xref: /freebsd/sys/powerpc/booke/pmap.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ddb.h"
80 #include "opt_kstack_pages.h"
81 
82 #include <sys/param.h>
83 #include <sys/conf.h>
84 #include <sys/malloc.h>
85 #include <sys/ktr.h>
86 #include <sys/proc.h>
87 #include <sys/user.h>
88 #include <sys/queue.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/kerneldump.h>
92 #include <sys/linker.h>
93 #include <sys/msgbuf.h>
94 #include <sys/lock.h>
95 #include <sys/mutex.h>
96 #include <sys/rwlock.h>
97 #include <sys/sched.h>
98 #include <sys/smp.h>
99 #include <sys/vmmeter.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/vm_pagequeue.h>
112 #include <vm/vm_dumpset.h>
113 #include <vm/uma.h>
114 
115 #include <machine/_inttypes.h>
116 #include <machine/cpu.h>
117 #include <machine/pcb.h>
118 #include <machine/platform.h>
119 
120 #include <machine/tlb.h>
121 #include <machine/spr.h>
122 #include <machine/md_var.h>
123 #include <machine/mmuvar.h>
124 #include <machine/pmap.h>
125 #include <machine/pte.h>
126 
127 #include <ddb/ddb.h>
128 
129 #define	SPARSE_MAPDEV
130 
131 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
132 #define	POW2_MAPPINGS
133 
134 #ifdef  DEBUG
135 #define debugf(fmt, args...) printf(fmt, ##args)
136 #define	__debug_used
137 #else
138 #define debugf(fmt, args...)
139 #define	__debug_used	__unused
140 #endif
141 
142 #ifdef __powerpc64__
143 #define	PRI0ptrX	"016lx"
144 #else
145 #define	PRI0ptrX	"08x"
146 #endif
147 
148 #define TODO			panic("%s: not implemented", __func__);
149 
150 extern unsigned char _etext[];
151 extern unsigned char _end[];
152 
153 extern uint32_t *bootinfo;
154 
155 vm_paddr_t kernload;
156 vm_offset_t kernstart;
157 vm_size_t kernsize;
158 
159 /* Message buffer and tables. */
160 static vm_offset_t data_start;
161 static vm_size_t data_end;
162 
163 /* Phys/avail memory regions. */
164 static struct mem_region *availmem_regions;
165 static int availmem_regions_sz;
166 static struct mem_region *physmem_regions;
167 static int physmem_regions_sz;
168 
169 #ifndef __powerpc64__
170 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
171 static vm_offset_t zero_page_va;
172 static struct mtx zero_page_mutex;
173 
174 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
175 static vm_offset_t copy_page_src_va;
176 static vm_offset_t copy_page_dst_va;
177 static struct mtx copy_page_mutex;
178 #endif
179 
180 static struct mtx tlbivax_mutex;
181 
182 /**************************************************************************/
183 /* PMAP */
184 /**************************************************************************/
185 
186 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
187     vm_prot_t, u_int flags, int8_t psind);
188 
189 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
190 static uma_zone_t ptbl_root_zone;
191 
192 /*
193  * If user pmap is processed with mmu_booke_remove and the resident count
194  * drops to 0, there are no more pages to remove, so we need not continue.
195  */
196 #define PMAP_REMOVE_DONE(pmap) \
197 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
198 
199 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
200 extern int elf32_nxstack;
201 #endif
202 
203 /**************************************************************************/
204 /* TLB and TID handling */
205 /**************************************************************************/
206 
207 /* Translation ID busy table */
208 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
209 
210 /*
211  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
212  * core revisions and should be read from h/w registers during early config.
213  */
214 uint32_t tlb0_entries;
215 uint32_t tlb0_ways;
216 uint32_t tlb0_entries_per_way;
217 uint32_t tlb1_entries;
218 
219 #define TLB0_ENTRIES		(tlb0_entries)
220 #define TLB0_WAYS		(tlb0_ways)
221 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
222 
223 #define TLB1_ENTRIES (tlb1_entries)
224 
225 static tlbtid_t tid_alloc(struct pmap *);
226 
227 #ifdef DDB
228 #ifdef __powerpc64__
229 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
230 #else
231 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
232 #endif
233 #endif
234 
235 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
236 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
237 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
238 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
239 
240 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
241 
242 static vm_size_t tsize2size(unsigned int);
243 static unsigned int size2tsize(vm_size_t);
244 static unsigned long ilog2(unsigned long);
245 
246 static void set_mas4_defaults(void);
247 
248 static inline void tlb0_flush_entry(vm_offset_t);
249 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
250 
251 /**************************************************************************/
252 /* Page table management */
253 /**************************************************************************/
254 
255 static struct rwlock_padalign pvh_global_lock;
256 
257 /* Data for the pv entry allocation mechanism */
258 static uma_zone_t pvzone;
259 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
260 
261 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
262 
263 #ifndef PMAP_SHPGPERPROC
264 #define PMAP_SHPGPERPROC	200
265 #endif
266 
267 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
268 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
269 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
270 static pte_t *pte_find(pmap_t, vm_offset_t);
271 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
272 
273 static pv_entry_t pv_alloc(void);
274 static void pv_free(pv_entry_t);
275 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
276 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
277 
278 static void booke_pmap_init_qpages(void);
279 
280 static inline void tlb_miss_lock(void);
281 static inline void tlb_miss_unlock(void);
282 
283 #ifdef SMP
284 extern tlb_entry_t __boot_tlb1[];
285 void pmap_bootstrap_ap(volatile uint32_t *);
286 #endif
287 
288 /*
289  * Kernel MMU interface
290  */
291 static void		mmu_booke_clear_modify(vm_page_t);
292 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
293     vm_size_t, vm_offset_t);
294 static void		mmu_booke_copy_page(vm_page_t, vm_page_t);
295 static void		mmu_booke_copy_pages(vm_page_t *,
296     vm_offset_t, vm_page_t *, vm_offset_t, int);
297 static int		mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
298     vm_prot_t, u_int flags, int8_t psind);
299 static void		mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
300     vm_page_t, vm_prot_t);
301 static void		mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
302     vm_prot_t);
303 static vm_paddr_t	mmu_booke_extract(pmap_t, vm_offset_t);
304 static vm_page_t	mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
305     vm_prot_t);
306 static void		mmu_booke_init(void);
307 static boolean_t	mmu_booke_is_modified(vm_page_t);
308 static boolean_t	mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
309 static boolean_t	mmu_booke_is_referenced(vm_page_t);
310 static int		mmu_booke_ts_referenced(vm_page_t);
311 static vm_offset_t	mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
312     int);
313 static int		mmu_booke_mincore(pmap_t, vm_offset_t,
314     vm_paddr_t *);
315 static void		mmu_booke_object_init_pt(pmap_t, vm_offset_t,
316     vm_object_t, vm_pindex_t, vm_size_t);
317 static boolean_t	mmu_booke_page_exists_quick(pmap_t, vm_page_t);
318 static void		mmu_booke_page_init(vm_page_t);
319 static int		mmu_booke_page_wired_mappings(vm_page_t);
320 static int		mmu_booke_pinit(pmap_t);
321 static void		mmu_booke_pinit0(pmap_t);
322 static void		mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
323     vm_prot_t);
324 static void		mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
325 static void		mmu_booke_qremove(vm_offset_t, int);
326 static void		mmu_booke_release(pmap_t);
327 static void		mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
328 static void		mmu_booke_remove_all(vm_page_t);
329 static void		mmu_booke_remove_write(vm_page_t);
330 static void		mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
331 static void		mmu_booke_zero_page(vm_page_t);
332 static void		mmu_booke_zero_page_area(vm_page_t, int, int);
333 static void		mmu_booke_activate(struct thread *);
334 static void		mmu_booke_deactivate(struct thread *);
335 static void		mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
336 static void		*mmu_booke_mapdev(vm_paddr_t, vm_size_t);
337 static void		*mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
338 static void		mmu_booke_unmapdev(void *, vm_size_t);
339 static vm_paddr_t	mmu_booke_kextract(vm_offset_t);
340 static void		mmu_booke_kenter(vm_offset_t, vm_paddr_t);
341 static void		mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
342 static void		mmu_booke_kremove(vm_offset_t);
343 static int		mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
344 static void		mmu_booke_sync_icache(pmap_t, vm_offset_t,
345     vm_size_t);
346 static void		mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
347     void **);
348 static void		mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
349     void *);
350 static void		mmu_booke_scan_init(void);
351 static vm_offset_t	mmu_booke_quick_enter_page(vm_page_t m);
352 static void		mmu_booke_quick_remove_page(vm_offset_t addr);
353 static int		mmu_booke_change_attr(vm_offset_t addr,
354     vm_size_t sz, vm_memattr_t mode);
355 static int		mmu_booke_decode_kernel_ptr(vm_offset_t addr,
356     int *is_user, vm_offset_t *decoded_addr);
357 static void		mmu_booke_page_array_startup(long);
358 static boolean_t mmu_booke_page_is_mapped(vm_page_t m);
359 static bool mmu_booke_ps_enabled(pmap_t pmap);
360 
361 static struct pmap_funcs mmu_booke_methods = {
362 	/* pmap dispatcher interface */
363 	.clear_modify = mmu_booke_clear_modify,
364 	.copy = mmu_booke_copy,
365 	.copy_page = mmu_booke_copy_page,
366 	.copy_pages = mmu_booke_copy_pages,
367 	.enter = mmu_booke_enter,
368 	.enter_object = mmu_booke_enter_object,
369 	.enter_quick = mmu_booke_enter_quick,
370 	.extract = mmu_booke_extract,
371 	.extract_and_hold = mmu_booke_extract_and_hold,
372 	.init = mmu_booke_init,
373 	.is_modified = mmu_booke_is_modified,
374 	.is_prefaultable = mmu_booke_is_prefaultable,
375 	.is_referenced = mmu_booke_is_referenced,
376 	.ts_referenced = mmu_booke_ts_referenced,
377 	.map = mmu_booke_map,
378 	.mincore = mmu_booke_mincore,
379 	.object_init_pt = mmu_booke_object_init_pt,
380 	.page_exists_quick = mmu_booke_page_exists_quick,
381 	.page_init = mmu_booke_page_init,
382 	.page_wired_mappings =  mmu_booke_page_wired_mappings,
383 	.pinit = mmu_booke_pinit,
384 	.pinit0 = mmu_booke_pinit0,
385 	.protect = mmu_booke_protect,
386 	.qenter = mmu_booke_qenter,
387 	.qremove = mmu_booke_qremove,
388 	.release = mmu_booke_release,
389 	.remove = mmu_booke_remove,
390 	.remove_all = mmu_booke_remove_all,
391 	.remove_write = mmu_booke_remove_write,
392 	.sync_icache = mmu_booke_sync_icache,
393 	.unwire = mmu_booke_unwire,
394 	.zero_page = mmu_booke_zero_page,
395 	.zero_page_area = mmu_booke_zero_page_area,
396 	.activate = mmu_booke_activate,
397 	.deactivate = mmu_booke_deactivate,
398 	.quick_enter_page =  mmu_booke_quick_enter_page,
399 	.quick_remove_page =  mmu_booke_quick_remove_page,
400 	.page_array_startup = mmu_booke_page_array_startup,
401 	.page_is_mapped = mmu_booke_page_is_mapped,
402 	.ps_enabled = mmu_booke_ps_enabled,
403 
404 	/* Internal interfaces */
405 	.bootstrap = mmu_booke_bootstrap,
406 	.dev_direct_mapped = mmu_booke_dev_direct_mapped,
407 	.mapdev = mmu_booke_mapdev,
408 	.mapdev_attr = mmu_booke_mapdev_attr,
409 	.kenter = mmu_booke_kenter,
410 	.kenter_attr = mmu_booke_kenter_attr,
411 	.kextract = mmu_booke_kextract,
412 	.kremove = mmu_booke_kremove,
413 	.unmapdev = mmu_booke_unmapdev,
414 	.change_attr = mmu_booke_change_attr,
415 	.decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
416 
417 	/* dumpsys() support */
418 	.dumpsys_map_chunk = mmu_booke_dumpsys_map,
419 	.dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
420 	.dumpsys_pa_init = mmu_booke_scan_init,
421 };
422 
423 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
424 
425 #ifdef __powerpc64__
426 #include "pmap_64.c"
427 #else
428 #include "pmap_32.c"
429 #endif
430 
431 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
432 
433 static __inline uint32_t
434 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
435 {
436 	uint32_t attrib;
437 	int i;
438 
439 	if (ma != VM_MEMATTR_DEFAULT) {
440 		switch (ma) {
441 		case VM_MEMATTR_UNCACHEABLE:
442 			return (MAS2_I | MAS2_G);
443 		case VM_MEMATTR_WRITE_COMBINING:
444 		case VM_MEMATTR_WRITE_BACK:
445 		case VM_MEMATTR_PREFETCHABLE:
446 			return (MAS2_I);
447 		case VM_MEMATTR_WRITE_THROUGH:
448 			return (MAS2_W | MAS2_M);
449 		case VM_MEMATTR_CACHEABLE:
450 			return (MAS2_M);
451 		}
452 	}
453 
454 	/*
455 	 * Assume the page is cache inhibited and access is guarded unless
456 	 * it's in our available memory array.
457 	 */
458 	attrib = _TLB_ENTRY_IO;
459 	for (i = 0; i < physmem_regions_sz; i++) {
460 		if ((pa >= physmem_regions[i].mr_start) &&
461 		    (pa < (physmem_regions[i].mr_start +
462 		     physmem_regions[i].mr_size))) {
463 			attrib = _TLB_ENTRY_MEM;
464 			break;
465 		}
466 	}
467 
468 	return (attrib);
469 }
470 
471 static inline void
472 tlb_miss_lock(void)
473 {
474 #ifdef SMP
475 	struct pcpu *pc;
476 
477 	if (!smp_started)
478 		return;
479 
480 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
481 		if (pc != pcpup) {
482 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
483 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
484 
485 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
486 			    ("tlb_miss_lock: tried to lock self"));
487 
488 			tlb_lock(pc->pc_booke.tlb_lock);
489 
490 			CTR1(KTR_PMAP, "%s: locked", __func__);
491 		}
492 	}
493 #endif
494 }
495 
496 static inline void
497 tlb_miss_unlock(void)
498 {
499 #ifdef SMP
500 	struct pcpu *pc;
501 
502 	if (!smp_started)
503 		return;
504 
505 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
506 		if (pc != pcpup) {
507 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
508 			    __func__, pc->pc_cpuid);
509 
510 			tlb_unlock(pc->pc_booke.tlb_lock);
511 
512 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
513 		}
514 	}
515 #endif
516 }
517 
518 /* Return number of entries in TLB0. */
519 static __inline void
520 tlb0_get_tlbconf(void)
521 {
522 	uint32_t tlb0_cfg;
523 
524 	tlb0_cfg = mfspr(SPR_TLB0CFG);
525 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
526 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
527 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
528 }
529 
530 /* Return number of entries in TLB1. */
531 static __inline void
532 tlb1_get_tlbconf(void)
533 {
534 	uint32_t tlb1_cfg;
535 
536 	tlb1_cfg = mfspr(SPR_TLB1CFG);
537 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
538 }
539 
540 /**************************************************************************/
541 /* Page table related */
542 /**************************************************************************/
543 
544 /* Allocate pv_entry structure. */
545 pv_entry_t
546 pv_alloc(void)
547 {
548 	pv_entry_t pv;
549 
550 	pv_entry_count++;
551 	if (pv_entry_count > pv_entry_high_water)
552 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
553 	pv = uma_zalloc(pvzone, M_NOWAIT);
554 
555 	return (pv);
556 }
557 
558 /* Free pv_entry structure. */
559 static __inline void
560 pv_free(pv_entry_t pve)
561 {
562 
563 	pv_entry_count--;
564 	uma_zfree(pvzone, pve);
565 }
566 
567 /* Allocate and initialize pv_entry structure. */
568 static void
569 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
570 {
571 	pv_entry_t pve;
572 
573 	//int su = (pmap == kernel_pmap);
574 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
575 	//	(u_int32_t)pmap, va, (u_int32_t)m);
576 
577 	pve = pv_alloc();
578 	if (pve == NULL)
579 		panic("pv_insert: no pv entries!");
580 
581 	pve->pv_pmap = pmap;
582 	pve->pv_va = va;
583 
584 	/* add to pv_list */
585 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
586 	rw_assert(&pvh_global_lock, RA_WLOCKED);
587 
588 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
589 
590 	//debugf("pv_insert: e\n");
591 }
592 
593 /* Destroy pv entry. */
594 static void
595 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
596 {
597 	pv_entry_t pve;
598 
599 	//int su = (pmap == kernel_pmap);
600 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
601 
602 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
603 	rw_assert(&pvh_global_lock, RA_WLOCKED);
604 
605 	/* find pv entry */
606 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
607 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
608 			/* remove from pv_list */
609 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
610 			if (TAILQ_EMPTY(&m->md.pv_list))
611 				vm_page_aflag_clear(m, PGA_WRITEABLE);
612 
613 			/* free pv entry struct */
614 			pv_free(pve);
615 			break;
616 		}
617 	}
618 
619 	//debugf("pv_remove: e\n");
620 }
621 
622 /**************************************************************************/
623 /* PMAP related */
624 /**************************************************************************/
625 
626 /*
627  * This is called during booke_init, before the system is really initialized.
628  */
629 static void
630 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
631 {
632 	vm_paddr_t phys_kernelend;
633 	struct mem_region *mp, *mp1;
634 	int cnt, i, j;
635 	vm_paddr_t s, e, sz;
636 	vm_paddr_t physsz, hwphyssz;
637 	u_int phys_avail_count __debug_used;
638 	vm_size_t kstack0_sz;
639 	vm_paddr_t kstack0_phys;
640 	vm_offset_t kstack0;
641 	void *dpcpu;
642 
643 	debugf("mmu_booke_bootstrap: entered\n");
644 
645 	/* Set interesting system properties */
646 #ifdef __powerpc64__
647 	hw_direct_map = 1;
648 #else
649 	hw_direct_map = 0;
650 #endif
651 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
652 	elf32_nxstack = 1;
653 #endif
654 
655 	/* Initialize invalidation mutex */
656 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
657 
658 	/* Read TLB0 size and associativity. */
659 	tlb0_get_tlbconf();
660 
661 	/*
662 	 * Align kernel start and end address (kernel image).
663 	 * Note that kernel end does not necessarily relate to kernsize.
664 	 * kernsize is the size of the kernel that is actually mapped.
665 	 */
666 	data_start = round_page(kernelend);
667 	data_end = data_start;
668 
669 	/* Allocate the dynamic per-cpu area. */
670 	dpcpu = (void *)data_end;
671 	data_end += DPCPU_SIZE;
672 
673 	/* Allocate space for the message buffer. */
674 	msgbufp = (struct msgbuf *)data_end;
675 	data_end += msgbufsize;
676 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
677 	    (uintptr_t)msgbufp, data_end);
678 
679 	data_end = round_page(data_end);
680 	data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
681 
682 	/* Retrieve phys/avail mem regions */
683 	mem_regions(&physmem_regions, &physmem_regions_sz,
684 	    &availmem_regions, &availmem_regions_sz);
685 
686 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
687 		panic("mmu_booke_bootstrap: phys_avail too small");
688 
689 	data_end = round_page(data_end);
690 	vm_page_array = (vm_page_t)data_end;
691 	/*
692 	 * Get a rough idea (upper bound) on the size of the page array.  The
693 	 * vm_page_array will not handle any more pages than we have in the
694 	 * avail_regions array, and most likely much less.
695 	 */
696 	sz = 0;
697 	for (mp = availmem_regions; mp->mr_size; mp++) {
698 		sz += mp->mr_size;
699 	}
700 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
701 	data_end += round_page(sz * sizeof(struct vm_page));
702 
703 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
704 	data_end = roundup2(data_end, 1 << 20);
705 
706 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
707 	debugf(" kernstart: %#zx\n", kernstart);
708 	debugf(" kernsize: %#zx\n", kernsize);
709 
710 	if (data_end - kernstart > kernsize) {
711 		kernsize += tlb1_mapin_region(kernstart + kernsize,
712 		    kernload + kernsize, (data_end - kernstart) - kernsize,
713 		    _TLB_ENTRY_MEM);
714 	}
715 	data_end = kernstart + kernsize;
716 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
717 
718 	/*
719 	 * Clear the structures - note we can only do it safely after the
720 	 * possible additional TLB1 translations are in place (above) so that
721 	 * all range up to the currently calculated 'data_end' is covered.
722 	 */
723 	bzero((void *)data_start, data_end - data_start);
724 	dpcpu_init(dpcpu, 0);
725 
726 	/*******************************************************/
727 	/* Set the start and end of kva. */
728 	/*******************************************************/
729 	virtual_avail = round_page(data_end);
730 	virtual_end = VM_MAX_KERNEL_ADDRESS;
731 
732 #ifndef __powerpc64__
733 	/* Allocate KVA space for page zero/copy operations. */
734 	zero_page_va = virtual_avail;
735 	virtual_avail += PAGE_SIZE;
736 	copy_page_src_va = virtual_avail;
737 	virtual_avail += PAGE_SIZE;
738 	copy_page_dst_va = virtual_avail;
739 	virtual_avail += PAGE_SIZE;
740 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
741 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
742 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
743 
744 	/* Initialize page zero/copy mutexes. */
745 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
746 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
747 
748 	/* Allocate KVA space for ptbl bufs. */
749 	ptbl_buf_pool_vabase = virtual_avail;
750 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
751 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
752 	    ptbl_buf_pool_vabase, virtual_avail);
753 #endif
754 
755 	/* Calculate corresponding physical addresses for the kernel region. */
756 	phys_kernelend = kernload + kernsize;
757 	debugf("kernel image and allocated data:\n");
758 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
759 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
760 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
761 
762 	/*
763 	 * Remove kernel physical address range from avail regions list. Page
764 	 * align all regions.  Non-page aligned memory isn't very interesting
765 	 * to us.  Also, sort the entries for ascending addresses.
766 	 */
767 
768 	sz = 0;
769 	cnt = availmem_regions_sz;
770 	debugf("processing avail regions:\n");
771 	for (mp = availmem_regions; mp->mr_size; mp++) {
772 		s = mp->mr_start;
773 		e = mp->mr_start + mp->mr_size;
774 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
775 		/* Check whether this region holds all of the kernel. */
776 		if (s < kernload && e > phys_kernelend) {
777 			availmem_regions[cnt].mr_start = phys_kernelend;
778 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
779 			e = kernload;
780 		}
781 		/* Look whether this regions starts within the kernel. */
782 		if (s >= kernload && s < phys_kernelend) {
783 			if (e <= phys_kernelend)
784 				goto empty;
785 			s = phys_kernelend;
786 		}
787 		/* Now look whether this region ends within the kernel. */
788 		if (e > kernload && e <= phys_kernelend) {
789 			if (s >= kernload)
790 				goto empty;
791 			e = kernload;
792 		}
793 		/* Now page align the start and size of the region. */
794 		s = round_page(s);
795 		e = trunc_page(e);
796 		if (e < s)
797 			e = s;
798 		sz = e - s;
799 		debugf("%09jx-%09jx = %jx\n",
800 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
801 
802 		/* Check whether some memory is left here. */
803 		if (sz == 0) {
804 		empty:
805 			memmove(mp, mp + 1,
806 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
807 			cnt--;
808 			mp--;
809 			continue;
810 		}
811 
812 		/* Do an insertion sort. */
813 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
814 			if (s < mp1->mr_start)
815 				break;
816 		if (mp1 < mp) {
817 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
818 			mp1->mr_start = s;
819 			mp1->mr_size = sz;
820 		} else {
821 			mp->mr_start = s;
822 			mp->mr_size = sz;
823 		}
824 	}
825 	availmem_regions_sz = cnt;
826 
827 	/*******************************************************/
828 	/* Steal physical memory for kernel stack from the end */
829 	/* of the first avail region                           */
830 	/*******************************************************/
831 	kstack0_sz = kstack_pages * PAGE_SIZE;
832 	kstack0_phys = availmem_regions[0].mr_start +
833 	    availmem_regions[0].mr_size;
834 	kstack0_phys -= kstack0_sz;
835 	availmem_regions[0].mr_size -= kstack0_sz;
836 
837 	/*******************************************************/
838 	/* Fill in phys_avail table, based on availmem_regions */
839 	/*******************************************************/
840 	phys_avail_count = 0;
841 	physsz = 0;
842 	hwphyssz = 0;
843 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
844 
845 	debugf("fill in phys_avail:\n");
846 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
847 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
848 		    (uintmax_t)availmem_regions[i].mr_start,
849 		    (uintmax_t)availmem_regions[i].mr_start +
850 		        availmem_regions[i].mr_size,
851 		    (uintmax_t)availmem_regions[i].mr_size);
852 
853 		if (hwphyssz != 0 &&
854 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
855 			debugf(" hw.physmem adjust\n");
856 			if (physsz < hwphyssz) {
857 				phys_avail[j] = availmem_regions[i].mr_start;
858 				phys_avail[j + 1] =
859 				    availmem_regions[i].mr_start +
860 				    hwphyssz - physsz;
861 				physsz = hwphyssz;
862 				phys_avail_count++;
863 				dump_avail[j] = phys_avail[j];
864 				dump_avail[j + 1] = phys_avail[j + 1];
865 			}
866 			break;
867 		}
868 
869 		phys_avail[j] = availmem_regions[i].mr_start;
870 		phys_avail[j + 1] = availmem_regions[i].mr_start +
871 		    availmem_regions[i].mr_size;
872 		phys_avail_count++;
873 		physsz += availmem_regions[i].mr_size;
874 		dump_avail[j] = phys_avail[j];
875 		dump_avail[j + 1] = phys_avail[j + 1];
876 	}
877 	physmem = btoc(physsz);
878 
879 	/* Calculate the last available physical address. */
880 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
881 		;
882 	Maxmem = powerpc_btop(phys_avail[i + 1]);
883 
884 	debugf("Maxmem = 0x%08lx\n", Maxmem);
885 	debugf("phys_avail_count = %d\n", phys_avail_count);
886 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
887 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
888 
889 #ifdef __powerpc64__
890 	/*
891 	 * Map the physical memory contiguously in TLB1.
892 	 * Round so it fits into a single mapping.
893 	 */
894 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
895 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
896 #endif
897 
898 	/*******************************************************/
899 	/* Initialize (statically allocated) kernel pmap. */
900 	/*******************************************************/
901 	PMAP_LOCK_INIT(kernel_pmap);
902 
903 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
904 	kernel_pte_alloc(virtual_avail, kernstart);
905 	for (i = 0; i < MAXCPU; i++) {
906 		kernel_pmap->pm_tid[i] = TID_KERNEL;
907 
908 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
909 		tidbusy[i][TID_KERNEL] = kernel_pmap;
910 	}
911 
912 	/* Mark kernel_pmap active on all CPUs */
913 	CPU_FILL(&kernel_pmap->pm_active);
914 
915  	/*
916 	 * Initialize the global pv list lock.
917 	 */
918 	rw_init(&pvh_global_lock, "pmap pv global");
919 
920 	/*******************************************************/
921 	/* Final setup */
922 	/*******************************************************/
923 
924 	/* Enter kstack0 into kernel map, provide guard page */
925 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
926 	thread0.td_kstack = kstack0;
927 	thread0.td_kstack_pages = kstack_pages;
928 
929 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
930 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
931 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
932 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
933 	    kstack0, kstack0 + kstack0_sz);
934 
935 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
936 	for (i = 0; i < kstack_pages; i++) {
937 		mmu_booke_kenter(kstack0, kstack0_phys);
938 		kstack0 += PAGE_SIZE;
939 		kstack0_phys += PAGE_SIZE;
940 	}
941 
942 	pmap_bootstrapped = 1;
943 
944 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
945 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
946 
947 	debugf("mmu_booke_bootstrap: exit\n");
948 }
949 
950 #ifdef SMP
951 void
952 tlb1_ap_prep(void)
953 {
954 	tlb_entry_t *e, tmp;
955 	unsigned int i;
956 
957 	/* Prepare TLB1 image for AP processors */
958 	e = __boot_tlb1;
959 	for (i = 0; i < TLB1_ENTRIES; i++) {
960 		tlb1_read_entry(&tmp, i);
961 
962 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
963 			memcpy(e++, &tmp, sizeof(tmp));
964 	}
965 }
966 
967 void
968 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
969 {
970 	int i;
971 
972 	/*
973 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
974 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
975 	 * created by tlb1_ap_prep(), so use these values directly to
976 	 * (re)program AP's TLB1 hardware.
977 	 *
978 	 * Start at index 1 because index 0 has the kernel map.
979 	 */
980 	for (i = 1; i < TLB1_ENTRIES; i++) {
981 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
982 			tlb1_write_entry(&__boot_tlb1[i], i);
983 	}
984 
985 	set_mas4_defaults();
986 }
987 #endif
988 
989 static void
990 booke_pmap_init_qpages(void)
991 {
992 	struct pcpu *pc;
993 	int i;
994 
995 	CPU_FOREACH(i) {
996 		pc = pcpu_find(i);
997 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
998 		if (pc->pc_qmap_addr == 0)
999 			panic("pmap_init_qpages: unable to allocate KVA");
1000 	}
1001 }
1002 
1003 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1004 
1005 /*
1006  * Get the physical page address for the given pmap/virtual address.
1007  */
1008 static vm_paddr_t
1009 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
1010 {
1011 	vm_paddr_t pa;
1012 
1013 	PMAP_LOCK(pmap);
1014 	pa = pte_vatopa(pmap, va);
1015 	PMAP_UNLOCK(pmap);
1016 
1017 	return (pa);
1018 }
1019 
1020 /*
1021  * Extract the physical page address associated with the given
1022  * kernel virtual address.
1023  */
1024 static vm_paddr_t
1025 mmu_booke_kextract(vm_offset_t va)
1026 {
1027 	tlb_entry_t e;
1028 	vm_paddr_t p = 0;
1029 	int i;
1030 
1031 #ifdef __powerpc64__
1032 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1033 		return (DMAP_TO_PHYS(va));
1034 #endif
1035 
1036 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1037 		p = pte_vatopa(kernel_pmap, va);
1038 
1039 	if (p == 0) {
1040 		/* Check TLB1 mappings */
1041 		for (i = 0; i < TLB1_ENTRIES; i++) {
1042 			tlb1_read_entry(&e, i);
1043 			if (!(e.mas1 & MAS1_VALID))
1044 				continue;
1045 			if (va >= e.virt && va < e.virt + e.size)
1046 				return (e.phys + (va - e.virt));
1047 		}
1048 	}
1049 
1050 	return (p);
1051 }
1052 
1053 /*
1054  * Initialize the pmap module.
1055  * Called by vm_init, to initialize any structures that the pmap
1056  * system needs to map virtual memory.
1057  */
1058 static void
1059 mmu_booke_init(void)
1060 {
1061 	int shpgperproc = PMAP_SHPGPERPROC;
1062 
1063 	/*
1064 	 * Initialize the address space (zone) for the pv entries.  Set a
1065 	 * high water mark so that the system can recover from excessive
1066 	 * numbers of pv entries.
1067 	 */
1068 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1069 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1070 
1071 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1072 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1073 
1074 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1075 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1076 
1077 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1078 
1079 	/* Pre-fill pvzone with initial number of pv entries. */
1080 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1081 
1082 	/* Create a UMA zone for page table roots. */
1083 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
1084 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
1085 
1086 	/* Initialize ptbl allocation. */
1087 	ptbl_init();
1088 }
1089 
1090 /*
1091  * Map a list of wired pages into kernel virtual address space.  This is
1092  * intended for temporary mappings which do not need page modification or
1093  * references recorded.  Existing mappings in the region are overwritten.
1094  */
1095 static void
1096 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
1097 {
1098 	vm_offset_t va;
1099 
1100 	va = sva;
1101 	while (count-- > 0) {
1102 		mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
1103 		va += PAGE_SIZE;
1104 		m++;
1105 	}
1106 }
1107 
1108 /*
1109  * Remove page mappings from kernel virtual address space.  Intended for
1110  * temporary mappings entered by mmu_booke_qenter.
1111  */
1112 static void
1113 mmu_booke_qremove(vm_offset_t sva, int count)
1114 {
1115 	vm_offset_t va;
1116 
1117 	va = sva;
1118 	while (count-- > 0) {
1119 		mmu_booke_kremove(va);
1120 		va += PAGE_SIZE;
1121 	}
1122 }
1123 
1124 /*
1125  * Map a wired page into kernel virtual address space.
1126  */
1127 static void
1128 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
1129 {
1130 
1131 	mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1132 }
1133 
1134 static void
1135 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1136 {
1137 	uint32_t flags;
1138 	pte_t *pte;
1139 
1140 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1141 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1142 
1143 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1144 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1145 	flags |= PTE_PS_4KB;
1146 
1147 	pte = pte_find(kernel_pmap, va);
1148 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
1149 
1150 	mtx_lock_spin(&tlbivax_mutex);
1151 	tlb_miss_lock();
1152 
1153 	if (PTE_ISVALID(pte)) {
1154 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1155 
1156 		/* Flush entry from TLB0 */
1157 		tlb0_flush_entry(va);
1158 	}
1159 
1160 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1161 
1162 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1163 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1164 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1165 
1166 	/* Flush the real memory from the instruction cache. */
1167 	if ((flags & (PTE_I | PTE_G)) == 0)
1168 		__syncicache((void *)va, PAGE_SIZE);
1169 
1170 	tlb_miss_unlock();
1171 	mtx_unlock_spin(&tlbivax_mutex);
1172 }
1173 
1174 /*
1175  * Remove a page from kernel page table.
1176  */
1177 static void
1178 mmu_booke_kremove(vm_offset_t va)
1179 {
1180 	pte_t *pte;
1181 
1182 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
1183 
1184 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1185 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1186 	    ("mmu_booke_kremove: invalid va"));
1187 
1188 	pte = pte_find(kernel_pmap, va);
1189 
1190 	if (!PTE_ISVALID(pte)) {
1191 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1192 
1193 		return;
1194 	}
1195 
1196 	mtx_lock_spin(&tlbivax_mutex);
1197 	tlb_miss_lock();
1198 
1199 	/* Invalidate entry in TLB0, update PTE. */
1200 	tlb0_flush_entry(va);
1201 	*pte = 0;
1202 
1203 	tlb_miss_unlock();
1204 	mtx_unlock_spin(&tlbivax_mutex);
1205 }
1206 
1207 /*
1208  * Figure out where a given kernel pointer (usually in a fault) points
1209  * to from the VM's perspective, potentially remapping into userland's
1210  * address space.
1211  */
1212 static int
1213 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1214     vm_offset_t *decoded_addr)
1215 {
1216 
1217 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
1218 		*is_user = 1;
1219 	else
1220 		*is_user = 0;
1221 
1222 	*decoded_addr = addr;
1223 	return (0);
1224 }
1225 
1226 static boolean_t
1227 mmu_booke_page_is_mapped(vm_page_t m)
1228 {
1229 
1230 	return (!TAILQ_EMPTY(&(m)->md.pv_list));
1231 }
1232 
1233 static bool
1234 mmu_booke_ps_enabled(pmap_t pmap __unused)
1235 {
1236 	return (false);
1237 }
1238 
1239 /*
1240  * Initialize pmap associated with process 0.
1241  */
1242 static void
1243 mmu_booke_pinit0(pmap_t pmap)
1244 {
1245 
1246 	PMAP_LOCK_INIT(pmap);
1247 	mmu_booke_pinit(pmap);
1248 	PCPU_SET(curpmap, pmap);
1249 }
1250 
1251 /*
1252  * Insert the given physical page at the specified virtual address in the
1253  * target physical map with the protection requested. If specified the page
1254  * will be wired down.
1255  */
1256 static int
1257 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1258     vm_prot_t prot, u_int flags, int8_t psind)
1259 {
1260 	int error;
1261 
1262 	rw_wlock(&pvh_global_lock);
1263 	PMAP_LOCK(pmap);
1264 	error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
1265 	PMAP_UNLOCK(pmap);
1266 	rw_wunlock(&pvh_global_lock);
1267 	return (error);
1268 }
1269 
1270 static int
1271 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1272     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1273 {
1274 	pte_t *pte;
1275 	vm_paddr_t pa;
1276 	pte_t flags;
1277 	int error, su, sync;
1278 
1279 	pa = VM_PAGE_TO_PHYS(m);
1280 	su = (pmap == kernel_pmap);
1281 	sync = 0;
1282 
1283 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1284 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1285 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1286 	//		(u_int32_t)m, va, pa, prot, flags);
1287 
1288 	if (su) {
1289 		KASSERT(((va >= virtual_avail) &&
1290 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1291 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1292 	} else {
1293 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1294 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1295 	}
1296 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1297 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1298 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1299 		else
1300 			VM_OBJECT_ASSERT_LOCKED(m->object);
1301 	}
1302 
1303 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1304 
1305 	/*
1306 	 * If there is an existing mapping, and the physical address has not
1307 	 * changed, must be protection or wiring change.
1308 	 */
1309 	if (((pte = pte_find(pmap, va)) != NULL) &&
1310 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1311 
1312 		/*
1313 		 * Before actually updating pte->flags we calculate and
1314 		 * prepare its new value in a helper var.
1315 		 */
1316 		flags = *pte;
1317 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1318 
1319 		/* Wiring change, just update stats. */
1320 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1321 			if (!PTE_ISWIRED(pte)) {
1322 				flags |= PTE_WIRED;
1323 				pmap->pm_stats.wired_count++;
1324 			}
1325 		} else {
1326 			if (PTE_ISWIRED(pte)) {
1327 				flags &= ~PTE_WIRED;
1328 				pmap->pm_stats.wired_count--;
1329 			}
1330 		}
1331 
1332 		if (prot & VM_PROT_WRITE) {
1333 			/* Add write permissions. */
1334 			flags |= PTE_SW;
1335 			if (!su)
1336 				flags |= PTE_UW;
1337 
1338 			if ((flags & PTE_MANAGED) != 0)
1339 				vm_page_aflag_set(m, PGA_WRITEABLE);
1340 		} else {
1341 			/* Handle modified pages, sense modify status. */
1342 
1343 			/*
1344 			 * The PTE_MODIFIED flag could be set by underlying
1345 			 * TLB misses since we last read it (above), possibly
1346 			 * other CPUs could update it so we check in the PTE
1347 			 * directly rather than rely on that saved local flags
1348 			 * copy.
1349 			 */
1350 			if (PTE_ISMODIFIED(pte))
1351 				vm_page_dirty(m);
1352 		}
1353 
1354 		if (prot & VM_PROT_EXECUTE) {
1355 			flags |= PTE_SX;
1356 			if (!su)
1357 				flags |= PTE_UX;
1358 
1359 			/*
1360 			 * Check existing flags for execute permissions: if we
1361 			 * are turning execute permissions on, icache should
1362 			 * be flushed.
1363 			 */
1364 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1365 				sync++;
1366 		}
1367 
1368 		flags &= ~PTE_REFERENCED;
1369 
1370 		/*
1371 		 * The new flags value is all calculated -- only now actually
1372 		 * update the PTE.
1373 		 */
1374 		mtx_lock_spin(&tlbivax_mutex);
1375 		tlb_miss_lock();
1376 
1377 		tlb0_flush_entry(va);
1378 		*pte &= ~PTE_FLAGS_MASK;
1379 		*pte |= flags;
1380 
1381 		tlb_miss_unlock();
1382 		mtx_unlock_spin(&tlbivax_mutex);
1383 
1384 	} else {
1385 		/*
1386 		 * If there is an existing mapping, but it's for a different
1387 		 * physical address, pte_enter() will delete the old mapping.
1388 		 */
1389 		//if ((pte != NULL) && PTE_ISVALID(pte))
1390 		//	debugf("mmu_booke_enter_locked: replace\n");
1391 		//else
1392 		//	debugf("mmu_booke_enter_locked: new\n");
1393 
1394 		/* Now set up the flags and install the new mapping. */
1395 		flags = (PTE_SR | PTE_VALID);
1396 		flags |= PTE_M;
1397 
1398 		if (!su)
1399 			flags |= PTE_UR;
1400 
1401 		if (prot & VM_PROT_WRITE) {
1402 			flags |= PTE_SW;
1403 			if (!su)
1404 				flags |= PTE_UW;
1405 
1406 			if ((m->oflags & VPO_UNMANAGED) == 0)
1407 				vm_page_aflag_set(m, PGA_WRITEABLE);
1408 		}
1409 
1410 		if (prot & VM_PROT_EXECUTE) {
1411 			flags |= PTE_SX;
1412 			if (!su)
1413 				flags |= PTE_UX;
1414 		}
1415 
1416 		/* If its wired update stats. */
1417 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1418 			flags |= PTE_WIRED;
1419 
1420 		error = pte_enter(pmap, m, va, flags,
1421 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1422 		if (error != 0)
1423 			return (KERN_RESOURCE_SHORTAGE);
1424 
1425 		if ((flags & PMAP_ENTER_WIRED) != 0)
1426 			pmap->pm_stats.wired_count++;
1427 
1428 		/* Flush the real memory from the instruction cache. */
1429 		if (prot & VM_PROT_EXECUTE)
1430 			sync++;
1431 	}
1432 
1433 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1434 		__syncicache((void *)va, PAGE_SIZE);
1435 		sync = 0;
1436 	}
1437 
1438 	return (KERN_SUCCESS);
1439 }
1440 
1441 /*
1442  * Maps a sequence of resident pages belonging to the same object.
1443  * The sequence begins with the given page m_start.  This page is
1444  * mapped at the given virtual address start.  Each subsequent page is
1445  * mapped at a virtual address that is offset from start by the same
1446  * amount as the page is offset from m_start within the object.  The
1447  * last page in the sequence is the page with the largest offset from
1448  * m_start that can be mapped at a virtual address less than the given
1449  * virtual address end.  Not every virtual page between start and end
1450  * is mapped; only those for which a resident page exists with the
1451  * corresponding offset from m_start are mapped.
1452  */
1453 static void
1454 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
1455     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1456 {
1457 	vm_page_t m;
1458 	vm_pindex_t diff, psize;
1459 
1460 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1461 
1462 	psize = atop(end - start);
1463 	m = m_start;
1464 	rw_wlock(&pvh_global_lock);
1465 	PMAP_LOCK(pmap);
1466 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1467 		mmu_booke_enter_locked(pmap, start + ptoa(diff), m,
1468 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1469 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1470 		m = TAILQ_NEXT(m, listq);
1471 	}
1472 	PMAP_UNLOCK(pmap);
1473 	rw_wunlock(&pvh_global_lock);
1474 }
1475 
1476 static void
1477 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
1478     vm_prot_t prot)
1479 {
1480 
1481 	rw_wlock(&pvh_global_lock);
1482 	PMAP_LOCK(pmap);
1483 	mmu_booke_enter_locked(pmap, va, m,
1484 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1485 	    PMAP_ENTER_QUICK_LOCKED, 0);
1486 	PMAP_UNLOCK(pmap);
1487 	rw_wunlock(&pvh_global_lock);
1488 }
1489 
1490 /*
1491  * Remove the given range of addresses from the specified map.
1492  *
1493  * It is assumed that the start and end are properly rounded to the page size.
1494  */
1495 static void
1496 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1497 {
1498 	pte_t *pte;
1499 	uint8_t hold_flag;
1500 
1501 	int su = (pmap == kernel_pmap);
1502 
1503 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1504 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1505 
1506 	if (su) {
1507 		KASSERT(((va >= virtual_avail) &&
1508 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1509 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1510 	} else {
1511 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1512 		    ("mmu_booke_remove: user pmap, non user va"));
1513 	}
1514 
1515 	if (PMAP_REMOVE_DONE(pmap)) {
1516 		//debugf("mmu_booke_remove: e (empty)\n");
1517 		return;
1518 	}
1519 
1520 	hold_flag = PTBL_HOLD_FLAG(pmap);
1521 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1522 
1523 	rw_wlock(&pvh_global_lock);
1524 	PMAP_LOCK(pmap);
1525 	for (; va < endva; va += PAGE_SIZE) {
1526 		pte = pte_find_next(pmap, &va);
1527 		if ((pte == NULL) || !PTE_ISVALID(pte))
1528 			break;
1529 		if (va >= endva)
1530 			break;
1531 		pte_remove(pmap, va, hold_flag);
1532 	}
1533 	PMAP_UNLOCK(pmap);
1534 	rw_wunlock(&pvh_global_lock);
1535 
1536 	//debugf("mmu_booke_remove: e\n");
1537 }
1538 
1539 /*
1540  * Remove physical page from all pmaps in which it resides.
1541  */
1542 static void
1543 mmu_booke_remove_all(vm_page_t m)
1544 {
1545 	pv_entry_t pv, pvn;
1546 	uint8_t hold_flag;
1547 
1548 	rw_wlock(&pvh_global_lock);
1549 	TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
1550 		PMAP_LOCK(pv->pv_pmap);
1551 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1552 		pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
1553 		PMAP_UNLOCK(pv->pv_pmap);
1554 	}
1555 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1556 	rw_wunlock(&pvh_global_lock);
1557 }
1558 
1559 /*
1560  * Map a range of physical addresses into kernel virtual address space.
1561  */
1562 static vm_offset_t
1563 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
1564     vm_paddr_t pa_end, int prot)
1565 {
1566 	vm_offset_t sva = *virt;
1567 	vm_offset_t va = sva;
1568 
1569 #ifdef __powerpc64__
1570 	/* XXX: Handle memory not starting at 0x0. */
1571 	if (pa_end < ctob(Maxmem))
1572 		return (PHYS_TO_DMAP(pa_start));
1573 #endif
1574 
1575 	while (pa_start < pa_end) {
1576 		mmu_booke_kenter(va, pa_start);
1577 		va += PAGE_SIZE;
1578 		pa_start += PAGE_SIZE;
1579 	}
1580 	*virt = va;
1581 
1582 	return (sva);
1583 }
1584 
1585 /*
1586  * The pmap must be activated before it's address space can be accessed in any
1587  * way.
1588  */
1589 static void
1590 mmu_booke_activate(struct thread *td)
1591 {
1592 	pmap_t pmap;
1593 	u_int cpuid;
1594 
1595 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1596 
1597 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
1598 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1599 
1600 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1601 
1602 	sched_pin();
1603 
1604 	cpuid = PCPU_GET(cpuid);
1605 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1606 	PCPU_SET(curpmap, pmap);
1607 
1608 	if (pmap->pm_tid[cpuid] == TID_NONE)
1609 		tid_alloc(pmap);
1610 
1611 	/* Load PID0 register with pmap tid value. */
1612 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1613 	__asm __volatile("isync");
1614 
1615 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1616 
1617 	sched_unpin();
1618 
1619 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1620 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1621 }
1622 
1623 /*
1624  * Deactivate the specified process's address space.
1625  */
1626 static void
1627 mmu_booke_deactivate(struct thread *td)
1628 {
1629 	pmap_t pmap;
1630 
1631 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1632 
1633 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
1634 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1635 
1636 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1637 
1638 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1639 	PCPU_SET(curpmap, NULL);
1640 }
1641 
1642 /*
1643  * Copy the range specified by src_addr/len
1644  * from the source map to the range dst_addr/len
1645  * in the destination map.
1646  *
1647  * This routine is only advisory and need not do anything.
1648  */
1649 static void
1650 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
1651     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1652 {
1653 
1654 }
1655 
1656 /*
1657  * Set the physical protection on the specified range of this map as requested.
1658  */
1659 static void
1660 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1661     vm_prot_t prot)
1662 {
1663 	vm_offset_t va;
1664 	vm_page_t m;
1665 	pte_t *pte;
1666 
1667 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1668 		mmu_booke_remove(pmap, sva, eva);
1669 		return;
1670 	}
1671 
1672 	if (prot & VM_PROT_WRITE)
1673 		return;
1674 
1675 	PMAP_LOCK(pmap);
1676 	for (va = sva; va < eva; va += PAGE_SIZE) {
1677 		if ((pte = pte_find(pmap, va)) != NULL) {
1678 			if (PTE_ISVALID(pte)) {
1679 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1680 
1681 				mtx_lock_spin(&tlbivax_mutex);
1682 				tlb_miss_lock();
1683 
1684 				/* Handle modified pages. */
1685 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1686 					vm_page_dirty(m);
1687 
1688 				tlb0_flush_entry(va);
1689 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1690 
1691 				tlb_miss_unlock();
1692 				mtx_unlock_spin(&tlbivax_mutex);
1693 			}
1694 		}
1695 	}
1696 	PMAP_UNLOCK(pmap);
1697 }
1698 
1699 /*
1700  * Clear the write and modified bits in each of the given page's mappings.
1701  */
1702 static void
1703 mmu_booke_remove_write(vm_page_t m)
1704 {
1705 	pv_entry_t pv;
1706 	pte_t *pte;
1707 
1708 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1709 	    ("mmu_booke_remove_write: page %p is not managed", m));
1710 	vm_page_assert_busied(m);
1711 
1712 	if (!pmap_page_is_write_mapped(m))
1713 	        return;
1714 	rw_wlock(&pvh_global_lock);
1715 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1716 		PMAP_LOCK(pv->pv_pmap);
1717 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
1718 			if (PTE_ISVALID(pte)) {
1719 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1720 
1721 				mtx_lock_spin(&tlbivax_mutex);
1722 				tlb_miss_lock();
1723 
1724 				/* Handle modified pages. */
1725 				if (PTE_ISMODIFIED(pte))
1726 					vm_page_dirty(m);
1727 
1728 				/* Flush mapping from TLB0. */
1729 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1730 
1731 				tlb_miss_unlock();
1732 				mtx_unlock_spin(&tlbivax_mutex);
1733 			}
1734 		}
1735 		PMAP_UNLOCK(pv->pv_pmap);
1736 	}
1737 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1738 	rw_wunlock(&pvh_global_lock);
1739 }
1740 
1741 /*
1742  * Atomically extract and hold the physical page with the given
1743  * pmap and virtual address pair if that mapping permits the given
1744  * protection.
1745  */
1746 static vm_page_t
1747 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
1748     vm_prot_t prot)
1749 {
1750 	pte_t *pte;
1751 	vm_page_t m;
1752 	uint32_t pte_wbit;
1753 
1754 	m = NULL;
1755 	PMAP_LOCK(pmap);
1756 	pte = pte_find(pmap, va);
1757 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1758 		if (pmap == kernel_pmap)
1759 			pte_wbit = PTE_SW;
1760 		else
1761 			pte_wbit = PTE_UW;
1762 
1763 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
1764 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1765 			if (!vm_page_wire_mapped(m))
1766 				m = NULL;
1767 		}
1768 	}
1769 	PMAP_UNLOCK(pmap);
1770 	return (m);
1771 }
1772 
1773 /*
1774  * Initialize a vm_page's machine-dependent fields.
1775  */
1776 static void
1777 mmu_booke_page_init(vm_page_t m)
1778 {
1779 
1780 	m->md.pv_tracked = 0;
1781 	TAILQ_INIT(&m->md.pv_list);
1782 }
1783 
1784 /*
1785  * Return whether or not the specified physical page was modified
1786  * in any of physical maps.
1787  */
1788 static boolean_t
1789 mmu_booke_is_modified(vm_page_t m)
1790 {
1791 	pte_t *pte;
1792 	pv_entry_t pv;
1793 	boolean_t rv;
1794 
1795 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1796 	    ("mmu_booke_is_modified: page %p is not managed", m));
1797 	rv = FALSE;
1798 
1799 	/*
1800 	 * If the page is not busied then this check is racy.
1801 	 */
1802 	if (!pmap_page_is_write_mapped(m))
1803 		return (FALSE);
1804 
1805 	rw_wlock(&pvh_global_lock);
1806 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1807 		PMAP_LOCK(pv->pv_pmap);
1808 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1809 		    PTE_ISVALID(pte)) {
1810 			if (PTE_ISMODIFIED(pte))
1811 				rv = TRUE;
1812 		}
1813 		PMAP_UNLOCK(pv->pv_pmap);
1814 		if (rv)
1815 			break;
1816 	}
1817 	rw_wunlock(&pvh_global_lock);
1818 	return (rv);
1819 }
1820 
1821 /*
1822  * Return whether or not the specified virtual address is eligible
1823  * for prefault.
1824  */
1825 static boolean_t
1826 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1827 {
1828 
1829 	return (FALSE);
1830 }
1831 
1832 /*
1833  * Return whether or not the specified physical page was referenced
1834  * in any physical maps.
1835  */
1836 static boolean_t
1837 mmu_booke_is_referenced(vm_page_t m)
1838 {
1839 	pte_t *pte;
1840 	pv_entry_t pv;
1841 	boolean_t rv;
1842 
1843 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1844 	    ("mmu_booke_is_referenced: page %p is not managed", m));
1845 	rv = FALSE;
1846 	rw_wlock(&pvh_global_lock);
1847 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1848 		PMAP_LOCK(pv->pv_pmap);
1849 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1850 		    PTE_ISVALID(pte)) {
1851 			if (PTE_ISREFERENCED(pte))
1852 				rv = TRUE;
1853 		}
1854 		PMAP_UNLOCK(pv->pv_pmap);
1855 		if (rv)
1856 			break;
1857 	}
1858 	rw_wunlock(&pvh_global_lock);
1859 	return (rv);
1860 }
1861 
1862 /*
1863  * Clear the modify bits on the specified physical page.
1864  */
1865 static void
1866 mmu_booke_clear_modify(vm_page_t m)
1867 {
1868 	pte_t *pte;
1869 	pv_entry_t pv;
1870 
1871 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1872 	    ("mmu_booke_clear_modify: page %p is not managed", m));
1873 	vm_page_assert_busied(m);
1874 
1875 	if (!pmap_page_is_write_mapped(m))
1876 	        return;
1877 
1878 	rw_wlock(&pvh_global_lock);
1879 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1880 		PMAP_LOCK(pv->pv_pmap);
1881 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1882 		    PTE_ISVALID(pte)) {
1883 			mtx_lock_spin(&tlbivax_mutex);
1884 			tlb_miss_lock();
1885 
1886 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
1887 				tlb0_flush_entry(pv->pv_va);
1888 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
1889 				    PTE_REFERENCED);
1890 			}
1891 
1892 			tlb_miss_unlock();
1893 			mtx_unlock_spin(&tlbivax_mutex);
1894 		}
1895 		PMAP_UNLOCK(pv->pv_pmap);
1896 	}
1897 	rw_wunlock(&pvh_global_lock);
1898 }
1899 
1900 /*
1901  * Return a count of reference bits for a page, clearing those bits.
1902  * It is not necessary for every reference bit to be cleared, but it
1903  * is necessary that 0 only be returned when there are truly no
1904  * reference bits set.
1905  *
1906  * As an optimization, update the page's dirty field if a modified bit is
1907  * found while counting reference bits.  This opportunistic update can be
1908  * performed at low cost and can eliminate the need for some future calls
1909  * to pmap_is_modified().  However, since this function stops after
1910  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
1911  * dirty pages.  Those dirty pages will only be detected by a future call
1912  * to pmap_is_modified().
1913  */
1914 static int
1915 mmu_booke_ts_referenced(vm_page_t m)
1916 {
1917 	pte_t *pte;
1918 	pv_entry_t pv;
1919 	int count;
1920 
1921 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1922 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
1923 	count = 0;
1924 	rw_wlock(&pvh_global_lock);
1925 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1926 		PMAP_LOCK(pv->pv_pmap);
1927 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1928 		    PTE_ISVALID(pte)) {
1929 			if (PTE_ISMODIFIED(pte))
1930 				vm_page_dirty(m);
1931 			if (PTE_ISREFERENCED(pte)) {
1932 				mtx_lock_spin(&tlbivax_mutex);
1933 				tlb_miss_lock();
1934 
1935 				tlb0_flush_entry(pv->pv_va);
1936 				*pte &= ~PTE_REFERENCED;
1937 
1938 				tlb_miss_unlock();
1939 				mtx_unlock_spin(&tlbivax_mutex);
1940 
1941 				if (++count >= PMAP_TS_REFERENCED_MAX) {
1942 					PMAP_UNLOCK(pv->pv_pmap);
1943 					break;
1944 				}
1945 			}
1946 		}
1947 		PMAP_UNLOCK(pv->pv_pmap);
1948 	}
1949 	rw_wunlock(&pvh_global_lock);
1950 	return (count);
1951 }
1952 
1953 /*
1954  * Clear the wired attribute from the mappings for the specified range of
1955  * addresses in the given pmap.  Every valid mapping within that range must
1956  * have the wired attribute set.  In contrast, invalid mappings cannot have
1957  * the wired attribute set, so they are ignored.
1958  *
1959  * The wired attribute of the page table entry is not a hardware feature, so
1960  * there is no need to invalidate any TLB entries.
1961  */
1962 static void
1963 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1964 {
1965 	vm_offset_t va;
1966 	pte_t *pte;
1967 
1968 	PMAP_LOCK(pmap);
1969 	for (va = sva; va < eva; va += PAGE_SIZE) {
1970 		if ((pte = pte_find(pmap, va)) != NULL &&
1971 		    PTE_ISVALID(pte)) {
1972 			if (!PTE_ISWIRED(pte))
1973 				panic("mmu_booke_unwire: pte %p isn't wired",
1974 				    pte);
1975 			*pte &= ~PTE_WIRED;
1976 			pmap->pm_stats.wired_count--;
1977 		}
1978 	}
1979 	PMAP_UNLOCK(pmap);
1980 
1981 }
1982 
1983 /*
1984  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
1985  * page.  This count may be changed upwards or downwards in the future; it is
1986  * only necessary that true be returned for a small subset of pmaps for proper
1987  * page aging.
1988  */
1989 static boolean_t
1990 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
1991 {
1992 	pv_entry_t pv;
1993 	int loops;
1994 	boolean_t rv;
1995 
1996 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1997 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
1998 	loops = 0;
1999 	rv = FALSE;
2000 	rw_wlock(&pvh_global_lock);
2001 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2002 		if (pv->pv_pmap == pmap) {
2003 			rv = TRUE;
2004 			break;
2005 		}
2006 		if (++loops >= 16)
2007 			break;
2008 	}
2009 	rw_wunlock(&pvh_global_lock);
2010 	return (rv);
2011 }
2012 
2013 /*
2014  * Return the number of managed mappings to the given physical page that are
2015  * wired.
2016  */
2017 static int
2018 mmu_booke_page_wired_mappings(vm_page_t m)
2019 {
2020 	pv_entry_t pv;
2021 	pte_t *pte;
2022 	int count = 0;
2023 
2024 	if ((m->oflags & VPO_UNMANAGED) != 0)
2025 		return (count);
2026 	rw_wlock(&pvh_global_lock);
2027 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2028 		PMAP_LOCK(pv->pv_pmap);
2029 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
2030 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2031 				count++;
2032 		PMAP_UNLOCK(pv->pv_pmap);
2033 	}
2034 	rw_wunlock(&pvh_global_lock);
2035 	return (count);
2036 }
2037 
2038 static int
2039 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2040 {
2041 	int i;
2042 	vm_offset_t va;
2043 
2044 	/*
2045 	 * This currently does not work for entries that
2046 	 * overlap TLB1 entries.
2047 	 */
2048 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2049 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2050 			return (0);
2051 	}
2052 
2053 	return (EFAULT);
2054 }
2055 
2056 void
2057 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2058 {
2059 	vm_paddr_t ppa;
2060 	vm_offset_t ofs;
2061 	vm_size_t gran;
2062 
2063 	/* Minidumps are based on virtual memory addresses. */
2064 	if (do_minidump) {
2065 		*va = (void *)(vm_offset_t)pa;
2066 		return;
2067 	}
2068 
2069 	/* Raw physical memory dumps don't have a virtual address. */
2070 	/* We always map a 256MB page at 256M. */
2071 	gran = 256 * 1024 * 1024;
2072 	ppa = rounddown2(pa, gran);
2073 	ofs = pa - ppa;
2074 	*va = (void *)gran;
2075 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2076 
2077 	if (sz > (gran - ofs))
2078 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2079 		    _TLB_ENTRY_IO);
2080 }
2081 
2082 void
2083 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
2084 {
2085 	vm_paddr_t ppa;
2086 	vm_offset_t ofs;
2087 	vm_size_t gran;
2088 	tlb_entry_t e;
2089 	int i;
2090 
2091 	/* Minidumps are based on virtual memory addresses. */
2092 	/* Nothing to do... */
2093 	if (do_minidump)
2094 		return;
2095 
2096 	for (i = 0; i < TLB1_ENTRIES; i++) {
2097 		tlb1_read_entry(&e, i);
2098 		if (!(e.mas1 & MAS1_VALID))
2099 			break;
2100 	}
2101 
2102 	/* Raw physical memory dumps don't have a virtual address. */
2103 	i--;
2104 	e.mas1 = 0;
2105 	e.mas2 = 0;
2106 	e.mas3 = 0;
2107 	tlb1_write_entry(&e, i);
2108 
2109 	gran = 256 * 1024 * 1024;
2110 	ppa = rounddown2(pa, gran);
2111 	ofs = pa - ppa;
2112 	if (sz > (gran - ofs)) {
2113 		i--;
2114 		e.mas1 = 0;
2115 		e.mas2 = 0;
2116 		e.mas3 = 0;
2117 		tlb1_write_entry(&e, i);
2118 	}
2119 }
2120 
2121 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2122 
2123 void
2124 mmu_booke_scan_init(void)
2125 {
2126 	vm_offset_t va;
2127 	pte_t *pte;
2128 	int i;
2129 
2130 	if (!do_minidump) {
2131 		/* Initialize phys. segments for dumpsys(). */
2132 		memset(&dump_map, 0, sizeof(dump_map));
2133 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2134 		    &availmem_regions_sz);
2135 		for (i = 0; i < physmem_regions_sz; i++) {
2136 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2137 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2138 		}
2139 		return;
2140 	}
2141 
2142 	/* Virtual segments for minidumps: */
2143 	memset(&dump_map, 0, sizeof(dump_map));
2144 
2145 	/* 1st: kernel .data and .bss. */
2146 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2147 	dump_map[0].pa_size =
2148 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2149 
2150 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2151 	dump_map[1].pa_start = data_start;
2152 	dump_map[1].pa_size = data_end - data_start;
2153 
2154 	/* 3rd: kernel VM. */
2155 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2156 	/* Find start of next chunk (from va). */
2157 	while (va < virtual_end) {
2158 		/* Don't dump the buffer cache. */
2159 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2160 			va = kmi.buffer_eva;
2161 			continue;
2162 		}
2163 		pte = pte_find(kernel_pmap, va);
2164 		if (pte != NULL && PTE_ISVALID(pte))
2165 			break;
2166 		va += PAGE_SIZE;
2167 	}
2168 	if (va < virtual_end) {
2169 		dump_map[2].pa_start = va;
2170 		va += PAGE_SIZE;
2171 		/* Find last page in chunk. */
2172 		while (va < virtual_end) {
2173 			/* Don't run into the buffer cache. */
2174 			if (va == kmi.buffer_sva)
2175 				break;
2176 			pte = pte_find(kernel_pmap, va);
2177 			if (pte == NULL || !PTE_ISVALID(pte))
2178 				break;
2179 			va += PAGE_SIZE;
2180 		}
2181 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2182 	}
2183 }
2184 
2185 /*
2186  * Map a set of physical memory pages into the kernel virtual address space.
2187  * Return a pointer to where it is mapped. This routine is intended to be used
2188  * for mapping device memory, NOT real memory.
2189  */
2190 static void *
2191 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
2192 {
2193 
2194 	return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2195 }
2196 
2197 static int
2198 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
2199 {
2200 	int i;
2201 
2202 	for (i = 0; i < TLB1_ENTRIES; i++) {
2203 		tlb1_read_entry(e, i);
2204 		if ((e->mas1 & MAS1_VALID) == 0)
2205 			continue;
2206 		if (e->phys == pa)
2207 			return (i);
2208 	}
2209 	return (-1);
2210 }
2211 
2212 static void *
2213 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2214 {
2215 	tlb_entry_t e;
2216 	vm_paddr_t tmppa;
2217 #ifndef __powerpc64__
2218 	uintptr_t tmpva;
2219 #endif
2220 	uintptr_t va, retva;
2221 	vm_size_t sz;
2222 	int i;
2223 	int wimge;
2224 
2225 	/*
2226 	 * Check if this is premapped in TLB1.
2227 	 */
2228 	sz = size;
2229 	tmppa = pa;
2230 	va = ~0;
2231 	wimge = tlb_calc_wimg(pa, ma);
2232 	for (i = 0; i < TLB1_ENTRIES; i++) {
2233 		tlb1_read_entry(&e, i);
2234 		if (!(e.mas1 & MAS1_VALID))
2235 			continue;
2236 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2237 			continue;
2238 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
2239 			va = e.virt + (pa - e.phys);
2240 			tmppa = e.phys + e.size;
2241 			sz -= MIN(sz, e.size - (pa - e.phys));
2242 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
2243 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2244 					break;
2245 				sz -= MIN(sz, e.size);
2246 				tmppa = e.phys + e.size;
2247 			}
2248 			if (sz != 0)
2249 				break;
2250 			return ((void *)va);
2251 		}
2252 	}
2253 
2254 	size = roundup(size, PAGE_SIZE);
2255 
2256 #ifdef __powerpc64__
2257 	KASSERT(pa < VM_MAPDEV_PA_MAX,
2258 	    ("Unsupported physical address! %lx", pa));
2259 	va = VM_MAPDEV_BASE + pa;
2260 	retva = va;
2261 #ifdef POW2_MAPPINGS
2262 	/*
2263 	 * Align the mapping to a power of 2 size, taking into account that we
2264 	 * may need to increase the size multiple times to satisfy the size and
2265 	 * alignment requirements.
2266 	 *
2267 	 * This works in the general case because it's very rare (near never?)
2268 	 * to have different access properties (WIMG) within a single
2269 	 * power-of-two region.  If a design does call for that, POW2_MAPPINGS
2270 	 * can be undefined, and exact mappings will be used instead.
2271 	 */
2272 	sz = size;
2273 	size = roundup2(size, 1 << ilog2(size));
2274 	while (rounddown2(va, size) + size < va + sz)
2275 		size <<= 1;
2276 	va = rounddown2(va, size);
2277 	pa = rounddown2(pa, size);
2278 #endif
2279 #else
2280 	/*
2281 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2282 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2283 	 */
2284 #ifdef SPARSE_MAPDEV
2285 	/*
2286 	 * With a sparse mapdev, align to the largest starting region.  This
2287 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2288 	 * calculation could be very costly.
2289 	 * Align to the smaller of:
2290 	 * - first set bit in overlap of (pa & size mask)
2291 	 * - largest size envelope
2292 	 *
2293 	 * It's possible the device mapping may start at a PA that's not larger
2294 	 * than the size mask, so we need to offset in to maximize the TLB entry
2295 	 * range and minimize the number of used TLB entries.
2296 	 */
2297 	do {
2298 	    tmpva = tlb1_map_base;
2299 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
2300 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
2301 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
2302 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2303 #endif
2304 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2305 	retva = va;
2306 #endif
2307 
2308 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
2309 		return (NULL);
2310 
2311 	return ((void *)retva);
2312 }
2313 
2314 /*
2315  * 'Unmap' a range mapped by mmu_booke_mapdev().
2316  */
2317 static void
2318 mmu_booke_unmapdev(void *p, vm_size_t size)
2319 {
2320 #ifdef SUPPORTS_SHRINKING_TLB1
2321 	vm_offset_t base, offset, va;
2322 
2323 	/*
2324 	 * Unmap only if this is inside kernel virtual space.
2325 	 */
2326 	va = (vm_offset_t)p;
2327 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2328 		base = trunc_page(va);
2329 		offset = va & PAGE_MASK;
2330 		size = roundup(offset + size, PAGE_SIZE);
2331 		mmu_booke_qremove(base, atop(size));
2332 		kva_free(base, size);
2333 	}
2334 #endif
2335 }
2336 
2337 /*
2338  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2339  * specified pmap. This eliminates the blast of soft faults on process startup
2340  * and immediately after an mmap.
2341  */
2342 static void
2343 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
2344     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2345 {
2346 
2347 	VM_OBJECT_ASSERT_WLOCKED(object);
2348 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2349 	    ("mmu_booke_object_init_pt: non-device object"));
2350 }
2351 
2352 /*
2353  * Perform the pmap work for mincore.
2354  */
2355 static int
2356 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
2357 {
2358 
2359 	/* XXX: this should be implemented at some point */
2360 	return (0);
2361 }
2362 
2363 static int
2364 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
2365 {
2366 	vm_offset_t va;
2367 	pte_t *pte;
2368 	int i, j;
2369 	tlb_entry_t e;
2370 
2371 	addr = trunc_page(addr);
2372 
2373 	/* Only allow changes to mapped kernel addresses.  This includes:
2374 	 * - KVA
2375 	 * - DMAP (powerpc64)
2376 	 * - Device mappings
2377 	 */
2378 	if (addr <= VM_MAXUSER_ADDRESS ||
2379 #ifdef __powerpc64__
2380 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
2381 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
2382 #else
2383 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
2384 #endif
2385 	    (addr > VM_MAX_KERNEL_ADDRESS))
2386 		return (EINVAL);
2387 
2388 	/* Check TLB1 mappings */
2389 	for (i = 0; i < TLB1_ENTRIES; i++) {
2390 		tlb1_read_entry(&e, i);
2391 		if (!(e.mas1 & MAS1_VALID))
2392 			continue;
2393 		if (addr >= e.virt && addr < e.virt + e.size)
2394 			break;
2395 	}
2396 	if (i < TLB1_ENTRIES) {
2397 		/* Only allow full mappings to be modified for now. */
2398 		/* Validate the range. */
2399 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2400 			tlb1_read_entry(&e, j);
2401 			if (va != e.virt || (sz - (va - addr) < e.size))
2402 				return (EINVAL);
2403 		}
2404 		for (va = addr; va < addr + sz; va += e.size, i++) {
2405 			tlb1_read_entry(&e, i);
2406 			e.mas2 &= ~MAS2_WIMGE_MASK;
2407 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2408 
2409 			/*
2410 			 * Write it out to the TLB.  Should really re-sync with other
2411 			 * cores.
2412 			 */
2413 			tlb1_write_entry(&e, i);
2414 		}
2415 		return (0);
2416 	}
2417 
2418 	/* Not in TLB1, try through pmap */
2419 	/* First validate the range. */
2420 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2421 		pte = pte_find(kernel_pmap, va);
2422 		if (pte == NULL || !PTE_ISVALID(pte))
2423 			return (EINVAL);
2424 	}
2425 
2426 	mtx_lock_spin(&tlbivax_mutex);
2427 	tlb_miss_lock();
2428 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2429 		pte = pte_find(kernel_pmap, va);
2430 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2431 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2432 		tlb0_flush_entry(va);
2433 	}
2434 	tlb_miss_unlock();
2435 	mtx_unlock_spin(&tlbivax_mutex);
2436 
2437 	return (0);
2438 }
2439 
2440 static void
2441 mmu_booke_page_array_startup(long pages)
2442 {
2443 	vm_page_array_size = pages;
2444 }
2445 
2446 /**************************************************************************/
2447 /* TID handling */
2448 /**************************************************************************/
2449 
2450 /*
2451  * Allocate a TID. If necessary, steal one from someone else.
2452  * The new TID is flushed from the TLB before returning.
2453  */
2454 static tlbtid_t
2455 tid_alloc(pmap_t pmap)
2456 {
2457 	tlbtid_t tid;
2458 	int thiscpu;
2459 
2460 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2461 
2462 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2463 
2464 	thiscpu = PCPU_GET(cpuid);
2465 
2466 	tid = PCPU_GET(booke.tid_next);
2467 	if (tid > TID_MAX)
2468 		tid = TID_MIN;
2469 	PCPU_SET(booke.tid_next, tid + 1);
2470 
2471 	/* If we are stealing TID then clear the relevant pmap's field */
2472 	if (tidbusy[thiscpu][tid] != NULL) {
2473 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2474 
2475 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2476 
2477 		/* Flush all entries from TLB0 matching this TID. */
2478 		tid_flush(tid);
2479 	}
2480 
2481 	tidbusy[thiscpu][tid] = pmap;
2482 	pmap->pm_tid[thiscpu] = tid;
2483 	__asm __volatile("msync; isync");
2484 
2485 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2486 	    PCPU_GET(booke.tid_next));
2487 
2488 	return (tid);
2489 }
2490 
2491 /**************************************************************************/
2492 /* TLB0 handling */
2493 /**************************************************************************/
2494 
2495 /* Convert TLB0 va and way number to tlb0[] table index. */
2496 static inline unsigned int
2497 tlb0_tableidx(vm_offset_t va, unsigned int way)
2498 {
2499 	unsigned int idx;
2500 
2501 	idx = (way * TLB0_ENTRIES_PER_WAY);
2502 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2503 	return (idx);
2504 }
2505 
2506 /*
2507  * Invalidate TLB0 entry.
2508  */
2509 static inline void
2510 tlb0_flush_entry(vm_offset_t va)
2511 {
2512 
2513 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2514 
2515 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2516 
2517 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2518 	__asm __volatile("isync; msync");
2519 	__asm __volatile("tlbsync; msync");
2520 
2521 	CTR1(KTR_PMAP, "%s: e", __func__);
2522 }
2523 
2524 /**************************************************************************/
2525 /* TLB1 handling */
2526 /**************************************************************************/
2527 
2528 /*
2529  * TLB1 mapping notes:
2530  *
2531  * TLB1[0]	Kernel text and data.
2532  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2533  *		windows, other devices mappings.
2534  */
2535 
2536  /*
2537  * Read an entry from given TLB1 slot.
2538  */
2539 void
2540 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
2541 {
2542 	register_t msr;
2543 	uint32_t mas0;
2544 
2545 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
2546 
2547 	msr = mfmsr();
2548 	__asm __volatile("wrteei 0");
2549 
2550 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
2551 	mtspr(SPR_MAS0, mas0);
2552 	__asm __volatile("isync; tlbre");
2553 
2554 	entry->mas1 = mfspr(SPR_MAS1);
2555 	entry->mas2 = mfspr(SPR_MAS2);
2556 	entry->mas3 = mfspr(SPR_MAS3);
2557 
2558 	switch ((mfpvr() >> 16) & 0xFFFF) {
2559 	case FSL_E500v2:
2560 	case FSL_E500mc:
2561 	case FSL_E5500:
2562 	case FSL_E6500:
2563 		entry->mas7 = mfspr(SPR_MAS7);
2564 		break;
2565 	default:
2566 		entry->mas7 = 0;
2567 		break;
2568 	}
2569 	__asm __volatile("wrtee %0" :: "r"(msr));
2570 
2571 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
2572 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
2573 	    (entry->mas3 & MAS3_RPN);
2574 	entry->size =
2575 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
2576 }
2577 
2578 struct tlbwrite_args {
2579 	tlb_entry_t *e;
2580 	unsigned int idx;
2581 };
2582 
2583 static uint32_t
2584 tlb1_find_free(void)
2585 {
2586 	tlb_entry_t e;
2587 	int i;
2588 
2589 	for (i = 0; i < TLB1_ENTRIES; i++) {
2590 		tlb1_read_entry(&e, i);
2591 		if ((e.mas1 & MAS1_VALID) == 0)
2592 			return (i);
2593 	}
2594 	return (-1);
2595 }
2596 
2597 static void
2598 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
2599 {
2600 	tlb_entry_t e;
2601 	int i;
2602 
2603 	for (i = 0; i < TLB1_ENTRIES; i++) {
2604 		tlb1_read_entry(&e, i);
2605 		if ((e.mas1 & MAS1_VALID) == 0)
2606 			continue;
2607 		if ((e.mas2 & MAS2_EPN_MASK) >= va &&
2608 		    (e.mas2 & MAS2_EPN_MASK) < va + size) {
2609 			mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
2610 			__asm __volatile("isync; tlbwe; isync; msync");
2611 		}
2612 	}
2613 }
2614 
2615 static void
2616 tlb1_write_entry_int(void *arg)
2617 {
2618 	struct tlbwrite_args *args = arg;
2619 	uint32_t idx, mas0;
2620 
2621 	idx = args->idx;
2622 	if (idx == -1) {
2623 		tlb1_purge_va_range(args->e->virt, args->e->size);
2624 		idx = tlb1_find_free();
2625 		if (idx == -1)
2626 			panic("No free TLB1 entries!\n");
2627 	}
2628 	/* Select entry */
2629 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2630 
2631 	mtspr(SPR_MAS0, mas0);
2632 	mtspr(SPR_MAS1, args->e->mas1);
2633 	mtspr(SPR_MAS2, args->e->mas2);
2634 	mtspr(SPR_MAS3, args->e->mas3);
2635 	switch ((mfpvr() >> 16) & 0xFFFF) {
2636 	case FSL_E500mc:
2637 	case FSL_E5500:
2638 	case FSL_E6500:
2639 		mtspr(SPR_MAS8, 0);
2640 		/* FALLTHROUGH */
2641 	case FSL_E500v2:
2642 		mtspr(SPR_MAS7, args->e->mas7);
2643 		break;
2644 	default:
2645 		break;
2646 	}
2647 
2648 	__asm __volatile("isync; tlbwe; isync; msync");
2649 
2650 }
2651 
2652 static void
2653 tlb1_write_entry_sync(void *arg)
2654 {
2655 	/* Empty synchronization point for smp_rendezvous(). */
2656 }
2657 
2658 /*
2659  * Write given entry to TLB1 hardware.
2660  */
2661 static void
2662 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
2663 {
2664 	struct tlbwrite_args args;
2665 
2666 	args.e = e;
2667 	args.idx = idx;
2668 
2669 #ifdef SMP
2670 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
2671 		mb();
2672 		smp_rendezvous(tlb1_write_entry_sync,
2673 		    tlb1_write_entry_int,
2674 		    tlb1_write_entry_sync, &args);
2675 	} else
2676 #endif
2677 	{
2678 		register_t msr;
2679 
2680 		msr = mfmsr();
2681 		__asm __volatile("wrteei 0");
2682 		tlb1_write_entry_int(&args);
2683 		__asm __volatile("wrtee %0" :: "r"(msr));
2684 	}
2685 }
2686 
2687 /*
2688  * Convert TLB TSIZE value to mapped region size.
2689  */
2690 static vm_size_t
2691 tsize2size(unsigned int tsize)
2692 {
2693 
2694 	/*
2695 	 * size = 4^tsize KB
2696 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2697 	 */
2698 
2699 	return ((1 << (2 * tsize)) * 1024);
2700 }
2701 
2702 /*
2703  * Convert region size (must be power of 4) to TLB TSIZE value.
2704  */
2705 static unsigned int
2706 size2tsize(vm_size_t size)
2707 {
2708 
2709 	return (ilog2(size) / 2 - 5);
2710 }
2711 
2712 /*
2713  * Register permanent kernel mapping in TLB1.
2714  *
2715  * Entries are created starting from index 0 (current free entry is
2716  * kept in tlb1_idx) and are not supposed to be invalidated.
2717  */
2718 int
2719 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
2720     uint32_t flags)
2721 {
2722 	tlb_entry_t e;
2723 	uint32_t ts, tid;
2724 	int tsize, index;
2725 
2726 	/* First try to update an existing entry. */
2727 	for (index = 0; index < TLB1_ENTRIES; index++) {
2728 		tlb1_read_entry(&e, index);
2729 		/* Check if we're just updating the flags, and update them. */
2730 		if (e.phys == pa && e.virt == va && e.size == size) {
2731 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
2732 			tlb1_write_entry(&e, index);
2733 			return (0);
2734 		}
2735 	}
2736 
2737 	/* Convert size to TSIZE */
2738 	tsize = size2tsize(size);
2739 
2740 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2741 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2742 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2743 
2744 	e.phys = pa;
2745 	e.virt = va;
2746 	e.size = size;
2747 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2748 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2749 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
2750 
2751 	/* Set supervisor RWX permission bits */
2752 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2753 	e.mas7 = (pa >> 32) & MAS7_RPN;
2754 
2755 	tlb1_write_entry(&e, -1);
2756 
2757 	return (0);
2758 }
2759 
2760 /*
2761  * Map in contiguous RAM region into the TLB1.
2762  */
2763 static vm_size_t
2764 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
2765 {
2766 	vm_offset_t base;
2767 	vm_size_t mapped, sz, ssize;
2768 
2769 	mapped = 0;
2770 	base = va;
2771 	ssize = size;
2772 
2773 	while (size > 0) {
2774 		sz = 1UL << (ilog2(size) & ~1);
2775 		/* Align size to PA */
2776 		if (pa % sz != 0) {
2777 			do {
2778 				sz >>= 2;
2779 			} while (pa % sz != 0);
2780 		}
2781 		/* Now align from there to VA */
2782 		if (va % sz != 0) {
2783 			do {
2784 				sz >>= 2;
2785 			} while (va % sz != 0);
2786 		}
2787 #ifdef __powerpc64__
2788 		/*
2789 		 * Clamp TLB1 entries to 4G.
2790 		 *
2791 		 * While the e6500 supports up to 1TB mappings, the e5500
2792 		 * only supports up to 4G mappings. (0b1011)
2793 		 *
2794 		 * If any e6500 machines capable of supporting a very
2795 		 * large amount of memory appear in the future, we can
2796 		 * revisit this.
2797 		 *
2798 		 * For now, though, since we have plenty of space in TLB1,
2799 		 * always avoid creating entries larger than 4GB.
2800 		 */
2801 		sz = MIN(sz, 1UL << 32);
2802 #endif
2803 		if (bootverbose)
2804 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
2805 			    (void *)va, (uintmax_t)pa, (long)sz);
2806 		if (tlb1_set_entry(va, pa, sz,
2807 		    _TLB_ENTRY_SHARED | wimge) < 0)
2808 			return (mapped);
2809 		size -= sz;
2810 		pa += sz;
2811 		va += sz;
2812 	}
2813 
2814 	mapped = (va - base);
2815 	if (bootverbose)
2816 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
2817 		    mapped, mapped - ssize);
2818 
2819 	return (mapped);
2820 }
2821 
2822 /*
2823  * TLB1 initialization routine, to be called after the very first
2824  * assembler level setup done in locore.S.
2825  */
2826 void
2827 tlb1_init(void)
2828 {
2829 	vm_offset_t mas2;
2830 	uint32_t mas0, mas1, mas3, mas7;
2831 	uint32_t tsz;
2832 
2833 	tlb1_get_tlbconf();
2834 
2835 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
2836 	mtspr(SPR_MAS0, mas0);
2837 	__asm __volatile("isync; tlbre");
2838 
2839 	mas1 = mfspr(SPR_MAS1);
2840 	mas2 = mfspr(SPR_MAS2);
2841 	mas3 = mfspr(SPR_MAS3);
2842 	mas7 = mfspr(SPR_MAS7);
2843 
2844 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
2845 	    (mas3 & MAS3_RPN);
2846 
2847 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2848 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
2849 	kernstart = trunc_page(mas2);
2850 
2851 	/* Setup TLB miss defaults */
2852 	set_mas4_defaults();
2853 }
2854 
2855 /*
2856  * pmap_early_io_unmap() should be used in short conjunction with
2857  * pmap_early_io_map(), as in the following snippet:
2858  *
2859  * x = pmap_early_io_map(...);
2860  * <do something with x>
2861  * pmap_early_io_unmap(x, size);
2862  *
2863  * And avoiding more allocations between.
2864  */
2865 void
2866 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
2867 {
2868 	int i;
2869 	tlb_entry_t e;
2870 	vm_size_t isize;
2871 
2872 	size = roundup(size, PAGE_SIZE);
2873 	isize = size;
2874 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
2875 		tlb1_read_entry(&e, i);
2876 		if (!(e.mas1 & MAS1_VALID))
2877 			continue;
2878 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
2879 			size -= e.size;
2880 			e.mas1 &= ~MAS1_VALID;
2881 			tlb1_write_entry(&e, i);
2882 		}
2883 	}
2884 	if (tlb1_map_base == va + isize)
2885 		tlb1_map_base -= isize;
2886 }
2887 
2888 vm_offset_t
2889 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
2890 {
2891 	vm_paddr_t pa_base;
2892 	vm_offset_t va, sz;
2893 	int i;
2894 	tlb_entry_t e;
2895 
2896 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
2897 
2898 	for (i = 0; i < TLB1_ENTRIES; i++) {
2899 		tlb1_read_entry(&e, i);
2900 		if (!(e.mas1 & MAS1_VALID))
2901 			continue;
2902 		if (pa >= e.phys && (pa + size) <=
2903 		    (e.phys + e.size))
2904 			return (e.virt + (pa - e.phys));
2905 	}
2906 
2907 	pa_base = rounddown(pa, PAGE_SIZE);
2908 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
2909 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
2910 	va = tlb1_map_base + (pa - pa_base);
2911 
2912 	do {
2913 		sz = 1 << (ilog2(size) & ~1);
2914 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
2915 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
2916 		size -= sz;
2917 		pa_base += sz;
2918 		tlb1_map_base += sz;
2919 	} while (size > 0);
2920 
2921 	return (va);
2922 }
2923 
2924 void
2925 pmap_track_page(pmap_t pmap, vm_offset_t va)
2926 {
2927 	vm_paddr_t pa;
2928 	vm_page_t page;
2929 	struct pv_entry *pve;
2930 
2931 	va = trunc_page(va);
2932 	pa = pmap_kextract(va);
2933 	page = PHYS_TO_VM_PAGE(pa);
2934 
2935 	rw_wlock(&pvh_global_lock);
2936 	PMAP_LOCK(pmap);
2937 
2938 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
2939 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
2940 			goto out;
2941 		}
2942 	}
2943 	page->md.pv_tracked = true;
2944 	pv_insert(pmap, va, page);
2945 out:
2946 	PMAP_UNLOCK(pmap);
2947 	rw_wunlock(&pvh_global_lock);
2948 }
2949 
2950 /*
2951  * Setup MAS4 defaults.
2952  * These values are loaded to MAS0-2 on a TLB miss.
2953  */
2954 static void
2955 set_mas4_defaults(void)
2956 {
2957 	uint32_t mas4;
2958 
2959 	/* Defaults: TLB0, PID0, TSIZED=4K */
2960 	mas4 = MAS4_TLBSELD0;
2961 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2962 #ifdef SMP
2963 	mas4 |= MAS4_MD;
2964 #endif
2965 	mtspr(SPR_MAS4, mas4);
2966 	__asm __volatile("isync");
2967 }
2968 
2969 /*
2970  * Return 0 if the physical IO range is encompassed by one of the
2971  * the TLB1 entries, otherwise return related error code.
2972  */
2973 static int
2974 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2975 {
2976 	uint32_t prot;
2977 	vm_paddr_t pa_start;
2978 	vm_paddr_t pa_end;
2979 	unsigned int entry_tsize;
2980 	vm_size_t entry_size;
2981 	tlb_entry_t e;
2982 
2983 	*va = (vm_offset_t)NULL;
2984 
2985 	tlb1_read_entry(&e, i);
2986 	/* Skip invalid entries */
2987 	if (!(e.mas1 & MAS1_VALID))
2988 		return (EINVAL);
2989 
2990 	/*
2991 	 * The entry must be cache-inhibited, guarded, and r/w
2992 	 * so it can function as an i/o page
2993 	 */
2994 	prot = e.mas2 & (MAS2_I | MAS2_G);
2995 	if (prot != (MAS2_I | MAS2_G))
2996 		return (EPERM);
2997 
2998 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
2999 	if (prot != (MAS3_SR | MAS3_SW))
3000 		return (EPERM);
3001 
3002 	/* The address should be within the entry range. */
3003 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3004 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3005 
3006 	entry_size = tsize2size(entry_tsize);
3007 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3008 	    (e.mas3 & MAS3_RPN);
3009 	pa_end = pa_start + entry_size;
3010 
3011 	if ((pa < pa_start) || ((pa + size) > pa_end))
3012 		return (ERANGE);
3013 
3014 	/* Return virtual address of this mapping. */
3015 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3016 	return (0);
3017 }
3018 
3019 #ifdef DDB
3020 /* Print out contents of the MAS registers for each TLB0 entry */
3021 static void
3022 #ifdef __powerpc64__
3023 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
3024 #else
3025 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3026 #endif
3027     uint32_t mas7)
3028 {
3029 	int as;
3030 	char desc[3];
3031 	tlbtid_t tid;
3032 	vm_size_t size;
3033 	unsigned int tsize;
3034 
3035 	desc[2] = '\0';
3036 	if (mas1 & MAS1_VALID)
3037 		desc[0] = 'V';
3038 	else
3039 		desc[0] = ' ';
3040 
3041 	if (mas1 & MAS1_IPROT)
3042 		desc[1] = 'P';
3043 	else
3044 		desc[1] = ' ';
3045 
3046 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3047 	tid = MAS1_GETTID(mas1);
3048 
3049 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3050 	size = 0;
3051 	if (tsize)
3052 		size = tsize2size(tsize);
3053 
3054 	printf("%3d: (%s) [AS=%d] "
3055 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
3056 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3057 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
3058 }
3059 
3060 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
3061 {
3062 	uint32_t mas0, mas1, mas3, mas7;
3063 #ifdef __powerpc64__
3064 	uint64_t mas2;
3065 #else
3066 	uint32_t mas2;
3067 #endif
3068 	int entryidx, way, idx;
3069 
3070 	printf("TLB0 entries:\n");
3071 	for (way = 0; way < TLB0_WAYS; way ++)
3072 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3073 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3074 			mtspr(SPR_MAS0, mas0);
3075 
3076 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3077 			mtspr(SPR_MAS2, mas2);
3078 
3079 			__asm __volatile("isync; tlbre");
3080 
3081 			mas1 = mfspr(SPR_MAS1);
3082 			mas2 = mfspr(SPR_MAS2);
3083 			mas3 = mfspr(SPR_MAS3);
3084 			mas7 = mfspr(SPR_MAS7);
3085 
3086 			idx = tlb0_tableidx(mas2, way);
3087 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3088 		}
3089 }
3090 
3091 /*
3092  * Print out contents of the MAS registers for each TLB1 entry
3093  */
3094 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
3095 {
3096 	uint32_t mas0, mas1, mas3, mas7;
3097 #ifdef __powerpc64__
3098 	uint64_t mas2;
3099 #else
3100 	uint32_t mas2;
3101 #endif
3102 	int i;
3103 
3104 	printf("TLB1 entries:\n");
3105 	for (i = 0; i < TLB1_ENTRIES; i++) {
3106 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3107 		mtspr(SPR_MAS0, mas0);
3108 
3109 		__asm __volatile("isync; tlbre");
3110 
3111 		mas1 = mfspr(SPR_MAS1);
3112 		mas2 = mfspr(SPR_MAS2);
3113 		mas3 = mfspr(SPR_MAS3);
3114 		mas7 = mfspr(SPR_MAS7);
3115 
3116 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3117 	}
3118 }
3119 #endif
3120