 /* Return ptbl buff to free pool. */
416 static void
417 ptbl_buf_free(struct ptbl_buf *buf)
418 {
419 
420 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
421 
422 	mtx_lock(&ptbl_buf_freelist_lock);
423 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
424 	mtx_unlock(&ptbl_buf_freelist_lock);
425 }
426 
427 /*
428  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
429  */
430 static void
431 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
432 {
433 	struct ptbl_buf *pbuf;
434 
435 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
436 
437 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
438 
439 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
440 		if (pbuf->kva == (vm_offset_t)ptbl) {
441 			/* Remove from pmap ptbl buf list. */
442 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
443 
444 			/* Free corresponding ptbl buf. */
445 			ptbl_buf_free(pbuf);
446 			break;
447 		}
448 }
449 
450 /* Allocate page table. */
451 static pte_t *
452 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
453 {
454 	vm_page_t mtbl[PTBL_PAGES];
455 	vm_page_t m;
456 	struct ptbl_buf *pbuf;
457 	unsigned int pidx;
458 	pte_t *ptbl;
459 	int i;
460 
461 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
462 	    (pmap == kernel_pmap), pdir_idx);
463 
464 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
465 	    ("ptbl_alloc: invalid pdir_idx"));
466 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
467 	    ("pte_alloc: valid ptbl entry exists!"));
468 
469 	pbuf = ptbl_buf_alloc();
470 	if (pbuf == NULL)
471 		panic("pte_alloc: couldn't alloc kernel virtual memory");
472 
473 	ptbl = (pte_t *)pbuf->kva;
474 
475 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
476 
477 	/* Allocate ptbl pages, this will sleep! */
478 	for (i = 0; i < PTBL_PAGES; i++) {
479 		pidx = (PTBL_PAGES * pdir_idx) + i;
480 		while ((m = vm_page_alloc(NULL, pidx,
481 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
482 
483 			PMAP_UNLOCK(pmap);
484 			vm_page_unlock_queues();
485 			VM_WAIT;
486 			vm_page_lock_queues();
487 			PMAP_LOCK(pmap);
488 		}
489 		mtbl[i] = m;
490 	}
491 
492 	/* Map allocated pages into kernel_pmap. */
493 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
494 
495 	/* Zero whole ptbl. */
496 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
497 
498 	/* Add pbuf to the pmap ptbl bufs list. */
499 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
500 
501 	return (ptbl);
502 }
503 
504 /* Free ptbl pages and invalidate pdir entry. */
505 static void
506 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
507 {
508 	pte_t *ptbl;
509 	vm_paddr_t pa;
510 	vm_offset_t va;
511 	vm_page_t m;
512 	int i;
513 
514 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
515 	    (pmap == kernel_pmap), pdir_idx);
516 
517 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
518 	    ("ptbl_free: invalid pdir_idx"));
519 
520 	ptbl = pmap->pm_pdir[pdir_idx];
521 
522 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
523 
524 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
525 
526 	/*
527 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
528 	 * don't attempt to look up the page tables we are releasing.
529 	 */
530 	mtx_lock_spin(&tlbivax_mutex);
531 
532 	pmap->pm_pdir[pdir_idx] = NULL;
533 
534 	mtx_unlock_spin(&tlbivax_mutex);
535 
536 	for (i = 0; i < PTBL_PAGES; i++) {
537 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
538 		pa = pte_vatopa(mmu, kernel_pmap, va);
539 		m = PHYS_TO_VM_PAGE(pa);
540 		vm_page_free_zero(m);
541 		atomic_subtract_int(&cnt.v_wire_count, 1);
542 		mmu_booke_kremove(mmu, va);
543 	}
544 
545 	ptbl_free_pmap_ptbl(pmap, ptbl);
546 }
547 
548 /*
549  * Decrement ptbl pages hold count and attempt to free ptbl pages.
550  * Called when removing pte entry from ptbl.
551  *
552  * Return 1 if ptbl pages were freed.
553  */
554 static int
555 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
556 {
557 	pte_t *ptbl;
558 	vm_paddr_t pa;
559 	vm_page_t m;
560 	int i;
561 
562 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
563 	    (pmap == kernel_pmap), pdir_idx);
564 
565 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
566 	    ("ptbl_unhold: invalid pdir_idx"));
567 	KASSERT((pmap != kernel_pmap),
568 	    ("ptbl_unhold: unholding kernel ptbl!"));
569 
570 	ptbl = pmap->pm_pdir[pdir_idx];
571 
572 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
573 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
574 	    ("ptbl_unhold: non kva ptbl"));
575 
576 	/* decrement hold count */
577 	for (i = 0; i < PTBL_PAGES; i++) {
578 		pa = pte_vatopa(mmu, kernel_pmap,
579 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
580 		m = PHYS_TO_VM_PAGE(pa);
581 		m->wire_count--;
582 	}
583 
584 	/*
585 	 * Free ptbl pages if there are no pte etries in this ptbl.
586 	 * wire_count has the same value for all ptbl pages, so check the last
587 	 * page.
588 	 */
589 	if (m->wire_count == 0) {
590 		ptbl_free(mmu, pmap, pdir_idx);
591 
592 		//debugf("ptbl_unhold: e (freed ptbl)\n");
593 		return (1);
594 	}
595 
596 	return (0);
597 }
598 
599 /*
600  * Increment hold count for ptbl pages. This routine is used when a new pte
601  * entry is being inserted into the ptbl.
602  */
603 static void
604 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
605 {
606 	vm_paddr_t pa;
607 	pte_t *ptbl;
608 	vm_page_t m;
609 	int i;
610 
611 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
612 	    pdir_idx);
613 
614 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
615 	    ("ptbl_hold: invalid pdir_idx"));
616 	KASSERT((pmap != kernel_pmap),
617 	    ("ptbl_hold: holding kernel ptbl!"));
618 
619 	ptbl = pmap->pm_pdir[pdir_idx];
620 
621 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
622 
623 	for (i = 0; i < PTBL_PAGES; i++) {
624 		pa = pte_vatopa(mmu, kernel_pmap,
625 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
626 		m = PHYS_TO_VM_PAGE(pa);
627 		m->wire_count++;
628 	}
629 }
630 
631 /* Allocate pv_entry structure. */
632 pv_entry_t
633 pv_alloc(void)
634 {
635 	pv_entry_t pv;
636 
637 	pv_entry_count++;
638 	if ((pv_entry_count > pv_entry_high_water) &&
639 	    (pagedaemon_waken == 0)) {
640 		pagedaemon_waken = 1;
641 		wakeup(&vm_pages_needed);
642 	}
643 	pv = uma_zalloc(pvzone, M_NOWAIT);
644 
645 	return (pv);
646 }
647 
648 /* Free pv_entry structure. */
649 static __inline void
650 pv_free(pv_entry_t pve)
651 {
652 
653 	pv_entry_count--;
654 	uma_zfree(pvzone, pve);
655 }
656 
657 
658 /* Allocate and initialize pv_entry structure. */
659 static void
660 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
661 {
662 	pv_entry_t pve;
663 
664 	//int su = (pmap == kernel_pmap);
665 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
666 	//	(u_int32_t)pmap, va, (u_int32_t)m);
667 
668 	pve = pv_alloc();
669 	if (pve == NULL)
670 		panic("pv_insert: no pv entries!");
671 
672 	pve->pv_pmap = pmap;
673 	pve->pv_va = va;
674 
675 	/* add to pv_list */
676 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
677 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
678 
679 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
680 
681 	//debugf("pv_insert: e\n");
682 }
683 
684 /* Destroy pv entry. */
685 static void
686 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
687 {
688 	pv_entry_t pve;
689 
690 	//int su = (pmap == kernel_pmap);
691 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
692 
693 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
694 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
695 
696 	/* find pv entry */
697 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
698 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
699 			/* remove from pv_list */
700 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
701 			if (TAILQ_EMPTY(&m->md.pv_list))
702 				vm_page_flag_clear(m, PG_WRITEABLE);
703 
704 			/* free pv entry struct */
705 			pv_free(pve);
706 			break;
707 		}
708 	}
709 
710 	//debugf("pv_remove: e\n");
711 }
712 
713 /*
714  * Clean pte entry, try to free page table page if requested.
715  *
716  * Return 1 if ptbl pages were freed, otherwise return 0.
717  */
718 static int
719 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
720 {
721 	unsigned int pdir_idx = PDIR_IDX(va);
722 	unsigned int ptbl_idx = PTBL_IDX(va);
723 	vm_page_t m;
724 	pte_t *ptbl;
725 	pte_t *pte;
726 
727 	//int su = (pmap == kernel_pmap);
728 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
729 	//		su, (u_int32_t)pmap, va, flags);
730 
731 	ptbl = pmap->pm_pdir[pdir_idx];
732 	KASSERT(ptbl, ("pte_remove: null ptbl"));
733 
734 	pte = &ptbl[ptbl_idx];
735 
736 	if (pte == NULL || !PTE_ISVALID(pte))
737 		return (0);
738 
739 	/* Get vm_page_t for mapped pte. */
740 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
741 
742 	if (PTE_ISWIRED(pte))
743 		pmap->pm_stats.wired_count--;
744 
745 	if (!PTE_ISFAKE(pte)) {
746 		/* Handle managed entry. */
747 		if (PTE_ISMANAGED(pte)) {
748 
749 			/* Handle modified pages. */
750 			if (PTE_ISMODIFIED(pte))
751 				vm_page_dirty(m);
752 
753 			/* Referenced pages. */
754 			if (PTE_ISREFERENCED(pte))
755 				vm_page_flag_set(m, PG_REFERENCED);
756 
757 			/* Remove pv_entry from pv_list. */
758 			pv_remove(pmap, va, m);
759 		}
760 	}
761 
762 	mtx_lock_spin(&tlbivax_mutex);
763 
764 	tlb0_flush_entry(va);
765 	pte->flags = 0;
766 	pte->rpn = 0;
767 
768 	mtx_unlock_spin(&tlbivax_mutex);
769 
770 	pmap->pm_stats.resident_count--;
771 
772 	if (flags & PTBL_UNHOLD) {
773 		//debugf("pte_remove: e (unhold)\n");
774 		return (ptbl_unhold(mmu, pmap, pdir_idx));
775 	}
776 
777 	//debugf("pte_remove: e\n");
778 	return (0);
779 }
780 
781 /*
782  * Insert PTE for a given page and virtual address.
783  */
784 static void
785 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
786 {
787 	unsigned int pdir_idx = PDIR_IDX(va);
788 	unsigned int ptbl_idx = PTBL_IDX(va);
789 	pte_t *ptbl, *pte;
790 
791 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
792 	    pmap == kernel_pmap, pmap, va);
793 
794 	/* Get the page table pointer. */
795 	ptbl = pmap->pm_pdir[pdir_idx];
796 
797 	if (ptbl == NULL) {
798 		/* Allocate page table pages. */
799 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
800 	} else {
801 		/*
802 		 * Check if there is valid mapping for requested
803 		 * va, if there is, remove it.
804 		 */
805 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
806 		if (PTE_ISVALID(pte)) {
807 			pte_remove(mmu, pmap, va, PTBL_HOLD);
808 		} else {
809 			/*
810 			 * pte is not used, increment hold count
811 			 * for ptbl pages.
812 			 */
813 			if (pmap != kernel_pmap)
814 				ptbl_hold(mmu, pmap, pdir_idx);
815 		}
816 	}
817 
818 	/*
819 	 * Insert pv_entry into pv_list for mapped page if part of managed
820 	 * memory.
821 	 */
822         if ((m->flags & PG_FICTITIOUS) == 0) {
823 		if ((m->flags & PG_UNMANAGED) == 0) {
824 			flags |= PTE_MANAGED;
825 
826 			/* Create and insert pv entry. */
827 			pv_insert(pmap, va, m);
828 		}
829         } else {
830 		flags |= PTE_FAKE;
831 	}
832 
833 	pmap->pm_stats.resident_count++;
834 
835 	mtx_lock_spin(&tlbivax_mutex);
836 
837 	tlb0_flush_entry(va);
838 	if (pmap->pm_pdir[pdir_idx] == NULL) {
839 		/*
840 		 * If we just allocated a new page table, hook it in
841 		 * the pdir.
842 		 */
843 		pmap->pm_pdir[pdir_idx] = ptbl;
844 	}
845 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
846 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
847 	pte->flags |= (PTE_VALID | flags);
848 
849 	mtx_unlock_spin(&tlbivax_mutex);
850 }
851 
852 /* Return the pa for the given pmap/va. */
853 static vm_paddr_t
854 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
855 {
856 	vm_paddr_t pa = 0;
857 	pte_t *pte;
858 
859 	pte = pte_find(mmu, pmap, va);
860 	if ((pte != NULL) && PTE_ISVALID(pte))
861 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
862 	return (pa);
863 }
864 
865 /* Get a pointer to a PTE in a page table. */
866 static pte_t *
867 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
868 {
869 	unsigned int pdir_idx = PDIR_IDX(va);
870 	unsigned int ptbl_idx = PTBL_IDX(va);
871 
872 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
873 
874 	if (pmap->pm_pdir[pdir_idx])
875 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
876 
877 	return (NULL);
878 }
879 
880 /**************************************************************************/
881 /* PMAP related */
882 /**************************************************************************/
883 
884 /*
885  * This is called during e500_init, before the system is really initialized.
886  */
887 static void
888 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t kernelstart, vm_offset_t kernelend)
889 {
890 	vm_offset_t phys_kernelend;
891 	struct mem_region *mp, *mp1;
892 	int cnt, i, j;
893 	u_int s, e, sz;
894 	u_int phys_avail_count;
895 	vm_size_t physsz, hwphyssz, kstack0_sz;
896 	vm_offset_t kernel_pdir, kstack0;
897 	vm_paddr_t kstack0_phys;
898 
899 	debugf("mmu_booke_bootstrap: entered\n");
900 
901 	/* Initialize invalidation mutex */
902 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
903 
904 	/* Read TLB0 size and associativity. */
905 	tlb0_get_tlbconf();
906 
907 	/* Align kernel start and end address (kernel image). */
908 	kernelstart = trunc_page(kernelstart);
909 	kernelend = round_page(kernelend);
910 
911 	/* Allocate space for the message buffer. */
912 	msgbufp = (struct msgbuf *)kernelend;
913 	kernelend += MSGBUF_SIZE;
914 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
915 	    kernelend);
916 
917 	kernelend = round_page(kernelend);
918 
919 	/* Allocate space for ptbl_bufs. */
920 	ptbl_bufs = (struct ptbl_buf *)kernelend;
921 	kernelend += sizeof(struct ptbl_buf) * PTBL_BUFS;
922 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
923 	    kernelend);
924 
925 	kernelend = round_page(kernelend);
926 
927 	/* Allocate PTE tables for kernel KVA. */
928 	kernel_pdir = kernelend;
929 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
930 	    PDIR_SIZE - 1) / PDIR_SIZE;
931 	kernelend += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
932 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
933 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, kernelend);
934 
935 	debugf(" kernelend: 0x%08x\n", kernelend);
936 	if (kernelend - kernelstart > 0x1000000) {
937 		kernelend = (kernelend + 0x3fffff) & ~0x3fffff;
938 		tlb1_mapin_region(kernelstart + 0x1000000,
939 		    kernload + 0x1000000, kernelend - kernelstart - 0x1000000);
940 	} else
941 		kernelend = (kernelend + 0xffffff) & ~0xffffff;
942 
943 	debugf(" updated kernelend: 0x%08x\n", kernelend);
944 
945 	/*
946 	 * Clear the structures - note we can only do it safely after the
947 	 * possible additional TLB1 translations are in place (above) so that
948 	 * all range up to the currently calculated 'kernelend' is covered.
949 	 */
950 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
951 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
952 
953 	/*******************************************************/
954 	/* Set the start and end of kva. */
955 	/*******************************************************/
956 	virtual_avail = kernelend;
957 	virtual_end = VM_MAX_KERNEL_ADDRESS;
958 
959 	/* Allocate KVA space for page zero/copy operations. */
960 	zero_page_va = virtual_avail;
961 	virtual_avail += PAGE_SIZE;
962 	zero_page_idle_va = virtual_avail;
963 	virtual_avail += PAGE_SIZE;
964 	copy_page_src_va = virtual_avail;
965 	virtual_avail += PAGE_SIZE;
966 	copy_page_dst_va = virtual_avail;
967 	virtual_avail += PAGE_SIZE;
968 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
969 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
970 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
971 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
972 
973 	/* Initialize page zero/copy mutexes. */
974 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
975 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
976 
977 	/* Allocate KVA space for ptbl bufs. */
978 	ptbl_buf_pool_vabase = virtual_avail;
979 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
980 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
981 	    ptbl_buf_pool_vabase, virtual_avail);
982 
983 	/* Calculate corresponding physical addresses for the kernel region. */
984 	phys_kernelend = kernload + (kernelend - kernelstart);
985 	debugf("kernel image and allocated data:\n");
986 	debugf(" kernload    = 0x%08x\n", kernload);
987 	debugf(" kernelstart = 0x%08x\n", kernelstart);
988 	debugf(" kernelend   = 0x%08x\n", kernelend);
989 	debugf(" kernel size = 0x%08x\n", kernelend - kernelstart);
990 
991 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
992 		panic("mmu_booke_bootstrap: phys_avail too small");
993 
994 	/*
995 	 * Remove kernel physical address range from avail regions list. Page
996 	 * align all regions.  Non-page aligned memory isn't very interesting
997 	 * to us.  Also, sort the entries for ascending addresses.
998 	 */
999 	sz = 0;
1000 	cnt = availmem_regions_sz;
1001 	debugf("processing avail regions:\n");
1002 	for (mp = availmem_regions; mp->mr_size; mp++) {
1003 		s = mp->mr_start;
1004 		e = mp->mr_start + mp->mr_size;
1005 		debugf(" %08x-%08x -> ", s, e);
1006 		/* Check whether this region holds all of the kernel. */
1007 		if (s < kernload && e > phys_kernelend) {
1008 			availmem_regions[cnt].mr_start = phys_kernelend;
1009 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1010 			e = kernload;
1011 		}
1012 		/* Look whether this regions starts within the kernel. */
1013 		if (s >= kernload && s < phys_kernelend) {
1014 			if (e <= phys_kernelend)
1015 				goto empty;
1016 			s = phys_kernelend;
1017 		}
1018 		/* Now look whether this region ends within the kernel. */
1019 		if (e > kernload && e <= phys_kernelend) {
1020 			if (s >= kernload)
1021 				goto empty;
1022 			e = kernload;
1023 		}
1024 		/* Now page align the start and size of the region. */
1025 		s = round_page(s);
1026 		e = trunc_page(e);
1027 		if (e < s)
1028 			e = s;
1029 		sz = e - s;
1030 		debugf("%08x-%08x = %x\n", s, e, sz);
1031 
1032 		/* Check whether some memory is left here. */
1033 		if (sz == 0) {
1034 		empty:
1035 			memmove(mp, mp + 1,
1036 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1037 			cnt--;
1038 			mp--;
1039 			continue;
1040 		}
1041 
1042 		/* Do an insertion sort. */
1043 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1044 			if (s < mp1->mr_start)
1045 				break;
1046 		if (mp1 < mp) {
1047 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1048 			mp1->mr_start = s;
1049 			mp1->mr_size = sz;
1050 		} else {
1051 			mp->mr_start = s;
1052 			mp->mr_size = sz;
1053 		}
1054 	}
1055 	availmem_regions_sz = cnt;
1056 
1057 	/*******************************************************/
1058 	/* Steal physical memory for kernel stack from the end */
1059 	/* of the first avail region                           */
1060 	/*******************************************************/
1061 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1062 	kstack0_phys = availmem_regions[0].mr_start +
1063 	    availmem_regions[0].mr_size;
1064 	kstack0_phys -= kstack0_sz;
1065 	availmem_regions[0].mr_size -= kstack0_sz;
1066 
1067 	/*******************************************************/
1068 	/* Fill in phys_avail table, based on availmem_regions */
1069 	/*******************************************************/
1070 	phys_avail_count = 0;
1071 	physsz = 0;
1072 	hwphyssz = 0;
1073 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1074 
1075 	debugf("fill in phys_avail:\n");
1076 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1077 
1078 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1079 		    availmem_regions[i].mr_start,
1080 		    availmem_regions[i].mr_start +
1081 		        availmem_regions[i].mr_size,
1082 		    availmem_regions[i].mr_size);
1083 
1084 		if (hwphyssz != 0 &&
1085 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1086 			debugf(" hw.physmem adjust\n");
1087 			if (physsz < hwphyssz) {
1088 				phys_avail[j] = availmem_regions[i].mr_start;
1089 				phys_avail[j + 1] =
1090 				    availmem_regions[i].mr_start +
1091 				    hwphyssz - physsz;
1092 				physsz = hwphyssz;
1093 				phys_avail_count++;
1094 			}
1095 			break;
1096 		}
1097 
1098 		phys_avail[j] = availmem_regions[i].mr_start;
1099 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1100 		    availmem_regions[i].mr_size;
1101 		phys_avail_count++;
1102 		physsz += availmem_regions[i].mr_size;
1103 	}
1104 	physmem = btoc(physsz);
1105 
1106 	/* Calculate the last available physical address. */
1107 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1108 		;
1109 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1110 
1111 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1112 	debugf("phys_avail_count = %d\n", phys_avail_count);
1113 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1114 	    physmem);
1115 
1116 	/*******************************************************/
1117 	/* Initialize (statically allocated) kernel pmap. */
1118 	/*******************************************************/
1119 	PMAP_LOCK_INIT(kernel_pmap);
1120 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1121 
1122 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1123 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1124 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1125 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1126 
1127 	/* Initialize kernel pdir */
1128 	for (i = 0; i < kernel_ptbls; i++)
1129 		kernel_pmap->pm_pdir[kptbl_min + i] =
1130 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1131 
1132 	for (i = 0; i < MAXCPU; i++) {
1133 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1134 
1135 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1136 		tidbusy[i][0] = kernel_pmap;
1137 	}
1138 	/* Mark kernel_pmap active on all CPUs */
1139 	kernel_pmap->pm_active = ~0;
1140 
1141 	/*******************************************************/
1142 	/* Final setup */
1143 	/*******************************************************/
1144 
1145 	/* Enter kstack0 into kernel map, provide guard page */
1146 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1147 	thread0.td_kstack = kstack0;
1148 	thread0.td_kstack_pages = KSTACK_PAGES;
1149 
1150 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1151 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1152 	    kstack0_phys, kstack0_phys + kstack0_sz);
1153 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1154 
1155 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1156 	for (i = 0; i < KSTACK_PAGES; i++) {
1157 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1158 		kstack0 += PAGE_SIZE;
1159 		kstack0_phys += PAGE_SIZE;
1160 	}
1161 
1162 	debugf("virtual_avail = %08x\n", virtual_avail);
1163 	debugf("virtual_end   = %08x\n", virtual_end);
1164 
1165 	debugf("mmu_booke_bootstrap: exit\n");
1166 }
1167 
1168 /*
1169  * Get the physical page address for the given pmap/virtual address.
1170  */
1171 static vm_paddr_t
1172 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1173 {
1174 	vm_paddr_t pa;
1175 
1176 	PMAP_LOCK(pmap);
1177 	pa = pte_vatopa(mmu, pmap, va);
1178 	PMAP_UNLOCK(pmap);
1179 
1180 	return (pa);
1181 }
1182 
1183 /*
1184  * Extract the physical page address associated with the given
1185  * kernel virtual address.
1186  */
1187 static vm_paddr_t
1188 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1189 {
1190 
1191 	return (pte_vatopa(mmu, kernel_pmap, va));
1192 }
1193 
1194 /*
1195  * Initialize the pmap module.
1196  * Called by vm_init, to initialize any structures that the pmap
1197  * system needs to map virtual memory.
1198  */
1199 static void
1200 mmu_booke_init(mmu_t mmu)
1201 {
1202 	int shpgperproc = PMAP_SHPGPERPROC;
1203 
1204 	/*
1205 	 * Initialize the address space (zone) for the pv entries.  Set a
1206 	 * high water mark so that the system can recover from excessive
1207 	 * numbers of pv entries.
1208 	 */
1209 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1210 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1211 
1212 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1213 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1214 
1215 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1216 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1217 
1218 	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1219 
1220 	/* Pre-fill pvzone with initial number of pv entries. */
1221 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1222 
1223 	/* Initialize ptbl allocation. */
1224 	ptbl_init();
1225 }
1226 
1227 /*
1228  * Map a list of wired pages into kernel virtual address space.  This is
1229  * intended for temporary mappings which do not need page modification or
1230  * references recorded.  Existing mappings in the region are overwritten.
1231  */
1232 static void
1233 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1234 {
1235 	vm_offset_t va;
1236 
1237 	va = sva;
1238 	while (count-- > 0) {
1239 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1240 		va += PAGE_SIZE;
1241 		m++;
1242 	}
1243 }
1244 
1245 /*
1246  * Remove page mappings from kernel virtual address space.  Intended for
1247  * temporary mappings entered by mmu_booke_qenter.
1248  */
1249 static void
1250 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1251 {
1252 	vm_offset_t va;
1253 
1254 	va = sva;
1255 	while (count-- > 0) {
1256 		mmu_booke_kremove(mmu, va);
1257 		va += PAGE_SIZE;
1258 	}
1259 }
1260 
1261 /*
1262  * Map a wired page into kernel virtual address space.
1263  */
1264 static void
1265 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1266 {
1267 	unsigned int pdir_idx = PDIR_IDX(va);
1268 	unsigned int ptbl_idx = PTBL_IDX(va);
1269 	uint32_t flags;
1270 	pte_t *pte;
1271 
1272 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1273 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1274 
1275 #if 0
1276 	/* assume IO mapping, set I, G bits */
1277 	flags = (PTE_G | PTE_I | PTE_FAKE);
1278 
1279 	/* if mapping is within system memory, do not set I, G bits */
1280 	for (i = 0; i < totalmem_regions_sz; i++) {
1281 		if ((pa >= totalmem_regions[i].mr_start) &&
1282 				(pa < (totalmem_regions[i].mr_start +
1283 				       totalmem_regions[i].mr_size))) {
1284 			flags &= ~(PTE_I | PTE_G | PTE_FAKE);
1285 			break;
1286 		}
1287 	}
1288 #else
1289 	flags = 0;
1290 #endif
1291 
1292 	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1293 	flags |= PTE_M;
1294 
1295 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1296 
1297 	mtx_lock_spin(&tlbivax_mutex);
1298 
1299 	if (PTE_ISVALID(pte)) {
1300 
1301 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1302 
1303 		/* Flush entry from TLB0 */
1304 		tlb0_flush_entry(va);
1305 	}
1306 
1307 	pte->rpn = pa & ~PTE_PA_MASK;
1308 	pte->flags = flags;
1309 
1310 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1311 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1312 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1313 
1314 	/* Flush the real memory from the instruction cache. */
1315 	if ((flags & (PTE_I | PTE_G)) == 0) {
1316 		__syncicache((void *)va, PAGE_SIZE);
1317 	}
1318 
1319 	mtx_unlock_spin(&tlbivax_mutex);
1320 }
1321 
1322 /*
1323  * Remove a page from kernel page table.
1324  */
1325 static void
1326 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1327 {
1328 	unsigned int pdir_idx = PDIR_IDX(va);
1329 	unsigned int ptbl_idx = PTBL_IDX(va);
1330 	pte_t *pte;
1331 
1332 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1333 
1334 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1335 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1336 	    ("mmu_booke_kremove: invalid va"));
1337 
1338 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1339 
1340 	if (!PTE_ISVALID(pte)) {
1341 
1342 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1343 
1344 		return;
1345 	}
1346 
1347 	mtx_lock_spin(&tlbivax_mutex);
1348 
1349 	/* Invalidate entry in TLB0, update PTE. */
1350 	tlb0_flush_entry(va);
1351 	pte->flags = 0;
1352 	pte->rpn = 0;
1353 
1354 	mtx_unlock_spin(&tlbivax_mutex);
1355 }
1356 
1357 /*
1358  * Initialize pmap associated with process 0.
1359  */
1360 static void
1361 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1362 {
1363 
1364 	mmu_booke_pinit(mmu, pmap);
1365 	PCPU_SET(curpmap, pmap);
1366 }
1367 
1368 /*
1369  * Initialize a preallocated and zeroed pmap structure,
1370  * such as one in a vmspace structure.
1371  */
1372 static void
1373 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1374 {
1375 	int i;
1376 
1377 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1378 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1379 
1380 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1381 
1382 	PMAP_LOCK_INIT(pmap);
1383 	for (i = 0; i < MAXCPU; i++)
1384 		pmap->pm_tid[i] = TID_NONE;
1385 	pmap->pm_active = 0;
1386 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1387 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1388 	TAILQ_INIT(&pmap->pm_ptbl_list);
1389 }
1390 
1391 /*
1392  * Release any resources held by the given physical map.
1393  * Called when a pmap initialized by mmu_booke_pinit is being released.
1394  * Should only be called if the map contains no valid mappings.
1395  */
1396 static void
1397 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1398 {
1399 
1400 	printf("mmu_booke_release: s\n");
1401 
1402 	KASSERT(pmap->pm_stats.resident_count == 0,
1403 	    ("pmap_release: pmap resident count %ld != 0",
1404 	    pmap->pm_stats.resident_count));
1405 
1406 	PMAP_LOCK_DESTROY(pmap);
1407 }
1408 
1409 #if 0
1410 /* Not needed, kernel page tables are statically allocated. */
1411 void
1412 mmu_booke_growkernel(vm_offset_t maxkvaddr)
1413 {
1414 }
1415 #endif
1416 
1417 /*
1418  * Insert the given physical page at the specified virtual address in the
1419  * target physical map with the protection requested. If specified the page
1420  * will be wired down.
1421  */
1422 static void
1423 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1424     vm_prot_t prot, boolean_t wired)
1425 {
1426 
1427 	vm_page_lock_queues();
1428 	PMAP_LOCK(pmap);
1429 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1430 	vm_page_unlock_queues();
1431 	PMAP_UNLOCK(pmap);
1432 }
1433 
1434 static void
1435 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1436     vm_prot_t prot, boolean_t wired)
1437 {
1438 	pte_t *pte;
1439 	vm_paddr_t pa;
1440 	uint32_t flags;
1441 	int su, sync;
1442 
1443 	pa = VM_PAGE_TO_PHYS(m);
1444 	su = (pmap == kernel_pmap);
1445 	sync = 0;
1446 
1447 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1448 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1449 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1450 	//		(u_int32_t)m, va, pa, prot, wired);
1451 
1452 	if (su) {
1453 		KASSERT(((va >= virtual_avail) &&
1454 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1455 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1456 	} else {
1457 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1458 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1459 	}
1460 
1461 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1462 
1463 	/*
1464 	 * If there is an existing mapping, and the physical address has not
1465 	 * changed, must be protection or wiring change.
1466 	 */
1467 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1468 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1469 
1470 		/*
1471 		 * Before actually updating pte->flags we calculate and
1472 		 * prepare its new value in a helper var.
1473 		 */
1474 		flags = pte->flags;
1475 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1476 
1477 		/* Wiring change, just update stats. */
1478 		if (wired) {
1479 			if (!PTE_ISWIRED(pte)) {
1480 				flags |= PTE_WIRED;
1481 				pmap->pm_stats.wired_count++;
1482 			}
1483 		} else {
1484 			if (PTE_ISWIRED(pte)) {
1485 				flags &= ~PTE_WIRED;
1486 				pmap->pm_stats.wired_count--;
1487 			}
1488 		}
1489 
1490 		if (prot & VM_PROT_WRITE) {
1491 			/* Add write permissions. */
1492 			flags |= PTE_SW;
1493 			if (!su)
1494 				flags |= PTE_UW;
1495 		} else {
1496 			/* Handle modified pages, sense modify status. */
1497 
1498 			/*
1499 			 * The PTE_MODIFIED flag could be set by underlying
1500 			 * TLB misses since we last read it (above), possibly
1501 			 * other CPUs could update it so we check in the PTE
1502 			 * directly rather than rely on that saved local flags
1503 			 * copy.
1504 			 */
1505 			if (PTE_ISMODIFIED(pte))
1506 				vm_page_dirty(m);
1507 		}
1508 
1509 		if (prot & VM_PROT_EXECUTE) {
1510 			flags |= PTE_SX;
1511 			if (!su)
1512 				flags |= PTE_UX;
1513 
1514 			/*
1515 			 * Check existing flags for execute permissions: if we
1516 			 * are turning execute permissions on, icache should
1517 			 * be flushed.
1518 			 */
1519 			if ((flags & (PTE_UX | PTE_SX)) == 0)
1520 				sync++;
1521 		}
1522 
1523 		flags &= ~PTE_REFERENCED;
1524 
1525 		/*
1526 		 * The new flags value is all calculated -- only now actually
1527 		 * update the PTE.
1528 		 */
1529 		mtx_lock_spin(&tlbivax_mutex);
1530 
1531 		tlb0_flush_entry(va);
1532 		pte->flags = flags;
1533 
1534 		mtx_unlock_spin(&tlbivax_mutex);
1535 
1536 	} else {
1537 		/*
1538 		 * If there is an existing mapping, but it's for a different
1539 		 * physical address, pte_enter() will delete the old mapping.
1540 		 */
1541 		//if ((pte != NULL) && PTE_ISVALID(pte))
1542 		//	debugf("mmu_booke_enter_locked: replace\n");
1543 		//else
1544 		//	debugf("mmu_booke_enter_locked: new\n");
1545 
1546 		/* Now set up the flags and install the new mapping. */
1547 		flags = (PTE_SR | PTE_VALID);
1548 		flags |= PTE_M;
1549 
1550 		if (!su)
1551 			flags |= PTE_UR;
1552 
1553 		if (prot & VM_PROT_WRITE) {
1554 			flags |= PTE_SW;
1555 			if (!su)
1556 				flags |= PTE_UW;
1557 		}
1558 
1559 		if (prot & VM_PROT_EXECUTE) {
1560 			flags |= PTE_SX;
1561 			if (!su)
1562 				flags |= PTE_UX;
1563 		}
1564 
1565 		/* If its wired update stats. */
1566 		if (wired) {
1567 			pmap->pm_stats.wired_count++;
1568 			flags |= PTE_WIRED;
1569 		}
1570 
1571 		pte_enter(mmu, pmap, m, va, flags);
1572 
1573 		/* Flush the real memory from the instruction cache. */
1574 		if (prot & VM_PROT_EXECUTE)
1575 			sync++;
1576 	}
1577 
1578 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1579 		__syncicache((void *)va, PAGE_SIZE);
1580 		sync = 0;
1581 	}
1582 
1583 	if (sync) {
1584 		/* Create a temporary mapping. */
1585 		pmap = PCPU_GET(curpmap);
1586 
1587 		va = 0;
1588 		pte = pte_find(mmu, pmap, va);
1589 		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1590 
1591 		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1592 
1593 		pte_enter(mmu, pmap, m, va, flags);
1594 		__syncicache((void *)va, PAGE_SIZE);
1595 		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1596 	}
1597 }
1598 
1599 /*
1600  * Maps a sequence of resident pages belonging to the same object.
1601  * The sequence begins with the given page m_start.  This page is
1602  * mapped at the given virtual address start.  Each subsequent page is
1603  * mapped at a virtual address that is offset from start by the same
1604  * amount as the page is offset from m_start within the object.  The
1605  * last page in the sequence is the page with the largest offset from
1606  * m_start that can be mapped at a virtual address less than the given
1607  * virtual address end.  Not every virtual page between start and end
1608  * is mapped; only those for which a resident page exists with the
1609  * corresponding offset from m_start are mapped.
1610  */
1611 static void
1612 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1613     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1614 {
1615 	vm_page_t m;
1616 	vm_pindex_t diff, psize;
1617 
1618 	psize = atop(end - start);
1619 	m = m_start;
1620 	PMAP_LOCK(pmap);
1621 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1622 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1623 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1624 		m = TAILQ_NEXT(m, listq);
1625 	}
1626 	PMAP_UNLOCK(pmap);
1627 }
1628 
1629 static void
1630 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1631     vm_prot_t prot)
1632 {
1633 
1634 	PMAP_LOCK(pmap);
1635 	mmu_booke_enter_locked(mmu, pmap, va, m,
1636 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1637 	PMAP_UNLOCK(pmap);
1638 }
1639 
1640 /*
1641  * Remove the given range of addresses from the specified map.
1642  *
1643  * It is assumed that the start and end are properly rounded to the page size.
1644  */
1645 static void
1646 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1647 {
1648 	pte_t *pte;
1649 	uint8_t hold_flag;
1650 
1651 	int su = (pmap == kernel_pmap);
1652 
1653 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1654 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1655 
1656 	if (su) {
1657 		KASSERT(((va >= virtual_avail) &&
1658 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1659 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1660 	} else {
1661 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1662 		    ("mmu_booke_remove: user pmap, non user va"));
1663 	}
1664 
1665 	if (PMAP_REMOVE_DONE(pmap)) {
1666 		//debugf("mmu_booke_remove: e (empty)\n");
1667 		return;
1668 	}
1669 
1670 	hold_flag = PTBL_HOLD_FLAG(pmap);
1671 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1672 
1673 	vm_page_lock_queues();
1674 	PMAP_LOCK(pmap);
1675 	for (; va < endva; va += PAGE_SIZE) {
1676 		pte = pte_find(mmu, pmap, va);
1677 		if ((pte != NULL) && PTE_ISVALID(pte))
1678 			pte_remove(mmu, pmap, va, hold_flag);
1679 	}
1680 	PMAP_UNLOCK(pmap);
1681 	vm_page_unlock_queues();
1682 
1683 	//debugf("mmu_booke_remove: e\n");
1684 }
1685 
1686 /*
1687  * Remove physical page from all pmaps in which it resides.
1688  */
1689 static void
1690 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1691 {
1692 	pv_entry_t pv, pvn;
1693 	uint8_t hold_flag;
1694 
1695 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1696 
1697 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1698 		pvn = TAILQ_NEXT(pv, pv_link);
1699 
1700 		PMAP_LOCK(pv->pv_pmap);
1701 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1702 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1703 		PMAP_UNLOCK(pv->pv_pmap);
1704 	}
1705 	vm_page_flag_clear(m, PG_WRITEABLE);
1706 }
1707 
1708 /*
1709  * Map a range of physical addresses into kernel virtual address space.
1710  */
1711 static vm_offset_t
1712 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1713     vm_offset_t pa_end, int prot)
1714 {
1715 	vm_offset_t sva = *virt;
1716 	vm_offset_t va = sva;
1717 
1718 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1719 	//		sva, pa_start, pa_end);
1720 
1721 	while (pa_start < pa_end) {
1722 		mmu_booke_kenter(mmu, va, pa_start);
1723 		va += PAGE_SIZE;
1724 		pa_start += PAGE_SIZE;
1725 	}
1726 	*virt = va;
1727 
1728 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1729 	return (sva);
1730 }
1731 
1732 /*
1733  * The pmap must be activated before it's address space can be accessed in any
1734  * way.
1735  */
1736 static void
1737 mmu_booke_activate(mmu_t mmu, struct thread *td)
1738 {
1739 	pmap_t pmap;
1740 
1741 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1742 
1743 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1744 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1745 
1746 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1747 
1748 	mtx_lock_spin(&sched_lock);
1749 
1750 	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1751 	PCPU_SET(curpmap, pmap);
1752 
1753 	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1754 		tid_alloc(pmap);
1755 
1756 	/* Load PID0 register with pmap tid value. */
1757 	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1758 	__asm __volatile("isync");
1759 
1760 	mtx_unlock_spin(&sched_lock);
1761 
1762 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1763 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1764 }
1765 
1766 /*
1767  * Deactivate the specified process's address space.
1768  */
1769 static void
1770 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1771 {
1772 	pmap_t pmap;
1773 
1774 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1775 
1776 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1777 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1778 
1779 	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1780 	PCPU_SET(curpmap, NULL);
1781 }
1782 
1783 /*
1784  * Copy the range specified by src_addr/len
1785  * from the source map to the range dst_addr/len
1786  * in the destination map.
1787  *
1788  * This routine is only advisory and need not do anything.
1789  */
1790 static void
1791 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
1792     vm_size_t len, vm_offset_t src_addr)
1793 {
1794 
1795 }
1796 
1797 /*
1798  * Set the physical protection on the specified range of this map as requested.
1799  */
1800 static void
1801 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1802     vm_prot_t prot)
1803 {
1804 	vm_offset_t va;
1805 	vm_page_t m;
1806 	pte_t *pte;
1807 
1808 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1809 		mmu_booke_remove(mmu, pmap, sva, eva);
1810 		return;
1811 	}
1812 
1813 	if (prot & VM_PROT_WRITE)
1814 		return;
1815 
1816 	vm_page_lock_queues();
1817 	PMAP_LOCK(pmap);
1818 	for (va = sva; va < eva; va += PAGE_SIZE) {
1819 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1820 			if (PTE_ISVALID(pte)) {
1821 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1822 
1823 				mtx_lock_spin(&tlbivax_mutex);
1824 
1825 				/* Handle modified pages. */
1826 				if (PTE_ISMODIFIED(pte))
1827 					vm_page_dirty(m);
1828 
1829 				/* Referenced pages. */
1830 				if (PTE_ISREFERENCED(pte))
1831 					vm_page_flag_set(m, PG_REFERENCED);
1832 
1833 				tlb0_flush_entry(va);
1834 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1835 				    PTE_REFERENCED);
1836 
1837 				mtx_unlock_spin(&tlbivax_mutex);
1838 			}
1839 		}
1840 	}
1841 	PMAP_UNLOCK(pmap);
1842 	vm_page_unlock_queues();
1843 }
1844 
1845 /*
1846  * Clear the write and modified bits in each of the given page's mappings.
1847  */
1848 static void
1849 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1850 {
1851 	pv_entry_t pv;
1852 	pte_t *pte;
1853 
1854 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1855 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1856 	    (m->flags & PG_WRITEABLE) == 0)
1857 		return;
1858 
1859 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1860 		PMAP_LOCK(pv->pv_pmap);
1861 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1862 			if (PTE_ISVALID(pte)) {
1863 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1864 
1865 				mtx_lock_spin(&tlbivax_mutex);
1866 
1867 				/* Handle modified pages. */
1868 				if (PTE_ISMODIFIED(pte))
1869 					vm_page_dirty(m);
1870 
1871 				/* Referenced pages. */
1872 				if (PTE_ISREFERENCED(pte))
1873 					vm_page_flag_set(m, PG_REFERENCED);
1874 
1875 				/* Flush mapping from TLB0. */
1876 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1877 				    PTE_REFERENCED);
1878 
1879 				mtx_unlock_spin(&tlbivax_mutex);
1880 			}
1881 		}
1882 		PMAP_UNLOCK(pv->pv_pmap);
1883 	}
1884 	vm_page_flag_clear(m, PG_WRITEABLE);
1885 }
1886 
1887 static boolean_t
1888 mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1889 {
1890 	pv_entry_t pv;
1891 	pte_t *pte;
1892 	boolean_t executable;
1893 
1894 	executable = FALSE;
1895 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1896 		PMAP_LOCK(pv->pv_pmap);
1897 		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
1898 		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
1899 			executable = TRUE;
1900 		PMAP_UNLOCK(pv->pv_pmap);
1901 		if (executable)
1902 			break;
1903 	}
1904 
1905 	return (executable);
1906 }
1907 
1908 /*
1909  * Atomically extract and hold the physical page with the given
1910  * pmap and virtual address pair if that mapping permits the given
1911  * protection.
1912  */
1913 static vm_page_t
1914 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
1915     vm_prot_t prot)
1916 {
1917 	pte_t *pte;
1918 	vm_page_t m;
1919 	uint32_t pte_wbit;
1920 
1921 	m = NULL;
1922 	vm_page_lock_queues();
1923 	PMAP_LOCK(pmap);
1924 
1925 	pte = pte_find(mmu, pmap, va);
1926 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1927 		if (pmap == kernel_pmap)
1928 			pte_wbit = PTE_SW;
1929 		else
1930 			pte_wbit = PTE_UW;
1931 
1932 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
1933 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1934 			vm_page_hold(m);
1935 		}
1936 	}
1937 
1938 	vm_page_unlock_queues();
1939 	PMAP_UNLOCK(pmap);
1940 	return (m);
1941 }
1942 
1943 /*
1944  * Initialize a vm_page's machine-dependent fields.
1945  */
1946 static void
1947 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
1948 {
1949 
1950 	TAILQ_INIT(&m->md.pv_list);
1951 }
1952 
1953 /*
1954  * mmu_booke_zero_page_area zeros the specified hardware page by
1955  * mapping it into virtual memory and using bzero to clear
1956  * its contents.
1957  *
1958  * off and size must reside within a single page.
1959  */
1960 static void
1961 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1962 {
1963 	vm_offset_t va;
1964 
1965 	/* XXX KASSERT off and size are within a single page? */
1966 
1967 	mtx_lock(&zero_page_mutex);
1968 	va = zero_page_va;
1969 
1970 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
1971 	bzero((caddr_t)va + off, size);
1972 	mmu_booke_kremove(mmu, va);
1973 
1974 	mtx_unlock(&zero_page_mutex);
1975 }
1976 
1977 /*
1978  * mmu_booke_zero_page zeros the specified hardware page.
1979  */
1980 static void
1981 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
1982 {
1983 
1984 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
1985 }
1986 
1987 /*
1988  * mmu_booke_copy_page copies the specified (machine independent) page by
1989  * mapping the page into virtual memory and using memcopy to copy the page,
1990  * one machine dependent page at a time.
1991  */
1992 static void
1993 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
1994 {
1995 	vm_offset_t sva, dva;
1996 
1997 	sva = copy_page_src_va;
1998 	dva = copy_page_dst_va;
1999 
2000 	mtx_lock(&copy_page_mutex);
2001 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2002 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2003 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2004 	mmu_booke_kremove(mmu, dva);
2005 	mmu_booke_kremove(mmu, sva);
2006 	mtx_unlock(&copy_page_mutex);
2007 }
2008 
2009 #if 0
2010 /*
2011  * Remove all pages from specified address space, this aids process exit
2012  * speeds. This is much faster than mmu_booke_remove in the case of running
2013  * down an entire address space. Only works for the current pmap.
2014  */
2015 void
2016 mmu_booke_remove_pages(pmap_t pmap)
2017 {
2018 }
2019 #endif
2020 
2021 /*
2022  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2023  * into virtual memory and using bzero to clear its contents. This is intended
2024  * to be called from the vm_pagezero process only and outside of Giant. No
2025  * lock is required.
2026  */
2027 static void
2028 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2029 {
2030 	vm_offset_t va;
2031 
2032 	va = zero_page_idle_va;
2033 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2034 	bzero((caddr_t)va, PAGE_SIZE);
2035 	mmu_booke_kremove(mmu, va);
2036 }
2037 
2038 /*
2039  * Return whether or not the specified physical page was modified
2040  * in any of physical maps.
2041  */
2042 static boolean_t
2043 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2044 {
2045 	pte_t *pte;
2046 	pv_entry_t pv;
2047 
2048 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2049 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2050 		return (FALSE);
2051 
2052 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2053 		PMAP_LOCK(pv->pv_pmap);
2054 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2055 			if (!PTE_ISVALID(pte))
2056 				goto make_sure_to_unlock;
2057 
2058 			if (PTE_ISMODIFIED(pte)) {
2059 				PMAP_UNLOCK(pv->pv_pmap);
2060 				return (TRUE);
2061 			}
2062 		}
2063 make_sure_to_unlock:
2064 		PMAP_UNLOCK(pv->pv_pmap);
2065 	}
2066 	return (FALSE);
2067 }
2068 
2069 /*
2070  * Return whether or not the specified virtual address is eligible
2071  * for prefault.
2072  */
2073 static boolean_t
2074 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2075 {
2076 
2077 	return (FALSE);
2078 }
2079 
2080 /*
2081  * Clear the modify bits on the specified physical page.
2082  */
2083 static void
2084 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2085 {
2086 	pte_t *pte;
2087 	pv_entry_t pv;
2088 
2089 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2090 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2091 		return;
2092 
2093 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2094 		PMAP_LOCK(pv->pv_pmap);
2095 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2096 			if (!PTE_ISVALID(pte))
2097 				goto make_sure_to_unlock;
2098 
2099 			mtx_lock_spin(&tlbivax_mutex);
2100 
2101 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2102 				tlb0_flush_entry(pv->pv_va);
2103 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2104 				    PTE_REFERENCED);
2105 			}
2106 
2107 			mtx_unlock_spin(&tlbivax_mutex);
2108 		}
2109 make_sure_to_unlock:
2110 		PMAP_UNLOCK(pv->pv_pmap);
2111 	}
2112 }
2113 
2114 /*
2115  * Return a count of reference bits for a page, clearing those bits.
2116  * It is not necessary for every reference bit to be cleared, but it
2117  * is necessary that 0 only be returned when there are truly no
2118  * reference bits set.
2119  *
2120  * XXX: The exact number of bits to check and clear is a matter that
2121  * should be tested and standardized at some point in the future for
2122  * optimal aging of shared pages.
2123  */
2124 static int
2125 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2126 {
2127 	pte_t *pte;
2128 	pv_entry_t pv;
2129 	int count;
2130 
2131 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2132 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2133 		return (0);
2134 
2135 	count = 0;
2136 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2137 		PMAP_LOCK(pv->pv_pmap);
2138 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2139 			if (!PTE_ISVALID(pte))
2140 				goto make_sure_to_unlock;
2141 
2142 			if (PTE_ISREFERENCED(pte)) {
2143 				mtx_lock_spin(&tlbivax_mutex);
2144 
2145 				tlb0_flush_entry(pv->pv_va);
2146 				pte->flags &= ~PTE_REFERENCED;
2147 
2148 				mtx_unlock_spin(&tlbivax_mutex);
2149 
2150 				if (++count > 4) {
2151 					PMAP_UNLOCK(pv->pv_pmap);
2152 					break;
2153 				}
2154 			}
2155 		}
2156 make_sure_to_unlock:
2157 		PMAP_UNLOCK(pv->pv_pmap);
2158 	}
2159 	return (count);
2160 }
2161 
2162 /*
2163  * Clear the reference bit on the specified physical page.
2164  */
2165 static void
2166 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2167 {
2168 	pte_t *pte;
2169 	pv_entry_t pv;
2170 
2171 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2172 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2173 		return;
2174 
2175 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2176 		PMAP_LOCK(pv->pv_pmap);
2177 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2178 			if (!PTE_ISVALID(pte))
2179 				goto make_sure_to_unlock;
2180 
2181 			if (PTE_ISREFERENCED(pte)) {
2182 				mtx_lock_spin(&tlbivax_mutex);
2183 
2184 				tlb0_flush_entry(pv->pv_va);
2185 				pte->flags &= ~PTE_REFERENCED;
2186 
2187 				mtx_unlock_spin(&tlbivax_mutex);
2188 			}
2189 		}
2190 make_sure_to_unlock:
2191 		PMAP_UNLOCK(pv->pv_pmap);
2192 	}
2193 }
2194 
2195 /*
2196  * Change wiring attribute for a map/virtual-address pair.
2197  */
2198 static void
2199 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2200 {
2201 	pte_t *pte;;
2202 
2203 	PMAP_LOCK(pmap);
2204 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2205 		if (wired) {
2206 			if (!PTE_ISWIRED(pte)) {
2207 				pte->flags |= PTE_WIRED;
2208 				pmap->pm_stats.wired_count++;
2209 			}
2210 		} else {
2211 			if (PTE_ISWIRED(pte)) {
2212 				pte->flags &= ~PTE_WIRED;
2213 				pmap->pm_stats.wired_count--;
2214 			}
2215 		}
2216 	}
2217 	PMAP_UNLOCK(pmap);
2218 }
2219 
2220 /*
2221  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2222  * page.  This count may be changed upwards or downwards in the future; it is
2223  * only necessary that true be returned for a small subset of pmaps for proper
2224  * page aging.
2225  */
2226 static boolean_t
2227 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2228 {
2229 	pv_entry_t pv;
2230 	int loops;
2231 
2232 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2233 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2234 		return (FALSE);
2235 
2236 	loops = 0;
2237 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2238 		if (pv->pv_pmap == pmap)
2239 			return (TRUE);
2240 
2241 		if (++loops >= 16)
2242 			break;
2243 	}
2244 	return (FALSE);
2245 }
2246 
2247 /*
2248  * Return the number of managed mappings to the given physical page that are
2249  * wired.
2250  */
2251 static int
2252 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2253 {
2254 	pv_entry_t pv;
2255 	pte_t *pte;
2256 	int count = 0;
2257 
2258 	if ((m->flags & PG_FICTITIOUS) != 0)
2259 		return (count);
2260 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2261 
2262 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2263 		PMAP_LOCK(pv->pv_pmap);
2264 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2265 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2266 				count++;
2267 		PMAP_UNLOCK(pv->pv_pmap);
2268 	}
2269 
2270 	return (count);
2271 }
2272 
2273 static int
2274 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2275 {
2276 	int i;
2277 	vm_offset_t va;
2278 
2279 	/*
2280 	 * This currently does not work for entries that
2281 	 * overlap TLB1 entries.
2282 	 */
2283 	for (i = 0; i < tlb1_idx; i ++) {
2284 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2285 			return (0);
2286 	}
2287 
2288 	return (EFAULT);
2289 }
2290 
2291 /*
2292  * Map a set of physical memory pages into the kernel virtual address space.
2293  * Return a pointer to where it is mapped. This routine is intended to be used
2294  * for mapping device memory, NOT real memory.
2295  */
2296 static void *
2297 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2298 {
2299 	void *res;
2300 	uintptr_t va;
2301 	vm_size_t sz;
2302 
2303 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2304 	res = (void *)va;
2305 
2306 	do {
2307 		sz = 1 << (ilog2(size) & ~1);
2308 		if (bootverbose)
2309 			printf("Wiring VA=%x to PA=%x (size=%x), "
2310 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2311 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2312 		size -= sz;
2313 		pa += sz;
2314 		va += sz;
2315 	} while (size > 0);
2316 
2317 	return (res);
2318 }
2319 
2320 /*
2321  * 'Unmap' a range mapped by mmu_booke_mapdev().
2322  */
2323 static void
2324 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2325 {
2326 	vm_offset_t base, offset;
2327 
2328 	/*
2329 	 * Unmap only if this is inside kernel virtual space.
2330 	 */
2331 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2332 		base = trunc_page(va);
2333 		offset = va & PAGE_MASK;
2334 		size = roundup(offset + size, PAGE_SIZE);
2335 		kmem_free(kernel_map, base, size);
2336 	}
2337 }
2338 
2339 /*
2340  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2341  * specified pmap. This eliminates the blast of soft faults on process startup
2342  * and immediately after an mmap.
2343  */
2344 static void
2345 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2346     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2347 {
2348 
2349 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2350 	KASSERT(object->type == OBJT_DEVICE,
2351 	    ("mmu_booke_object_init_pt: non-device object"));
2352 }
2353 
2354 /*
2355  * Perform the pmap work for mincore.
2356  */
2357 static int
2358 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2359 {
2360 
2361 	TODO;
2362 	return (0);
2363 }
2364 
2365 /**************************************************************************/
2366 /* TID handling */
2367 /**************************************************************************/
2368 
2369 /*
2370  * Allocate a TID. If necessary, steal one from someone else.
2371  * The new TID is flushed from the TLB before returning.
2372  */
2373 static tlbtid_t
2374 tid_alloc(pmap_t pmap)
2375 {
2376 	tlbtid_t tid;
2377 	int thiscpu;
2378 
2379 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2380 
2381 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2382 
2383 	thiscpu = PCPU_GET(cpuid);
2384 
2385 	tid = PCPU_GET(tid_next);
2386 	if (tid > TID_MAX)
2387 		tid = TID_MIN;
2388 	PCPU_SET(tid_next, tid + 1);
2389 
2390 	/* If we are stealing TID then clear the relevant pmap's field */
2391 	if (tidbusy[thiscpu][tid] != NULL) {
2392 
2393 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2394 
2395 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2396 
2397 		/* Flush all entries from TLB0 matching this TID. */
2398 		tid_flush(tid);
2399 	}
2400 
2401 	tidbusy[thiscpu][tid] = pmap;
2402 	pmap->pm_tid[thiscpu] = tid;
2403 	__asm __volatile("msync; isync");
2404 
2405 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2406 	    PCPU_GET(tid_next));
2407 
2408 	return (tid);
2409 }
2410 
2411 /**************************************************************************/
2412 /* TLB0 handling */
2413 /**************************************************************************/
2414 
2415 static void
2416 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2417     uint32_t mas7)
2418 {
2419 	int as;
2420 	char desc[3];
2421 	tlbtid_t tid;
2422 	vm_size_t size;
2423 	unsigned int tsize;
2424 
2425 	desc[2] = '\0';
2426 	if (mas1 & MAS1_VALID)
2427 		desc[0] = 'V';
2428 	else
2429 		desc[0] = ' ';
2430 
2431 	if (mas1 & MAS1_IPROT)
2432 		desc[1] = 'P';
2433 	else
2434 		desc[1] = ' ';
2435 
2436 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2437 	tid = MAS1_GETTID(mas1);
2438 
2439 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2440 	size = 0;
2441 	if (tsize)
2442 		size = tsize2size(tsize);
2443 
2444 	debugf("%3d: (%s) [AS=%d] "
2445 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2446 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2447 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2448 }
2449 
2450 /* Convert TLB0 va and way number to tlb0[] table index. */
2451 static inline unsigned int
2452 tlb0_tableidx(vm_offset_t va, unsigned int way)
2453 {
2454 	unsigned int idx;
2455 
2456 	idx = (way * TLB0_ENTRIES_PER_WAY);
2457 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2458 	return (idx);
2459 }
2460 
2461 /*
2462  * Invalidate TLB0 entry.
2463  */
2464 static inline void
2465 tlb0_flush_entry(vm_offset_t va)
2466 {
2467 
2468 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2469 
2470 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2471 
2472 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2473 	__asm __volatile("isync; msync");
2474 	__asm __volatile("tlbsync; msync");
2475 
2476 	CTR1(KTR_PMAP, "%s: e", __func__);
2477 }
2478 
2479 /* Print out contents of the MAS registers for each TLB0 entry */
2480 void
2481 tlb0_print_tlbentries(void)
2482 {
2483 	uint32_t mas0, mas1, mas2, mas3, mas7;
2484 	int entryidx, way, idx;
2485 
2486 	debugf("TLB0 entries:\n");
2487 	for (way = 0; way < TLB0_WAYS; way ++)
2488 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2489 
2490 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2491 			mtspr(SPR_MAS0, mas0);
2492 			__asm __volatile("isync");
2493 
2494 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2495 			mtspr(SPR_MAS2, mas2);
2496 
2497 			__asm __volatile("isync; tlbre");
2498 
2499 			mas1 = mfspr(SPR_MAS1);
2500 			mas2 = mfspr(SPR_MAS2);
2501 			mas3 = mfspr(SPR_MAS3);
2502 			mas7 = mfspr(SPR_MAS7);
2503 
2504 			idx = tlb0_tableidx(mas2, way);
2505 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2506 		}
2507 }
2508 
2509 /**************************************************************************/
2510 /* TLB1 handling */
2511 /**************************************************************************/
2512 
2513 /*
2514  * TLB1 mapping notes:
2515  *
2516  * TLB1[0]	CCSRBAR
2517  * TLB1[1]	Kernel text and data.
2518  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2519  *		windows, other devices mappings.
2520  */
2521 
2522 /*
2523  * Write given entry to TLB1 hardware.
2524  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2525  */
2526 static void
2527 tlb1_write_entry(unsigned int idx)
2528 {
2529 	uint32_t mas0, mas7;
2530 
2531 	//debugf("tlb1_write_entry: s\n");
2532 
2533 	/* Clear high order RPN bits */
2534 	mas7 = 0;
2535 
2536 	/* Select entry */
2537 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2538 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2539 
2540 	mtspr(SPR_MAS0, mas0);
2541 	__asm __volatile("isync");
2542 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2543 	__asm __volatile("isync");
2544 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2545 	__asm __volatile("isync");
2546 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2547 	__asm __volatile("isync");
2548 	mtspr(SPR_MAS7, mas7);
2549 	__asm __volatile("isync; tlbwe; isync; msync");
2550 
2551 	//debugf("tlb1_write_entry: e\n");;
2552 }
2553 
2554 /*
2555  * Return the largest uint value log such that 2^log <= num.
2556  */
2557 static unsigned int
2558 ilog2(unsigned int num)
2559 {
2560 	int lz;
2561 
2562 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2563 	return (31 - lz);
2564 }
2565 
2566 /*
2567  * Convert TLB TSIZE value to mapped region size.
2568  */
2569 static vm_size_t
2570 tsize2size(unsigned int tsize)
2571 {
2572 
2573 	/*
2574 	 * size = 4^tsize KB
2575 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2576 	 */
2577 
2578 	return ((1 << (2 * tsize)) * 1024);
2579 }
2580 
2581 /*
2582  * Convert region size (must be power of 4) to TLB TSIZE value.
2583  */
2584 static unsigned int
2585 size2tsize(vm_size_t size)
2586 {
2587 
2588 	return (ilog2(size) / 2 - 5);
2589 }
2590 
2591 /*
2592  * Register permanent kernel mapping in TLB1.
2593  *
2594  * Entries are created starting from index 0 (current free entry is
2595  * kept in tlb1_idx) and are not supposed to be invalidated.
2596  */
2597 static int
2598 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2599     uint32_t flags)
2600 {
2601 	uint32_t ts, tid;
2602 	int tsize;
2603 
2604 	if (tlb1_idx >= TLB1_ENTRIES) {
2605 		printf("tlb1_set_entry: TLB1 full!\n");
2606 		return (-1);
2607 	}
2608 
2609 	/* Convert size to TSIZE */
2610 	tsize = size2tsize(size);
2611 
2612 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2613 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2614 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2615 
2616 	/* XXX LOCK tlb1[] */
2617 
2618 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2619 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2620 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2621 
2622 	/* Set supervisor RWX permission bits */
2623 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2624 
2625 	tlb1_write_entry(tlb1_idx++);
2626 
2627 	/* XXX UNLOCK tlb1[] */
2628 
2629 	/*
2630 	 * XXX in general TLB1 updates should be propagated between CPUs,
2631 	 * since current design assumes to have the same TLB1 set-up on all
2632 	 * cores.
2633 	 */
2634 	return (0);
2635 }
2636 
2637 static int
2638 tlb1_entry_size_cmp(const void *a, const void *b)
2639 {
2640 	const vm_size_t *sza;
2641 	const vm_size_t *szb;
2642 
2643 	sza = a;
2644 	szb = b;
2645 	if (*sza > *szb)
2646 		return (-1);
2647 	else if (*sza < *szb)
2648 		return (1);
2649 	else
2650 		return (0);
2651 }
2652 
2653 /*
2654  * Map in contiguous RAM region into the TLB1 using maximum of
2655  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2656  *
2657  * If necessary round up last entry size and return total size
2658  * used by all allocated entries.
2659  */
2660 vm_size_t
2661 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2662 {
2663 	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2664 	vm_size_t mapped_size, sz, esz;
2665 	unsigned int log;
2666 	int i;
2667 
2668 	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2669 	    __func__, size, va, pa);
2670 
2671 	mapped_size = 0;
2672 	sz = size;
2673 	memset(entry_size, 0, sizeof(entry_size));
2674 
2675 	/* Calculate entry sizes. */
2676 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2677 
2678 		/* Largest region that is power of 4 and fits within size */
2679 		log = ilog2(sz) / 2;
2680 		esz = 1 << (2 * log);
2681 
2682 		/* If this is last entry cover remaining size. */
2683 		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2684 			while (esz < sz)
2685 				esz = esz << 2;
2686 		}
2687 
2688 		entry_size[i] = esz;
2689 		mapped_size += esz;
2690 		if (esz < sz)
2691 			sz -= esz;
2692 		else
2693 			sz = 0;
2694 	}
2695 
2696 	/* Sort entry sizes, required to get proper entry address alignment. */
2697 	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2698 	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2699 
2700 	/* Load TLB1 entries. */
2701 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2702 		esz = entry_size[i];
2703 		if (!esz)
2704 			break;
2705 
2706 		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2707 		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2708 
2709 		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2710 
2711 		va += esz;
2712 		pa += esz;
2713 	}
2714 
2715 	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2716 	    __func__, mapped_size, mapped_size - size);
2717 
2718 	return (mapped_size);
2719 }
2720 
2721 /*
2722  * TLB1 initialization routine, to be called after the very first
2723  * assembler level setup done in locore.S.
2724  */
2725 void
2726 tlb1_init(vm_offset_t ccsrbar)
2727 {
2728 	uint32_t mas0;
2729 
2730 	/* TLB1[1] is used to map the kernel. Save that entry. */
2731 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2732 	mtspr(SPR_MAS0, mas0);
2733 	__asm __volatile("isync; tlbre");
2734 
2735 	tlb1[1].mas1 = mfspr(SPR_MAS1);
2736 	tlb1[1].mas2 = mfspr(SPR_MAS2);
2737 	tlb1[1].mas3 = mfspr(SPR_MAS3);
2738 
2739 	/* Map in CCSRBAR in TLB1[0] */
2740 	tlb1_idx = 0;
2741 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2742 	/*
2743 	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2744 	 * for initial mapping of kernel text+data, which was set early in
2745 	 * locore, we need to skip this [busy] entry.
2746 	 */
2747 	tlb1_idx = 2;
2748 
2749 	/* Setup TLB miss defaults */
2750 	set_mas4_defaults();
2751 }
2752 
2753 /*
2754  * Setup MAS4 defaults.
2755  * These values are loaded to MAS0-2 on a TLB miss.
2756  */
2757 static void
2758 set_mas4_defaults(void)
2759 {
2760 	uint32_t mas4;
2761 
2762 	/* Defaults: TLB0, PID0, TSIZED=4K */
2763 	mas4 = MAS4_TLBSELD0;
2764 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2765 
2766 	mtspr(SPR_MAS4, mas4);
2767 	__asm __volatile("isync");
2768 }
2769 
2770 /*
2771  * Print out contents of the MAS registers for each TLB1 entry
2772  */
2773 void
2774 tlb1_print_tlbentries(void)
2775 {
2776 	uint32_t mas0, mas1, mas2, mas3, mas7;
2777 	int i;
2778 
2779 	debugf("TLB1 entries:\n");
2780 	for (i = 0; i < TLB1_ENTRIES; i++) {
2781 
2782 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
2783 		mtspr(SPR_MAS0, mas0);
2784 
2785 		__asm __volatile("isync; tlbre");
2786 
2787 		mas1 = mfspr(SPR_MAS1);
2788 		mas2 = mfspr(SPR_MAS2);
2789 		mas3 = mfspr(SPR_MAS3);
2790 		mas7 = mfspr(SPR_MAS7);
2791 
2792 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
2793 	}
2794 }
2795 
2796 /*
2797  * Print out contents of the in-ram tlb1 table.
2798  */
2799 void
2800 tlb1_print_entries(void)
2801 {
2802 	int i;
2803 
2804 	debugf("tlb1[] table entries:\n");
2805 	for (i = 0; i < TLB1_ENTRIES; i++)
2806 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
2807 }
2808 
2809 /*
2810  * Return 0 if the physical IO range is encompassed by one of the
2811  * the TLB1 entries, otherwise return related error code.
2812  */
2813 static int
2814 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2815 {
2816 	uint32_t prot;
2817 	vm_paddr_t pa_start;
2818 	vm_paddr_t pa_end;
2819 	unsigned int entry_tsize;
2820 	vm_size_t entry_size;
2821 
2822 	*va = (vm_offset_t)NULL;
2823 
2824 	/* Skip invalid entries */
2825 	if (!(tlb1[i].mas1 & MAS1_VALID))
2826 		return (EINVAL);
2827 
2828 	/*
2829 	 * The entry must be cache-inhibited, guarded, and r/w
2830 	 * so it can function as an i/o page
2831 	 */
2832 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
2833 	if (prot != (MAS2_I | MAS2_G))
2834 		return (EPERM);
2835 
2836 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
2837 	if (prot != (MAS3_SR | MAS3_SW))
2838 		return (EPERM);
2839 
2840 	/* The address should be within the entry range. */
2841 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2842 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
2843 
2844 	entry_size = tsize2size(entry_tsize);
2845 	pa_start = tlb1[i].mas3 & MAS3_RPN;
2846 	pa_end = pa_start + entry_size - 1;
2847 
2848 	if ((pa < pa_start) || ((pa + size) > pa_end))
2849 		return (ERANGE);
2850 
2851 	/* Return virtual address of this mapping. */
2852 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
2853 	return (0);
2854 }
2855