xref: /freebsd/sys/powerpc/booke/pmap.c (revision a66ffea41d7ea4e39a49bc146e6f6decb4fbd02c)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/param.h>
55 #include <sys/malloc.h>
56 #include <sys/ktr.h>
57 #include <sys/proc.h>
58 #include <sys/user.h>
59 #include <sys/queue.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/linker.h>
63 #include <sys/msgbuf.h>
64 #include <sys/lock.h>
65 #include <sys/mutex.h>
66 #include <sys/rwlock.h>
67 #include <sys/sched.h>
68 #include <sys/smp.h>
69 #include <sys/vmmeter.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_pageout.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_pager.h>
80 #include <vm/uma.h>
81 
82 #include <machine/cpu.h>
83 #include <machine/pcb.h>
84 #include <machine/platform.h>
85 
86 #include <machine/tlb.h>
87 #include <machine/spr.h>
88 #include <machine/md_var.h>
89 #include <machine/mmuvar.h>
90 #include <machine/pmap.h>
91 #include <machine/pte.h>
92 
93 #include "mmu_if.h"
94 
95 #ifdef  DEBUG
96 #define debugf(fmt, args...) printf(fmt, ##args)
97 #else
98 #define debugf(fmt, args...)
99 #endif
100 
101 #define TODO			panic("%s: not implemented", __func__);
102 
103 extern struct mtx sched_lock;
104 
105 extern int dumpsys_minidump;
106 
107 extern unsigned char _etext[];
108 extern unsigned char _end[];
109 
110 extern uint32_t *bootinfo;
111 
112 #ifdef SMP
113 extern uint32_t bp_ntlb1s;
114 #endif
115 
116 vm_paddr_t ccsrbar_pa;
117 vm_paddr_t kernload;
118 vm_offset_t kernstart;
119 vm_size_t kernsize;
120 
121 /* Message buffer and tables. */
122 static vm_offset_t data_start;
123 static vm_size_t data_end;
124 
125 /* Phys/avail memory regions. */
126 static struct mem_region *availmem_regions;
127 static int availmem_regions_sz;
128 static struct mem_region *physmem_regions;
129 static int physmem_regions_sz;
130 
131 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
132 static vm_offset_t zero_page_va;
133 static struct mtx zero_page_mutex;
134 
135 static struct mtx tlbivax_mutex;
136 
137 /*
138  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139  * by idle thred only, no lock required.
140  */
141 static vm_offset_t zero_page_idle_va;
142 
143 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
144 static vm_offset_t copy_page_src_va;
145 static vm_offset_t copy_page_dst_va;
146 static struct mtx copy_page_mutex;
147 
148 /**************************************************************************/
149 /* PMAP */
150 /**************************************************************************/
151 
152 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153     vm_prot_t, boolean_t);
154 
155 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157 
158 /*
159  * If user pmap is processed with mmu_booke_remove and the resident count
160  * drops to 0, there are no more pages to remove, so we need not continue.
161  */
162 #define PMAP_REMOVE_DONE(pmap) \
163 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164 
165 extern void tid_flush(tlbtid_t);
166 
167 /**************************************************************************/
168 /* TLB and TID handling */
169 /**************************************************************************/
170 
171 /* Translation ID busy table */
172 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173 
174 /*
175  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176  * core revisions and should be read from h/w registers during early config.
177  */
178 uint32_t tlb0_entries;
179 uint32_t tlb0_ways;
180 uint32_t tlb0_entries_per_way;
181 
182 #define TLB0_ENTRIES		(tlb0_entries)
183 #define TLB0_WAYS		(tlb0_ways)
184 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185 
186 #define TLB1_ENTRIES 16
187 
188 /* In-ram copy of the TLB1 */
189 static tlb_entry_t tlb1[TLB1_ENTRIES];
190 
191 /* Next free entry in the TLB1 */
192 static unsigned int tlb1_idx;
193 
194 static tlbtid_t tid_alloc(struct pmap *);
195 
196 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197 
198 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199 static void tlb1_write_entry(unsigned int);
200 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202 
203 static vm_size_t tsize2size(unsigned int);
204 static unsigned int size2tsize(vm_size_t);
205 static unsigned int ilog2(unsigned int);
206 
207 static void set_mas4_defaults(void);
208 
209 static inline void tlb0_flush_entry(vm_offset_t);
210 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211 
212 /**************************************************************************/
213 /* Page table management */
214 /**************************************************************************/
215 
216 static struct rwlock_padalign pvh_global_lock;
217 
218 /* Data for the pv entry allocation mechanism */
219 static uma_zone_t pvzone;
220 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221 
222 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
223 
224 #ifndef PMAP_SHPGPERPROC
225 #define PMAP_SHPGPERPROC	200
226 #endif
227 
228 static void ptbl_init(void);
229 static struct ptbl_buf *ptbl_buf_alloc(void);
230 static void ptbl_buf_free(struct ptbl_buf *);
231 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232 
233 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234 static void ptbl_free(mmu_t, pmap_t, unsigned int);
235 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237 
238 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242 
243 static pv_entry_t pv_alloc(void);
244 static void pv_free(pv_entry_t);
245 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247 
248 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249 #define PTBL_BUFS		(128 * 16)
250 
251 struct ptbl_buf {
252 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
253 	vm_offset_t kva;		/* va of mapping */
254 };
255 
256 /* ptbl free list and a lock used for access synchronization. */
257 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258 static struct mtx ptbl_buf_freelist_lock;
259 
260 /* Base address of kva space allocated fot ptbl bufs. */
261 static vm_offset_t ptbl_buf_pool_vabase;
262 
263 /* Pointer to ptbl_buf structures. */
264 static struct ptbl_buf *ptbl_bufs;
265 
266 void pmap_bootstrap_ap(volatile uint32_t *);
267 
268 /*
269  * Kernel MMU interface
270  */
271 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
274 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275     vm_size_t, vm_offset_t);
276 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278     vm_prot_t, boolean_t);
279 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
280     vm_page_t, vm_prot_t);
281 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282     vm_prot_t);
283 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
284 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
285     vm_prot_t);
286 static void		mmu_booke_init(mmu_t);
287 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
288 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
290 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
291 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
292     int);
293 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
294     vm_paddr_t *);
295 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296     vm_object_t, vm_pindex_t, vm_size_t);
297 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298 static void		mmu_booke_page_init(mmu_t, vm_page_t);
299 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300 static void		mmu_booke_pinit(mmu_t, pmap_t);
301 static void		mmu_booke_pinit0(mmu_t, pmap_t);
302 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303     vm_prot_t);
304 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306 static void		mmu_booke_release(mmu_t, pmap_t);
307 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313 static void		mmu_booke_activate(mmu_t, struct thread *);
314 static void		mmu_booke_deactivate(mmu_t, struct thread *);
315 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
317 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
321 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
322 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
323     vm_size_t);
324 static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
325     vm_size_t, vm_size_t *);
326 static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
327     vm_size_t, vm_offset_t);
328 static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
329 
330 static mmu_method_t mmu_booke_methods[] = {
331 	/* pmap dispatcher interface */
332 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
333 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
334 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
335 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
338 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
339 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
340 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
341 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
342 	MMUMETHOD(mmu_init,		mmu_booke_init),
343 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
344 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
345 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
346 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
347 	MMUMETHOD(mmu_map,		mmu_booke_map),
348 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
349 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
350 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
351 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
352 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
353 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
354 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
355 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
356 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
357 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
358 	MMUMETHOD(mmu_release,		mmu_booke_release),
359 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
360 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
361 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
362 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
363 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
364 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
365 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
366 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
367 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
368 
369 	/* Internal interfaces */
370 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
371 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
372 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
373 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
374 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
375 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
376 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
377 
378 	/* dumpsys() support */
379 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
380 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
381 	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
382 
383 	{ 0, 0 }
384 };
385 
386 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
387 
388 static inline void
389 tlb_miss_lock(void)
390 {
391 #ifdef SMP
392 	struct pcpu *pc;
393 
394 	if (!smp_started)
395 		return;
396 
397 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
398 		if (pc != pcpup) {
399 
400 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
401 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
402 
403 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
404 			    ("tlb_miss_lock: tried to lock self"));
405 
406 			tlb_lock(pc->pc_booke_tlb_lock);
407 
408 			CTR1(KTR_PMAP, "%s: locked", __func__);
409 		}
410 	}
411 #endif
412 }
413 
414 static inline void
415 tlb_miss_unlock(void)
416 {
417 #ifdef SMP
418 	struct pcpu *pc;
419 
420 	if (!smp_started)
421 		return;
422 
423 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
424 		if (pc != pcpup) {
425 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
426 			    __func__, pc->pc_cpuid);
427 
428 			tlb_unlock(pc->pc_booke_tlb_lock);
429 
430 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
431 		}
432 	}
433 #endif
434 }
435 
436 /* Return number of entries in TLB0. */
437 static __inline void
438 tlb0_get_tlbconf(void)
439 {
440 	uint32_t tlb0_cfg;
441 
442 	tlb0_cfg = mfspr(SPR_TLB0CFG);
443 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
444 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
445 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
446 }
447 
448 /* Initialize pool of kva ptbl buffers. */
449 static void
450 ptbl_init(void)
451 {
452 	int i;
453 
454 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
455 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
456 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
457 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
458 
459 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
460 	TAILQ_INIT(&ptbl_buf_freelist);
461 
462 	for (i = 0; i < PTBL_BUFS; i++) {
463 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
464 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
465 	}
466 }
467 
468 /* Get a ptbl_buf from the freelist. */
469 static struct ptbl_buf *
470 ptbl_buf_alloc(void)
471 {
472 	struct ptbl_buf *buf;
473 
474 	mtx_lock(&ptbl_buf_freelist_lock);
475 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
476 	if (buf != NULL)
477 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
478 	mtx_unlock(&ptbl_buf_freelist_lock);
479 
480 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
481 
482 	return (buf);
483 }
484 
485 /* Return ptbl buff to free pool. */
486 static void
487 ptbl_buf_free(struct ptbl_buf *buf)
488 {
489 
490 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
491 
492 	mtx_lock(&ptbl_buf_freelist_lock);
493 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
494 	mtx_unlock(&ptbl_buf_freelist_lock);
495 }
496 
497 /*
498  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
499  */
500 static void
501 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
502 {
503 	struct ptbl_buf *pbuf;
504 
505 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
506 
507 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
508 
509 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
510 		if (pbuf->kva == (vm_offset_t)ptbl) {
511 			/* Remove from pmap ptbl buf list. */
512 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
513 
514 			/* Free corresponding ptbl buf. */
515 			ptbl_buf_free(pbuf);
516 			break;
517 		}
518 }
519 
520 /* Allocate page table. */
521 static pte_t *
522 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
523 {
524 	vm_page_t mtbl[PTBL_PAGES];
525 	vm_page_t m;
526 	struct ptbl_buf *pbuf;
527 	unsigned int pidx;
528 	pte_t *ptbl;
529 	int i;
530 
531 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
532 	    (pmap == kernel_pmap), pdir_idx);
533 
534 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
535 	    ("ptbl_alloc: invalid pdir_idx"));
536 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
537 	    ("pte_alloc: valid ptbl entry exists!"));
538 
539 	pbuf = ptbl_buf_alloc();
540 	if (pbuf == NULL)
541 		panic("pte_alloc: couldn't alloc kernel virtual memory");
542 
543 	ptbl = (pte_t *)pbuf->kva;
544 
545 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
546 
547 	/* Allocate ptbl pages, this will sleep! */
548 	for (i = 0; i < PTBL_PAGES; i++) {
549 		pidx = (PTBL_PAGES * pdir_idx) + i;
550 		while ((m = vm_page_alloc(NULL, pidx,
551 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
552 
553 			PMAP_UNLOCK(pmap);
554 			rw_wunlock(&pvh_global_lock);
555 			VM_WAIT;
556 			rw_wlock(&pvh_global_lock);
557 			PMAP_LOCK(pmap);
558 		}
559 		mtbl[i] = m;
560 	}
561 
562 	/* Map allocated pages into kernel_pmap. */
563 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
564 
565 	/* Zero whole ptbl. */
566 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
567 
568 	/* Add pbuf to the pmap ptbl bufs list. */
569 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
570 
571 	return (ptbl);
572 }
573 
574 /* Free ptbl pages and invalidate pdir entry. */
575 static void
576 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
577 {
578 	pte_t *ptbl;
579 	vm_paddr_t pa;
580 	vm_offset_t va;
581 	vm_page_t m;
582 	int i;
583 
584 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
585 	    (pmap == kernel_pmap), pdir_idx);
586 
587 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
588 	    ("ptbl_free: invalid pdir_idx"));
589 
590 	ptbl = pmap->pm_pdir[pdir_idx];
591 
592 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
593 
594 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
595 
596 	/*
597 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
598 	 * don't attempt to look up the page tables we are releasing.
599 	 */
600 	mtx_lock_spin(&tlbivax_mutex);
601 	tlb_miss_lock();
602 
603 	pmap->pm_pdir[pdir_idx] = NULL;
604 
605 	tlb_miss_unlock();
606 	mtx_unlock_spin(&tlbivax_mutex);
607 
608 	for (i = 0; i < PTBL_PAGES; i++) {
609 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
610 		pa = pte_vatopa(mmu, kernel_pmap, va);
611 		m = PHYS_TO_VM_PAGE(pa);
612 		vm_page_free_zero(m);
613 		atomic_subtract_int(&cnt.v_wire_count, 1);
614 		mmu_booke_kremove(mmu, va);
615 	}
616 
617 	ptbl_free_pmap_ptbl(pmap, ptbl);
618 }
619 
620 /*
621  * Decrement ptbl pages hold count and attempt to free ptbl pages.
622  * Called when removing pte entry from ptbl.
623  *
624  * Return 1 if ptbl pages were freed.
625  */
626 static int
627 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
628 {
629 	pte_t *ptbl;
630 	vm_paddr_t pa;
631 	vm_page_t m;
632 	int i;
633 
634 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
635 	    (pmap == kernel_pmap), pdir_idx);
636 
637 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
638 	    ("ptbl_unhold: invalid pdir_idx"));
639 	KASSERT((pmap != kernel_pmap),
640 	    ("ptbl_unhold: unholding kernel ptbl!"));
641 
642 	ptbl = pmap->pm_pdir[pdir_idx];
643 
644 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
645 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
646 	    ("ptbl_unhold: non kva ptbl"));
647 
648 	/* decrement hold count */
649 	for (i = 0; i < PTBL_PAGES; i++) {
650 		pa = pte_vatopa(mmu, kernel_pmap,
651 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
652 		m = PHYS_TO_VM_PAGE(pa);
653 		m->wire_count--;
654 	}
655 
656 	/*
657 	 * Free ptbl pages if there are no pte etries in this ptbl.
658 	 * wire_count has the same value for all ptbl pages, so check the last
659 	 * page.
660 	 */
661 	if (m->wire_count == 0) {
662 		ptbl_free(mmu, pmap, pdir_idx);
663 
664 		//debugf("ptbl_unhold: e (freed ptbl)\n");
665 		return (1);
666 	}
667 
668 	return (0);
669 }
670 
671 /*
672  * Increment hold count for ptbl pages. This routine is used when a new pte
673  * entry is being inserted into the ptbl.
674  */
675 static void
676 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
677 {
678 	vm_paddr_t pa;
679 	pte_t *ptbl;
680 	vm_page_t m;
681 	int i;
682 
683 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
684 	    pdir_idx);
685 
686 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
687 	    ("ptbl_hold: invalid pdir_idx"));
688 	KASSERT((pmap != kernel_pmap),
689 	    ("ptbl_hold: holding kernel ptbl!"));
690 
691 	ptbl = pmap->pm_pdir[pdir_idx];
692 
693 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
694 
695 	for (i = 0; i < PTBL_PAGES; i++) {
696 		pa = pte_vatopa(mmu, kernel_pmap,
697 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
698 		m = PHYS_TO_VM_PAGE(pa);
699 		m->wire_count++;
700 	}
701 }
702 
703 /* Allocate pv_entry structure. */
704 pv_entry_t
705 pv_alloc(void)
706 {
707 	pv_entry_t pv;
708 
709 	pv_entry_count++;
710 	if (pv_entry_count > pv_entry_high_water)
711 		pagedaemon_wakeup();
712 	pv = uma_zalloc(pvzone, M_NOWAIT);
713 
714 	return (pv);
715 }
716 
717 /* Free pv_entry structure. */
718 static __inline void
719 pv_free(pv_entry_t pve)
720 {
721 
722 	pv_entry_count--;
723 	uma_zfree(pvzone, pve);
724 }
725 
726 
727 /* Allocate and initialize pv_entry structure. */
728 static void
729 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
730 {
731 	pv_entry_t pve;
732 
733 	//int su = (pmap == kernel_pmap);
734 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
735 	//	(u_int32_t)pmap, va, (u_int32_t)m);
736 
737 	pve = pv_alloc();
738 	if (pve == NULL)
739 		panic("pv_insert: no pv entries!");
740 
741 	pve->pv_pmap = pmap;
742 	pve->pv_va = va;
743 
744 	/* add to pv_list */
745 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
746 	rw_assert(&pvh_global_lock, RA_WLOCKED);
747 
748 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
749 
750 	//debugf("pv_insert: e\n");
751 }
752 
753 /* Destroy pv entry. */
754 static void
755 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
756 {
757 	pv_entry_t pve;
758 
759 	//int su = (pmap == kernel_pmap);
760 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
761 
762 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
763 	rw_assert(&pvh_global_lock, RA_WLOCKED);
764 
765 	/* find pv entry */
766 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
767 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
768 			/* remove from pv_list */
769 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
770 			if (TAILQ_EMPTY(&m->md.pv_list))
771 				vm_page_aflag_clear(m, PGA_WRITEABLE);
772 
773 			/* free pv entry struct */
774 			pv_free(pve);
775 			break;
776 		}
777 	}
778 
779 	//debugf("pv_remove: e\n");
780 }
781 
782 /*
783  * Clean pte entry, try to free page table page if requested.
784  *
785  * Return 1 if ptbl pages were freed, otherwise return 0.
786  */
787 static int
788 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
789 {
790 	unsigned int pdir_idx = PDIR_IDX(va);
791 	unsigned int ptbl_idx = PTBL_IDX(va);
792 	vm_page_t m;
793 	pte_t *ptbl;
794 	pte_t *pte;
795 
796 	//int su = (pmap == kernel_pmap);
797 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
798 	//		su, (u_int32_t)pmap, va, flags);
799 
800 	ptbl = pmap->pm_pdir[pdir_idx];
801 	KASSERT(ptbl, ("pte_remove: null ptbl"));
802 
803 	pte = &ptbl[ptbl_idx];
804 
805 	if (pte == NULL || !PTE_ISVALID(pte))
806 		return (0);
807 
808 	if (PTE_ISWIRED(pte))
809 		pmap->pm_stats.wired_count--;
810 
811 	/* Handle managed entry. */
812 	if (PTE_ISMANAGED(pte)) {
813 		/* Get vm_page_t for mapped pte. */
814 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
815 
816 		if (PTE_ISMODIFIED(pte))
817 			vm_page_dirty(m);
818 
819 		if (PTE_ISREFERENCED(pte))
820 			vm_page_aflag_set(m, PGA_REFERENCED);
821 
822 		pv_remove(pmap, va, m);
823 	}
824 
825 	mtx_lock_spin(&tlbivax_mutex);
826 	tlb_miss_lock();
827 
828 	tlb0_flush_entry(va);
829 	pte->flags = 0;
830 	pte->rpn = 0;
831 
832 	tlb_miss_unlock();
833 	mtx_unlock_spin(&tlbivax_mutex);
834 
835 	pmap->pm_stats.resident_count--;
836 
837 	if (flags & PTBL_UNHOLD) {
838 		//debugf("pte_remove: e (unhold)\n");
839 		return (ptbl_unhold(mmu, pmap, pdir_idx));
840 	}
841 
842 	//debugf("pte_remove: e\n");
843 	return (0);
844 }
845 
846 /*
847  * Insert PTE for a given page and virtual address.
848  */
849 static void
850 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
851 {
852 	unsigned int pdir_idx = PDIR_IDX(va);
853 	unsigned int ptbl_idx = PTBL_IDX(va);
854 	pte_t *ptbl, *pte;
855 
856 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
857 	    pmap == kernel_pmap, pmap, va);
858 
859 	/* Get the page table pointer. */
860 	ptbl = pmap->pm_pdir[pdir_idx];
861 
862 	if (ptbl == NULL) {
863 		/* Allocate page table pages. */
864 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
865 	} else {
866 		/*
867 		 * Check if there is valid mapping for requested
868 		 * va, if there is, remove it.
869 		 */
870 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
871 		if (PTE_ISVALID(pte)) {
872 			pte_remove(mmu, pmap, va, PTBL_HOLD);
873 		} else {
874 			/*
875 			 * pte is not used, increment hold count
876 			 * for ptbl pages.
877 			 */
878 			if (pmap != kernel_pmap)
879 				ptbl_hold(mmu, pmap, pdir_idx);
880 		}
881 	}
882 
883 	/*
884 	 * Insert pv_entry into pv_list for mapped page if part of managed
885 	 * memory.
886 	 */
887 	if ((m->oflags & VPO_UNMANAGED) == 0) {
888 		flags |= PTE_MANAGED;
889 
890 		/* Create and insert pv entry. */
891 		pv_insert(pmap, va, m);
892 	}
893 
894 	pmap->pm_stats.resident_count++;
895 
896 	mtx_lock_spin(&tlbivax_mutex);
897 	tlb_miss_lock();
898 
899 	tlb0_flush_entry(va);
900 	if (pmap->pm_pdir[pdir_idx] == NULL) {
901 		/*
902 		 * If we just allocated a new page table, hook it in
903 		 * the pdir.
904 		 */
905 		pmap->pm_pdir[pdir_idx] = ptbl;
906 	}
907 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
908 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
909 	pte->flags |= (PTE_VALID | flags);
910 
911 	tlb_miss_unlock();
912 	mtx_unlock_spin(&tlbivax_mutex);
913 }
914 
915 /* Return the pa for the given pmap/va. */
916 static vm_paddr_t
917 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
918 {
919 	vm_paddr_t pa = 0;
920 	pte_t *pte;
921 
922 	pte = pte_find(mmu, pmap, va);
923 	if ((pte != NULL) && PTE_ISVALID(pte))
924 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
925 	return (pa);
926 }
927 
928 /* Get a pointer to a PTE in a page table. */
929 static pte_t *
930 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
931 {
932 	unsigned int pdir_idx = PDIR_IDX(va);
933 	unsigned int ptbl_idx = PTBL_IDX(va);
934 
935 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
936 
937 	if (pmap->pm_pdir[pdir_idx])
938 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
939 
940 	return (NULL);
941 }
942 
943 /**************************************************************************/
944 /* PMAP related */
945 /**************************************************************************/
946 
947 /*
948  * This is called during booke_init, before the system is really initialized.
949  */
950 static void
951 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
952 {
953 	vm_offset_t phys_kernelend;
954 	struct mem_region *mp, *mp1;
955 	int cnt, i, j;
956 	u_int s, e, sz;
957 	u_int phys_avail_count;
958 	vm_size_t physsz, hwphyssz, kstack0_sz;
959 	vm_offset_t kernel_pdir, kstack0, va;
960 	vm_paddr_t kstack0_phys;
961 	void *dpcpu;
962 	pte_t *pte;
963 
964 	debugf("mmu_booke_bootstrap: entered\n");
965 
966 	/* Initialize invalidation mutex */
967 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
968 
969 	/* Read TLB0 size and associativity. */
970 	tlb0_get_tlbconf();
971 
972 	/*
973 	 * Align kernel start and end address (kernel image).
974 	 * Note that kernel end does not necessarily relate to kernsize.
975 	 * kernsize is the size of the kernel that is actually mapped.
976 	 * Also note that "start - 1" is deliberate. With SMP, the
977 	 * entry point is exactly a page from the actual load address.
978 	 * As such, trunc_page() has no effect and we're off by a page.
979 	 * Since we always have the ELF header between the load address
980 	 * and the entry point, we can safely subtract 1 to compensate.
981 	 */
982 	kernstart = trunc_page(start - 1);
983 	data_start = round_page(kernelend);
984 	data_end = data_start;
985 
986 	/*
987 	 * Addresses of preloaded modules (like file systems) use
988 	 * physical addresses. Make sure we relocate those into
989 	 * virtual addresses.
990 	 */
991 	preload_addr_relocate = kernstart - kernload;
992 
993 	/* Allocate the dynamic per-cpu area. */
994 	dpcpu = (void *)data_end;
995 	data_end += DPCPU_SIZE;
996 
997 	/* Allocate space for the message buffer. */
998 	msgbufp = (struct msgbuf *)data_end;
999 	data_end += msgbufsize;
1000 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1001 	    data_end);
1002 
1003 	data_end = round_page(data_end);
1004 
1005 	/* Allocate space for ptbl_bufs. */
1006 	ptbl_bufs = (struct ptbl_buf *)data_end;
1007 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1008 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1009 	    data_end);
1010 
1011 	data_end = round_page(data_end);
1012 
1013 	/* Allocate PTE tables for kernel KVA. */
1014 	kernel_pdir = data_end;
1015 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1016 	    PDIR_SIZE - 1) / PDIR_SIZE;
1017 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1018 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1019 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1020 
1021 	debugf(" data_end: 0x%08x\n", data_end);
1022 	if (data_end - kernstart > kernsize) {
1023 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1024 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1025 	}
1026 	data_end = kernstart + kernsize;
1027 	debugf(" updated data_end: 0x%08x\n", data_end);
1028 
1029 	/*
1030 	 * Clear the structures - note we can only do it safely after the
1031 	 * possible additional TLB1 translations are in place (above) so that
1032 	 * all range up to the currently calculated 'data_end' is covered.
1033 	 */
1034 	dpcpu_init(dpcpu, 0);
1035 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1036 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1037 
1038 	/*******************************************************/
1039 	/* Set the start and end of kva. */
1040 	/*******************************************************/
1041 	virtual_avail = round_page(data_end);
1042 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1043 
1044 	/* Allocate KVA space for page zero/copy operations. */
1045 	zero_page_va = virtual_avail;
1046 	virtual_avail += PAGE_SIZE;
1047 	zero_page_idle_va = virtual_avail;
1048 	virtual_avail += PAGE_SIZE;
1049 	copy_page_src_va = virtual_avail;
1050 	virtual_avail += PAGE_SIZE;
1051 	copy_page_dst_va = virtual_avail;
1052 	virtual_avail += PAGE_SIZE;
1053 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1054 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1055 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1056 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1057 
1058 	/* Initialize page zero/copy mutexes. */
1059 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1060 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1061 
1062 	/* Allocate KVA space for ptbl bufs. */
1063 	ptbl_buf_pool_vabase = virtual_avail;
1064 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1065 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1066 	    ptbl_buf_pool_vabase, virtual_avail);
1067 
1068 	/* Calculate corresponding physical addresses for the kernel region. */
1069 	phys_kernelend = kernload + kernsize;
1070 	debugf("kernel image and allocated data:\n");
1071 	debugf(" kernload    = 0x%08x\n", kernload);
1072 	debugf(" kernstart   = 0x%08x\n", kernstart);
1073 	debugf(" kernsize    = 0x%08x\n", kernsize);
1074 
1075 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1076 		panic("mmu_booke_bootstrap: phys_avail too small");
1077 
1078 	/*
1079 	 * Remove kernel physical address range from avail regions list. Page
1080 	 * align all regions.  Non-page aligned memory isn't very interesting
1081 	 * to us.  Also, sort the entries for ascending addresses.
1082 	 */
1083 
1084 	/* Retrieve phys/avail mem regions */
1085 	mem_regions(&physmem_regions, &physmem_regions_sz,
1086 	    &availmem_regions, &availmem_regions_sz);
1087 	sz = 0;
1088 	cnt = availmem_regions_sz;
1089 	debugf("processing avail regions:\n");
1090 	for (mp = availmem_regions; mp->mr_size; mp++) {
1091 		s = mp->mr_start;
1092 		e = mp->mr_start + mp->mr_size;
1093 		debugf(" %08x-%08x -> ", s, e);
1094 		/* Check whether this region holds all of the kernel. */
1095 		if (s < kernload && e > phys_kernelend) {
1096 			availmem_regions[cnt].mr_start = phys_kernelend;
1097 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1098 			e = kernload;
1099 		}
1100 		/* Look whether this regions starts within the kernel. */
1101 		if (s >= kernload && s < phys_kernelend) {
1102 			if (e <= phys_kernelend)
1103 				goto empty;
1104 			s = phys_kernelend;
1105 		}
1106 		/* Now look whether this region ends within the kernel. */
1107 		if (e > kernload && e <= phys_kernelend) {
1108 			if (s >= kernload)
1109 				goto empty;
1110 			e = kernload;
1111 		}
1112 		/* Now page align the start and size of the region. */
1113 		s = round_page(s);
1114 		e = trunc_page(e);
1115 		if (e < s)
1116 			e = s;
1117 		sz = e - s;
1118 		debugf("%08x-%08x = %x\n", s, e, sz);
1119 
1120 		/* Check whether some memory is left here. */
1121 		if (sz == 0) {
1122 		empty:
1123 			memmove(mp, mp + 1,
1124 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1125 			cnt--;
1126 			mp--;
1127 			continue;
1128 		}
1129 
1130 		/* Do an insertion sort. */
1131 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1132 			if (s < mp1->mr_start)
1133 				break;
1134 		if (mp1 < mp) {
1135 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1136 			mp1->mr_start = s;
1137 			mp1->mr_size = sz;
1138 		} else {
1139 			mp->mr_start = s;
1140 			mp->mr_size = sz;
1141 		}
1142 	}
1143 	availmem_regions_sz = cnt;
1144 
1145 	/*******************************************************/
1146 	/* Steal physical memory for kernel stack from the end */
1147 	/* of the first avail region                           */
1148 	/*******************************************************/
1149 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1150 	kstack0_phys = availmem_regions[0].mr_start +
1151 	    availmem_regions[0].mr_size;
1152 	kstack0_phys -= kstack0_sz;
1153 	availmem_regions[0].mr_size -= kstack0_sz;
1154 
1155 	/*******************************************************/
1156 	/* Fill in phys_avail table, based on availmem_regions */
1157 	/*******************************************************/
1158 	phys_avail_count = 0;
1159 	physsz = 0;
1160 	hwphyssz = 0;
1161 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1162 
1163 	debugf("fill in phys_avail:\n");
1164 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1165 
1166 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1167 		    availmem_regions[i].mr_start,
1168 		    availmem_regions[i].mr_start +
1169 		        availmem_regions[i].mr_size,
1170 		    availmem_regions[i].mr_size);
1171 
1172 		if (hwphyssz != 0 &&
1173 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1174 			debugf(" hw.physmem adjust\n");
1175 			if (physsz < hwphyssz) {
1176 				phys_avail[j] = availmem_regions[i].mr_start;
1177 				phys_avail[j + 1] =
1178 				    availmem_regions[i].mr_start +
1179 				    hwphyssz - physsz;
1180 				physsz = hwphyssz;
1181 				phys_avail_count++;
1182 			}
1183 			break;
1184 		}
1185 
1186 		phys_avail[j] = availmem_regions[i].mr_start;
1187 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1188 		    availmem_regions[i].mr_size;
1189 		phys_avail_count++;
1190 		physsz += availmem_regions[i].mr_size;
1191 	}
1192 	physmem = btoc(physsz);
1193 
1194 	/* Calculate the last available physical address. */
1195 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1196 		;
1197 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1198 
1199 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1200 	debugf("phys_avail_count = %d\n", phys_avail_count);
1201 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1202 	    physmem);
1203 
1204 	/*******************************************************/
1205 	/* Initialize (statically allocated) kernel pmap. */
1206 	/*******************************************************/
1207 	PMAP_LOCK_INIT(kernel_pmap);
1208 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1209 
1210 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1211 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1212 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1213 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1214 
1215 	/* Initialize kernel pdir */
1216 	for (i = 0; i < kernel_ptbls; i++)
1217 		kernel_pmap->pm_pdir[kptbl_min + i] =
1218 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1219 
1220 	for (i = 0; i < MAXCPU; i++) {
1221 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1222 
1223 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1224 		tidbusy[i][0] = kernel_pmap;
1225 	}
1226 
1227 	/*
1228 	 * Fill in PTEs covering kernel code and data. They are not required
1229 	 * for address translation, as this area is covered by static TLB1
1230 	 * entries, but for pte_vatopa() to work correctly with kernel area
1231 	 * addresses.
1232 	 */
1233 	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1234 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1235 		pte->rpn = kernload + (va - kernstart);
1236 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1237 		    PTE_VALID;
1238 	}
1239 	/* Mark kernel_pmap active on all CPUs */
1240 	CPU_FILL(&kernel_pmap->pm_active);
1241 
1242  	/*
1243 	 * Initialize the global pv list lock.
1244 	 */
1245 	rw_init(&pvh_global_lock, "pmap pv global");
1246 
1247 	/*******************************************************/
1248 	/* Final setup */
1249 	/*******************************************************/
1250 
1251 	/* Enter kstack0 into kernel map, provide guard page */
1252 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1253 	thread0.td_kstack = kstack0;
1254 	thread0.td_kstack_pages = KSTACK_PAGES;
1255 
1256 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1257 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1258 	    kstack0_phys, kstack0_phys + kstack0_sz);
1259 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1260 
1261 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1262 	for (i = 0; i < KSTACK_PAGES; i++) {
1263 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1264 		kstack0 += PAGE_SIZE;
1265 		kstack0_phys += PAGE_SIZE;
1266 	}
1267 
1268 	debugf("virtual_avail = %08x\n", virtual_avail);
1269 	debugf("virtual_end   = %08x\n", virtual_end);
1270 
1271 	debugf("mmu_booke_bootstrap: exit\n");
1272 }
1273 
1274 void
1275 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1276 {
1277 	int i;
1278 
1279 	/*
1280 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1281 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1282 	 * these values directly to (re)program AP's TLB1 hardware.
1283 	 */
1284 	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1285 		/* Skip invalid entries */
1286 		if (!(tlb1[i].mas1 & MAS1_VALID))
1287 			continue;
1288 
1289 		tlb1_write_entry(i);
1290 	}
1291 
1292 	set_mas4_defaults();
1293 }
1294 
1295 /*
1296  * Get the physical page address for the given pmap/virtual address.
1297  */
1298 static vm_paddr_t
1299 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1300 {
1301 	vm_paddr_t pa;
1302 
1303 	PMAP_LOCK(pmap);
1304 	pa = pte_vatopa(mmu, pmap, va);
1305 	PMAP_UNLOCK(pmap);
1306 
1307 	return (pa);
1308 }
1309 
1310 /*
1311  * Extract the physical page address associated with the given
1312  * kernel virtual address.
1313  */
1314 static vm_paddr_t
1315 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1316 {
1317 
1318 	return (pte_vatopa(mmu, kernel_pmap, va));
1319 }
1320 
1321 /*
1322  * Initialize the pmap module.
1323  * Called by vm_init, to initialize any structures that the pmap
1324  * system needs to map virtual memory.
1325  */
1326 static void
1327 mmu_booke_init(mmu_t mmu)
1328 {
1329 	int shpgperproc = PMAP_SHPGPERPROC;
1330 
1331 	/*
1332 	 * Initialize the address space (zone) for the pv entries.  Set a
1333 	 * high water mark so that the system can recover from excessive
1334 	 * numbers of pv entries.
1335 	 */
1336 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1337 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1338 
1339 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1340 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1341 
1342 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1343 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1344 
1345 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1346 
1347 	/* Pre-fill pvzone with initial number of pv entries. */
1348 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1349 
1350 	/* Initialize ptbl allocation. */
1351 	ptbl_init();
1352 }
1353 
1354 /*
1355  * Map a list of wired pages into kernel virtual address space.  This is
1356  * intended for temporary mappings which do not need page modification or
1357  * references recorded.  Existing mappings in the region are overwritten.
1358  */
1359 static void
1360 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1361 {
1362 	vm_offset_t va;
1363 
1364 	va = sva;
1365 	while (count-- > 0) {
1366 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1367 		va += PAGE_SIZE;
1368 		m++;
1369 	}
1370 }
1371 
1372 /*
1373  * Remove page mappings from kernel virtual address space.  Intended for
1374  * temporary mappings entered by mmu_booke_qenter.
1375  */
1376 static void
1377 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1378 {
1379 	vm_offset_t va;
1380 
1381 	va = sva;
1382 	while (count-- > 0) {
1383 		mmu_booke_kremove(mmu, va);
1384 		va += PAGE_SIZE;
1385 	}
1386 }
1387 
1388 /*
1389  * Map a wired page into kernel virtual address space.
1390  */
1391 static void
1392 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1393 {
1394 	unsigned int pdir_idx = PDIR_IDX(va);
1395 	unsigned int ptbl_idx = PTBL_IDX(va);
1396 	uint32_t flags;
1397 	pte_t *pte;
1398 
1399 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1400 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1401 
1402 	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1403 
1404 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1405 
1406 	mtx_lock_spin(&tlbivax_mutex);
1407 	tlb_miss_lock();
1408 
1409 	if (PTE_ISVALID(pte)) {
1410 
1411 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1412 
1413 		/* Flush entry from TLB0 */
1414 		tlb0_flush_entry(va);
1415 	}
1416 
1417 	pte->rpn = pa & ~PTE_PA_MASK;
1418 	pte->flags = flags;
1419 
1420 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1421 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1422 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1423 
1424 	/* Flush the real memory from the instruction cache. */
1425 	if ((flags & (PTE_I | PTE_G)) == 0) {
1426 		__syncicache((void *)va, PAGE_SIZE);
1427 	}
1428 
1429 	tlb_miss_unlock();
1430 	mtx_unlock_spin(&tlbivax_mutex);
1431 }
1432 
1433 /*
1434  * Remove a page from kernel page table.
1435  */
1436 static void
1437 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1438 {
1439 	unsigned int pdir_idx = PDIR_IDX(va);
1440 	unsigned int ptbl_idx = PTBL_IDX(va);
1441 	pte_t *pte;
1442 
1443 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1444 
1445 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1446 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1447 	    ("mmu_booke_kremove: invalid va"));
1448 
1449 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1450 
1451 	if (!PTE_ISVALID(pte)) {
1452 
1453 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1454 
1455 		return;
1456 	}
1457 
1458 	mtx_lock_spin(&tlbivax_mutex);
1459 	tlb_miss_lock();
1460 
1461 	/* Invalidate entry in TLB0, update PTE. */
1462 	tlb0_flush_entry(va);
1463 	pte->flags = 0;
1464 	pte->rpn = 0;
1465 
1466 	tlb_miss_unlock();
1467 	mtx_unlock_spin(&tlbivax_mutex);
1468 }
1469 
1470 /*
1471  * Initialize pmap associated with process 0.
1472  */
1473 static void
1474 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1475 {
1476 
1477 	mmu_booke_pinit(mmu, pmap);
1478 	PCPU_SET(curpmap, pmap);
1479 }
1480 
1481 /*
1482  * Initialize a preallocated and zeroed pmap structure,
1483  * such as one in a vmspace structure.
1484  */
1485 static void
1486 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1487 {
1488 	int i;
1489 
1490 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1491 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1492 
1493 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1494 
1495 	PMAP_LOCK_INIT(pmap);
1496 	for (i = 0; i < MAXCPU; i++)
1497 		pmap->pm_tid[i] = TID_NONE;
1498 	CPU_ZERO(&kernel_pmap->pm_active);
1499 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1500 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1501 	TAILQ_INIT(&pmap->pm_ptbl_list);
1502 }
1503 
1504 /*
1505  * Release any resources held by the given physical map.
1506  * Called when a pmap initialized by mmu_booke_pinit is being released.
1507  * Should only be called if the map contains no valid mappings.
1508  */
1509 static void
1510 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1511 {
1512 
1513 	KASSERT(pmap->pm_stats.resident_count == 0,
1514 	    ("pmap_release: pmap resident count %ld != 0",
1515 	    pmap->pm_stats.resident_count));
1516 
1517 	PMAP_LOCK_DESTROY(pmap);
1518 }
1519 
1520 /*
1521  * Insert the given physical page at the specified virtual address in the
1522  * target physical map with the protection requested. If specified the page
1523  * will be wired down.
1524  */
1525 static void
1526 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1527     vm_prot_t prot, boolean_t wired)
1528 {
1529 
1530 	rw_wlock(&pvh_global_lock);
1531 	PMAP_LOCK(pmap);
1532 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1533 	rw_wunlock(&pvh_global_lock);
1534 	PMAP_UNLOCK(pmap);
1535 }
1536 
1537 static void
1538 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1539     vm_prot_t prot, boolean_t wired)
1540 {
1541 	pte_t *pte;
1542 	vm_paddr_t pa;
1543 	uint32_t flags;
1544 	int su, sync;
1545 
1546 	pa = VM_PAGE_TO_PHYS(m);
1547 	su = (pmap == kernel_pmap);
1548 	sync = 0;
1549 
1550 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1551 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1552 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1553 	//		(u_int32_t)m, va, pa, prot, wired);
1554 
1555 	if (su) {
1556 		KASSERT(((va >= virtual_avail) &&
1557 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1558 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1559 	} else {
1560 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1561 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1562 	}
1563 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0)
1564 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1565 
1566 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1567 
1568 	/*
1569 	 * If there is an existing mapping, and the physical address has not
1570 	 * changed, must be protection or wiring change.
1571 	 */
1572 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1573 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1574 
1575 		/*
1576 		 * Before actually updating pte->flags we calculate and
1577 		 * prepare its new value in a helper var.
1578 		 */
1579 		flags = pte->flags;
1580 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1581 
1582 		/* Wiring change, just update stats. */
1583 		if (wired) {
1584 			if (!PTE_ISWIRED(pte)) {
1585 				flags |= PTE_WIRED;
1586 				pmap->pm_stats.wired_count++;
1587 			}
1588 		} else {
1589 			if (PTE_ISWIRED(pte)) {
1590 				flags &= ~PTE_WIRED;
1591 				pmap->pm_stats.wired_count--;
1592 			}
1593 		}
1594 
1595 		if (prot & VM_PROT_WRITE) {
1596 			/* Add write permissions. */
1597 			flags |= PTE_SW;
1598 			if (!su)
1599 				flags |= PTE_UW;
1600 
1601 			if ((flags & PTE_MANAGED) != 0)
1602 				vm_page_aflag_set(m, PGA_WRITEABLE);
1603 		} else {
1604 			/* Handle modified pages, sense modify status. */
1605 
1606 			/*
1607 			 * The PTE_MODIFIED flag could be set by underlying
1608 			 * TLB misses since we last read it (above), possibly
1609 			 * other CPUs could update it so we check in the PTE
1610 			 * directly rather than rely on that saved local flags
1611 			 * copy.
1612 			 */
1613 			if (PTE_ISMODIFIED(pte))
1614 				vm_page_dirty(m);
1615 		}
1616 
1617 		if (prot & VM_PROT_EXECUTE) {
1618 			flags |= PTE_SX;
1619 			if (!su)
1620 				flags |= PTE_UX;
1621 
1622 			/*
1623 			 * Check existing flags for execute permissions: if we
1624 			 * are turning execute permissions on, icache should
1625 			 * be flushed.
1626 			 */
1627 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1628 				sync++;
1629 		}
1630 
1631 		flags &= ~PTE_REFERENCED;
1632 
1633 		/*
1634 		 * The new flags value is all calculated -- only now actually
1635 		 * update the PTE.
1636 		 */
1637 		mtx_lock_spin(&tlbivax_mutex);
1638 		tlb_miss_lock();
1639 
1640 		tlb0_flush_entry(va);
1641 		pte->flags = flags;
1642 
1643 		tlb_miss_unlock();
1644 		mtx_unlock_spin(&tlbivax_mutex);
1645 
1646 	} else {
1647 		/*
1648 		 * If there is an existing mapping, but it's for a different
1649 		 * physical address, pte_enter() will delete the old mapping.
1650 		 */
1651 		//if ((pte != NULL) && PTE_ISVALID(pte))
1652 		//	debugf("mmu_booke_enter_locked: replace\n");
1653 		//else
1654 		//	debugf("mmu_booke_enter_locked: new\n");
1655 
1656 		/* Now set up the flags and install the new mapping. */
1657 		flags = (PTE_SR | PTE_VALID);
1658 		flags |= PTE_M;
1659 
1660 		if (!su)
1661 			flags |= PTE_UR;
1662 
1663 		if (prot & VM_PROT_WRITE) {
1664 			flags |= PTE_SW;
1665 			if (!su)
1666 				flags |= PTE_UW;
1667 
1668 			if ((m->oflags & VPO_UNMANAGED) == 0)
1669 				vm_page_aflag_set(m, PGA_WRITEABLE);
1670 		}
1671 
1672 		if (prot & VM_PROT_EXECUTE) {
1673 			flags |= PTE_SX;
1674 			if (!su)
1675 				flags |= PTE_UX;
1676 		}
1677 
1678 		/* If its wired update stats. */
1679 		if (wired) {
1680 			pmap->pm_stats.wired_count++;
1681 			flags |= PTE_WIRED;
1682 		}
1683 
1684 		pte_enter(mmu, pmap, m, va, flags);
1685 
1686 		/* Flush the real memory from the instruction cache. */
1687 		if (prot & VM_PROT_EXECUTE)
1688 			sync++;
1689 	}
1690 
1691 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1692 		__syncicache((void *)va, PAGE_SIZE);
1693 		sync = 0;
1694 	}
1695 }
1696 
1697 /*
1698  * Maps a sequence of resident pages belonging to the same object.
1699  * The sequence begins with the given page m_start.  This page is
1700  * mapped at the given virtual address start.  Each subsequent page is
1701  * mapped at a virtual address that is offset from start by the same
1702  * amount as the page is offset from m_start within the object.  The
1703  * last page in the sequence is the page with the largest offset from
1704  * m_start that can be mapped at a virtual address less than the given
1705  * virtual address end.  Not every virtual page between start and end
1706  * is mapped; only those for which a resident page exists with the
1707  * corresponding offset from m_start are mapped.
1708  */
1709 static void
1710 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1711     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1712 {
1713 	vm_page_t m;
1714 	vm_pindex_t diff, psize;
1715 
1716 	psize = atop(end - start);
1717 	m = m_start;
1718 	rw_wlock(&pvh_global_lock);
1719 	PMAP_LOCK(pmap);
1720 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1721 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1722 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1723 		m = TAILQ_NEXT(m, listq);
1724 	}
1725 	rw_wunlock(&pvh_global_lock);
1726 	PMAP_UNLOCK(pmap);
1727 }
1728 
1729 static void
1730 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1731     vm_prot_t prot)
1732 {
1733 
1734 	rw_wlock(&pvh_global_lock);
1735 	PMAP_LOCK(pmap);
1736 	mmu_booke_enter_locked(mmu, pmap, va, m,
1737 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1738 	rw_wunlock(&pvh_global_lock);
1739 	PMAP_UNLOCK(pmap);
1740 }
1741 
1742 /*
1743  * Remove the given range of addresses from the specified map.
1744  *
1745  * It is assumed that the start and end are properly rounded to the page size.
1746  */
1747 static void
1748 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1749 {
1750 	pte_t *pte;
1751 	uint8_t hold_flag;
1752 
1753 	int su = (pmap == kernel_pmap);
1754 
1755 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1756 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1757 
1758 	if (su) {
1759 		KASSERT(((va >= virtual_avail) &&
1760 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1761 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1762 	} else {
1763 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1764 		    ("mmu_booke_remove: user pmap, non user va"));
1765 	}
1766 
1767 	if (PMAP_REMOVE_DONE(pmap)) {
1768 		//debugf("mmu_booke_remove: e (empty)\n");
1769 		return;
1770 	}
1771 
1772 	hold_flag = PTBL_HOLD_FLAG(pmap);
1773 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1774 
1775 	rw_wlock(&pvh_global_lock);
1776 	PMAP_LOCK(pmap);
1777 	for (; va < endva; va += PAGE_SIZE) {
1778 		pte = pte_find(mmu, pmap, va);
1779 		if ((pte != NULL) && PTE_ISVALID(pte))
1780 			pte_remove(mmu, pmap, va, hold_flag);
1781 	}
1782 	PMAP_UNLOCK(pmap);
1783 	rw_wunlock(&pvh_global_lock);
1784 
1785 	//debugf("mmu_booke_remove: e\n");
1786 }
1787 
1788 /*
1789  * Remove physical page from all pmaps in which it resides.
1790  */
1791 static void
1792 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1793 {
1794 	pv_entry_t pv, pvn;
1795 	uint8_t hold_flag;
1796 
1797 	rw_wlock(&pvh_global_lock);
1798 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1799 		pvn = TAILQ_NEXT(pv, pv_link);
1800 
1801 		PMAP_LOCK(pv->pv_pmap);
1802 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1803 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1804 		PMAP_UNLOCK(pv->pv_pmap);
1805 	}
1806 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1807 	rw_wunlock(&pvh_global_lock);
1808 }
1809 
1810 /*
1811  * Map a range of physical addresses into kernel virtual address space.
1812  */
1813 static vm_offset_t
1814 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1815     vm_paddr_t pa_end, int prot)
1816 {
1817 	vm_offset_t sva = *virt;
1818 	vm_offset_t va = sva;
1819 
1820 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1821 	//		sva, pa_start, pa_end);
1822 
1823 	while (pa_start < pa_end) {
1824 		mmu_booke_kenter(mmu, va, pa_start);
1825 		va += PAGE_SIZE;
1826 		pa_start += PAGE_SIZE;
1827 	}
1828 	*virt = va;
1829 
1830 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1831 	return (sva);
1832 }
1833 
1834 /*
1835  * The pmap must be activated before it's address space can be accessed in any
1836  * way.
1837  */
1838 static void
1839 mmu_booke_activate(mmu_t mmu, struct thread *td)
1840 {
1841 	pmap_t pmap;
1842 	u_int cpuid;
1843 
1844 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1845 
1846 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1847 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1848 
1849 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1850 
1851 	mtx_lock_spin(&sched_lock);
1852 
1853 	cpuid = PCPU_GET(cpuid);
1854 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1855 	PCPU_SET(curpmap, pmap);
1856 
1857 	if (pmap->pm_tid[cpuid] == TID_NONE)
1858 		tid_alloc(pmap);
1859 
1860 	/* Load PID0 register with pmap tid value. */
1861 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1862 	__asm __volatile("isync");
1863 
1864 	mtx_unlock_spin(&sched_lock);
1865 
1866 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1867 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1868 }
1869 
1870 /*
1871  * Deactivate the specified process's address space.
1872  */
1873 static void
1874 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1875 {
1876 	pmap_t pmap;
1877 
1878 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1879 
1880 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1881 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1882 
1883 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1884 	PCPU_SET(curpmap, NULL);
1885 }
1886 
1887 /*
1888  * Copy the range specified by src_addr/len
1889  * from the source map to the range dst_addr/len
1890  * in the destination map.
1891  *
1892  * This routine is only advisory and need not do anything.
1893  */
1894 static void
1895 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1896     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1897 {
1898 
1899 }
1900 
1901 /*
1902  * Set the physical protection on the specified range of this map as requested.
1903  */
1904 static void
1905 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1906     vm_prot_t prot)
1907 {
1908 	vm_offset_t va;
1909 	vm_page_t m;
1910 	pte_t *pte;
1911 
1912 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1913 		mmu_booke_remove(mmu, pmap, sva, eva);
1914 		return;
1915 	}
1916 
1917 	if (prot & VM_PROT_WRITE)
1918 		return;
1919 
1920 	PMAP_LOCK(pmap);
1921 	for (va = sva; va < eva; va += PAGE_SIZE) {
1922 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1923 			if (PTE_ISVALID(pte)) {
1924 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1925 
1926 				mtx_lock_spin(&tlbivax_mutex);
1927 				tlb_miss_lock();
1928 
1929 				/* Handle modified pages. */
1930 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1931 					vm_page_dirty(m);
1932 
1933 				tlb0_flush_entry(va);
1934 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1935 
1936 				tlb_miss_unlock();
1937 				mtx_unlock_spin(&tlbivax_mutex);
1938 			}
1939 		}
1940 	}
1941 	PMAP_UNLOCK(pmap);
1942 }
1943 
1944 /*
1945  * Clear the write and modified bits in each of the given page's mappings.
1946  */
1947 static void
1948 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1949 {
1950 	pv_entry_t pv;
1951 	pte_t *pte;
1952 
1953 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1954 	    ("mmu_booke_remove_write: page %p is not managed", m));
1955 
1956 	/*
1957 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1958 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1959 	 * is clear, no page table entries need updating.
1960 	 */
1961 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1962 	if ((m->oflags & VPO_BUSY) == 0 &&
1963 	    (m->aflags & PGA_WRITEABLE) == 0)
1964 		return;
1965 	rw_wlock(&pvh_global_lock);
1966 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1967 		PMAP_LOCK(pv->pv_pmap);
1968 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1969 			if (PTE_ISVALID(pte)) {
1970 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1971 
1972 				mtx_lock_spin(&tlbivax_mutex);
1973 				tlb_miss_lock();
1974 
1975 				/* Handle modified pages. */
1976 				if (PTE_ISMODIFIED(pte))
1977 					vm_page_dirty(m);
1978 
1979 				/* Flush mapping from TLB0. */
1980 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1981 
1982 				tlb_miss_unlock();
1983 				mtx_unlock_spin(&tlbivax_mutex);
1984 			}
1985 		}
1986 		PMAP_UNLOCK(pv->pv_pmap);
1987 	}
1988 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1989 	rw_wunlock(&pvh_global_lock);
1990 }
1991 
1992 static void
1993 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1994 {
1995 	pte_t *pte;
1996 	pmap_t pmap;
1997 	vm_page_t m;
1998 	vm_offset_t addr;
1999 	vm_paddr_t pa;
2000 	int active, valid;
2001 
2002 	va = trunc_page(va);
2003 	sz = round_page(sz);
2004 
2005 	rw_wlock(&pvh_global_lock);
2006 	pmap = PCPU_GET(curpmap);
2007 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2008 	while (sz > 0) {
2009 		PMAP_LOCK(pm);
2010 		pte = pte_find(mmu, pm, va);
2011 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2012 		if (valid)
2013 			pa = PTE_PA(pte);
2014 		PMAP_UNLOCK(pm);
2015 		if (valid) {
2016 			if (!active) {
2017 				/* Create a mapping in the active pmap. */
2018 				addr = 0;
2019 				m = PHYS_TO_VM_PAGE(pa);
2020 				PMAP_LOCK(pmap);
2021 				pte_enter(mmu, pmap, m, addr,
2022 				    PTE_SR | PTE_VALID | PTE_UR);
2023 				__syncicache((void *)addr, PAGE_SIZE);
2024 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2025 				PMAP_UNLOCK(pmap);
2026 			} else
2027 				__syncicache((void *)va, PAGE_SIZE);
2028 		}
2029 		va += PAGE_SIZE;
2030 		sz -= PAGE_SIZE;
2031 	}
2032 	rw_wunlock(&pvh_global_lock);
2033 }
2034 
2035 /*
2036  * Atomically extract and hold the physical page with the given
2037  * pmap and virtual address pair if that mapping permits the given
2038  * protection.
2039  */
2040 static vm_page_t
2041 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2042     vm_prot_t prot)
2043 {
2044 	pte_t *pte;
2045 	vm_page_t m;
2046 	uint32_t pte_wbit;
2047 	vm_paddr_t pa;
2048 
2049 	m = NULL;
2050 	pa = 0;
2051 	PMAP_LOCK(pmap);
2052 retry:
2053 	pte = pte_find(mmu, pmap, va);
2054 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2055 		if (pmap == kernel_pmap)
2056 			pte_wbit = PTE_SW;
2057 		else
2058 			pte_wbit = PTE_UW;
2059 
2060 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2061 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2062 				goto retry;
2063 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2064 			vm_page_hold(m);
2065 		}
2066 	}
2067 
2068 	PA_UNLOCK_COND(pa);
2069 	PMAP_UNLOCK(pmap);
2070 	return (m);
2071 }
2072 
2073 /*
2074  * Initialize a vm_page's machine-dependent fields.
2075  */
2076 static void
2077 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2078 {
2079 
2080 	TAILQ_INIT(&m->md.pv_list);
2081 }
2082 
2083 /*
2084  * mmu_booke_zero_page_area zeros the specified hardware page by
2085  * mapping it into virtual memory and using bzero to clear
2086  * its contents.
2087  *
2088  * off and size must reside within a single page.
2089  */
2090 static void
2091 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2092 {
2093 	vm_offset_t va;
2094 
2095 	/* XXX KASSERT off and size are within a single page? */
2096 
2097 	mtx_lock(&zero_page_mutex);
2098 	va = zero_page_va;
2099 
2100 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2101 	bzero((caddr_t)va + off, size);
2102 	mmu_booke_kremove(mmu, va);
2103 
2104 	mtx_unlock(&zero_page_mutex);
2105 }
2106 
2107 /*
2108  * mmu_booke_zero_page zeros the specified hardware page.
2109  */
2110 static void
2111 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2112 {
2113 
2114 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2115 }
2116 
2117 /*
2118  * mmu_booke_copy_page copies the specified (machine independent) page by
2119  * mapping the page into virtual memory and using memcopy to copy the page,
2120  * one machine dependent page at a time.
2121  */
2122 static void
2123 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2124 {
2125 	vm_offset_t sva, dva;
2126 
2127 	sva = copy_page_src_va;
2128 	dva = copy_page_dst_va;
2129 
2130 	mtx_lock(&copy_page_mutex);
2131 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2132 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2133 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2134 	mmu_booke_kremove(mmu, dva);
2135 	mmu_booke_kremove(mmu, sva);
2136 	mtx_unlock(&copy_page_mutex);
2137 }
2138 
2139 /*
2140  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2141  * into virtual memory and using bzero to clear its contents. This is intended
2142  * to be called from the vm_pagezero process only and outside of Giant. No
2143  * lock is required.
2144  */
2145 static void
2146 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2147 {
2148 	vm_offset_t va;
2149 
2150 	va = zero_page_idle_va;
2151 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2152 	bzero((caddr_t)va, PAGE_SIZE);
2153 	mmu_booke_kremove(mmu, va);
2154 }
2155 
2156 /*
2157  * Return whether or not the specified physical page was modified
2158  * in any of physical maps.
2159  */
2160 static boolean_t
2161 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2162 {
2163 	pte_t *pte;
2164 	pv_entry_t pv;
2165 	boolean_t rv;
2166 
2167 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2168 	    ("mmu_booke_is_modified: page %p is not managed", m));
2169 	rv = FALSE;
2170 
2171 	/*
2172 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2173 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2174 	 * is clear, no PTEs can be modified.
2175 	 */
2176 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2177 	if ((m->oflags & VPO_BUSY) == 0 &&
2178 	    (m->aflags & PGA_WRITEABLE) == 0)
2179 		return (rv);
2180 	rw_wlock(&pvh_global_lock);
2181 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2182 		PMAP_LOCK(pv->pv_pmap);
2183 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2184 		    PTE_ISVALID(pte)) {
2185 			if (PTE_ISMODIFIED(pte))
2186 				rv = TRUE;
2187 		}
2188 		PMAP_UNLOCK(pv->pv_pmap);
2189 		if (rv)
2190 			break;
2191 	}
2192 	rw_wunlock(&pvh_global_lock);
2193 	return (rv);
2194 }
2195 
2196 /*
2197  * Return whether or not the specified virtual address is eligible
2198  * for prefault.
2199  */
2200 static boolean_t
2201 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2202 {
2203 
2204 	return (FALSE);
2205 }
2206 
2207 /*
2208  * Return whether or not the specified physical page was referenced
2209  * in any physical maps.
2210  */
2211 static boolean_t
2212 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2213 {
2214 	pte_t *pte;
2215 	pv_entry_t pv;
2216 	boolean_t rv;
2217 
2218 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2219 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2220 	rv = FALSE;
2221 	rw_wlock(&pvh_global_lock);
2222 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2223 		PMAP_LOCK(pv->pv_pmap);
2224 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2225 		    PTE_ISVALID(pte)) {
2226 			if (PTE_ISREFERENCED(pte))
2227 				rv = TRUE;
2228 		}
2229 		PMAP_UNLOCK(pv->pv_pmap);
2230 		if (rv)
2231 			break;
2232 	}
2233 	rw_wunlock(&pvh_global_lock);
2234 	return (rv);
2235 }
2236 
2237 /*
2238  * Clear the modify bits on the specified physical page.
2239  */
2240 static void
2241 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2242 {
2243 	pte_t *pte;
2244 	pv_entry_t pv;
2245 
2246 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2247 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2248 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2249 	KASSERT((m->oflags & VPO_BUSY) == 0,
2250 	    ("mmu_booke_clear_modify: page %p is busy", m));
2251 
2252 	/*
2253 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2254 	 * If the object containing the page is locked and the page is not
2255 	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2256 	 */
2257 	if ((m->aflags & PGA_WRITEABLE) == 0)
2258 		return;
2259 	rw_wlock(&pvh_global_lock);
2260 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2261 		PMAP_LOCK(pv->pv_pmap);
2262 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2263 		    PTE_ISVALID(pte)) {
2264 			mtx_lock_spin(&tlbivax_mutex);
2265 			tlb_miss_lock();
2266 
2267 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2268 				tlb0_flush_entry(pv->pv_va);
2269 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2270 				    PTE_REFERENCED);
2271 			}
2272 
2273 			tlb_miss_unlock();
2274 			mtx_unlock_spin(&tlbivax_mutex);
2275 		}
2276 		PMAP_UNLOCK(pv->pv_pmap);
2277 	}
2278 	rw_wunlock(&pvh_global_lock);
2279 }
2280 
2281 /*
2282  * Return a count of reference bits for a page, clearing those bits.
2283  * It is not necessary for every reference bit to be cleared, but it
2284  * is necessary that 0 only be returned when there are truly no
2285  * reference bits set.
2286  *
2287  * XXX: The exact number of bits to check and clear is a matter that
2288  * should be tested and standardized at some point in the future for
2289  * optimal aging of shared pages.
2290  */
2291 static int
2292 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2293 {
2294 	pte_t *pte;
2295 	pv_entry_t pv;
2296 	int count;
2297 
2298 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2299 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2300 	count = 0;
2301 	rw_wlock(&pvh_global_lock);
2302 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2303 		PMAP_LOCK(pv->pv_pmap);
2304 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2305 		    PTE_ISVALID(pte)) {
2306 			if (PTE_ISREFERENCED(pte)) {
2307 				mtx_lock_spin(&tlbivax_mutex);
2308 				tlb_miss_lock();
2309 
2310 				tlb0_flush_entry(pv->pv_va);
2311 				pte->flags &= ~PTE_REFERENCED;
2312 
2313 				tlb_miss_unlock();
2314 				mtx_unlock_spin(&tlbivax_mutex);
2315 
2316 				if (++count > 4) {
2317 					PMAP_UNLOCK(pv->pv_pmap);
2318 					break;
2319 				}
2320 			}
2321 		}
2322 		PMAP_UNLOCK(pv->pv_pmap);
2323 	}
2324 	rw_wunlock(&pvh_global_lock);
2325 	return (count);
2326 }
2327 
2328 /*
2329  * Clear the reference bit on the specified physical page.
2330  */
2331 static void
2332 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2333 {
2334 	pte_t *pte;
2335 	pv_entry_t pv;
2336 
2337 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2338 	    ("mmu_booke_clear_reference: page %p is not managed", m));
2339 	rw_wlock(&pvh_global_lock);
2340 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2341 		PMAP_LOCK(pv->pv_pmap);
2342 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2343 		    PTE_ISVALID(pte)) {
2344 			if (PTE_ISREFERENCED(pte)) {
2345 				mtx_lock_spin(&tlbivax_mutex);
2346 				tlb_miss_lock();
2347 
2348 				tlb0_flush_entry(pv->pv_va);
2349 				pte->flags &= ~PTE_REFERENCED;
2350 
2351 				tlb_miss_unlock();
2352 				mtx_unlock_spin(&tlbivax_mutex);
2353 			}
2354 		}
2355 		PMAP_UNLOCK(pv->pv_pmap);
2356 	}
2357 	rw_wunlock(&pvh_global_lock);
2358 }
2359 
2360 /*
2361  * Change wiring attribute for a map/virtual-address pair.
2362  */
2363 static void
2364 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2365 {
2366 	pte_t *pte;
2367 
2368 	PMAP_LOCK(pmap);
2369 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2370 		if (wired) {
2371 			if (!PTE_ISWIRED(pte)) {
2372 				pte->flags |= PTE_WIRED;
2373 				pmap->pm_stats.wired_count++;
2374 			}
2375 		} else {
2376 			if (PTE_ISWIRED(pte)) {
2377 				pte->flags &= ~PTE_WIRED;
2378 				pmap->pm_stats.wired_count--;
2379 			}
2380 		}
2381 	}
2382 	PMAP_UNLOCK(pmap);
2383 }
2384 
2385 /*
2386  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2387  * page.  This count may be changed upwards or downwards in the future; it is
2388  * only necessary that true be returned for a small subset of pmaps for proper
2389  * page aging.
2390  */
2391 static boolean_t
2392 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2393 {
2394 	pv_entry_t pv;
2395 	int loops;
2396 	boolean_t rv;
2397 
2398 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2399 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2400 	loops = 0;
2401 	rv = FALSE;
2402 	rw_wlock(&pvh_global_lock);
2403 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2404 		if (pv->pv_pmap == pmap) {
2405 			rv = TRUE;
2406 			break;
2407 		}
2408 		if (++loops >= 16)
2409 			break;
2410 	}
2411 	rw_wunlock(&pvh_global_lock);
2412 	return (rv);
2413 }
2414 
2415 /*
2416  * Return the number of managed mappings to the given physical page that are
2417  * wired.
2418  */
2419 static int
2420 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2421 {
2422 	pv_entry_t pv;
2423 	pte_t *pte;
2424 	int count = 0;
2425 
2426 	if ((m->oflags & VPO_UNMANAGED) != 0)
2427 		return (count);
2428 	rw_wlock(&pvh_global_lock);
2429 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2430 		PMAP_LOCK(pv->pv_pmap);
2431 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2432 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2433 				count++;
2434 		PMAP_UNLOCK(pv->pv_pmap);
2435 	}
2436 	rw_wunlock(&pvh_global_lock);
2437 	return (count);
2438 }
2439 
2440 static int
2441 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2442 {
2443 	int i;
2444 	vm_offset_t va;
2445 
2446 	/*
2447 	 * This currently does not work for entries that
2448 	 * overlap TLB1 entries.
2449 	 */
2450 	for (i = 0; i < tlb1_idx; i ++) {
2451 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2452 			return (0);
2453 	}
2454 
2455 	return (EFAULT);
2456 }
2457 
2458 vm_offset_t
2459 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2460     vm_size_t *sz)
2461 {
2462 	vm_paddr_t pa, ppa;
2463 	vm_offset_t va;
2464 	vm_size_t gran;
2465 
2466 	/* Raw physical memory dumps don't have a virtual address. */
2467 	if (md->md_vaddr == ~0UL) {
2468 		/* We always map a 256MB page at 256M. */
2469 		gran = 256 * 1024 * 1024;
2470 		pa = md->md_paddr + ofs;
2471 		ppa = pa & ~(gran - 1);
2472 		ofs = pa - ppa;
2473 		va = gran;
2474 		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2475 		if (*sz > (gran - ofs))
2476 			*sz = gran - ofs;
2477 		return (va + ofs);
2478 	}
2479 
2480 	/* Minidumps are based on virtual memory addresses. */
2481 	va = md->md_vaddr + ofs;
2482 	if (va >= kernstart + kernsize) {
2483 		gran = PAGE_SIZE - (va & PAGE_MASK);
2484 		if (*sz > gran)
2485 			*sz = gran;
2486 	}
2487 	return (va);
2488 }
2489 
2490 void
2491 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2492     vm_offset_t va)
2493 {
2494 
2495 	/* Raw physical memory dumps don't have a virtual address. */
2496 	if (md->md_vaddr == ~0UL) {
2497 		tlb1_idx--;
2498 		tlb1[tlb1_idx].mas1 = 0;
2499 		tlb1[tlb1_idx].mas2 = 0;
2500 		tlb1[tlb1_idx].mas3 = 0;
2501 		tlb1_write_entry(tlb1_idx);
2502 		return;
2503 	}
2504 
2505 	/* Minidumps are based on virtual memory addresses. */
2506 	/* Nothing to do... */
2507 }
2508 
2509 struct pmap_md *
2510 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2511 {
2512 	static struct pmap_md md;
2513 	pte_t *pte;
2514 	vm_offset_t va;
2515 
2516 	if (dumpsys_minidump) {
2517 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2518 		if (prev == NULL) {
2519 			/* 1st: kernel .data and .bss. */
2520 			md.md_index = 1;
2521 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2522 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2523 			return (&md);
2524 		}
2525 		switch (prev->md_index) {
2526 		case 1:
2527 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2528 			md.md_index = 2;
2529 			md.md_vaddr = data_start;
2530 			md.md_size = data_end - data_start;
2531 			break;
2532 		case 2:
2533 			/* 3rd: kernel VM. */
2534 			va = prev->md_vaddr + prev->md_size;
2535 			/* Find start of next chunk (from va). */
2536 			while (va < virtual_end) {
2537 				/* Don't dump the buffer cache. */
2538 				if (va >= kmi.buffer_sva &&
2539 				    va < kmi.buffer_eva) {
2540 					va = kmi.buffer_eva;
2541 					continue;
2542 				}
2543 				pte = pte_find(mmu, kernel_pmap, va);
2544 				if (pte != NULL && PTE_ISVALID(pte))
2545 					break;
2546 				va += PAGE_SIZE;
2547 			}
2548 			if (va < virtual_end) {
2549 				md.md_vaddr = va;
2550 				va += PAGE_SIZE;
2551 				/* Find last page in chunk. */
2552 				while (va < virtual_end) {
2553 					/* Don't run into the buffer cache. */
2554 					if (va == kmi.buffer_sva)
2555 						break;
2556 					pte = pte_find(mmu, kernel_pmap, va);
2557 					if (pte == NULL || !PTE_ISVALID(pte))
2558 						break;
2559 					va += PAGE_SIZE;
2560 				}
2561 				md.md_size = va - md.md_vaddr;
2562 				break;
2563 			}
2564 			md.md_index = 3;
2565 			/* FALLTHROUGH */
2566 		default:
2567 			return (NULL);
2568 		}
2569 	} else { /* minidumps */
2570 		mem_regions(&physmem_regions, &physmem_regions_sz,
2571 		    &availmem_regions, &availmem_regions_sz);
2572 
2573 		if (prev == NULL) {
2574 			/* first physical chunk. */
2575 			md.md_paddr = physmem_regions[0].mr_start;
2576 			md.md_size = physmem_regions[0].mr_size;
2577 			md.md_vaddr = ~0UL;
2578 			md.md_index = 1;
2579 		} else if (md.md_index < physmem_regions_sz) {
2580 			md.md_paddr = physmem_regions[md.md_index].mr_start;
2581 			md.md_size = physmem_regions[md.md_index].mr_size;
2582 			md.md_vaddr = ~0UL;
2583 			md.md_index++;
2584 		} else {
2585 			/* There's no next physical chunk. */
2586 			return (NULL);
2587 		}
2588 	}
2589 
2590 	return (&md);
2591 }
2592 
2593 /*
2594  * Map a set of physical memory pages into the kernel virtual address space.
2595  * Return a pointer to where it is mapped. This routine is intended to be used
2596  * for mapping device memory, NOT real memory.
2597  */
2598 static void *
2599 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2600 {
2601 	void *res;
2602 	uintptr_t va;
2603 	vm_size_t sz;
2604 
2605 	/*
2606 	 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2607 	 * we don't wrap around. Devices on the local bus typically extend all
2608 	 * the way up to and including 0xffffffff. In that case (pa + size)
2609 	 * would be 0. This creates a false positive (i.e. we think it's
2610 	 * within the CCSR) and not create a mapping.
2611 	 */
2612 	if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2613 		va = CCSRBAR_VA + (pa - ccsrbar_pa);
2614 		return ((void *)va);
2615 	}
2616 
2617 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2618 	res = (void *)va;
2619 
2620 	do {
2621 		sz = 1 << (ilog2(size) & ~1);
2622 		if (bootverbose)
2623 			printf("Wiring VA=%x to PA=%x (size=%x), "
2624 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2625 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2626 		size -= sz;
2627 		pa += sz;
2628 		va += sz;
2629 	} while (size > 0);
2630 
2631 	return (res);
2632 }
2633 
2634 /*
2635  * 'Unmap' a range mapped by mmu_booke_mapdev().
2636  */
2637 static void
2638 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2639 {
2640 	vm_offset_t base, offset;
2641 
2642 	/*
2643 	 * Unmap only if this is inside kernel virtual space.
2644 	 */
2645 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2646 		base = trunc_page(va);
2647 		offset = va & PAGE_MASK;
2648 		size = roundup(offset + size, PAGE_SIZE);
2649 		kmem_free(kernel_map, base, size);
2650 	}
2651 }
2652 
2653 /*
2654  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2655  * specified pmap. This eliminates the blast of soft faults on process startup
2656  * and immediately after an mmap.
2657  */
2658 static void
2659 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2660     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2661 {
2662 
2663 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2664 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2665 	    ("mmu_booke_object_init_pt: non-device object"));
2666 }
2667 
2668 /*
2669  * Perform the pmap work for mincore.
2670  */
2671 static int
2672 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2673     vm_paddr_t *locked_pa)
2674 {
2675 
2676 	TODO;
2677 	return (0);
2678 }
2679 
2680 /**************************************************************************/
2681 /* TID handling */
2682 /**************************************************************************/
2683 
2684 /*
2685  * Allocate a TID. If necessary, steal one from someone else.
2686  * The new TID is flushed from the TLB before returning.
2687  */
2688 static tlbtid_t
2689 tid_alloc(pmap_t pmap)
2690 {
2691 	tlbtid_t tid;
2692 	int thiscpu;
2693 
2694 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2695 
2696 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2697 
2698 	thiscpu = PCPU_GET(cpuid);
2699 
2700 	tid = PCPU_GET(tid_next);
2701 	if (tid > TID_MAX)
2702 		tid = TID_MIN;
2703 	PCPU_SET(tid_next, tid + 1);
2704 
2705 	/* If we are stealing TID then clear the relevant pmap's field */
2706 	if (tidbusy[thiscpu][tid] != NULL) {
2707 
2708 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2709 
2710 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2711 
2712 		/* Flush all entries from TLB0 matching this TID. */
2713 		tid_flush(tid);
2714 	}
2715 
2716 	tidbusy[thiscpu][tid] = pmap;
2717 	pmap->pm_tid[thiscpu] = tid;
2718 	__asm __volatile("msync; isync");
2719 
2720 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2721 	    PCPU_GET(tid_next));
2722 
2723 	return (tid);
2724 }
2725 
2726 /**************************************************************************/
2727 /* TLB0 handling */
2728 /**************************************************************************/
2729 
2730 static void
2731 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2732     uint32_t mas7)
2733 {
2734 	int as;
2735 	char desc[3];
2736 	tlbtid_t tid;
2737 	vm_size_t size;
2738 	unsigned int tsize;
2739 
2740 	desc[2] = '\0';
2741 	if (mas1 & MAS1_VALID)
2742 		desc[0] = 'V';
2743 	else
2744 		desc[0] = ' ';
2745 
2746 	if (mas1 & MAS1_IPROT)
2747 		desc[1] = 'P';
2748 	else
2749 		desc[1] = ' ';
2750 
2751 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2752 	tid = MAS1_GETTID(mas1);
2753 
2754 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2755 	size = 0;
2756 	if (tsize)
2757 		size = tsize2size(tsize);
2758 
2759 	debugf("%3d: (%s) [AS=%d] "
2760 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2761 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2762 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2763 }
2764 
2765 /* Convert TLB0 va and way number to tlb0[] table index. */
2766 static inline unsigned int
2767 tlb0_tableidx(vm_offset_t va, unsigned int way)
2768 {
2769 	unsigned int idx;
2770 
2771 	idx = (way * TLB0_ENTRIES_PER_WAY);
2772 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2773 	return (idx);
2774 }
2775 
2776 /*
2777  * Invalidate TLB0 entry.
2778  */
2779 static inline void
2780 tlb0_flush_entry(vm_offset_t va)
2781 {
2782 
2783 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2784 
2785 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2786 
2787 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2788 	__asm __volatile("isync; msync");
2789 	__asm __volatile("tlbsync; msync");
2790 
2791 	CTR1(KTR_PMAP, "%s: e", __func__);
2792 }
2793 
2794 /* Print out contents of the MAS registers for each TLB0 entry */
2795 void
2796 tlb0_print_tlbentries(void)
2797 {
2798 	uint32_t mas0, mas1, mas2, mas3, mas7;
2799 	int entryidx, way, idx;
2800 
2801 	debugf("TLB0 entries:\n");
2802 	for (way = 0; way < TLB0_WAYS; way ++)
2803 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2804 
2805 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2806 			mtspr(SPR_MAS0, mas0);
2807 			__asm __volatile("isync");
2808 
2809 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2810 			mtspr(SPR_MAS2, mas2);
2811 
2812 			__asm __volatile("isync; tlbre");
2813 
2814 			mas1 = mfspr(SPR_MAS1);
2815 			mas2 = mfspr(SPR_MAS2);
2816 			mas3 = mfspr(SPR_MAS3);
2817 			mas7 = mfspr(SPR_MAS7);
2818 
2819 			idx = tlb0_tableidx(mas2, way);
2820 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2821 		}
2822 }
2823 
2824 /**************************************************************************/
2825 /* TLB1 handling */
2826 /**************************************************************************/
2827 
2828 /*
2829  * TLB1 mapping notes:
2830  *
2831  * TLB1[0]	CCSRBAR
2832  * TLB1[1]	Kernel text and data.
2833  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2834  *		windows, other devices mappings.
2835  */
2836 
2837 /*
2838  * Write given entry to TLB1 hardware.
2839  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2840  */
2841 static void
2842 tlb1_write_entry(unsigned int idx)
2843 {
2844 	uint32_t mas0, mas7;
2845 
2846 	//debugf("tlb1_write_entry: s\n");
2847 
2848 	/* Clear high order RPN bits */
2849 	mas7 = 0;
2850 
2851 	/* Select entry */
2852 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2853 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2854 
2855 	mtspr(SPR_MAS0, mas0);
2856 	__asm __volatile("isync");
2857 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2858 	__asm __volatile("isync");
2859 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2860 	__asm __volatile("isync");
2861 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2862 	__asm __volatile("isync");
2863 	mtspr(SPR_MAS7, mas7);
2864 	__asm __volatile("isync; tlbwe; isync; msync");
2865 
2866 	//debugf("tlb1_write_entry: e\n");
2867 }
2868 
2869 /*
2870  * Return the largest uint value log such that 2^log <= num.
2871  */
2872 static unsigned int
2873 ilog2(unsigned int num)
2874 {
2875 	int lz;
2876 
2877 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2878 	return (31 - lz);
2879 }
2880 
2881 /*
2882  * Convert TLB TSIZE value to mapped region size.
2883  */
2884 static vm_size_t
2885 tsize2size(unsigned int tsize)
2886 {
2887 
2888 	/*
2889 	 * size = 4^tsize KB
2890 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2891 	 */
2892 
2893 	return ((1 << (2 * tsize)) * 1024);
2894 }
2895 
2896 /*
2897  * Convert region size (must be power of 4) to TLB TSIZE value.
2898  */
2899 static unsigned int
2900 size2tsize(vm_size_t size)
2901 {
2902 
2903 	return (ilog2(size) / 2 - 5);
2904 }
2905 
2906 /*
2907  * Register permanent kernel mapping in TLB1.
2908  *
2909  * Entries are created starting from index 0 (current free entry is
2910  * kept in tlb1_idx) and are not supposed to be invalidated.
2911  */
2912 static int
2913 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2914     uint32_t flags)
2915 {
2916 	uint32_t ts, tid;
2917 	int tsize;
2918 
2919 	if (tlb1_idx >= TLB1_ENTRIES) {
2920 		printf("tlb1_set_entry: TLB1 full!\n");
2921 		return (-1);
2922 	}
2923 
2924 	/* Convert size to TSIZE */
2925 	tsize = size2tsize(size);
2926 
2927 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2928 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2929 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2930 
2931 	/* XXX LOCK tlb1[] */
2932 
2933 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2934 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2935 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2936 
2937 	/* Set supervisor RWX permission bits */
2938 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2939 
2940 	tlb1_write_entry(tlb1_idx++);
2941 
2942 	/* XXX UNLOCK tlb1[] */
2943 
2944 	/*
2945 	 * XXX in general TLB1 updates should be propagated between CPUs,
2946 	 * since current design assumes to have the same TLB1 set-up on all
2947 	 * cores.
2948 	 */
2949 	return (0);
2950 }
2951 
2952 /*
2953  * Map in contiguous RAM region into the TLB1 using maximum of
2954  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2955  *
2956  * If necessary round up last entry size and return total size
2957  * used by all allocated entries.
2958  */
2959 vm_size_t
2960 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2961 {
2962 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2963 	vm_size_t mapped, pgsz, base, mask;
2964 	int idx, nents;
2965 
2966 	/* Round up to the next 1M */
2967 	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2968 
2969 	mapped = 0;
2970 	idx = 0;
2971 	base = va;
2972 	pgsz = 64*1024*1024;
2973 	while (mapped < size) {
2974 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2975 			while (pgsz > (size - mapped))
2976 				pgsz >>= 2;
2977 			pgs[idx++] = pgsz;
2978 			mapped += pgsz;
2979 		}
2980 
2981 		/* We under-map. Correct for this. */
2982 		if (mapped < size) {
2983 			while (pgs[idx - 1] == pgsz) {
2984 				idx--;
2985 				mapped -= pgsz;
2986 			}
2987 			/* XXX We may increase beyond out starting point. */
2988 			pgsz <<= 2;
2989 			pgs[idx++] = pgsz;
2990 			mapped += pgsz;
2991 		}
2992 	}
2993 
2994 	nents = idx;
2995 	mask = pgs[0] - 1;
2996 	/* Align address to the boundary */
2997 	if (va & mask) {
2998 		va = (va + mask) & ~mask;
2999 		pa = (pa + mask) & ~mask;
3000 	}
3001 
3002 	for (idx = 0; idx < nents; idx++) {
3003 		pgsz = pgs[idx];
3004 		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3005 		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3006 		pa += pgsz;
3007 		va += pgsz;
3008 	}
3009 
3010 	mapped = (va - base);
3011 	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3012 	    mapped, mapped - size);
3013 	return (mapped);
3014 }
3015 
3016 /*
3017  * TLB1 initialization routine, to be called after the very first
3018  * assembler level setup done in locore.S.
3019  */
3020 void
3021 tlb1_init(vm_offset_t ccsrbar)
3022 {
3023 	uint32_t mas0, mas1, mas3;
3024 	uint32_t tsz;
3025 	u_int i;
3026 
3027 	ccsrbar_pa = ccsrbar;
3028 
3029 	if (bootinfo != NULL && bootinfo[0] != 1) {
3030 		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3031 	} else
3032 		tlb1_idx = 1;
3033 
3034 	/* The first entry/entries are used to map the kernel. */
3035 	for (i = 0; i < tlb1_idx; i++) {
3036 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3037 		mtspr(SPR_MAS0, mas0);
3038 		__asm __volatile("isync; tlbre");
3039 
3040 		mas1 = mfspr(SPR_MAS1);
3041 		if ((mas1 & MAS1_VALID) == 0)
3042 			continue;
3043 
3044 		mas3 = mfspr(SPR_MAS3);
3045 
3046 		tlb1[i].mas1 = mas1;
3047 		tlb1[i].mas2 = mfspr(SPR_MAS2);
3048 		tlb1[i].mas3 = mas3;
3049 
3050 		if (i == 0)
3051 			kernload = mas3 & MAS3_RPN;
3052 
3053 		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3054 		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3055 	}
3056 
3057 	/* Map in CCSRBAR. */
3058 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3059 
3060 #ifdef SMP
3061 	bp_ntlb1s = tlb1_idx;
3062 #endif
3063 
3064 	/* Purge the remaining entries */
3065 	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3066 		tlb1_write_entry(i);
3067 
3068 	/* Setup TLB miss defaults */
3069 	set_mas4_defaults();
3070 }
3071 
3072 /*
3073  * Setup MAS4 defaults.
3074  * These values are loaded to MAS0-2 on a TLB miss.
3075  */
3076 static void
3077 set_mas4_defaults(void)
3078 {
3079 	uint32_t mas4;
3080 
3081 	/* Defaults: TLB0, PID0, TSIZED=4K */
3082 	mas4 = MAS4_TLBSELD0;
3083 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3084 #ifdef SMP
3085 	mas4 |= MAS4_MD;
3086 #endif
3087 	mtspr(SPR_MAS4, mas4);
3088 	__asm __volatile("isync");
3089 }
3090 
3091 /*
3092  * Print out contents of the MAS registers for each TLB1 entry
3093  */
3094 void
3095 tlb1_print_tlbentries(void)
3096 {
3097 	uint32_t mas0, mas1, mas2, mas3, mas7;
3098 	int i;
3099 
3100 	debugf("TLB1 entries:\n");
3101 	for (i = 0; i < TLB1_ENTRIES; i++) {
3102 
3103 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3104 		mtspr(SPR_MAS0, mas0);
3105 
3106 		__asm __volatile("isync; tlbre");
3107 
3108 		mas1 = mfspr(SPR_MAS1);
3109 		mas2 = mfspr(SPR_MAS2);
3110 		mas3 = mfspr(SPR_MAS3);
3111 		mas7 = mfspr(SPR_MAS7);
3112 
3113 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3114 	}
3115 }
3116 
3117 /*
3118  * Print out contents of the in-ram tlb1 table.
3119  */
3120 void
3121 tlb1_print_entries(void)
3122 {
3123 	int i;
3124 
3125 	debugf("tlb1[] table entries:\n");
3126 	for (i = 0; i < TLB1_ENTRIES; i++)
3127 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3128 }
3129 
3130 /*
3131  * Return 0 if the physical IO range is encompassed by one of the
3132  * the TLB1 entries, otherwise return related error code.
3133  */
3134 static int
3135 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3136 {
3137 	uint32_t prot;
3138 	vm_paddr_t pa_start;
3139 	vm_paddr_t pa_end;
3140 	unsigned int entry_tsize;
3141 	vm_size_t entry_size;
3142 
3143 	*va = (vm_offset_t)NULL;
3144 
3145 	/* Skip invalid entries */
3146 	if (!(tlb1[i].mas1 & MAS1_VALID))
3147 		return (EINVAL);
3148 
3149 	/*
3150 	 * The entry must be cache-inhibited, guarded, and r/w
3151 	 * so it can function as an i/o page
3152 	 */
3153 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3154 	if (prot != (MAS2_I | MAS2_G))
3155 		return (EPERM);
3156 
3157 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3158 	if (prot != (MAS3_SR | MAS3_SW))
3159 		return (EPERM);
3160 
3161 	/* The address should be within the entry range. */
3162 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3163 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3164 
3165 	entry_size = tsize2size(entry_tsize);
3166 	pa_start = tlb1[i].mas3 & MAS3_RPN;
3167 	pa_end = pa_start + entry_size - 1;
3168 
3169 	if ((pa < pa_start) || ((pa + size) > pa_end))
3170 		return (ERANGE);
3171 
3172 	/* Return virtual address of this mapping. */
3173 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3174 	return (0);
3175 }
3176