1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * Virtual address space layout: 38 * ----------------------------- 39 * 0x0000_0000 - 0xafff_ffff : user process 40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 43 * 0xc100_0000 - 0xfeef_ffff : KVA 44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include <sys/types.h> 55 #include <sys/param.h> 56 #include <sys/malloc.h> 57 #include <sys/ktr.h> 58 #include <sys/proc.h> 59 #include <sys/user.h> 60 #include <sys/queue.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/msgbuf.h> 64 #include <sys/lock.h> 65 #include <sys/mutex.h> 66 #include <sys/smp.h> 67 #include <sys/vmmeter.h> 68 69 #include <vm/vm.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_kern.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_extern.h> 74 #include <vm/vm_object.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_pager.h> 78 #include <vm/uma.h> 79 80 #include <machine/bootinfo.h> 81 #include <machine/cpu.h> 82 #include <machine/pcb.h> 83 #include <machine/platform.h> 84 85 #include <machine/tlb.h> 86 #include <machine/spr.h> 87 #include <machine/vmparam.h> 88 #include <machine/md_var.h> 89 #include <machine/mmuvar.h> 90 #include <machine/pmap.h> 91 #include <machine/pte.h> 92 93 #include "mmu_if.h" 94 95 #define DEBUG 96 #undef DEBUG 97 98 #ifdef DEBUG 99 #define debugf(fmt, args...) printf(fmt, ##args) 100 #else 101 #define debugf(fmt, args...) 102 #endif 103 104 #define TODO panic("%s: not implemented", __func__); 105 106 #include "opt_sched.h" 107 #ifndef SCHED_4BSD 108 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock." 109 #endif 110 extern struct mtx sched_lock; 111 112 extern int dumpsys_minidump; 113 114 extern unsigned char _etext[]; 115 extern unsigned char _end[]; 116 117 /* Kernel physical load address. */ 118 extern uint32_t kernload; 119 vm_offset_t kernstart; 120 vm_size_t kernsize; 121 122 /* Message buffer and tables. */ 123 static vm_offset_t data_start; 124 static vm_size_t data_end; 125 126 /* Phys/avail memory regions. */ 127 static struct mem_region *availmem_regions; 128 static int availmem_regions_sz; 129 static struct mem_region *physmem_regions; 130 static int physmem_regions_sz; 131 132 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 133 static vm_offset_t zero_page_va; 134 static struct mtx zero_page_mutex; 135 136 static struct mtx tlbivax_mutex; 137 138 /* 139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used 140 * by idle thred only, no lock required. 141 */ 142 static vm_offset_t zero_page_idle_va; 143 144 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 145 static vm_offset_t copy_page_src_va; 146 static vm_offset_t copy_page_dst_va; 147 static struct mtx copy_page_mutex; 148 149 /**************************************************************************/ 150 /* PMAP */ 151 /**************************************************************************/ 152 153 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 154 vm_prot_t, boolean_t); 155 156 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 157 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 158 159 /* 160 * If user pmap is processed with mmu_booke_remove and the resident count 161 * drops to 0, there are no more pages to remove, so we need not continue. 162 */ 163 #define PMAP_REMOVE_DONE(pmap) \ 164 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 165 166 extern void tlb_lock(uint32_t *); 167 extern void tlb_unlock(uint32_t *); 168 extern void tid_flush(tlbtid_t); 169 170 /**************************************************************************/ 171 /* TLB and TID handling */ 172 /**************************************************************************/ 173 174 /* Translation ID busy table */ 175 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 176 177 /* 178 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 179 * core revisions and should be read from h/w registers during early config. 180 */ 181 uint32_t tlb0_entries; 182 uint32_t tlb0_ways; 183 uint32_t tlb0_entries_per_way; 184 185 #define TLB0_ENTRIES (tlb0_entries) 186 #define TLB0_WAYS (tlb0_ways) 187 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 188 189 #define TLB1_ENTRIES 16 190 191 /* In-ram copy of the TLB1 */ 192 static tlb_entry_t tlb1[TLB1_ENTRIES]; 193 194 /* Next free entry in the TLB1 */ 195 static unsigned int tlb1_idx; 196 197 static tlbtid_t tid_alloc(struct pmap *); 198 199 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 200 201 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t); 202 static void tlb1_write_entry(unsigned int); 203 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 204 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t); 205 206 static vm_size_t tsize2size(unsigned int); 207 static unsigned int size2tsize(vm_size_t); 208 static unsigned int ilog2(unsigned int); 209 210 static void set_mas4_defaults(void); 211 212 static inline void tlb0_flush_entry(vm_offset_t); 213 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 214 215 /**************************************************************************/ 216 /* Page table management */ 217 /**************************************************************************/ 218 219 /* Data for the pv entry allocation mechanism */ 220 static uma_zone_t pvzone; 221 static struct vm_object pvzone_obj; 222 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 223 224 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 225 226 #ifndef PMAP_SHPGPERPROC 227 #define PMAP_SHPGPERPROC 200 228 #endif 229 230 static void ptbl_init(void); 231 static struct ptbl_buf *ptbl_buf_alloc(void); 232 static void ptbl_buf_free(struct ptbl_buf *); 233 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 234 235 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int); 236 static void ptbl_free(mmu_t, pmap_t, unsigned int); 237 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 238 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 239 240 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 241 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 242 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t); 243 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 244 245 static pv_entry_t pv_alloc(void); 246 static void pv_free(pv_entry_t); 247 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 248 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 249 250 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 251 #define PTBL_BUFS (128 * 16) 252 253 struct ptbl_buf { 254 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 255 vm_offset_t kva; /* va of mapping */ 256 }; 257 258 /* ptbl free list and a lock used for access synchronization. */ 259 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 260 static struct mtx ptbl_buf_freelist_lock; 261 262 /* Base address of kva space allocated fot ptbl bufs. */ 263 static vm_offset_t ptbl_buf_pool_vabase; 264 265 /* Pointer to ptbl_buf structures. */ 266 static struct ptbl_buf *ptbl_bufs; 267 268 void pmap_bootstrap_ap(volatile uint32_t *); 269 270 /* 271 * Kernel MMU interface 272 */ 273 static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 274 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 275 static void mmu_booke_clear_reference(mmu_t, vm_page_t); 276 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 277 vm_size_t, vm_offset_t); 278 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 279 static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 280 vm_prot_t, boolean_t); 281 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 282 vm_page_t, vm_prot_t); 283 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 284 vm_prot_t); 285 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 286 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 287 vm_prot_t); 288 static void mmu_booke_init(mmu_t); 289 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 290 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 291 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 292 static boolean_t mmu_booke_ts_referenced(mmu_t, vm_page_t); 293 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, 294 int); 295 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, 296 vm_paddr_t *); 297 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 298 vm_object_t, vm_pindex_t, vm_size_t); 299 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 300 static void mmu_booke_page_init(mmu_t, vm_page_t); 301 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 302 static void mmu_booke_pinit(mmu_t, pmap_t); 303 static void mmu_booke_pinit0(mmu_t, pmap_t); 304 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 305 vm_prot_t); 306 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 307 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 308 static void mmu_booke_release(mmu_t, pmap_t); 309 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 310 static void mmu_booke_remove_all(mmu_t, vm_page_t); 311 static void mmu_booke_remove_write(mmu_t, vm_page_t); 312 static void mmu_booke_zero_page(mmu_t, vm_page_t); 313 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 314 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t); 315 static void mmu_booke_activate(mmu_t, struct thread *); 316 static void mmu_booke_deactivate(mmu_t, struct thread *); 317 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 318 static void *mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t); 319 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 320 static vm_offset_t mmu_booke_kextract(mmu_t, vm_offset_t); 321 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t); 322 static void mmu_booke_kremove(mmu_t, vm_offset_t); 323 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t); 324 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 325 vm_size_t); 326 static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *, 327 vm_size_t, vm_size_t *); 328 static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *, 329 vm_size_t, vm_offset_t); 330 static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *); 331 332 static mmu_method_t mmu_booke_methods[] = { 333 /* pmap dispatcher interface */ 334 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring), 335 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 336 MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference), 337 MMUMETHOD(mmu_copy, mmu_booke_copy), 338 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 339 MMUMETHOD(mmu_enter, mmu_booke_enter), 340 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 341 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 342 MMUMETHOD(mmu_extract, mmu_booke_extract), 343 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 344 MMUMETHOD(mmu_init, mmu_booke_init), 345 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 346 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 347 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 348 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 349 MMUMETHOD(mmu_map, mmu_booke_map), 350 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 351 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 352 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 353 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 354 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 355 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 356 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 357 MMUMETHOD(mmu_protect, mmu_booke_protect), 358 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 359 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 360 MMUMETHOD(mmu_release, mmu_booke_release), 361 MMUMETHOD(mmu_remove, mmu_booke_remove), 362 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 363 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 364 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 365 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 366 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 367 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle), 368 MMUMETHOD(mmu_activate, mmu_booke_activate), 369 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 370 371 /* Internal interfaces */ 372 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 373 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 374 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 375 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 376 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 377 /* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */ 378 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 379 380 /* dumpsys() support */ 381 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 382 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 383 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md), 384 385 { 0, 0 } 386 }; 387 388 static mmu_def_t booke_mmu = { 389 MMU_TYPE_BOOKE, 390 mmu_booke_methods, 391 0 392 }; 393 MMU_DEF(booke_mmu); 394 395 static inline void 396 tlb_miss_lock(void) 397 { 398 #ifdef SMP 399 struct pcpu *pc; 400 401 if (!smp_started) 402 return; 403 404 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 405 if (pc != pcpup) { 406 407 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 408 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 409 410 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 411 ("tlb_miss_lock: tried to lock self")); 412 413 tlb_lock(pc->pc_booke_tlb_lock); 414 415 CTR1(KTR_PMAP, "%s: locked", __func__); 416 } 417 } 418 #endif 419 } 420 421 static inline void 422 tlb_miss_unlock(void) 423 { 424 #ifdef SMP 425 struct pcpu *pc; 426 427 if (!smp_started) 428 return; 429 430 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 431 if (pc != pcpup) { 432 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 433 __func__, pc->pc_cpuid); 434 435 tlb_unlock(pc->pc_booke_tlb_lock); 436 437 CTR1(KTR_PMAP, "%s: unlocked", __func__); 438 } 439 } 440 #endif 441 } 442 443 /* Return number of entries in TLB0. */ 444 static __inline void 445 tlb0_get_tlbconf(void) 446 { 447 uint32_t tlb0_cfg; 448 449 tlb0_cfg = mfspr(SPR_TLB0CFG); 450 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 451 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 452 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 453 } 454 455 /* Initialize pool of kva ptbl buffers. */ 456 static void 457 ptbl_init(void) 458 { 459 int i; 460 461 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 462 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 463 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 464 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 465 466 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 467 TAILQ_INIT(&ptbl_buf_freelist); 468 469 for (i = 0; i < PTBL_BUFS; i++) { 470 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 471 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 472 } 473 } 474 475 /* Get a ptbl_buf from the freelist. */ 476 static struct ptbl_buf * 477 ptbl_buf_alloc(void) 478 { 479 struct ptbl_buf *buf; 480 481 mtx_lock(&ptbl_buf_freelist_lock); 482 buf = TAILQ_FIRST(&ptbl_buf_freelist); 483 if (buf != NULL) 484 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 485 mtx_unlock(&ptbl_buf_freelist_lock); 486 487 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 488 489 return (buf); 490 } 491 492 /* Return ptbl buff to free pool. */ 493 static void 494 ptbl_buf_free(struct ptbl_buf *buf) 495 { 496 497 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 498 499 mtx_lock(&ptbl_buf_freelist_lock); 500 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 501 mtx_unlock(&ptbl_buf_freelist_lock); 502 } 503 504 /* 505 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 506 */ 507 static void 508 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 509 { 510 struct ptbl_buf *pbuf; 511 512 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 513 514 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 515 516 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 517 if (pbuf->kva == (vm_offset_t)ptbl) { 518 /* Remove from pmap ptbl buf list. */ 519 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 520 521 /* Free corresponding ptbl buf. */ 522 ptbl_buf_free(pbuf); 523 break; 524 } 525 } 526 527 /* Allocate page table. */ 528 static pte_t * 529 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 530 { 531 vm_page_t mtbl[PTBL_PAGES]; 532 vm_page_t m; 533 struct ptbl_buf *pbuf; 534 unsigned int pidx; 535 pte_t *ptbl; 536 int i; 537 538 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 539 (pmap == kernel_pmap), pdir_idx); 540 541 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 542 ("ptbl_alloc: invalid pdir_idx")); 543 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 544 ("pte_alloc: valid ptbl entry exists!")); 545 546 pbuf = ptbl_buf_alloc(); 547 if (pbuf == NULL) 548 panic("pte_alloc: couldn't alloc kernel virtual memory"); 549 550 ptbl = (pte_t *)pbuf->kva; 551 552 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 553 554 /* Allocate ptbl pages, this will sleep! */ 555 for (i = 0; i < PTBL_PAGES; i++) { 556 pidx = (PTBL_PAGES * pdir_idx) + i; 557 while ((m = vm_page_alloc(NULL, pidx, 558 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 559 560 PMAP_UNLOCK(pmap); 561 vm_page_unlock_queues(); 562 VM_WAIT; 563 vm_page_lock_queues(); 564 PMAP_LOCK(pmap); 565 } 566 mtbl[i] = m; 567 } 568 569 /* Map allocated pages into kernel_pmap. */ 570 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 571 572 /* Zero whole ptbl. */ 573 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 574 575 /* Add pbuf to the pmap ptbl bufs list. */ 576 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 577 578 return (ptbl); 579 } 580 581 /* Free ptbl pages and invalidate pdir entry. */ 582 static void 583 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 584 { 585 pte_t *ptbl; 586 vm_paddr_t pa; 587 vm_offset_t va; 588 vm_page_t m; 589 int i; 590 591 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 592 (pmap == kernel_pmap), pdir_idx); 593 594 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 595 ("ptbl_free: invalid pdir_idx")); 596 597 ptbl = pmap->pm_pdir[pdir_idx]; 598 599 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 600 601 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 602 603 /* 604 * Invalidate the pdir entry as soon as possible, so that other CPUs 605 * don't attempt to look up the page tables we are releasing. 606 */ 607 mtx_lock_spin(&tlbivax_mutex); 608 tlb_miss_lock(); 609 610 pmap->pm_pdir[pdir_idx] = NULL; 611 612 tlb_miss_unlock(); 613 mtx_unlock_spin(&tlbivax_mutex); 614 615 for (i = 0; i < PTBL_PAGES; i++) { 616 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 617 pa = pte_vatopa(mmu, kernel_pmap, va); 618 m = PHYS_TO_VM_PAGE(pa); 619 vm_page_free_zero(m); 620 atomic_subtract_int(&cnt.v_wire_count, 1); 621 mmu_booke_kremove(mmu, va); 622 } 623 624 ptbl_free_pmap_ptbl(pmap, ptbl); 625 } 626 627 /* 628 * Decrement ptbl pages hold count and attempt to free ptbl pages. 629 * Called when removing pte entry from ptbl. 630 * 631 * Return 1 if ptbl pages were freed. 632 */ 633 static int 634 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 635 { 636 pte_t *ptbl; 637 vm_paddr_t pa; 638 vm_page_t m; 639 int i; 640 641 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 642 (pmap == kernel_pmap), pdir_idx); 643 644 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 645 ("ptbl_unhold: invalid pdir_idx")); 646 KASSERT((pmap != kernel_pmap), 647 ("ptbl_unhold: unholding kernel ptbl!")); 648 649 ptbl = pmap->pm_pdir[pdir_idx]; 650 651 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 652 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 653 ("ptbl_unhold: non kva ptbl")); 654 655 /* decrement hold count */ 656 for (i = 0; i < PTBL_PAGES; i++) { 657 pa = pte_vatopa(mmu, kernel_pmap, 658 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 659 m = PHYS_TO_VM_PAGE(pa); 660 m->wire_count--; 661 } 662 663 /* 664 * Free ptbl pages if there are no pte etries in this ptbl. 665 * wire_count has the same value for all ptbl pages, so check the last 666 * page. 667 */ 668 if (m->wire_count == 0) { 669 ptbl_free(mmu, pmap, pdir_idx); 670 671 //debugf("ptbl_unhold: e (freed ptbl)\n"); 672 return (1); 673 } 674 675 return (0); 676 } 677 678 /* 679 * Increment hold count for ptbl pages. This routine is used when a new pte 680 * entry is being inserted into the ptbl. 681 */ 682 static void 683 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 684 { 685 vm_paddr_t pa; 686 pte_t *ptbl; 687 vm_page_t m; 688 int i; 689 690 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 691 pdir_idx); 692 693 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 694 ("ptbl_hold: invalid pdir_idx")); 695 KASSERT((pmap != kernel_pmap), 696 ("ptbl_hold: holding kernel ptbl!")); 697 698 ptbl = pmap->pm_pdir[pdir_idx]; 699 700 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 701 702 for (i = 0; i < PTBL_PAGES; i++) { 703 pa = pte_vatopa(mmu, kernel_pmap, 704 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 705 m = PHYS_TO_VM_PAGE(pa); 706 m->wire_count++; 707 } 708 } 709 710 /* Allocate pv_entry structure. */ 711 pv_entry_t 712 pv_alloc(void) 713 { 714 pv_entry_t pv; 715 716 pv_entry_count++; 717 if (pv_entry_count > pv_entry_high_water) 718 pagedaemon_wakeup(); 719 pv = uma_zalloc(pvzone, M_NOWAIT); 720 721 return (pv); 722 } 723 724 /* Free pv_entry structure. */ 725 static __inline void 726 pv_free(pv_entry_t pve) 727 { 728 729 pv_entry_count--; 730 uma_zfree(pvzone, pve); 731 } 732 733 734 /* Allocate and initialize pv_entry structure. */ 735 static void 736 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 737 { 738 pv_entry_t pve; 739 740 //int su = (pmap == kernel_pmap); 741 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 742 // (u_int32_t)pmap, va, (u_int32_t)m); 743 744 pve = pv_alloc(); 745 if (pve == NULL) 746 panic("pv_insert: no pv entries!"); 747 748 pve->pv_pmap = pmap; 749 pve->pv_va = va; 750 751 /* add to pv_list */ 752 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 753 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 754 755 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 756 757 //debugf("pv_insert: e\n"); 758 } 759 760 /* Destroy pv entry. */ 761 static void 762 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 763 { 764 pv_entry_t pve; 765 766 //int su = (pmap == kernel_pmap); 767 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 768 769 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 770 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 771 772 /* find pv entry */ 773 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 774 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 775 /* remove from pv_list */ 776 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 777 if (TAILQ_EMPTY(&m->md.pv_list)) 778 vm_page_flag_clear(m, PG_WRITEABLE); 779 780 /* free pv entry struct */ 781 pv_free(pve); 782 break; 783 } 784 } 785 786 //debugf("pv_remove: e\n"); 787 } 788 789 /* 790 * Clean pte entry, try to free page table page if requested. 791 * 792 * Return 1 if ptbl pages were freed, otherwise return 0. 793 */ 794 static int 795 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 796 { 797 unsigned int pdir_idx = PDIR_IDX(va); 798 unsigned int ptbl_idx = PTBL_IDX(va); 799 vm_page_t m; 800 pte_t *ptbl; 801 pte_t *pte; 802 803 //int su = (pmap == kernel_pmap); 804 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 805 // su, (u_int32_t)pmap, va, flags); 806 807 ptbl = pmap->pm_pdir[pdir_idx]; 808 KASSERT(ptbl, ("pte_remove: null ptbl")); 809 810 pte = &ptbl[ptbl_idx]; 811 812 if (pte == NULL || !PTE_ISVALID(pte)) 813 return (0); 814 815 if (PTE_ISWIRED(pte)) 816 pmap->pm_stats.wired_count--; 817 818 /* Handle managed entry. */ 819 if (PTE_ISMANAGED(pte)) { 820 /* Get vm_page_t for mapped pte. */ 821 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 822 823 if (PTE_ISMODIFIED(pte)) 824 vm_page_dirty(m); 825 826 if (PTE_ISREFERENCED(pte)) 827 vm_page_flag_set(m, PG_REFERENCED); 828 829 pv_remove(pmap, va, m); 830 } 831 832 mtx_lock_spin(&tlbivax_mutex); 833 tlb_miss_lock(); 834 835 tlb0_flush_entry(va); 836 pte->flags = 0; 837 pte->rpn = 0; 838 839 tlb_miss_unlock(); 840 mtx_unlock_spin(&tlbivax_mutex); 841 842 pmap->pm_stats.resident_count--; 843 844 if (flags & PTBL_UNHOLD) { 845 //debugf("pte_remove: e (unhold)\n"); 846 return (ptbl_unhold(mmu, pmap, pdir_idx)); 847 } 848 849 //debugf("pte_remove: e\n"); 850 return (0); 851 } 852 853 /* 854 * Insert PTE for a given page and virtual address. 855 */ 856 static void 857 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags) 858 { 859 unsigned int pdir_idx = PDIR_IDX(va); 860 unsigned int ptbl_idx = PTBL_IDX(va); 861 pte_t *ptbl, *pte; 862 863 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 864 pmap == kernel_pmap, pmap, va); 865 866 /* Get the page table pointer. */ 867 ptbl = pmap->pm_pdir[pdir_idx]; 868 869 if (ptbl == NULL) { 870 /* Allocate page table pages. */ 871 ptbl = ptbl_alloc(mmu, pmap, pdir_idx); 872 } else { 873 /* 874 * Check if there is valid mapping for requested 875 * va, if there is, remove it. 876 */ 877 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 878 if (PTE_ISVALID(pte)) { 879 pte_remove(mmu, pmap, va, PTBL_HOLD); 880 } else { 881 /* 882 * pte is not used, increment hold count 883 * for ptbl pages. 884 */ 885 if (pmap != kernel_pmap) 886 ptbl_hold(mmu, pmap, pdir_idx); 887 } 888 } 889 890 /* 891 * Insert pv_entry into pv_list for mapped page if part of managed 892 * memory. 893 */ 894 if ((m->flags & PG_FICTITIOUS) == 0) { 895 if ((m->flags & PG_UNMANAGED) == 0) { 896 flags |= PTE_MANAGED; 897 898 /* Create and insert pv entry. */ 899 pv_insert(pmap, va, m); 900 } 901 } 902 903 pmap->pm_stats.resident_count++; 904 905 mtx_lock_spin(&tlbivax_mutex); 906 tlb_miss_lock(); 907 908 tlb0_flush_entry(va); 909 if (pmap->pm_pdir[pdir_idx] == NULL) { 910 /* 911 * If we just allocated a new page table, hook it in 912 * the pdir. 913 */ 914 pmap->pm_pdir[pdir_idx] = ptbl; 915 } 916 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 917 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK; 918 pte->flags |= (PTE_VALID | flags); 919 920 tlb_miss_unlock(); 921 mtx_unlock_spin(&tlbivax_mutex); 922 } 923 924 /* Return the pa for the given pmap/va. */ 925 static vm_paddr_t 926 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 927 { 928 vm_paddr_t pa = 0; 929 pte_t *pte; 930 931 pte = pte_find(mmu, pmap, va); 932 if ((pte != NULL) && PTE_ISVALID(pte)) 933 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 934 return (pa); 935 } 936 937 /* Get a pointer to a PTE in a page table. */ 938 static pte_t * 939 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 940 { 941 unsigned int pdir_idx = PDIR_IDX(va); 942 unsigned int ptbl_idx = PTBL_IDX(va); 943 944 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 945 946 if (pmap->pm_pdir[pdir_idx]) 947 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 948 949 return (NULL); 950 } 951 952 /**************************************************************************/ 953 /* PMAP related */ 954 /**************************************************************************/ 955 956 /* 957 * This is called during e500_init, before the system is really initialized. 958 */ 959 static void 960 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 961 { 962 vm_offset_t phys_kernelend; 963 struct mem_region *mp, *mp1; 964 int cnt, i, j; 965 u_int s, e, sz; 966 u_int phys_avail_count; 967 vm_size_t physsz, hwphyssz, kstack0_sz; 968 vm_offset_t kernel_pdir, kstack0, va; 969 vm_paddr_t kstack0_phys; 970 void *dpcpu; 971 pte_t *pte; 972 973 debugf("mmu_booke_bootstrap: entered\n"); 974 975 /* Initialize invalidation mutex */ 976 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 977 978 /* Read TLB0 size and associativity. */ 979 tlb0_get_tlbconf(); 980 981 /* Align kernel start and end address (kernel image). */ 982 kernstart = trunc_page(start); 983 data_start = round_page(kernelend); 984 kernsize = data_start - kernstart; 985 986 data_end = data_start; 987 988 /* Allocate space for the message buffer. */ 989 msgbufp = (struct msgbuf *)data_end; 990 data_end += MSGBUF_SIZE; 991 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, 992 data_end); 993 994 data_end = round_page(data_end); 995 996 /* Allocate the dynamic per-cpu area. */ 997 dpcpu = (void *)data_end; 998 data_end += DPCPU_SIZE; 999 dpcpu_init(dpcpu, 0); 1000 1001 /* Allocate space for ptbl_bufs. */ 1002 ptbl_bufs = (struct ptbl_buf *)data_end; 1003 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1004 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, 1005 data_end); 1006 1007 data_end = round_page(data_end); 1008 1009 /* Allocate PTE tables for kernel KVA. */ 1010 kernel_pdir = data_end; 1011 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS + 1012 PDIR_SIZE - 1) / PDIR_SIZE; 1013 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1014 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1015 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); 1016 1017 debugf(" data_end: 0x%08x\n", data_end); 1018 if (data_end - kernstart > 0x1000000) { 1019 data_end = (data_end + 0x3fffff) & ~0x3fffff; 1020 tlb1_mapin_region(kernstart + 0x1000000, 1021 kernload + 0x1000000, data_end - kernstart - 0x1000000); 1022 } else 1023 data_end = (data_end + 0xffffff) & ~0xffffff; 1024 1025 debugf(" updated data_end: 0x%08x\n", data_end); 1026 1027 kernsize += data_end - data_start; 1028 1029 /* 1030 * Clear the structures - note we can only do it safely after the 1031 * possible additional TLB1 translations are in place (above) so that 1032 * all range up to the currently calculated 'data_end' is covered. 1033 */ 1034 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1035 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1036 1037 /*******************************************************/ 1038 /* Set the start and end of kva. */ 1039 /*******************************************************/ 1040 virtual_avail = round_page(data_end); 1041 virtual_end = VM_MAX_KERNEL_ADDRESS; 1042 1043 /* Allocate KVA space for page zero/copy operations. */ 1044 zero_page_va = virtual_avail; 1045 virtual_avail += PAGE_SIZE; 1046 zero_page_idle_va = virtual_avail; 1047 virtual_avail += PAGE_SIZE; 1048 copy_page_src_va = virtual_avail; 1049 virtual_avail += PAGE_SIZE; 1050 copy_page_dst_va = virtual_avail; 1051 virtual_avail += PAGE_SIZE; 1052 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1053 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va); 1054 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1055 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1056 1057 /* Initialize page zero/copy mutexes. */ 1058 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1059 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1060 1061 /* Allocate KVA space for ptbl bufs. */ 1062 ptbl_buf_pool_vabase = virtual_avail; 1063 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1064 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1065 ptbl_buf_pool_vabase, virtual_avail); 1066 1067 /* Calculate corresponding physical addresses for the kernel region. */ 1068 phys_kernelend = kernload + kernsize; 1069 debugf("kernel image and allocated data:\n"); 1070 debugf(" kernload = 0x%08x\n", kernload); 1071 debugf(" kernstart = 0x%08x\n", kernstart); 1072 debugf(" kernsize = 0x%08x\n", kernsize); 1073 1074 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1075 panic("mmu_booke_bootstrap: phys_avail too small"); 1076 1077 /* 1078 * Remove kernel physical address range from avail regions list. Page 1079 * align all regions. Non-page aligned memory isn't very interesting 1080 * to us. Also, sort the entries for ascending addresses. 1081 */ 1082 1083 /* Retrieve phys/avail mem regions */ 1084 mem_regions(&physmem_regions, &physmem_regions_sz, 1085 &availmem_regions, &availmem_regions_sz); 1086 sz = 0; 1087 cnt = availmem_regions_sz; 1088 debugf("processing avail regions:\n"); 1089 for (mp = availmem_regions; mp->mr_size; mp++) { 1090 s = mp->mr_start; 1091 e = mp->mr_start + mp->mr_size; 1092 debugf(" %08x-%08x -> ", s, e); 1093 /* Check whether this region holds all of the kernel. */ 1094 if (s < kernload && e > phys_kernelend) { 1095 availmem_regions[cnt].mr_start = phys_kernelend; 1096 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1097 e = kernload; 1098 } 1099 /* Look whether this regions starts within the kernel. */ 1100 if (s >= kernload && s < phys_kernelend) { 1101 if (e <= phys_kernelend) 1102 goto empty; 1103 s = phys_kernelend; 1104 } 1105 /* Now look whether this region ends within the kernel. */ 1106 if (e > kernload && e <= phys_kernelend) { 1107 if (s >= kernload) 1108 goto empty; 1109 e = kernload; 1110 } 1111 /* Now page align the start and size of the region. */ 1112 s = round_page(s); 1113 e = trunc_page(e); 1114 if (e < s) 1115 e = s; 1116 sz = e - s; 1117 debugf("%08x-%08x = %x\n", s, e, sz); 1118 1119 /* Check whether some memory is left here. */ 1120 if (sz == 0) { 1121 empty: 1122 memmove(mp, mp + 1, 1123 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1124 cnt--; 1125 mp--; 1126 continue; 1127 } 1128 1129 /* Do an insertion sort. */ 1130 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1131 if (s < mp1->mr_start) 1132 break; 1133 if (mp1 < mp) { 1134 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1135 mp1->mr_start = s; 1136 mp1->mr_size = sz; 1137 } else { 1138 mp->mr_start = s; 1139 mp->mr_size = sz; 1140 } 1141 } 1142 availmem_regions_sz = cnt; 1143 1144 /*******************************************************/ 1145 /* Steal physical memory for kernel stack from the end */ 1146 /* of the first avail region */ 1147 /*******************************************************/ 1148 kstack0_sz = KSTACK_PAGES * PAGE_SIZE; 1149 kstack0_phys = availmem_regions[0].mr_start + 1150 availmem_regions[0].mr_size; 1151 kstack0_phys -= kstack0_sz; 1152 availmem_regions[0].mr_size -= kstack0_sz; 1153 1154 /*******************************************************/ 1155 /* Fill in phys_avail table, based on availmem_regions */ 1156 /*******************************************************/ 1157 phys_avail_count = 0; 1158 physsz = 0; 1159 hwphyssz = 0; 1160 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1161 1162 debugf("fill in phys_avail:\n"); 1163 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1164 1165 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", 1166 availmem_regions[i].mr_start, 1167 availmem_regions[i].mr_start + 1168 availmem_regions[i].mr_size, 1169 availmem_regions[i].mr_size); 1170 1171 if (hwphyssz != 0 && 1172 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1173 debugf(" hw.physmem adjust\n"); 1174 if (physsz < hwphyssz) { 1175 phys_avail[j] = availmem_regions[i].mr_start; 1176 phys_avail[j + 1] = 1177 availmem_regions[i].mr_start + 1178 hwphyssz - physsz; 1179 physsz = hwphyssz; 1180 phys_avail_count++; 1181 } 1182 break; 1183 } 1184 1185 phys_avail[j] = availmem_regions[i].mr_start; 1186 phys_avail[j + 1] = availmem_regions[i].mr_start + 1187 availmem_regions[i].mr_size; 1188 phys_avail_count++; 1189 physsz += availmem_regions[i].mr_size; 1190 } 1191 physmem = btoc(physsz); 1192 1193 /* Calculate the last available physical address. */ 1194 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1195 ; 1196 Maxmem = powerpc_btop(phys_avail[i + 1]); 1197 1198 debugf("Maxmem = 0x%08lx\n", Maxmem); 1199 debugf("phys_avail_count = %d\n", phys_avail_count); 1200 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem, 1201 physmem); 1202 1203 /*******************************************************/ 1204 /* Initialize (statically allocated) kernel pmap. */ 1205 /*******************************************************/ 1206 PMAP_LOCK_INIT(kernel_pmap); 1207 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1208 1209 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); 1210 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); 1211 debugf("kernel pdir range: 0x%08x - 0x%08x\n", 1212 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); 1213 1214 /* Initialize kernel pdir */ 1215 for (i = 0; i < kernel_ptbls; i++) 1216 kernel_pmap->pm_pdir[kptbl_min + i] = 1217 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1218 1219 for (i = 0; i < MAXCPU; i++) { 1220 kernel_pmap->pm_tid[i] = TID_KERNEL; 1221 1222 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1223 tidbusy[i][0] = kernel_pmap; 1224 } 1225 1226 /* 1227 * Fill in PTEs covering kernel code and data. They are not required 1228 * for address translation, as this area is covered by static TLB1 1229 * entries, but for pte_vatopa() to work correctly with kernel area 1230 * addresses. 1231 */ 1232 for (va = KERNBASE; va < data_end; va += PAGE_SIZE) { 1233 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1234 pte->rpn = kernload + (va - KERNBASE); 1235 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1236 PTE_VALID; 1237 } 1238 /* Mark kernel_pmap active on all CPUs */ 1239 kernel_pmap->pm_active = ~0; 1240 1241 /*******************************************************/ 1242 /* Final setup */ 1243 /*******************************************************/ 1244 1245 /* Enter kstack0 into kernel map, provide guard page */ 1246 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1247 thread0.td_kstack = kstack0; 1248 thread0.td_kstack_pages = KSTACK_PAGES; 1249 1250 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1251 debugf("kstack0_phys at 0x%08x - 0x%08x\n", 1252 kstack0_phys, kstack0_phys + kstack0_sz); 1253 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); 1254 1255 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 1256 for (i = 0; i < KSTACK_PAGES; i++) { 1257 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 1258 kstack0 += PAGE_SIZE; 1259 kstack0_phys += PAGE_SIZE; 1260 } 1261 1262 debugf("virtual_avail = %08x\n", virtual_avail); 1263 debugf("virtual_end = %08x\n", virtual_end); 1264 1265 debugf("mmu_booke_bootstrap: exit\n"); 1266 } 1267 1268 void 1269 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 1270 { 1271 int i; 1272 1273 /* 1274 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 1275 * have the snapshot of its contents in the s/w tlb1[] table, so use 1276 * these values directly to (re)program AP's TLB1 hardware. 1277 */ 1278 for (i = 0; i < tlb1_idx; i ++) { 1279 /* Skip invalid entries */ 1280 if (!(tlb1[i].mas1 & MAS1_VALID)) 1281 continue; 1282 1283 tlb1_write_entry(i); 1284 } 1285 1286 set_mas4_defaults(); 1287 } 1288 1289 /* 1290 * Get the physical page address for the given pmap/virtual address. 1291 */ 1292 static vm_paddr_t 1293 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1294 { 1295 vm_paddr_t pa; 1296 1297 PMAP_LOCK(pmap); 1298 pa = pte_vatopa(mmu, pmap, va); 1299 PMAP_UNLOCK(pmap); 1300 1301 return (pa); 1302 } 1303 1304 /* 1305 * Extract the physical page address associated with the given 1306 * kernel virtual address. 1307 */ 1308 static vm_paddr_t 1309 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 1310 { 1311 1312 return (pte_vatopa(mmu, kernel_pmap, va)); 1313 } 1314 1315 /* 1316 * Initialize the pmap module. 1317 * Called by vm_init, to initialize any structures that the pmap 1318 * system needs to map virtual memory. 1319 */ 1320 static void 1321 mmu_booke_init(mmu_t mmu) 1322 { 1323 int shpgperproc = PMAP_SHPGPERPROC; 1324 1325 /* 1326 * Initialize the address space (zone) for the pv entries. Set a 1327 * high water mark so that the system can recover from excessive 1328 * numbers of pv entries. 1329 */ 1330 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 1331 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 1332 1333 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 1334 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; 1335 1336 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 1337 pv_entry_high_water = 9 * (pv_entry_max / 10); 1338 1339 uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max); 1340 1341 /* Pre-fill pvzone with initial number of pv entries. */ 1342 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 1343 1344 /* Initialize ptbl allocation. */ 1345 ptbl_init(); 1346 } 1347 1348 /* 1349 * Map a list of wired pages into kernel virtual address space. This is 1350 * intended for temporary mappings which do not need page modification or 1351 * references recorded. Existing mappings in the region are overwritten. 1352 */ 1353 static void 1354 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1355 { 1356 vm_offset_t va; 1357 1358 va = sva; 1359 while (count-- > 0) { 1360 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1361 va += PAGE_SIZE; 1362 m++; 1363 } 1364 } 1365 1366 /* 1367 * Remove page mappings from kernel virtual address space. Intended for 1368 * temporary mappings entered by mmu_booke_qenter. 1369 */ 1370 static void 1371 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 1372 { 1373 vm_offset_t va; 1374 1375 va = sva; 1376 while (count-- > 0) { 1377 mmu_booke_kremove(mmu, va); 1378 va += PAGE_SIZE; 1379 } 1380 } 1381 1382 /* 1383 * Map a wired page into kernel virtual address space. 1384 */ 1385 static void 1386 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa) 1387 { 1388 unsigned int pdir_idx = PDIR_IDX(va); 1389 unsigned int ptbl_idx = PTBL_IDX(va); 1390 uint32_t flags; 1391 pte_t *pte; 1392 1393 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1394 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 1395 1396 flags = 0; 1397 flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID); 1398 flags |= PTE_M; 1399 1400 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1401 1402 mtx_lock_spin(&tlbivax_mutex); 1403 tlb_miss_lock(); 1404 1405 if (PTE_ISVALID(pte)) { 1406 1407 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 1408 1409 /* Flush entry from TLB0 */ 1410 tlb0_flush_entry(va); 1411 } 1412 1413 pte->rpn = pa & ~PTE_PA_MASK; 1414 pte->flags = flags; 1415 1416 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 1417 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 1418 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 1419 1420 /* Flush the real memory from the instruction cache. */ 1421 if ((flags & (PTE_I | PTE_G)) == 0) { 1422 __syncicache((void *)va, PAGE_SIZE); 1423 } 1424 1425 tlb_miss_unlock(); 1426 mtx_unlock_spin(&tlbivax_mutex); 1427 } 1428 1429 /* 1430 * Remove a page from kernel page table. 1431 */ 1432 static void 1433 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 1434 { 1435 unsigned int pdir_idx = PDIR_IDX(va); 1436 unsigned int ptbl_idx = PTBL_IDX(va); 1437 pte_t *pte; 1438 1439 // CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va)); 1440 1441 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1442 (va <= VM_MAX_KERNEL_ADDRESS)), 1443 ("mmu_booke_kremove: invalid va")); 1444 1445 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1446 1447 if (!PTE_ISVALID(pte)) { 1448 1449 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 1450 1451 return; 1452 } 1453 1454 mtx_lock_spin(&tlbivax_mutex); 1455 tlb_miss_lock(); 1456 1457 /* Invalidate entry in TLB0, update PTE. */ 1458 tlb0_flush_entry(va); 1459 pte->flags = 0; 1460 pte->rpn = 0; 1461 1462 tlb_miss_unlock(); 1463 mtx_unlock_spin(&tlbivax_mutex); 1464 } 1465 1466 /* 1467 * Initialize pmap associated with process 0. 1468 */ 1469 static void 1470 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 1471 { 1472 1473 mmu_booke_pinit(mmu, pmap); 1474 PCPU_SET(curpmap, pmap); 1475 } 1476 1477 /* 1478 * Initialize a preallocated and zeroed pmap structure, 1479 * such as one in a vmspace structure. 1480 */ 1481 static void 1482 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 1483 { 1484 int i; 1485 1486 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 1487 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 1488 1489 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 1490 1491 PMAP_LOCK_INIT(pmap); 1492 for (i = 0; i < MAXCPU; i++) 1493 pmap->pm_tid[i] = TID_NONE; 1494 pmap->pm_active = 0; 1495 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 1496 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 1497 TAILQ_INIT(&pmap->pm_ptbl_list); 1498 } 1499 1500 /* 1501 * Release any resources held by the given physical map. 1502 * Called when a pmap initialized by mmu_booke_pinit is being released. 1503 * Should only be called if the map contains no valid mappings. 1504 */ 1505 static void 1506 mmu_booke_release(mmu_t mmu, pmap_t pmap) 1507 { 1508 1509 printf("mmu_booke_release: s\n"); 1510 1511 KASSERT(pmap->pm_stats.resident_count == 0, 1512 ("pmap_release: pmap resident count %ld != 0", 1513 pmap->pm_stats.resident_count)); 1514 1515 PMAP_LOCK_DESTROY(pmap); 1516 } 1517 1518 /* 1519 * Insert the given physical page at the specified virtual address in the 1520 * target physical map with the protection requested. If specified the page 1521 * will be wired down. 1522 */ 1523 static void 1524 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1525 vm_prot_t prot, boolean_t wired) 1526 { 1527 1528 vm_page_lock_queues(); 1529 PMAP_LOCK(pmap); 1530 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired); 1531 vm_page_unlock_queues(); 1532 PMAP_UNLOCK(pmap); 1533 } 1534 1535 static void 1536 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1537 vm_prot_t prot, boolean_t wired) 1538 { 1539 pte_t *pte; 1540 vm_paddr_t pa; 1541 uint32_t flags; 1542 int su, sync; 1543 1544 pa = VM_PAGE_TO_PHYS(m); 1545 su = (pmap == kernel_pmap); 1546 sync = 0; 1547 1548 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 1549 // "pa=0x%08x prot=0x%08x wired=%d)\n", 1550 // (u_int32_t)pmap, su, pmap->pm_tid, 1551 // (u_int32_t)m, va, pa, prot, wired); 1552 1553 if (su) { 1554 KASSERT(((va >= virtual_avail) && 1555 (va <= VM_MAX_KERNEL_ADDRESS)), 1556 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 1557 } else { 1558 KASSERT((va <= VM_MAXUSER_ADDRESS), 1559 ("mmu_booke_enter_locked: user pmap, non user va")); 1560 } 1561 KASSERT((m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object), 1562 ("mmu_booke_enter_locked: page %p is not busy", m)); 1563 1564 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1565 1566 /* 1567 * If there is an existing mapping, and the physical address has not 1568 * changed, must be protection or wiring change. 1569 */ 1570 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 1571 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 1572 1573 /* 1574 * Before actually updating pte->flags we calculate and 1575 * prepare its new value in a helper var. 1576 */ 1577 flags = pte->flags; 1578 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 1579 1580 /* Wiring change, just update stats. */ 1581 if (wired) { 1582 if (!PTE_ISWIRED(pte)) { 1583 flags |= PTE_WIRED; 1584 pmap->pm_stats.wired_count++; 1585 } 1586 } else { 1587 if (PTE_ISWIRED(pte)) { 1588 flags &= ~PTE_WIRED; 1589 pmap->pm_stats.wired_count--; 1590 } 1591 } 1592 1593 if (prot & VM_PROT_WRITE) { 1594 /* Add write permissions. */ 1595 flags |= PTE_SW; 1596 if (!su) 1597 flags |= PTE_UW; 1598 1599 if ((flags & PTE_MANAGED) != 0) 1600 vm_page_flag_set(m, PG_WRITEABLE); 1601 } else { 1602 /* Handle modified pages, sense modify status. */ 1603 1604 /* 1605 * The PTE_MODIFIED flag could be set by underlying 1606 * TLB misses since we last read it (above), possibly 1607 * other CPUs could update it so we check in the PTE 1608 * directly rather than rely on that saved local flags 1609 * copy. 1610 */ 1611 if (PTE_ISMODIFIED(pte)) 1612 vm_page_dirty(m); 1613 } 1614 1615 if (prot & VM_PROT_EXECUTE) { 1616 flags |= PTE_SX; 1617 if (!su) 1618 flags |= PTE_UX; 1619 1620 /* 1621 * Check existing flags for execute permissions: if we 1622 * are turning execute permissions on, icache should 1623 * be flushed. 1624 */ 1625 if ((pte->flags & (PTE_UX | PTE_SX)) == 0) 1626 sync++; 1627 } 1628 1629 flags &= ~PTE_REFERENCED; 1630 1631 /* 1632 * The new flags value is all calculated -- only now actually 1633 * update the PTE. 1634 */ 1635 mtx_lock_spin(&tlbivax_mutex); 1636 tlb_miss_lock(); 1637 1638 tlb0_flush_entry(va); 1639 pte->flags = flags; 1640 1641 tlb_miss_unlock(); 1642 mtx_unlock_spin(&tlbivax_mutex); 1643 1644 } else { 1645 /* 1646 * If there is an existing mapping, but it's for a different 1647 * physical address, pte_enter() will delete the old mapping. 1648 */ 1649 //if ((pte != NULL) && PTE_ISVALID(pte)) 1650 // debugf("mmu_booke_enter_locked: replace\n"); 1651 //else 1652 // debugf("mmu_booke_enter_locked: new\n"); 1653 1654 /* Now set up the flags and install the new mapping. */ 1655 flags = (PTE_SR | PTE_VALID); 1656 flags |= PTE_M; 1657 1658 if (!su) 1659 flags |= PTE_UR; 1660 1661 if (prot & VM_PROT_WRITE) { 1662 flags |= PTE_SW; 1663 if (!su) 1664 flags |= PTE_UW; 1665 1666 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) 1667 vm_page_flag_set(m, PG_WRITEABLE); 1668 } 1669 1670 if (prot & VM_PROT_EXECUTE) { 1671 flags |= PTE_SX; 1672 if (!su) 1673 flags |= PTE_UX; 1674 } 1675 1676 /* If its wired update stats. */ 1677 if (wired) { 1678 pmap->pm_stats.wired_count++; 1679 flags |= PTE_WIRED; 1680 } 1681 1682 pte_enter(mmu, pmap, m, va, flags); 1683 1684 /* Flush the real memory from the instruction cache. */ 1685 if (prot & VM_PROT_EXECUTE) 1686 sync++; 1687 } 1688 1689 if (sync && (su || pmap == PCPU_GET(curpmap))) { 1690 __syncicache((void *)va, PAGE_SIZE); 1691 sync = 0; 1692 } 1693 } 1694 1695 /* 1696 * Maps a sequence of resident pages belonging to the same object. 1697 * The sequence begins with the given page m_start. This page is 1698 * mapped at the given virtual address start. Each subsequent page is 1699 * mapped at a virtual address that is offset from start by the same 1700 * amount as the page is offset from m_start within the object. The 1701 * last page in the sequence is the page with the largest offset from 1702 * m_start that can be mapped at a virtual address less than the given 1703 * virtual address end. Not every virtual page between start and end 1704 * is mapped; only those for which a resident page exists with the 1705 * corresponding offset from m_start are mapped. 1706 */ 1707 static void 1708 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 1709 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 1710 { 1711 vm_page_t m; 1712 vm_pindex_t diff, psize; 1713 1714 psize = atop(end - start); 1715 m = m_start; 1716 vm_page_lock_queues(); 1717 PMAP_LOCK(pmap); 1718 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1719 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 1720 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1721 m = TAILQ_NEXT(m, listq); 1722 } 1723 vm_page_unlock_queues(); 1724 PMAP_UNLOCK(pmap); 1725 } 1726 1727 static void 1728 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1729 vm_prot_t prot) 1730 { 1731 1732 vm_page_lock_queues(); 1733 PMAP_LOCK(pmap); 1734 mmu_booke_enter_locked(mmu, pmap, va, m, 1735 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1736 vm_page_unlock_queues(); 1737 PMAP_UNLOCK(pmap); 1738 } 1739 1740 /* 1741 * Remove the given range of addresses from the specified map. 1742 * 1743 * It is assumed that the start and end are properly rounded to the page size. 1744 */ 1745 static void 1746 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 1747 { 1748 pte_t *pte; 1749 uint8_t hold_flag; 1750 1751 int su = (pmap == kernel_pmap); 1752 1753 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 1754 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 1755 1756 if (su) { 1757 KASSERT(((va >= virtual_avail) && 1758 (va <= VM_MAX_KERNEL_ADDRESS)), 1759 ("mmu_booke_remove: kernel pmap, non kernel va")); 1760 } else { 1761 KASSERT((va <= VM_MAXUSER_ADDRESS), 1762 ("mmu_booke_remove: user pmap, non user va")); 1763 } 1764 1765 if (PMAP_REMOVE_DONE(pmap)) { 1766 //debugf("mmu_booke_remove: e (empty)\n"); 1767 return; 1768 } 1769 1770 hold_flag = PTBL_HOLD_FLAG(pmap); 1771 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 1772 1773 vm_page_lock_queues(); 1774 PMAP_LOCK(pmap); 1775 for (; va < endva; va += PAGE_SIZE) { 1776 pte = pte_find(mmu, pmap, va); 1777 if ((pte != NULL) && PTE_ISVALID(pte)) 1778 pte_remove(mmu, pmap, va, hold_flag); 1779 } 1780 PMAP_UNLOCK(pmap); 1781 vm_page_unlock_queues(); 1782 1783 //debugf("mmu_booke_remove: e\n"); 1784 } 1785 1786 /* 1787 * Remove physical page from all pmaps in which it resides. 1788 */ 1789 static void 1790 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 1791 { 1792 pv_entry_t pv, pvn; 1793 uint8_t hold_flag; 1794 1795 vm_page_lock_queues(); 1796 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 1797 pvn = TAILQ_NEXT(pv, pv_link); 1798 1799 PMAP_LOCK(pv->pv_pmap); 1800 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 1801 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 1802 PMAP_UNLOCK(pv->pv_pmap); 1803 } 1804 vm_page_flag_clear(m, PG_WRITEABLE); 1805 vm_page_unlock_queues(); 1806 } 1807 1808 /* 1809 * Map a range of physical addresses into kernel virtual address space. 1810 */ 1811 static vm_offset_t 1812 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start, 1813 vm_offset_t pa_end, int prot) 1814 { 1815 vm_offset_t sva = *virt; 1816 vm_offset_t va = sva; 1817 1818 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 1819 // sva, pa_start, pa_end); 1820 1821 while (pa_start < pa_end) { 1822 mmu_booke_kenter(mmu, va, pa_start); 1823 va += PAGE_SIZE; 1824 pa_start += PAGE_SIZE; 1825 } 1826 *virt = va; 1827 1828 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 1829 return (sva); 1830 } 1831 1832 /* 1833 * The pmap must be activated before it's address space can be accessed in any 1834 * way. 1835 */ 1836 static void 1837 mmu_booke_activate(mmu_t mmu, struct thread *td) 1838 { 1839 pmap_t pmap; 1840 1841 pmap = &td->td_proc->p_vmspace->vm_pmap; 1842 1843 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 1844 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1845 1846 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 1847 1848 mtx_lock_spin(&sched_lock); 1849 1850 atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask)); 1851 PCPU_SET(curpmap, pmap); 1852 1853 if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE) 1854 tid_alloc(pmap); 1855 1856 /* Load PID0 register with pmap tid value. */ 1857 mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]); 1858 __asm __volatile("isync"); 1859 1860 mtx_unlock_spin(&sched_lock); 1861 1862 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 1863 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 1864 } 1865 1866 /* 1867 * Deactivate the specified process's address space. 1868 */ 1869 static void 1870 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 1871 { 1872 pmap_t pmap; 1873 1874 pmap = &td->td_proc->p_vmspace->vm_pmap; 1875 1876 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 1877 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1878 1879 atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask)); 1880 PCPU_SET(curpmap, NULL); 1881 } 1882 1883 /* 1884 * Copy the range specified by src_addr/len 1885 * from the source map to the range dst_addr/len 1886 * in the destination map. 1887 * 1888 * This routine is only advisory and need not do anything. 1889 */ 1890 static void 1891 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 1892 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 1893 { 1894 1895 } 1896 1897 /* 1898 * Set the physical protection on the specified range of this map as requested. 1899 */ 1900 static void 1901 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 1902 vm_prot_t prot) 1903 { 1904 vm_offset_t va; 1905 vm_page_t m; 1906 pte_t *pte; 1907 1908 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1909 mmu_booke_remove(mmu, pmap, sva, eva); 1910 return; 1911 } 1912 1913 if (prot & VM_PROT_WRITE) 1914 return; 1915 1916 vm_page_lock_queues(); 1917 PMAP_LOCK(pmap); 1918 for (va = sva; va < eva; va += PAGE_SIZE) { 1919 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 1920 if (PTE_ISVALID(pte)) { 1921 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1922 1923 mtx_lock_spin(&tlbivax_mutex); 1924 tlb_miss_lock(); 1925 1926 /* Handle modified pages. */ 1927 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) 1928 vm_page_dirty(m); 1929 1930 tlb0_flush_entry(va); 1931 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 1932 1933 tlb_miss_unlock(); 1934 mtx_unlock_spin(&tlbivax_mutex); 1935 } 1936 } 1937 } 1938 PMAP_UNLOCK(pmap); 1939 vm_page_unlock_queues(); 1940 } 1941 1942 /* 1943 * Clear the write and modified bits in each of the given page's mappings. 1944 */ 1945 static void 1946 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 1947 { 1948 pv_entry_t pv; 1949 pte_t *pte; 1950 1951 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0, 1952 ("mmu_booke_remove_write: page %p is not managed", m)); 1953 1954 /* 1955 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by 1956 * another thread while the object is locked. Thus, if PG_WRITEABLE 1957 * is clear, no page table entries need updating. 1958 */ 1959 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1960 if ((m->oflags & VPO_BUSY) == 0 && 1961 (m->flags & PG_WRITEABLE) == 0) 1962 return; 1963 vm_page_lock_queues(); 1964 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 1965 PMAP_LOCK(pv->pv_pmap); 1966 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 1967 if (PTE_ISVALID(pte)) { 1968 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1969 1970 mtx_lock_spin(&tlbivax_mutex); 1971 tlb_miss_lock(); 1972 1973 /* Handle modified pages. */ 1974 if (PTE_ISMODIFIED(pte)) 1975 vm_page_dirty(m); 1976 1977 /* Flush mapping from TLB0. */ 1978 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 1979 1980 tlb_miss_unlock(); 1981 mtx_unlock_spin(&tlbivax_mutex); 1982 } 1983 } 1984 PMAP_UNLOCK(pv->pv_pmap); 1985 } 1986 vm_page_flag_clear(m, PG_WRITEABLE); 1987 vm_page_unlock_queues(); 1988 } 1989 1990 static void 1991 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 1992 { 1993 pte_t *pte; 1994 pmap_t pmap; 1995 vm_page_t m; 1996 vm_offset_t addr; 1997 vm_paddr_t pa; 1998 int active, valid; 1999 2000 va = trunc_page(va); 2001 sz = round_page(sz); 2002 2003 vm_page_lock_queues(); 2004 pmap = PCPU_GET(curpmap); 2005 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 2006 while (sz > 0) { 2007 PMAP_LOCK(pm); 2008 pte = pte_find(mmu, pm, va); 2009 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2010 if (valid) 2011 pa = PTE_PA(pte); 2012 PMAP_UNLOCK(pm); 2013 if (valid) { 2014 if (!active) { 2015 /* Create a mapping in the active pmap. */ 2016 addr = 0; 2017 m = PHYS_TO_VM_PAGE(pa); 2018 PMAP_LOCK(pmap); 2019 pte_enter(mmu, pmap, m, addr, 2020 PTE_SR | PTE_VALID | PTE_UR); 2021 __syncicache((void *)addr, PAGE_SIZE); 2022 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2023 PMAP_UNLOCK(pmap); 2024 } else 2025 __syncicache((void *)va, PAGE_SIZE); 2026 } 2027 va += PAGE_SIZE; 2028 sz -= PAGE_SIZE; 2029 } 2030 vm_page_unlock_queues(); 2031 } 2032 2033 /* 2034 * Atomically extract and hold the physical page with the given 2035 * pmap and virtual address pair if that mapping permits the given 2036 * protection. 2037 */ 2038 static vm_page_t 2039 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2040 vm_prot_t prot) 2041 { 2042 pte_t *pte; 2043 vm_page_t m; 2044 uint32_t pte_wbit; 2045 vm_paddr_t pa; 2046 2047 m = NULL; 2048 pa = 0; 2049 PMAP_LOCK(pmap); 2050 retry: 2051 pte = pte_find(mmu, pmap, va); 2052 if ((pte != NULL) && PTE_ISVALID(pte)) { 2053 if (pmap == kernel_pmap) 2054 pte_wbit = PTE_SW; 2055 else 2056 pte_wbit = PTE_UW; 2057 2058 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2059 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) 2060 goto retry; 2061 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2062 vm_page_hold(m); 2063 } 2064 } 2065 2066 PA_UNLOCK_COND(pa); 2067 PMAP_UNLOCK(pmap); 2068 return (m); 2069 } 2070 2071 /* 2072 * Initialize a vm_page's machine-dependent fields. 2073 */ 2074 static void 2075 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2076 { 2077 2078 TAILQ_INIT(&m->md.pv_list); 2079 } 2080 2081 /* 2082 * mmu_booke_zero_page_area zeros the specified hardware page by 2083 * mapping it into virtual memory and using bzero to clear 2084 * its contents. 2085 * 2086 * off and size must reside within a single page. 2087 */ 2088 static void 2089 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2090 { 2091 vm_offset_t va; 2092 2093 /* XXX KASSERT off and size are within a single page? */ 2094 2095 mtx_lock(&zero_page_mutex); 2096 va = zero_page_va; 2097 2098 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2099 bzero((caddr_t)va + off, size); 2100 mmu_booke_kremove(mmu, va); 2101 2102 mtx_unlock(&zero_page_mutex); 2103 } 2104 2105 /* 2106 * mmu_booke_zero_page zeros the specified hardware page. 2107 */ 2108 static void 2109 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2110 { 2111 2112 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE); 2113 } 2114 2115 /* 2116 * mmu_booke_copy_page copies the specified (machine independent) page by 2117 * mapping the page into virtual memory and using memcopy to copy the page, 2118 * one machine dependent page at a time. 2119 */ 2120 static void 2121 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2122 { 2123 vm_offset_t sva, dva; 2124 2125 sva = copy_page_src_va; 2126 dva = copy_page_dst_va; 2127 2128 mtx_lock(©_page_mutex); 2129 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2130 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2131 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2132 mmu_booke_kremove(mmu, dva); 2133 mmu_booke_kremove(mmu, sva); 2134 mtx_unlock(©_page_mutex); 2135 } 2136 2137 /* 2138 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it 2139 * into virtual memory and using bzero to clear its contents. This is intended 2140 * to be called from the vm_pagezero process only and outside of Giant. No 2141 * lock is required. 2142 */ 2143 static void 2144 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m) 2145 { 2146 vm_offset_t va; 2147 2148 va = zero_page_idle_va; 2149 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2150 bzero((caddr_t)va, PAGE_SIZE); 2151 mmu_booke_kremove(mmu, va); 2152 } 2153 2154 /* 2155 * Return whether or not the specified physical page was modified 2156 * in any of physical maps. 2157 */ 2158 static boolean_t 2159 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 2160 { 2161 pte_t *pte; 2162 pv_entry_t pv; 2163 boolean_t rv; 2164 2165 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0, 2166 ("mmu_booke_is_modified: page %p is not managed", m)); 2167 rv = FALSE; 2168 2169 /* 2170 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be 2171 * concurrently set while the object is locked. Thus, if PG_WRITEABLE 2172 * is clear, no PTEs can be modified. 2173 */ 2174 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2175 if ((m->oflags & VPO_BUSY) == 0 && 2176 (m->flags & PG_WRITEABLE) == 0) 2177 return (rv); 2178 vm_page_lock_queues(); 2179 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2180 PMAP_LOCK(pv->pv_pmap); 2181 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2182 PTE_ISVALID(pte)) { 2183 if (PTE_ISMODIFIED(pte)) 2184 rv = TRUE; 2185 } 2186 PMAP_UNLOCK(pv->pv_pmap); 2187 if (rv) 2188 break; 2189 } 2190 vm_page_unlock_queues(); 2191 return (rv); 2192 } 2193 2194 /* 2195 * Return whether or not the specified virtual address is eligible 2196 * for prefault. 2197 */ 2198 static boolean_t 2199 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2200 { 2201 2202 return (FALSE); 2203 } 2204 2205 /* 2206 * Return whether or not the specified physical page was referenced 2207 * in any physical maps. 2208 */ 2209 static boolean_t 2210 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 2211 { 2212 pte_t *pte; 2213 pv_entry_t pv; 2214 boolean_t rv; 2215 2216 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0, 2217 ("mmu_booke_is_referenced: page %p is not managed", m)); 2218 rv = FALSE; 2219 vm_page_lock_queues(); 2220 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2221 PMAP_LOCK(pv->pv_pmap); 2222 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2223 PTE_ISVALID(pte)) { 2224 if (PTE_ISREFERENCED(pte)) 2225 rv = TRUE; 2226 } 2227 PMAP_UNLOCK(pv->pv_pmap); 2228 if (rv) 2229 break; 2230 } 2231 vm_page_unlock_queues(); 2232 return (rv); 2233 } 2234 2235 /* 2236 * Clear the modify bits on the specified physical page. 2237 */ 2238 static void 2239 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 2240 { 2241 pte_t *pte; 2242 pv_entry_t pv; 2243 2244 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0, 2245 ("mmu_booke_clear_modify: page %p is not managed", m)); 2246 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2247 KASSERT((m->oflags & VPO_BUSY) == 0, 2248 ("mmu_booke_clear_modify: page %p is busy", m)); 2249 2250 /* 2251 * If the page is not PG_WRITEABLE, then no PTEs can be modified. 2252 * If the object containing the page is locked and the page is not 2253 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set. 2254 */ 2255 if ((m->flags & PG_WRITEABLE) == 0) 2256 return; 2257 vm_page_lock_queues(); 2258 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2259 PMAP_LOCK(pv->pv_pmap); 2260 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2261 PTE_ISVALID(pte)) { 2262 mtx_lock_spin(&tlbivax_mutex); 2263 tlb_miss_lock(); 2264 2265 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 2266 tlb0_flush_entry(pv->pv_va); 2267 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 2268 PTE_REFERENCED); 2269 } 2270 2271 tlb_miss_unlock(); 2272 mtx_unlock_spin(&tlbivax_mutex); 2273 } 2274 PMAP_UNLOCK(pv->pv_pmap); 2275 } 2276 vm_page_unlock_queues(); 2277 } 2278 2279 /* 2280 * Return a count of reference bits for a page, clearing those bits. 2281 * It is not necessary for every reference bit to be cleared, but it 2282 * is necessary that 0 only be returned when there are truly no 2283 * reference bits set. 2284 * 2285 * XXX: The exact number of bits to check and clear is a matter that 2286 * should be tested and standardized at some point in the future for 2287 * optimal aging of shared pages. 2288 */ 2289 static int 2290 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 2291 { 2292 pte_t *pte; 2293 pv_entry_t pv; 2294 int count; 2295 2296 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2297 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2298 return (0); 2299 2300 count = 0; 2301 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2302 PMAP_LOCK(pv->pv_pmap); 2303 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2304 if (!PTE_ISVALID(pte)) 2305 goto make_sure_to_unlock; 2306 2307 if (PTE_ISREFERENCED(pte)) { 2308 mtx_lock_spin(&tlbivax_mutex); 2309 tlb_miss_lock(); 2310 2311 tlb0_flush_entry(pv->pv_va); 2312 pte->flags &= ~PTE_REFERENCED; 2313 2314 tlb_miss_unlock(); 2315 mtx_unlock_spin(&tlbivax_mutex); 2316 2317 if (++count > 4) { 2318 PMAP_UNLOCK(pv->pv_pmap); 2319 break; 2320 } 2321 } 2322 } 2323 make_sure_to_unlock: 2324 PMAP_UNLOCK(pv->pv_pmap); 2325 } 2326 return (count); 2327 } 2328 2329 /* 2330 * Clear the reference bit on the specified physical page. 2331 */ 2332 static void 2333 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m) 2334 { 2335 pte_t *pte; 2336 pv_entry_t pv; 2337 2338 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0, 2339 ("mmu_booke_clear_reference: page %p is not managed", m)); 2340 vm_page_lock_queues(); 2341 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2342 PMAP_LOCK(pv->pv_pmap); 2343 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2344 PTE_ISVALID(pte)) { 2345 if (PTE_ISREFERENCED(pte)) { 2346 mtx_lock_spin(&tlbivax_mutex); 2347 tlb_miss_lock(); 2348 2349 tlb0_flush_entry(pv->pv_va); 2350 pte->flags &= ~PTE_REFERENCED; 2351 2352 tlb_miss_unlock(); 2353 mtx_unlock_spin(&tlbivax_mutex); 2354 } 2355 } 2356 PMAP_UNLOCK(pv->pv_pmap); 2357 } 2358 vm_page_unlock_queues(); 2359 } 2360 2361 /* 2362 * Change wiring attribute for a map/virtual-address pair. 2363 */ 2364 static void 2365 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired) 2366 { 2367 pte_t *pte; 2368 2369 PMAP_LOCK(pmap); 2370 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2371 if (wired) { 2372 if (!PTE_ISWIRED(pte)) { 2373 pte->flags |= PTE_WIRED; 2374 pmap->pm_stats.wired_count++; 2375 } 2376 } else { 2377 if (PTE_ISWIRED(pte)) { 2378 pte->flags &= ~PTE_WIRED; 2379 pmap->pm_stats.wired_count--; 2380 } 2381 } 2382 } 2383 PMAP_UNLOCK(pmap); 2384 } 2385 2386 /* 2387 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 2388 * page. This count may be changed upwards or downwards in the future; it is 2389 * only necessary that true be returned for a small subset of pmaps for proper 2390 * page aging. 2391 */ 2392 static boolean_t 2393 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 2394 { 2395 pv_entry_t pv; 2396 int loops; 2397 2398 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2399 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2400 return (FALSE); 2401 2402 loops = 0; 2403 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2404 if (pv->pv_pmap == pmap) 2405 return (TRUE); 2406 2407 if (++loops >= 16) 2408 break; 2409 } 2410 return (FALSE); 2411 } 2412 2413 /* 2414 * Return the number of managed mappings to the given physical page that are 2415 * wired. 2416 */ 2417 static int 2418 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 2419 { 2420 pv_entry_t pv; 2421 pte_t *pte; 2422 int count = 0; 2423 2424 if ((m->flags & PG_FICTITIOUS) != 0) 2425 return (count); 2426 vm_page_lock_queues(); 2427 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2428 PMAP_LOCK(pv->pv_pmap); 2429 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 2430 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 2431 count++; 2432 PMAP_UNLOCK(pv->pv_pmap); 2433 } 2434 vm_page_unlock_queues(); 2435 return (count); 2436 } 2437 2438 static int 2439 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size) 2440 { 2441 int i; 2442 vm_offset_t va; 2443 2444 /* 2445 * This currently does not work for entries that 2446 * overlap TLB1 entries. 2447 */ 2448 for (i = 0; i < tlb1_idx; i ++) { 2449 if (tlb1_iomapped(i, pa, size, &va) == 0) 2450 return (0); 2451 } 2452 2453 return (EFAULT); 2454 } 2455 2456 vm_offset_t 2457 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2458 vm_size_t *sz) 2459 { 2460 vm_paddr_t pa, ppa; 2461 vm_offset_t va; 2462 vm_size_t gran; 2463 2464 /* Raw physical memory dumps don't have a virtual address. */ 2465 if (md->md_vaddr == ~0UL) { 2466 /* We always map a 256MB page at 256M. */ 2467 gran = 256 * 1024 * 1024; 2468 pa = md->md_paddr + ofs; 2469 ppa = pa & ~(gran - 1); 2470 ofs = pa - ppa; 2471 va = gran; 2472 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO); 2473 if (*sz > (gran - ofs)) 2474 *sz = gran - ofs; 2475 return (va + ofs); 2476 } 2477 2478 /* Minidumps are based on virtual memory addresses. */ 2479 va = md->md_vaddr + ofs; 2480 if (va >= kernstart + kernsize) { 2481 gran = PAGE_SIZE - (va & PAGE_MASK); 2482 if (*sz > gran) 2483 *sz = gran; 2484 } 2485 return (va); 2486 } 2487 2488 void 2489 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2490 vm_offset_t va) 2491 { 2492 2493 /* Raw physical memory dumps don't have a virtual address. */ 2494 if (md->md_vaddr == ~0UL) { 2495 tlb1_idx--; 2496 tlb1[tlb1_idx].mas1 = 0; 2497 tlb1[tlb1_idx].mas2 = 0; 2498 tlb1[tlb1_idx].mas3 = 0; 2499 tlb1_write_entry(tlb1_idx); 2500 return; 2501 } 2502 2503 /* Minidumps are based on virtual memory addresses. */ 2504 /* Nothing to do... */ 2505 } 2506 2507 struct pmap_md * 2508 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev) 2509 { 2510 static struct pmap_md md; 2511 struct bi_mem_region *mr; 2512 pte_t *pte; 2513 vm_offset_t va; 2514 2515 if (dumpsys_minidump) { 2516 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2517 if (prev == NULL) { 2518 /* 1st: kernel .data and .bss. */ 2519 md.md_index = 1; 2520 md.md_vaddr = trunc_page((uintptr_t)_etext); 2521 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2522 return (&md); 2523 } 2524 switch (prev->md_index) { 2525 case 1: 2526 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2527 md.md_index = 2; 2528 md.md_vaddr = data_start; 2529 md.md_size = data_end - data_start; 2530 break; 2531 case 2: 2532 /* 3rd: kernel VM. */ 2533 va = prev->md_vaddr + prev->md_size; 2534 /* Find start of next chunk (from va). */ 2535 while (va < virtual_end) { 2536 /* Don't dump the buffer cache. */ 2537 if (va >= kmi.buffer_sva && 2538 va < kmi.buffer_eva) { 2539 va = kmi.buffer_eva; 2540 continue; 2541 } 2542 pte = pte_find(mmu, kernel_pmap, va); 2543 if (pte != NULL && PTE_ISVALID(pte)) 2544 break; 2545 va += PAGE_SIZE; 2546 } 2547 if (va < virtual_end) { 2548 md.md_vaddr = va; 2549 va += PAGE_SIZE; 2550 /* Find last page in chunk. */ 2551 while (va < virtual_end) { 2552 /* Don't run into the buffer cache. */ 2553 if (va == kmi.buffer_sva) 2554 break; 2555 pte = pte_find(mmu, kernel_pmap, va); 2556 if (pte == NULL || !PTE_ISVALID(pte)) 2557 break; 2558 va += PAGE_SIZE; 2559 } 2560 md.md_size = va - md.md_vaddr; 2561 break; 2562 } 2563 md.md_index = 3; 2564 /* FALLTHROUGH */ 2565 default: 2566 return (NULL); 2567 } 2568 } else { /* minidumps */ 2569 mr = bootinfo_mr(); 2570 if (prev == NULL) { 2571 /* first physical chunk. */ 2572 md.md_paddr = mr->mem_base; 2573 md.md_size = mr->mem_size; 2574 md.md_vaddr = ~0UL; 2575 md.md_index = 1; 2576 } else if (md.md_index < bootinfo->bi_mem_reg_no) { 2577 md.md_paddr = mr[md.md_index].mem_base; 2578 md.md_size = mr[md.md_index].mem_size; 2579 md.md_vaddr = ~0UL; 2580 md.md_index++; 2581 } else { 2582 /* There's no next physical chunk. */ 2583 return (NULL); 2584 } 2585 } 2586 2587 return (&md); 2588 } 2589 2590 /* 2591 * Map a set of physical memory pages into the kernel virtual address space. 2592 * Return a pointer to where it is mapped. This routine is intended to be used 2593 * for mapping device memory, NOT real memory. 2594 */ 2595 static void * 2596 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size) 2597 { 2598 void *res; 2599 uintptr_t va; 2600 vm_size_t sz; 2601 2602 va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa); 2603 res = (void *)va; 2604 2605 do { 2606 sz = 1 << (ilog2(size) & ~1); 2607 if (bootverbose) 2608 printf("Wiring VA=%x to PA=%x (size=%x), " 2609 "using TLB1[%d]\n", va, pa, sz, tlb1_idx); 2610 tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO); 2611 size -= sz; 2612 pa += sz; 2613 va += sz; 2614 } while (size > 0); 2615 2616 return (res); 2617 } 2618 2619 /* 2620 * 'Unmap' a range mapped by mmu_booke_mapdev(). 2621 */ 2622 static void 2623 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2624 { 2625 vm_offset_t base, offset; 2626 2627 /* 2628 * Unmap only if this is inside kernel virtual space. 2629 */ 2630 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 2631 base = trunc_page(va); 2632 offset = va & PAGE_MASK; 2633 size = roundup(offset + size, PAGE_SIZE); 2634 kmem_free(kernel_map, base, size); 2635 } 2636 } 2637 2638 /* 2639 * mmu_booke_object_init_pt preloads the ptes for a given object into the 2640 * specified pmap. This eliminates the blast of soft faults on process startup 2641 * and immediately after an mmap. 2642 */ 2643 static void 2644 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2645 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 2646 { 2647 2648 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2649 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 2650 ("mmu_booke_object_init_pt: non-device object")); 2651 } 2652 2653 /* 2654 * Perform the pmap work for mincore. 2655 */ 2656 static int 2657 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2658 vm_paddr_t *locked_pa) 2659 { 2660 2661 TODO; 2662 return (0); 2663 } 2664 2665 /**************************************************************************/ 2666 /* TID handling */ 2667 /**************************************************************************/ 2668 2669 /* 2670 * Allocate a TID. If necessary, steal one from someone else. 2671 * The new TID is flushed from the TLB before returning. 2672 */ 2673 static tlbtid_t 2674 tid_alloc(pmap_t pmap) 2675 { 2676 tlbtid_t tid; 2677 int thiscpu; 2678 2679 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 2680 2681 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 2682 2683 thiscpu = PCPU_GET(cpuid); 2684 2685 tid = PCPU_GET(tid_next); 2686 if (tid > TID_MAX) 2687 tid = TID_MIN; 2688 PCPU_SET(tid_next, tid + 1); 2689 2690 /* If we are stealing TID then clear the relevant pmap's field */ 2691 if (tidbusy[thiscpu][tid] != NULL) { 2692 2693 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 2694 2695 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 2696 2697 /* Flush all entries from TLB0 matching this TID. */ 2698 tid_flush(tid); 2699 } 2700 2701 tidbusy[thiscpu][tid] = pmap; 2702 pmap->pm_tid[thiscpu] = tid; 2703 __asm __volatile("msync; isync"); 2704 2705 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 2706 PCPU_GET(tid_next)); 2707 2708 return (tid); 2709 } 2710 2711 /**************************************************************************/ 2712 /* TLB0 handling */ 2713 /**************************************************************************/ 2714 2715 static void 2716 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 2717 uint32_t mas7) 2718 { 2719 int as; 2720 char desc[3]; 2721 tlbtid_t tid; 2722 vm_size_t size; 2723 unsigned int tsize; 2724 2725 desc[2] = '\0'; 2726 if (mas1 & MAS1_VALID) 2727 desc[0] = 'V'; 2728 else 2729 desc[0] = ' '; 2730 2731 if (mas1 & MAS1_IPROT) 2732 desc[1] = 'P'; 2733 else 2734 desc[1] = ' '; 2735 2736 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 2737 tid = MAS1_GETTID(mas1); 2738 2739 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 2740 size = 0; 2741 if (tsize) 2742 size = tsize2size(tsize); 2743 2744 debugf("%3d: (%s) [AS=%d] " 2745 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 2746 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", 2747 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 2748 } 2749 2750 /* Convert TLB0 va and way number to tlb0[] table index. */ 2751 static inline unsigned int 2752 tlb0_tableidx(vm_offset_t va, unsigned int way) 2753 { 2754 unsigned int idx; 2755 2756 idx = (way * TLB0_ENTRIES_PER_WAY); 2757 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 2758 return (idx); 2759 } 2760 2761 /* 2762 * Invalidate TLB0 entry. 2763 */ 2764 static inline void 2765 tlb0_flush_entry(vm_offset_t va) 2766 { 2767 2768 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 2769 2770 mtx_assert(&tlbivax_mutex, MA_OWNED); 2771 2772 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 2773 __asm __volatile("isync; msync"); 2774 __asm __volatile("tlbsync; msync"); 2775 2776 CTR1(KTR_PMAP, "%s: e", __func__); 2777 } 2778 2779 /* Print out contents of the MAS registers for each TLB0 entry */ 2780 void 2781 tlb0_print_tlbentries(void) 2782 { 2783 uint32_t mas0, mas1, mas2, mas3, mas7; 2784 int entryidx, way, idx; 2785 2786 debugf("TLB0 entries:\n"); 2787 for (way = 0; way < TLB0_WAYS; way ++) 2788 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 2789 2790 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 2791 mtspr(SPR_MAS0, mas0); 2792 __asm __volatile("isync"); 2793 2794 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 2795 mtspr(SPR_MAS2, mas2); 2796 2797 __asm __volatile("isync; tlbre"); 2798 2799 mas1 = mfspr(SPR_MAS1); 2800 mas2 = mfspr(SPR_MAS2); 2801 mas3 = mfspr(SPR_MAS3); 2802 mas7 = mfspr(SPR_MAS7); 2803 2804 idx = tlb0_tableidx(mas2, way); 2805 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 2806 } 2807 } 2808 2809 /**************************************************************************/ 2810 /* TLB1 handling */ 2811 /**************************************************************************/ 2812 2813 /* 2814 * TLB1 mapping notes: 2815 * 2816 * TLB1[0] CCSRBAR 2817 * TLB1[1] Kernel text and data. 2818 * TLB1[2-15] Additional kernel text and data mappings (if required), PCI 2819 * windows, other devices mappings. 2820 */ 2821 2822 /* 2823 * Write given entry to TLB1 hardware. 2824 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 2825 */ 2826 static void 2827 tlb1_write_entry(unsigned int idx) 2828 { 2829 uint32_t mas0, mas7; 2830 2831 //debugf("tlb1_write_entry: s\n"); 2832 2833 /* Clear high order RPN bits */ 2834 mas7 = 0; 2835 2836 /* Select entry */ 2837 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 2838 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 2839 2840 mtspr(SPR_MAS0, mas0); 2841 __asm __volatile("isync"); 2842 mtspr(SPR_MAS1, tlb1[idx].mas1); 2843 __asm __volatile("isync"); 2844 mtspr(SPR_MAS2, tlb1[idx].mas2); 2845 __asm __volatile("isync"); 2846 mtspr(SPR_MAS3, tlb1[idx].mas3); 2847 __asm __volatile("isync"); 2848 mtspr(SPR_MAS7, mas7); 2849 __asm __volatile("isync; tlbwe; isync; msync"); 2850 2851 //debugf("tlb1_write_entry: e\n"); 2852 } 2853 2854 /* 2855 * Return the largest uint value log such that 2^log <= num. 2856 */ 2857 static unsigned int 2858 ilog2(unsigned int num) 2859 { 2860 int lz; 2861 2862 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 2863 return (31 - lz); 2864 } 2865 2866 /* 2867 * Convert TLB TSIZE value to mapped region size. 2868 */ 2869 static vm_size_t 2870 tsize2size(unsigned int tsize) 2871 { 2872 2873 /* 2874 * size = 4^tsize KB 2875 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 2876 */ 2877 2878 return ((1 << (2 * tsize)) * 1024); 2879 } 2880 2881 /* 2882 * Convert region size (must be power of 4) to TLB TSIZE value. 2883 */ 2884 static unsigned int 2885 size2tsize(vm_size_t size) 2886 { 2887 2888 return (ilog2(size) / 2 - 5); 2889 } 2890 2891 /* 2892 * Register permanent kernel mapping in TLB1. 2893 * 2894 * Entries are created starting from index 0 (current free entry is 2895 * kept in tlb1_idx) and are not supposed to be invalidated. 2896 */ 2897 static int 2898 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size, 2899 uint32_t flags) 2900 { 2901 uint32_t ts, tid; 2902 int tsize; 2903 2904 if (tlb1_idx >= TLB1_ENTRIES) { 2905 printf("tlb1_set_entry: TLB1 full!\n"); 2906 return (-1); 2907 } 2908 2909 /* Convert size to TSIZE */ 2910 tsize = size2tsize(size); 2911 2912 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 2913 /* XXX TS is hard coded to 0 for now as we only use single address space */ 2914 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 2915 2916 /* XXX LOCK tlb1[] */ 2917 2918 tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 2919 tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 2920 tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags; 2921 2922 /* Set supervisor RWX permission bits */ 2923 tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 2924 2925 tlb1_write_entry(tlb1_idx++); 2926 2927 /* XXX UNLOCK tlb1[] */ 2928 2929 /* 2930 * XXX in general TLB1 updates should be propagated between CPUs, 2931 * since current design assumes to have the same TLB1 set-up on all 2932 * cores. 2933 */ 2934 return (0); 2935 } 2936 2937 static int 2938 tlb1_entry_size_cmp(const void *a, const void *b) 2939 { 2940 const vm_size_t *sza; 2941 const vm_size_t *szb; 2942 2943 sza = a; 2944 szb = b; 2945 if (*sza > *szb) 2946 return (-1); 2947 else if (*sza < *szb) 2948 return (1); 2949 else 2950 return (0); 2951 } 2952 2953 /* 2954 * Map in contiguous RAM region into the TLB1 using maximum of 2955 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 2956 * 2957 * If necessary round up last entry size and return total size 2958 * used by all allocated entries. 2959 */ 2960 vm_size_t 2961 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size) 2962 { 2963 vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES]; 2964 vm_size_t mapped_size, sz, esz; 2965 unsigned int log; 2966 int i; 2967 2968 CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x", 2969 __func__, size, va, pa); 2970 2971 mapped_size = 0; 2972 sz = size; 2973 memset(entry_size, 0, sizeof(entry_size)); 2974 2975 /* Calculate entry sizes. */ 2976 for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) { 2977 2978 /* Largest region that is power of 4 and fits within size */ 2979 log = ilog2(sz) / 2; 2980 esz = 1 << (2 * log); 2981 2982 /* If this is last entry cover remaining size. */ 2983 if (i == KERNEL_REGION_MAX_TLB_ENTRIES - 1) { 2984 while (esz < sz) 2985 esz = esz << 2; 2986 } 2987 2988 entry_size[i] = esz; 2989 mapped_size += esz; 2990 if (esz < sz) 2991 sz -= esz; 2992 else 2993 sz = 0; 2994 } 2995 2996 /* Sort entry sizes, required to get proper entry address alignment. */ 2997 qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES, 2998 sizeof(vm_size_t), tlb1_entry_size_cmp); 2999 3000 /* Load TLB1 entries. */ 3001 for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) { 3002 esz = entry_size[i]; 3003 if (!esz) 3004 break; 3005 3006 CTR5(KTR_PMAP, "%s: entry %d: sz = 0x%08x (va = 0x%08x " 3007 "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa); 3008 3009 tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM); 3010 3011 va += esz; 3012 pa += esz; 3013 } 3014 3015 CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)", 3016 __func__, mapped_size, mapped_size - size); 3017 3018 return (mapped_size); 3019 } 3020 3021 /* 3022 * TLB1 initialization routine, to be called after the very first 3023 * assembler level setup done in locore.S. 3024 */ 3025 void 3026 tlb1_init(vm_offset_t ccsrbar) 3027 { 3028 uint32_t mas0; 3029 3030 /* TLB1[1] is used to map the kernel. Save that entry. */ 3031 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1); 3032 mtspr(SPR_MAS0, mas0); 3033 __asm __volatile("isync; tlbre"); 3034 3035 tlb1[1].mas1 = mfspr(SPR_MAS1); 3036 tlb1[1].mas2 = mfspr(SPR_MAS2); 3037 tlb1[1].mas3 = mfspr(SPR_MAS3); 3038 3039 /* Map in CCSRBAR in TLB1[0] */ 3040 tlb1_idx = 0; 3041 tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO); 3042 /* 3043 * Set the next available TLB1 entry index. Note TLB[1] is reserved 3044 * for initial mapping of kernel text+data, which was set early in 3045 * locore, we need to skip this [busy] entry. 3046 */ 3047 tlb1_idx = 2; 3048 3049 /* Setup TLB miss defaults */ 3050 set_mas4_defaults(); 3051 } 3052 3053 /* 3054 * Setup MAS4 defaults. 3055 * These values are loaded to MAS0-2 on a TLB miss. 3056 */ 3057 static void 3058 set_mas4_defaults(void) 3059 { 3060 uint32_t mas4; 3061 3062 /* Defaults: TLB0, PID0, TSIZED=4K */ 3063 mas4 = MAS4_TLBSELD0; 3064 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 3065 #ifdef SMP 3066 mas4 |= MAS4_MD; 3067 #endif 3068 mtspr(SPR_MAS4, mas4); 3069 __asm __volatile("isync"); 3070 } 3071 3072 /* 3073 * Print out contents of the MAS registers for each TLB1 entry 3074 */ 3075 void 3076 tlb1_print_tlbentries(void) 3077 { 3078 uint32_t mas0, mas1, mas2, mas3, mas7; 3079 int i; 3080 3081 debugf("TLB1 entries:\n"); 3082 for (i = 0; i < TLB1_ENTRIES; i++) { 3083 3084 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3085 mtspr(SPR_MAS0, mas0); 3086 3087 __asm __volatile("isync; tlbre"); 3088 3089 mas1 = mfspr(SPR_MAS1); 3090 mas2 = mfspr(SPR_MAS2); 3091 mas3 = mfspr(SPR_MAS3); 3092 mas7 = mfspr(SPR_MAS7); 3093 3094 tlb_print_entry(i, mas1, mas2, mas3, mas7); 3095 } 3096 } 3097 3098 /* 3099 * Print out contents of the in-ram tlb1 table. 3100 */ 3101 void 3102 tlb1_print_entries(void) 3103 { 3104 int i; 3105 3106 debugf("tlb1[] table entries:\n"); 3107 for (i = 0; i < TLB1_ENTRIES; i++) 3108 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0); 3109 } 3110 3111 /* 3112 * Return 0 if the physical IO range is encompassed by one of the 3113 * the TLB1 entries, otherwise return related error code. 3114 */ 3115 static int 3116 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 3117 { 3118 uint32_t prot; 3119 vm_paddr_t pa_start; 3120 vm_paddr_t pa_end; 3121 unsigned int entry_tsize; 3122 vm_size_t entry_size; 3123 3124 *va = (vm_offset_t)NULL; 3125 3126 /* Skip invalid entries */ 3127 if (!(tlb1[i].mas1 & MAS1_VALID)) 3128 return (EINVAL); 3129 3130 /* 3131 * The entry must be cache-inhibited, guarded, and r/w 3132 * so it can function as an i/o page 3133 */ 3134 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G); 3135 if (prot != (MAS2_I | MAS2_G)) 3136 return (EPERM); 3137 3138 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW); 3139 if (prot != (MAS3_SR | MAS3_SW)) 3140 return (EPERM); 3141 3142 /* The address should be within the entry range. */ 3143 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3144 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 3145 3146 entry_size = tsize2size(entry_tsize); 3147 pa_start = tlb1[i].mas3 & MAS3_RPN; 3148 pa_end = pa_start + entry_size - 1; 3149 3150 if ((pa < pa_start) || ((pa + size) > pa_end)) 3151 return (ERANGE); 3152 3153 /* Return virtual address of this mapping. */ 3154 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start); 3155 return (0); 3156 } 3157