xref: /freebsd/sys/powerpc/booke/pmap.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ddb.h"
80 #include "opt_kstack_pages.h"
81 
82 #include <sys/param.h>
83 #include <sys/conf.h>
84 #include <sys/malloc.h>
85 #include <sys/ktr.h>
86 #include <sys/proc.h>
87 #include <sys/user.h>
88 #include <sys/queue.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/kerneldump.h>
92 #include <sys/linker.h>
93 #include <sys/msgbuf.h>
94 #include <sys/lock.h>
95 #include <sys/mutex.h>
96 #include <sys/rwlock.h>
97 #include <sys/sched.h>
98 #include <sys/smp.h>
99 #include <sys/vmmeter.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/vm_pagequeue.h>
112 #include <vm/uma.h>
113 
114 #include <machine/_inttypes.h>
115 #include <machine/cpu.h>
116 #include <machine/pcb.h>
117 #include <machine/platform.h>
118 
119 #include <machine/tlb.h>
120 #include <machine/spr.h>
121 #include <machine/md_var.h>
122 #include <machine/mmuvar.h>
123 #include <machine/pmap.h>
124 #include <machine/pte.h>
125 
126 #include <ddb/ddb.h>
127 
128 #include "mmu_if.h"
129 
130 #define	SPARSE_MAPDEV
131 #ifdef  DEBUG
132 #define debugf(fmt, args...) printf(fmt, ##args)
133 #else
134 #define debugf(fmt, args...)
135 #endif
136 
137 #ifdef __powerpc64__
138 #define	PRI0ptrX	"016lx"
139 #else
140 #define	PRI0ptrX	"08x"
141 #endif
142 
143 #define TODO			panic("%s: not implemented", __func__);
144 
145 extern unsigned char _etext[];
146 extern unsigned char _end[];
147 
148 extern uint32_t *bootinfo;
149 
150 vm_paddr_t kernload;
151 vm_offset_t kernstart;
152 vm_size_t kernsize;
153 
154 /* Message buffer and tables. */
155 static vm_offset_t data_start;
156 static vm_size_t data_end;
157 
158 /* Phys/avail memory regions. */
159 static struct mem_region *availmem_regions;
160 static int availmem_regions_sz;
161 static struct mem_region *physmem_regions;
162 static int physmem_regions_sz;
163 
164 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
165 static vm_offset_t zero_page_va;
166 static struct mtx zero_page_mutex;
167 
168 static struct mtx tlbivax_mutex;
169 
170 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
171 static vm_offset_t copy_page_src_va;
172 static vm_offset_t copy_page_dst_va;
173 static struct mtx copy_page_mutex;
174 
175 /**************************************************************************/
176 /* PMAP */
177 /**************************************************************************/
178 
179 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
180     vm_prot_t, u_int flags, int8_t psind);
181 
182 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
183 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
184 #ifdef __powerpc64__
185 unsigned int kernel_pdirs;
186 #endif
187 static uma_zone_t ptbl_root_zone;
188 
189 /*
190  * If user pmap is processed with mmu_booke_remove and the resident count
191  * drops to 0, there are no more pages to remove, so we need not continue.
192  */
193 #define PMAP_REMOVE_DONE(pmap) \
194 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
195 
196 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
197 extern int elf32_nxstack;
198 #endif
199 
200 /**************************************************************************/
201 /* TLB and TID handling */
202 /**************************************************************************/
203 
204 /* Translation ID busy table */
205 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
206 
207 /*
208  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
209  * core revisions and should be read from h/w registers during early config.
210  */
211 uint32_t tlb0_entries;
212 uint32_t tlb0_ways;
213 uint32_t tlb0_entries_per_way;
214 uint32_t tlb1_entries;
215 
216 #define TLB0_ENTRIES		(tlb0_entries)
217 #define TLB0_WAYS		(tlb0_ways)
218 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
219 
220 #define TLB1_ENTRIES (tlb1_entries)
221 
222 static vm_offset_t tlb1_map_base = (vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE;
223 
224 static tlbtid_t tid_alloc(struct pmap *);
225 static void tid_flush(tlbtid_t tid);
226 
227 #ifdef DDB
228 #ifdef __powerpc64__
229 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
230 #else
231 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
232 #endif
233 #endif
234 
235 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
236 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
237 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
238 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
239 
240 static vm_size_t tsize2size(unsigned int);
241 static unsigned int size2tsize(vm_size_t);
242 static unsigned int ilog2(unsigned long);
243 
244 static void set_mas4_defaults(void);
245 
246 static inline void tlb0_flush_entry(vm_offset_t);
247 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
248 
249 /**************************************************************************/
250 /* Page table management */
251 /**************************************************************************/
252 
253 static struct rwlock_padalign pvh_global_lock;
254 
255 /* Data for the pv entry allocation mechanism */
256 static uma_zone_t pvzone;
257 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
258 
259 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
260 
261 #ifndef PMAP_SHPGPERPROC
262 #define PMAP_SHPGPERPROC	200
263 #endif
264 
265 #ifdef __powerpc64__
266 #define PMAP_ROOT_SIZE	(sizeof(pte_t***) * PP2D_NENTRIES)
267 static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **,
268 			 unsigned int, boolean_t);
269 static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int, vm_page_t);
270 static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int);
271 static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t);
272 #else
273 #define PMAP_ROOT_SIZE	(sizeof(pte_t**) * PDIR_NENTRIES)
274 static void ptbl_init(void);
275 static struct ptbl_buf *ptbl_buf_alloc(void);
276 static void ptbl_buf_free(struct ptbl_buf *);
277 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
278 
279 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
280 static void ptbl_free(mmu_t, pmap_t, unsigned int);
281 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
282 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
283 #endif
284 
285 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
286 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
287 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
288 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
289 static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t);
290 
291 static pv_entry_t pv_alloc(void);
292 static void pv_free(pv_entry_t);
293 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
294 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
295 
296 static void booke_pmap_init_qpages(void);
297 
298 struct ptbl_buf {
299 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
300 	vm_offset_t kva;		/* va of mapping */
301 };
302 
303 #ifndef __powerpc64__
304 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
305 #define PTBL_BUFS		(128 * 16)
306 
307 /* ptbl free list and a lock used for access synchronization. */
308 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
309 static struct mtx ptbl_buf_freelist_lock;
310 
311 /* Base address of kva space allocated fot ptbl bufs. */
312 static vm_offset_t ptbl_buf_pool_vabase;
313 
314 /* Pointer to ptbl_buf structures. */
315 static struct ptbl_buf *ptbl_bufs;
316 #endif
317 
318 #ifdef SMP
319 extern tlb_entry_t __boot_tlb1[];
320 void pmap_bootstrap_ap(volatile uint32_t *);
321 #endif
322 
323 /*
324  * Kernel MMU interface
325  */
326 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
327 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
328     vm_size_t, vm_offset_t);
329 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
330 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
331     vm_offset_t, vm_page_t *, vm_offset_t, int);
332 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
333     vm_prot_t, u_int flags, int8_t psind);
334 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
335     vm_page_t, vm_prot_t);
336 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
337     vm_prot_t);
338 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
339 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
340     vm_prot_t);
341 static void		mmu_booke_init(mmu_t);
342 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
343 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
344 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
345 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
346 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
347     int);
348 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
349     vm_paddr_t *);
350 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
351     vm_object_t, vm_pindex_t, vm_size_t);
352 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
353 static void		mmu_booke_page_init(mmu_t, vm_page_t);
354 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
355 static void		mmu_booke_pinit(mmu_t, pmap_t);
356 static void		mmu_booke_pinit0(mmu_t, pmap_t);
357 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
358     vm_prot_t);
359 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
360 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
361 static void		mmu_booke_release(mmu_t, pmap_t);
362 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
363 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
364 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
365 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
366 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
367 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
368 static void		mmu_booke_activate(mmu_t, struct thread *);
369 static void		mmu_booke_deactivate(mmu_t, struct thread *);
370 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
371 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
372 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
373 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
374 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
375 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
376 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
377 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
378 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
379 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
380     vm_size_t);
381 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
382     void **);
383 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
384     void *);
385 static void		mmu_booke_scan_init(mmu_t);
386 static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
387 static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
388 static int		mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr,
389     vm_size_t sz, vm_memattr_t mode);
390 static int		mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm,
391     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
392 static int		mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
393     int *is_user, vm_offset_t *decoded_addr);
394 
395 
396 static mmu_method_t mmu_booke_methods[] = {
397 	/* pmap dispatcher interface */
398 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
399 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
400 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
401 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
402 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
403 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
404 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
405 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
406 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
407 	MMUMETHOD(mmu_init,		mmu_booke_init),
408 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
409 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
410 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
411 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
412 	MMUMETHOD(mmu_map,		mmu_booke_map),
413 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
414 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
415 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
416 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
417 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
418 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
419 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
420 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
421 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
422 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
423 	MMUMETHOD(mmu_release,		mmu_booke_release),
424 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
425 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
426 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
427 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
428 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
429 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
430 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
431 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
432 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
433 	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
434 	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
435 
436 	/* Internal interfaces */
437 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
438 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
439 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
440 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
441 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
442 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
443 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
444 	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),
445 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
446 	MMUMETHOD(mmu_change_attr,	mmu_booke_change_attr),
447 	MMUMETHOD(mmu_map_user_ptr,	mmu_booke_map_user_ptr),
448 	MMUMETHOD(mmu_decode_kernel_ptr, mmu_booke_decode_kernel_ptr),
449 
450 	/* dumpsys() support */
451 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
452 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
453 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
454 
455 	{ 0, 0 }
456 };
457 
458 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
459 
460 static __inline uint32_t
461 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
462 {
463 	uint32_t attrib;
464 	int i;
465 
466 	if (ma != VM_MEMATTR_DEFAULT) {
467 		switch (ma) {
468 		case VM_MEMATTR_UNCACHEABLE:
469 			return (MAS2_I | MAS2_G);
470 		case VM_MEMATTR_WRITE_COMBINING:
471 		case VM_MEMATTR_WRITE_BACK:
472 		case VM_MEMATTR_PREFETCHABLE:
473 			return (MAS2_I);
474 		case VM_MEMATTR_WRITE_THROUGH:
475 			return (MAS2_W | MAS2_M);
476 		case VM_MEMATTR_CACHEABLE:
477 			return (MAS2_M);
478 		}
479 	}
480 
481 	/*
482 	 * Assume the page is cache inhibited and access is guarded unless
483 	 * it's in our available memory array.
484 	 */
485 	attrib = _TLB_ENTRY_IO;
486 	for (i = 0; i < physmem_regions_sz; i++) {
487 		if ((pa >= physmem_regions[i].mr_start) &&
488 		    (pa < (physmem_regions[i].mr_start +
489 		     physmem_regions[i].mr_size))) {
490 			attrib = _TLB_ENTRY_MEM;
491 			break;
492 		}
493 	}
494 
495 	return (attrib);
496 }
497 
498 static inline void
499 tlb_miss_lock(void)
500 {
501 #ifdef SMP
502 	struct pcpu *pc;
503 
504 	if (!smp_started)
505 		return;
506 
507 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
508 		if (pc != pcpup) {
509 
510 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
511 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
512 
513 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
514 			    ("tlb_miss_lock: tried to lock self"));
515 
516 			tlb_lock(pc->pc_booke.tlb_lock);
517 
518 			CTR1(KTR_PMAP, "%s: locked", __func__);
519 		}
520 	}
521 #endif
522 }
523 
524 static inline void
525 tlb_miss_unlock(void)
526 {
527 #ifdef SMP
528 	struct pcpu *pc;
529 
530 	if (!smp_started)
531 		return;
532 
533 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
534 		if (pc != pcpup) {
535 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
536 			    __func__, pc->pc_cpuid);
537 
538 			tlb_unlock(pc->pc_booke.tlb_lock);
539 
540 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
541 		}
542 	}
543 #endif
544 }
545 
546 /* Return number of entries in TLB0. */
547 static __inline void
548 tlb0_get_tlbconf(void)
549 {
550 	uint32_t tlb0_cfg;
551 
552 	tlb0_cfg = mfspr(SPR_TLB0CFG);
553 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
554 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
555 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
556 }
557 
558 /* Return number of entries in TLB1. */
559 static __inline void
560 tlb1_get_tlbconf(void)
561 {
562 	uint32_t tlb1_cfg;
563 
564 	tlb1_cfg = mfspr(SPR_TLB1CFG);
565 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
566 }
567 
568 /**************************************************************************/
569 /* Page table related */
570 /**************************************************************************/
571 
572 #ifdef __powerpc64__
573 /* Initialize pool of kva ptbl buffers. */
574 static void
575 ptbl_init(void)
576 {
577 }
578 
579 /* Get a pointer to a PTE in a page table. */
580 static __inline pte_t *
581 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
582 {
583 	pte_t         **pdir;
584 	pte_t          *ptbl;
585 
586 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
587 
588 	pdir = pmap->pm_pp2d[PP2D_IDX(va)];
589 	if (!pdir)
590 		return NULL;
591 	ptbl = pdir[PDIR_IDX(va)];
592 	return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL);
593 }
594 
595 /*
596  * allocate a page of pointers to page directories, do not preallocate the
597  * page tables
598  */
599 static pte_t  **
600 pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep)
601 {
602 	vm_page_t	m;
603 	pte_t          **pdir;
604 	int		req;
605 
606 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
607 	while ((m = vm_page_alloc(NULL, pp2d_idx, req)) == NULL) {
608 		PMAP_UNLOCK(pmap);
609 		if (nosleep) {
610 			return (NULL);
611 		}
612 		vm_wait(NULL);
613 		PMAP_LOCK(pmap);
614 	}
615 
616 	/* Zero whole ptbl. */
617 	pdir = (pte_t **)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
618 	mmu_booke_zero_page(mmu, m);
619 
620 	return (pdir);
621 }
622 
623 /* Free pdir pages and invalidate pdir entry. */
624 static void
625 pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, vm_page_t m)
626 {
627 	pte_t         **pdir;
628 
629 	pdir = pmap->pm_pp2d[pp2d_idx];
630 
631 	KASSERT((pdir != NULL), ("pdir_free: null pdir"));
632 
633 	pmap->pm_pp2d[pp2d_idx] = NULL;
634 
635 	vm_wire_sub(1);
636 	vm_page_free_zero(m);
637 }
638 
639 /*
640  * Decrement pdir pages hold count and attempt to free pdir pages. Called
641  * when removing directory entry from pdir.
642  *
643  * Return 1 if pdir pages were freed.
644  */
645 static int
646 pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx)
647 {
648 	pte_t         **pdir;
649 	vm_paddr_t	pa;
650 	vm_page_t	m;
651 
652 	KASSERT((pmap != kernel_pmap),
653 		("pdir_unhold: unholding kernel pdir!"));
654 
655 	pdir = pmap->pm_pp2d[pp2d_idx];
656 
657 	/* decrement hold count */
658 	pa = DMAP_TO_PHYS((vm_offset_t) pdir);
659 	m = PHYS_TO_VM_PAGE(pa);
660 
661 	/*
662 	 * Free pdir page if there are no dir entries in this pdir.
663 	 */
664 	m->wire_count--;
665 	if (m->wire_count == 0) {
666 		pdir_free(mmu, pmap, pp2d_idx, m);
667 		return (1);
668 	}
669 	return (0);
670 }
671 
672 /*
673  * Increment hold count for pdir pages. This routine is used when new ptlb
674  * entry is being inserted into pdir.
675  */
676 static void
677 pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir)
678 {
679 	vm_page_t	m;
680 
681 	KASSERT((pmap != kernel_pmap),
682 		("pdir_hold: holding kernel pdir!"));
683 
684 	KASSERT((pdir != NULL), ("pdir_hold: null pdir"));
685 
686 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pdir));
687 	m->wire_count++;
688 }
689 
690 /* Allocate page table. */
691 static pte_t   *
692 ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx,
693     boolean_t nosleep)
694 {
695 	vm_page_t	m;
696 	pte_t          *ptbl;
697 	int		req;
698 
699 	KASSERT((pdir[pdir_idx] == NULL),
700 		("%s: valid ptbl entry exists!", __func__));
701 
702 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
703 	while ((m = vm_page_alloc(NULL, pdir_idx, req)) == NULL) {
704 		PMAP_UNLOCK(pmap);
705 		rw_wunlock(&pvh_global_lock);
706 		if (nosleep) {
707 			return (NULL);
708 		}
709 		vm_wait(NULL);
710 		rw_wlock(&pvh_global_lock);
711 		PMAP_LOCK(pmap);
712 	}
713 
714 	/* Zero whole ptbl. */
715 	ptbl = (pte_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
716 	mmu_booke_zero_page(mmu, m);
717 
718 	return (ptbl);
719 }
720 
721 /* Free ptbl pages and invalidate pdir entry. */
722 static void
723 ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, vm_page_t m)
724 {
725 	pte_t          *ptbl;
726 
727 	ptbl = pdir[pdir_idx];
728 
729 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
730 
731 	pdir[pdir_idx] = NULL;
732 
733 	vm_wire_sub(1);
734 	vm_page_free_zero(m);
735 }
736 
737 /*
738  * Decrement ptbl pages hold count and attempt to free ptbl pages. Called
739  * when removing pte entry from ptbl.
740  *
741  * Return 1 if ptbl pages were freed.
742  */
743 static int
744 ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va)
745 {
746 	pte_t          *ptbl;
747 	vm_page_t	m;
748 	u_int		pp2d_idx;
749 	pte_t         **pdir;
750 	u_int		pdir_idx;
751 
752 	pp2d_idx = PP2D_IDX(va);
753 	pdir_idx = PDIR_IDX(va);
754 
755 	KASSERT((pmap != kernel_pmap),
756 		("ptbl_unhold: unholding kernel ptbl!"));
757 
758 	pdir = pmap->pm_pp2d[pp2d_idx];
759 	ptbl = pdir[pdir_idx];
760 
761 	/* decrement hold count */
762 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
763 
764 	/*
765 	 * Free ptbl pages if there are no pte entries in this ptbl.
766 	 * wire_count has the same value for all ptbl pages, so check the
767 	 * last page.
768 	 */
769 	m->wire_count--;
770 	if (m->wire_count == 0) {
771 		ptbl_free(mmu, pmap, pdir, pdir_idx, m);
772 		pdir_unhold(mmu, pmap, pp2d_idx);
773 		return (1);
774 	}
775 	return (0);
776 }
777 
778 /*
779  * Increment hold count for ptbl pages. This routine is used when new pte
780  * entry is being inserted into ptbl.
781  */
782 static void
783 ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx)
784 {
785 	pte_t          *ptbl;
786 	vm_page_t	m;
787 
788 	KASSERT((pmap != kernel_pmap),
789 		("ptbl_hold: holding kernel ptbl!"));
790 
791 	ptbl = pdir[pdir_idx];
792 
793 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
794 
795 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
796 	m->wire_count++;
797 }
798 #else
799 
800 /* Initialize pool of kva ptbl buffers. */
801 static void
802 ptbl_init(void)
803 {
804 	int i;
805 
806 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
807 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
808 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
809 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
810 
811 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
812 	TAILQ_INIT(&ptbl_buf_freelist);
813 
814 	for (i = 0; i < PTBL_BUFS; i++) {
815 		ptbl_bufs[i].kva =
816 		    ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
817 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
818 	}
819 }
820 
821 /* Get a ptbl_buf from the freelist. */
822 static struct ptbl_buf *
823 ptbl_buf_alloc(void)
824 {
825 	struct ptbl_buf *buf;
826 
827 	mtx_lock(&ptbl_buf_freelist_lock);
828 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
829 	if (buf != NULL)
830 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
831 	mtx_unlock(&ptbl_buf_freelist_lock);
832 
833 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
834 
835 	return (buf);
836 }
837 
838 /* Return ptbl buff to free pool. */
839 static void
840 ptbl_buf_free(struct ptbl_buf *buf)
841 {
842 
843 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
844 
845 	mtx_lock(&ptbl_buf_freelist_lock);
846 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
847 	mtx_unlock(&ptbl_buf_freelist_lock);
848 }
849 
850 /*
851  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
852  */
853 static void
854 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
855 {
856 	struct ptbl_buf *pbuf;
857 
858 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
859 
860 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
861 
862 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
863 		if (pbuf->kva == (vm_offset_t)ptbl) {
864 			/* Remove from pmap ptbl buf list. */
865 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
866 
867 			/* Free corresponding ptbl buf. */
868 			ptbl_buf_free(pbuf);
869 			break;
870 		}
871 }
872 
873 /* Allocate page table. */
874 static pte_t *
875 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
876 {
877 	vm_page_t mtbl[PTBL_PAGES];
878 	vm_page_t m;
879 	struct ptbl_buf *pbuf;
880 	unsigned int pidx;
881 	pte_t *ptbl;
882 	int i, j;
883 
884 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
885 	    (pmap == kernel_pmap), pdir_idx);
886 
887 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
888 	    ("ptbl_alloc: invalid pdir_idx"));
889 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
890 	    ("pte_alloc: valid ptbl entry exists!"));
891 
892 	pbuf = ptbl_buf_alloc();
893 	if (pbuf == NULL)
894 		panic("pte_alloc: couldn't alloc kernel virtual memory");
895 
896 	ptbl = (pte_t *)pbuf->kva;
897 
898 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
899 
900 	for (i = 0; i < PTBL_PAGES; i++) {
901 		pidx = (PTBL_PAGES * pdir_idx) + i;
902 		while ((m = vm_page_alloc(NULL, pidx,
903 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
904 			PMAP_UNLOCK(pmap);
905 			rw_wunlock(&pvh_global_lock);
906 			if (nosleep) {
907 				ptbl_free_pmap_ptbl(pmap, ptbl);
908 				for (j = 0; j < i; j++)
909 					vm_page_free(mtbl[j]);
910 				vm_wire_sub(i);
911 				return (NULL);
912 			}
913 			vm_wait(NULL);
914 			rw_wlock(&pvh_global_lock);
915 			PMAP_LOCK(pmap);
916 		}
917 		mtbl[i] = m;
918 	}
919 
920 	/* Map allocated pages into kernel_pmap. */
921 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
922 
923 	/* Zero whole ptbl. */
924 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
925 
926 	/* Add pbuf to the pmap ptbl bufs list. */
927 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
928 
929 	return (ptbl);
930 }
931 
932 /* Free ptbl pages and invalidate pdir entry. */
933 static void
934 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
935 {
936 	pte_t *ptbl;
937 	vm_paddr_t pa;
938 	vm_offset_t va;
939 	vm_page_t m;
940 	int i;
941 
942 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
943 	    (pmap == kernel_pmap), pdir_idx);
944 
945 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
946 	    ("ptbl_free: invalid pdir_idx"));
947 
948 	ptbl = pmap->pm_pdir[pdir_idx];
949 
950 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
951 
952 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
953 
954 	/*
955 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
956 	 * don't attempt to look up the page tables we are releasing.
957 	 */
958 	mtx_lock_spin(&tlbivax_mutex);
959 	tlb_miss_lock();
960 
961 	pmap->pm_pdir[pdir_idx] = NULL;
962 
963 	tlb_miss_unlock();
964 	mtx_unlock_spin(&tlbivax_mutex);
965 
966 	for (i = 0; i < PTBL_PAGES; i++) {
967 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
968 		pa = pte_vatopa(mmu, kernel_pmap, va);
969 		m = PHYS_TO_VM_PAGE(pa);
970 		vm_page_free_zero(m);
971 		vm_wire_sub(1);
972 		mmu_booke_kremove(mmu, va);
973 	}
974 
975 	ptbl_free_pmap_ptbl(pmap, ptbl);
976 }
977 
978 /*
979  * Decrement ptbl pages hold count and attempt to free ptbl pages.
980  * Called when removing pte entry from ptbl.
981  *
982  * Return 1 if ptbl pages were freed.
983  */
984 static int
985 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
986 {
987 	pte_t *ptbl;
988 	vm_paddr_t pa;
989 	vm_page_t m;
990 	int i;
991 
992 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
993 	    (pmap == kernel_pmap), pdir_idx);
994 
995 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
996 	    ("ptbl_unhold: invalid pdir_idx"));
997 	KASSERT((pmap != kernel_pmap),
998 	    ("ptbl_unhold: unholding kernel ptbl!"));
999 
1000 	ptbl = pmap->pm_pdir[pdir_idx];
1001 
1002 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
1003 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
1004 	    ("ptbl_unhold: non kva ptbl"));
1005 
1006 	/* decrement hold count */
1007 	for (i = 0; i < PTBL_PAGES; i++) {
1008 		pa = pte_vatopa(mmu, kernel_pmap,
1009 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
1010 		m = PHYS_TO_VM_PAGE(pa);
1011 		m->wire_count--;
1012 	}
1013 
1014 	/*
1015 	 * Free ptbl pages if there are no pte etries in this ptbl.
1016 	 * wire_count has the same value for all ptbl pages, so check the last
1017 	 * page.
1018 	 */
1019 	if (m->wire_count == 0) {
1020 		ptbl_free(mmu, pmap, pdir_idx);
1021 
1022 		//debugf("ptbl_unhold: e (freed ptbl)\n");
1023 		return (1);
1024 	}
1025 
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Increment hold count for ptbl pages. This routine is used when a new pte
1031  * entry is being inserted into the ptbl.
1032  */
1033 static void
1034 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
1035 {
1036 	vm_paddr_t pa;
1037 	pte_t *ptbl;
1038 	vm_page_t m;
1039 	int i;
1040 
1041 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
1042 	    pdir_idx);
1043 
1044 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
1045 	    ("ptbl_hold: invalid pdir_idx"));
1046 	KASSERT((pmap != kernel_pmap),
1047 	    ("ptbl_hold: holding kernel ptbl!"));
1048 
1049 	ptbl = pmap->pm_pdir[pdir_idx];
1050 
1051 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
1052 
1053 	for (i = 0; i < PTBL_PAGES; i++) {
1054 		pa = pte_vatopa(mmu, kernel_pmap,
1055 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
1056 		m = PHYS_TO_VM_PAGE(pa);
1057 		m->wire_count++;
1058 	}
1059 }
1060 #endif
1061 
1062 /* Allocate pv_entry structure. */
1063 pv_entry_t
1064 pv_alloc(void)
1065 {
1066 	pv_entry_t pv;
1067 
1068 	pv_entry_count++;
1069 	if (pv_entry_count > pv_entry_high_water)
1070 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
1071 	pv = uma_zalloc(pvzone, M_NOWAIT);
1072 
1073 	return (pv);
1074 }
1075 
1076 /* Free pv_entry structure. */
1077 static __inline void
1078 pv_free(pv_entry_t pve)
1079 {
1080 
1081 	pv_entry_count--;
1082 	uma_zfree(pvzone, pve);
1083 }
1084 
1085 
1086 /* Allocate and initialize pv_entry structure. */
1087 static void
1088 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
1089 {
1090 	pv_entry_t pve;
1091 
1092 	//int su = (pmap == kernel_pmap);
1093 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
1094 	//	(u_int32_t)pmap, va, (u_int32_t)m);
1095 
1096 	pve = pv_alloc();
1097 	if (pve == NULL)
1098 		panic("pv_insert: no pv entries!");
1099 
1100 	pve->pv_pmap = pmap;
1101 	pve->pv_va = va;
1102 
1103 	/* add to pv_list */
1104 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1105 	rw_assert(&pvh_global_lock, RA_WLOCKED);
1106 
1107 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
1108 
1109 	//debugf("pv_insert: e\n");
1110 }
1111 
1112 /* Destroy pv entry. */
1113 static void
1114 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
1115 {
1116 	pv_entry_t pve;
1117 
1118 	//int su = (pmap == kernel_pmap);
1119 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
1120 
1121 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1122 	rw_assert(&pvh_global_lock, RA_WLOCKED);
1123 
1124 	/* find pv entry */
1125 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
1126 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
1127 			/* remove from pv_list */
1128 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
1129 			if (TAILQ_EMPTY(&m->md.pv_list))
1130 				vm_page_aflag_clear(m, PGA_WRITEABLE);
1131 
1132 			/* free pv entry struct */
1133 			pv_free(pve);
1134 			break;
1135 		}
1136 	}
1137 
1138 	//debugf("pv_remove: e\n");
1139 }
1140 
1141 #ifdef __powerpc64__
1142 /*
1143  * Clean pte entry, try to free page table page if requested.
1144  *
1145  * Return 1 if ptbl pages were freed, otherwise return 0.
1146  */
1147 static int
1148 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags)
1149 {
1150 	vm_page_t	m;
1151 	pte_t          *pte;
1152 
1153 	pte = pte_find(mmu, pmap, va);
1154 	KASSERT(pte != NULL, ("%s: NULL pte", __func__));
1155 
1156 	if (!PTE_ISVALID(pte))
1157 		return (0);
1158 
1159 	/* Get vm_page_t for mapped pte. */
1160 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1161 
1162 	if (PTE_ISWIRED(pte))
1163 		pmap->pm_stats.wired_count--;
1164 
1165 	/* Handle managed entry. */
1166 	if (PTE_ISMANAGED(pte)) {
1167 
1168 		/* Handle modified pages. */
1169 		if (PTE_ISMODIFIED(pte))
1170 			vm_page_dirty(m);
1171 
1172 		/* Referenced pages. */
1173 		if (PTE_ISREFERENCED(pte))
1174 			vm_page_aflag_set(m, PGA_REFERENCED);
1175 
1176 		/* Remove pv_entry from pv_list. */
1177 		pv_remove(pmap, va, m);
1178 	} else if (m->md.pv_tracked) {
1179 		pv_remove(pmap, va, m);
1180 		if (TAILQ_EMPTY(&m->md.pv_list))
1181 			m->md.pv_tracked = false;
1182 	}
1183 	mtx_lock_spin(&tlbivax_mutex);
1184 	tlb_miss_lock();
1185 
1186 	tlb0_flush_entry(va);
1187 	*pte = 0;
1188 
1189 	tlb_miss_unlock();
1190 	mtx_unlock_spin(&tlbivax_mutex);
1191 
1192 	pmap->pm_stats.resident_count--;
1193 
1194 	if (flags & PTBL_UNHOLD) {
1195 		return (ptbl_unhold(mmu, pmap, va));
1196 	}
1197 	return (0);
1198 }
1199 
1200 /*
1201  * Insert PTE for a given page and virtual address.
1202  */
1203 static int
1204 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
1205     boolean_t nosleep)
1206 {
1207 	unsigned int	pp2d_idx = PP2D_IDX(va);
1208 	unsigned int	pdir_idx = PDIR_IDX(va);
1209 	unsigned int	ptbl_idx = PTBL_IDX(va);
1210 	pte_t          *ptbl, *pte, pte_tmp;
1211 	pte_t         **pdir;
1212 
1213 	/* Get the page directory pointer. */
1214 	pdir = pmap->pm_pp2d[pp2d_idx];
1215 	if (pdir == NULL)
1216 		pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep);
1217 
1218 	/* Get the page table pointer. */
1219 	ptbl = pdir[pdir_idx];
1220 
1221 	if (ptbl == NULL) {
1222 		/* Allocate page table pages. */
1223 		ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep);
1224 		if (ptbl == NULL) {
1225 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
1226 			return (ENOMEM);
1227 		}
1228 		pte = &ptbl[ptbl_idx];
1229 	} else {
1230 		/*
1231 		 * Check if there is valid mapping for requested va, if there
1232 		 * is, remove it.
1233 		 */
1234 		pte = &ptbl[ptbl_idx];
1235 		if (PTE_ISVALID(pte)) {
1236 			pte_remove(mmu, pmap, va, PTBL_HOLD);
1237 		} else {
1238 			/*
1239 			 * pte is not used, increment hold count for ptbl
1240 			 * pages.
1241 			 */
1242 			if (pmap != kernel_pmap)
1243 				ptbl_hold(mmu, pmap, pdir, pdir_idx);
1244 		}
1245 	}
1246 
1247 	if (pdir[pdir_idx] == NULL) {
1248 		if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL)
1249 			pdir_hold(mmu, pmap, pdir);
1250 		pdir[pdir_idx] = ptbl;
1251 	}
1252 	if (pmap->pm_pp2d[pp2d_idx] == NULL)
1253 		pmap->pm_pp2d[pp2d_idx] = pdir;
1254 
1255 	/*
1256 	 * Insert pv_entry into pv_list for mapped page if part of managed
1257 	 * memory.
1258 	 */
1259 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1260 		flags |= PTE_MANAGED;
1261 
1262 		/* Create and insert pv entry. */
1263 		pv_insert(pmap, va, m);
1264 	}
1265 
1266 	pmap->pm_stats.resident_count++;
1267 
1268 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
1269 	pte_tmp |= (PTE_VALID | flags);
1270 
1271 	mtx_lock_spin(&tlbivax_mutex);
1272 	tlb_miss_lock();
1273 
1274 	tlb0_flush_entry(va);
1275 	*pte = pte_tmp;
1276 
1277 	tlb_miss_unlock();
1278 	mtx_unlock_spin(&tlbivax_mutex);
1279 
1280 	return (0);
1281 }
1282 
1283 /* Return the pa for the given pmap/va. */
1284 static	vm_paddr_t
1285 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1286 {
1287 	vm_paddr_t	pa = 0;
1288 	pte_t          *pte;
1289 
1290 	pte = pte_find(mmu, pmap, va);
1291 	if ((pte != NULL) && PTE_ISVALID(pte))
1292 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1293 	return (pa);
1294 }
1295 
1296 
1297 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */
1298 static void
1299 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1300 {
1301 	int		i, j;
1302 	vm_offset_t	va;
1303 	pte_t		*pte;
1304 
1305 	va = addr;
1306 	/* Initialize kernel pdir */
1307 	for (i = 0; i < kernel_pdirs; i++) {
1308 		kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] =
1309 		    (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES));
1310 		for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES));
1311 		    j < PDIR_NENTRIES; j++) {
1312 			kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] =
1313 			    (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE) +
1314 			     (((i * PDIR_NENTRIES) + j) * PAGE_SIZE));
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * Fill in PTEs covering kernel code and data. They are not required
1320 	 * for address translation, as this area is covered by static TLB1
1321 	 * entries, but for pte_vatopa() to work correctly with kernel area
1322 	 * addresses.
1323 	 */
1324 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1325 		pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]);
1326 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1327 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1328 		    PTE_VALID | PTE_PS_4KB;
1329 	}
1330 }
1331 #else
1332 /*
1333  * Clean pte entry, try to free page table page if requested.
1334  *
1335  * Return 1 if ptbl pages were freed, otherwise return 0.
1336  */
1337 static int
1338 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
1339 {
1340 	unsigned int pdir_idx = PDIR_IDX(va);
1341 	unsigned int ptbl_idx = PTBL_IDX(va);
1342 	vm_page_t m;
1343 	pte_t *ptbl;
1344 	pte_t *pte;
1345 
1346 	//int su = (pmap == kernel_pmap);
1347 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
1348 	//		su, (u_int32_t)pmap, va, flags);
1349 
1350 	ptbl = pmap->pm_pdir[pdir_idx];
1351 	KASSERT(ptbl, ("pte_remove: null ptbl"));
1352 
1353 	pte = &ptbl[ptbl_idx];
1354 
1355 	if (pte == NULL || !PTE_ISVALID(pte))
1356 		return (0);
1357 
1358 	if (PTE_ISWIRED(pte))
1359 		pmap->pm_stats.wired_count--;
1360 
1361 	/* Get vm_page_t for mapped pte. */
1362 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1363 
1364 	/* Handle managed entry. */
1365 	if (PTE_ISMANAGED(pte)) {
1366 
1367 		if (PTE_ISMODIFIED(pte))
1368 			vm_page_dirty(m);
1369 
1370 		if (PTE_ISREFERENCED(pte))
1371 			vm_page_aflag_set(m, PGA_REFERENCED);
1372 
1373 		pv_remove(pmap, va, m);
1374 	} else if (m->md.pv_tracked) {
1375 		/*
1376 		 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is
1377 		 * used.  This is needed by the NCSW support code for fast
1378 		 * VA<->PA translation.
1379 		 */
1380 		pv_remove(pmap, va, m);
1381 		if (TAILQ_EMPTY(&m->md.pv_list))
1382 			m->md.pv_tracked = false;
1383 	}
1384 
1385 	mtx_lock_spin(&tlbivax_mutex);
1386 	tlb_miss_lock();
1387 
1388 	tlb0_flush_entry(va);
1389 	*pte = 0;
1390 
1391 	tlb_miss_unlock();
1392 	mtx_unlock_spin(&tlbivax_mutex);
1393 
1394 	pmap->pm_stats.resident_count--;
1395 
1396 	if (flags & PTBL_UNHOLD) {
1397 		//debugf("pte_remove: e (unhold)\n");
1398 		return (ptbl_unhold(mmu, pmap, pdir_idx));
1399 	}
1400 
1401 	//debugf("pte_remove: e\n");
1402 	return (0);
1403 }
1404 
1405 /*
1406  * Insert PTE for a given page and virtual address.
1407  */
1408 static int
1409 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
1410     boolean_t nosleep)
1411 {
1412 	unsigned int pdir_idx = PDIR_IDX(va);
1413 	unsigned int ptbl_idx = PTBL_IDX(va);
1414 	pte_t *ptbl, *pte, pte_tmp;
1415 
1416 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
1417 	    pmap == kernel_pmap, pmap, va);
1418 
1419 	/* Get the page table pointer. */
1420 	ptbl = pmap->pm_pdir[pdir_idx];
1421 
1422 	if (ptbl == NULL) {
1423 		/* Allocate page table pages. */
1424 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
1425 		if (ptbl == NULL) {
1426 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
1427 			return (ENOMEM);
1428 		}
1429 		pmap->pm_pdir[pdir_idx] = ptbl;
1430 		pte = &ptbl[ptbl_idx];
1431 	} else {
1432 		/*
1433 		 * Check if there is valid mapping for requested
1434 		 * va, if there is, remove it.
1435 		 */
1436 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
1437 		if (PTE_ISVALID(pte)) {
1438 			pte_remove(mmu, pmap, va, PTBL_HOLD);
1439 		} else {
1440 			/*
1441 			 * pte is not used, increment hold count
1442 			 * for ptbl pages.
1443 			 */
1444 			if (pmap != kernel_pmap)
1445 				ptbl_hold(mmu, pmap, pdir_idx);
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * Insert pv_entry into pv_list for mapped page if part of managed
1451 	 * memory.
1452 	 */
1453 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1454 		flags |= PTE_MANAGED;
1455 
1456 		/* Create and insert pv entry. */
1457 		pv_insert(pmap, va, m);
1458 	}
1459 
1460 	pmap->pm_stats.resident_count++;
1461 
1462 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
1463 	pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
1464 
1465 	mtx_lock_spin(&tlbivax_mutex);
1466 	tlb_miss_lock();
1467 
1468 	tlb0_flush_entry(va);
1469 	*pte = pte_tmp;
1470 
1471 	tlb_miss_unlock();
1472 	mtx_unlock_spin(&tlbivax_mutex);
1473 	return (0);
1474 }
1475 
1476 /* Return the pa for the given pmap/va. */
1477 static vm_paddr_t
1478 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1479 {
1480 	vm_paddr_t pa = 0;
1481 	pte_t *pte;
1482 
1483 	pte = pte_find(mmu, pmap, va);
1484 	if ((pte != NULL) && PTE_ISVALID(pte))
1485 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1486 	return (pa);
1487 }
1488 
1489 /* Get a pointer to a PTE in a page table. */
1490 static pte_t *
1491 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1492 {
1493 	unsigned int pdir_idx = PDIR_IDX(va);
1494 	unsigned int ptbl_idx = PTBL_IDX(va);
1495 
1496 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1497 
1498 	if (pmap->pm_pdir[pdir_idx])
1499 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1500 
1501 	return (NULL);
1502 }
1503 
1504 /* Set up kernel page tables. */
1505 static void
1506 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1507 {
1508 	int		i;
1509 	vm_offset_t	va;
1510 	pte_t		*pte;
1511 
1512 	/* Initialize kernel pdir */
1513 	for (i = 0; i < kernel_ptbls; i++)
1514 		kernel_pmap->pm_pdir[kptbl_min + i] =
1515 		    (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1516 
1517 	/*
1518 	 * Fill in PTEs covering kernel code and data. They are not required
1519 	 * for address translation, as this area is covered by static TLB1
1520 	 * entries, but for pte_vatopa() to work correctly with kernel area
1521 	 * addresses.
1522 	 */
1523 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1524 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1525 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1526 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1527 		    PTE_VALID | PTE_PS_4KB;
1528 	}
1529 }
1530 #endif
1531 
1532 /**************************************************************************/
1533 /* PMAP related */
1534 /**************************************************************************/
1535 
1536 /*
1537  * This is called during booke_init, before the system is really initialized.
1538  */
1539 static void
1540 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1541 {
1542 	vm_paddr_t phys_kernelend;
1543 	struct mem_region *mp, *mp1;
1544 	int cnt, i, j;
1545 	vm_paddr_t s, e, sz;
1546 	vm_paddr_t physsz, hwphyssz;
1547 	u_int phys_avail_count;
1548 	vm_size_t kstack0_sz;
1549 	vm_offset_t kernel_pdir, kstack0;
1550 	vm_paddr_t kstack0_phys;
1551 	void *dpcpu;
1552 	vm_offset_t kernel_ptbl_root;
1553 
1554 	debugf("mmu_booke_bootstrap: entered\n");
1555 
1556 	/* Set interesting system properties */
1557 #ifdef __powerpc64__
1558 	hw_direct_map = 1;
1559 #else
1560 	hw_direct_map = 0;
1561 #endif
1562 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
1563 	elf32_nxstack = 1;
1564 #endif
1565 
1566 	/* Initialize invalidation mutex */
1567 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1568 
1569 	/* Read TLB0 size and associativity. */
1570 	tlb0_get_tlbconf();
1571 
1572 	/*
1573 	 * Align kernel start and end address (kernel image).
1574 	 * Note that kernel end does not necessarily relate to kernsize.
1575 	 * kernsize is the size of the kernel that is actually mapped.
1576 	 */
1577 	data_start = round_page(kernelend);
1578 	data_end = data_start;
1579 
1580 	/* Allocate the dynamic per-cpu area. */
1581 	dpcpu = (void *)data_end;
1582 	data_end += DPCPU_SIZE;
1583 
1584 	/* Allocate space for the message buffer. */
1585 	msgbufp = (struct msgbuf *)data_end;
1586 	data_end += msgbufsize;
1587 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1588 	    (uintptr_t)msgbufp, data_end);
1589 
1590 	data_end = round_page(data_end);
1591 
1592 #ifdef __powerpc64__
1593 	kernel_ptbl_root = data_end;
1594 	data_end += PP2D_NENTRIES * sizeof(pte_t**);
1595 #else
1596 	/* Allocate space for ptbl_bufs. */
1597 	ptbl_bufs = (struct ptbl_buf *)data_end;
1598 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1599 	debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1600 	    (uintptr_t)ptbl_bufs, data_end);
1601 
1602 	data_end = round_page(data_end);
1603 	kernel_ptbl_root = data_end;
1604 	data_end += PDIR_NENTRIES * sizeof(pte_t*);
1605 #endif
1606 
1607 	/* Allocate PTE tables for kernel KVA. */
1608 	kernel_pdir = data_end;
1609 	kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
1610 	    PDIR_SIZE);
1611 #ifdef __powerpc64__
1612 	kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES);
1613 	data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE;
1614 #endif
1615 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1616 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1617 	debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1618 	    kernel_pdir, data_end);
1619 
1620 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
1621 	if (data_end - kernstart > kernsize) {
1622 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1623 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1624 	}
1625 	data_end = kernstart + kernsize;
1626 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
1627 
1628 	/*
1629 	 * Clear the structures - note we can only do it safely after the
1630 	 * possible additional TLB1 translations are in place (above) so that
1631 	 * all range up to the currently calculated 'data_end' is covered.
1632 	 */
1633 	dpcpu_init(dpcpu, 0);
1634 #ifdef __powerpc64__
1635 	memset((void *)kernel_pdir, 0,
1636 	    kernel_pdirs * PDIR_PAGES * PAGE_SIZE +
1637 	    kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1638 #else
1639 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1640 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1641 #endif
1642 
1643 	/*******************************************************/
1644 	/* Set the start and end of kva. */
1645 	/*******************************************************/
1646 	virtual_avail = round_page(data_end);
1647 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1648 
1649 	/* Allocate KVA space for page zero/copy operations. */
1650 	zero_page_va = virtual_avail;
1651 	virtual_avail += PAGE_SIZE;
1652 	copy_page_src_va = virtual_avail;
1653 	virtual_avail += PAGE_SIZE;
1654 	copy_page_dst_va = virtual_avail;
1655 	virtual_avail += PAGE_SIZE;
1656 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
1657 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
1658 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
1659 
1660 	/* Initialize page zero/copy mutexes. */
1661 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1662 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1663 
1664 #ifndef __powerpc64__
1665 	/* Allocate KVA space for ptbl bufs. */
1666 	ptbl_buf_pool_vabase = virtual_avail;
1667 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1668 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1669 	    ptbl_buf_pool_vabase, virtual_avail);
1670 #endif
1671 
1672 	/* Calculate corresponding physical addresses for the kernel region. */
1673 	phys_kernelend = kernload + kernsize;
1674 	debugf("kernel image and allocated data:\n");
1675 	debugf(" kernload    = 0x%09llx\n", (uint64_t)kernload);
1676 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
1677 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
1678 
1679 	/*
1680 	 * Remove kernel physical address range from avail regions list. Page
1681 	 * align all regions.  Non-page aligned memory isn't very interesting
1682 	 * to us.  Also, sort the entries for ascending addresses.
1683 	 */
1684 
1685 	/* Retrieve phys/avail mem regions */
1686 	mem_regions(&physmem_regions, &physmem_regions_sz,
1687 	    &availmem_regions, &availmem_regions_sz);
1688 
1689 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
1690 		panic("mmu_booke_bootstrap: phys_avail too small");
1691 
1692 	sz = 0;
1693 	cnt = availmem_regions_sz;
1694 	debugf("processing avail regions:\n");
1695 	for (mp = availmem_regions; mp->mr_size; mp++) {
1696 		s = mp->mr_start;
1697 		e = mp->mr_start + mp->mr_size;
1698 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1699 		/* Check whether this region holds all of the kernel. */
1700 		if (s < kernload && e > phys_kernelend) {
1701 			availmem_regions[cnt].mr_start = phys_kernelend;
1702 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1703 			e = kernload;
1704 		}
1705 		/* Look whether this regions starts within the kernel. */
1706 		if (s >= kernload && s < phys_kernelend) {
1707 			if (e <= phys_kernelend)
1708 				goto empty;
1709 			s = phys_kernelend;
1710 		}
1711 		/* Now look whether this region ends within the kernel. */
1712 		if (e > kernload && e <= phys_kernelend) {
1713 			if (s >= kernload)
1714 				goto empty;
1715 			e = kernload;
1716 		}
1717 		/* Now page align the start and size of the region. */
1718 		s = round_page(s);
1719 		e = trunc_page(e);
1720 		if (e < s)
1721 			e = s;
1722 		sz = e - s;
1723 		debugf("%09jx-%09jx = %jx\n",
1724 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1725 
1726 		/* Check whether some memory is left here. */
1727 		if (sz == 0) {
1728 		empty:
1729 			memmove(mp, mp + 1,
1730 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1731 			cnt--;
1732 			mp--;
1733 			continue;
1734 		}
1735 
1736 		/* Do an insertion sort. */
1737 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1738 			if (s < mp1->mr_start)
1739 				break;
1740 		if (mp1 < mp) {
1741 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1742 			mp1->mr_start = s;
1743 			mp1->mr_size = sz;
1744 		} else {
1745 			mp->mr_start = s;
1746 			mp->mr_size = sz;
1747 		}
1748 	}
1749 	availmem_regions_sz = cnt;
1750 
1751 	/*******************************************************/
1752 	/* Steal physical memory for kernel stack from the end */
1753 	/* of the first avail region                           */
1754 	/*******************************************************/
1755 	kstack0_sz = kstack_pages * PAGE_SIZE;
1756 	kstack0_phys = availmem_regions[0].mr_start +
1757 	    availmem_regions[0].mr_size;
1758 	kstack0_phys -= kstack0_sz;
1759 	availmem_regions[0].mr_size -= kstack0_sz;
1760 
1761 	/*******************************************************/
1762 	/* Fill in phys_avail table, based on availmem_regions */
1763 	/*******************************************************/
1764 	phys_avail_count = 0;
1765 	physsz = 0;
1766 	hwphyssz = 0;
1767 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1768 
1769 	debugf("fill in phys_avail:\n");
1770 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1771 
1772 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1773 		    (uintmax_t)availmem_regions[i].mr_start,
1774 		    (uintmax_t)availmem_regions[i].mr_start +
1775 		        availmem_regions[i].mr_size,
1776 		    (uintmax_t)availmem_regions[i].mr_size);
1777 
1778 		if (hwphyssz != 0 &&
1779 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1780 			debugf(" hw.physmem adjust\n");
1781 			if (physsz < hwphyssz) {
1782 				phys_avail[j] = availmem_regions[i].mr_start;
1783 				phys_avail[j + 1] =
1784 				    availmem_regions[i].mr_start +
1785 				    hwphyssz - physsz;
1786 				physsz = hwphyssz;
1787 				phys_avail_count++;
1788 			}
1789 			break;
1790 		}
1791 
1792 		phys_avail[j] = availmem_regions[i].mr_start;
1793 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1794 		    availmem_regions[i].mr_size;
1795 		phys_avail_count++;
1796 		physsz += availmem_regions[i].mr_size;
1797 	}
1798 	physmem = btoc(physsz);
1799 
1800 	/* Calculate the last available physical address. */
1801 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1802 		;
1803 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1804 
1805 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1806 	debugf("phys_avail_count = %d\n", phys_avail_count);
1807 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
1808 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
1809 
1810 #ifdef __powerpc64__
1811 	/*
1812 	 * Map the physical memory contiguously in TLB1.
1813 	 * Round so it fits into a single mapping.
1814 	 */
1815 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
1816 	    phys_avail[i + 1]);
1817 #endif
1818 
1819 	/*******************************************************/
1820 	/* Initialize (statically allocated) kernel pmap. */
1821 	/*******************************************************/
1822 	PMAP_LOCK_INIT(kernel_pmap);
1823 #ifndef __powerpc64__
1824 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1825 #endif
1826 #ifdef __powerpc64__
1827 	kernel_pmap->pm_pp2d = (pte_t ***)kernel_ptbl_root;
1828 #else
1829 	kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root;
1830 #endif
1831 
1832 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
1833 	kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir);
1834 	for (i = 0; i < MAXCPU; i++) {
1835 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1836 
1837 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1838 		tidbusy[i][TID_KERNEL] = kernel_pmap;
1839 	}
1840 
1841 	/* Mark kernel_pmap active on all CPUs */
1842 	CPU_FILL(&kernel_pmap->pm_active);
1843 
1844  	/*
1845 	 * Initialize the global pv list lock.
1846 	 */
1847 	rw_init(&pvh_global_lock, "pmap pv global");
1848 
1849 	/*******************************************************/
1850 	/* Final setup */
1851 	/*******************************************************/
1852 
1853 	/* Enter kstack0 into kernel map, provide guard page */
1854 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1855 	thread0.td_kstack = kstack0;
1856 	thread0.td_kstack_pages = kstack_pages;
1857 
1858 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1859 	debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1860 	    kstack0_phys, kstack0_phys + kstack0_sz);
1861 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
1862 	    kstack0, kstack0 + kstack0_sz);
1863 
1864 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1865 	for (i = 0; i < kstack_pages; i++) {
1866 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1867 		kstack0 += PAGE_SIZE;
1868 		kstack0_phys += PAGE_SIZE;
1869 	}
1870 
1871 	pmap_bootstrapped = 1;
1872 
1873 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
1874 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
1875 
1876 	debugf("mmu_booke_bootstrap: exit\n");
1877 }
1878 
1879 #ifdef SMP
1880  void
1881 tlb1_ap_prep(void)
1882 {
1883 	tlb_entry_t *e, tmp;
1884 	unsigned int i;
1885 
1886 	/* Prepare TLB1 image for AP processors */
1887 	e = __boot_tlb1;
1888 	for (i = 0; i < TLB1_ENTRIES; i++) {
1889 		tlb1_read_entry(&tmp, i);
1890 
1891 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
1892 			memcpy(e++, &tmp, sizeof(tmp));
1893 	}
1894 }
1895 
1896 void
1897 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1898 {
1899 	int i;
1900 
1901 	/*
1902 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1903 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
1904 	 * created by tlb1_ap_prep(), so use these values directly to
1905 	 * (re)program AP's TLB1 hardware.
1906 	 *
1907 	 * Start at index 1 because index 0 has the kernel map.
1908 	 */
1909 	for (i = 1; i < TLB1_ENTRIES; i++) {
1910 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
1911 			tlb1_write_entry(&__boot_tlb1[i], i);
1912 	}
1913 
1914 	set_mas4_defaults();
1915 }
1916 #endif
1917 
1918 static void
1919 booke_pmap_init_qpages(void)
1920 {
1921 	struct pcpu *pc;
1922 	int i;
1923 
1924 	CPU_FOREACH(i) {
1925 		pc = pcpu_find(i);
1926 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1927 		if (pc->pc_qmap_addr == 0)
1928 			panic("pmap_init_qpages: unable to allocate KVA");
1929 	}
1930 }
1931 
1932 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1933 
1934 /*
1935  * Get the physical page address for the given pmap/virtual address.
1936  */
1937 static vm_paddr_t
1938 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1939 {
1940 	vm_paddr_t pa;
1941 
1942 	PMAP_LOCK(pmap);
1943 	pa = pte_vatopa(mmu, pmap, va);
1944 	PMAP_UNLOCK(pmap);
1945 
1946 	return (pa);
1947 }
1948 
1949 /*
1950  * Extract the physical page address associated with the given
1951  * kernel virtual address.
1952  */
1953 static vm_paddr_t
1954 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1955 {
1956 	tlb_entry_t e;
1957 	vm_paddr_t p = 0;
1958 	int i;
1959 
1960 #ifdef __powerpc64__
1961 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1962 		return (DMAP_TO_PHYS(va));
1963 #endif
1964 
1965 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1966 		p = pte_vatopa(mmu, kernel_pmap, va);
1967 
1968 	if (p == 0) {
1969 		/* Check TLB1 mappings */
1970 		for (i = 0; i < TLB1_ENTRIES; i++) {
1971 			tlb1_read_entry(&e, i);
1972 			if (!(e.mas1 & MAS1_VALID))
1973 				continue;
1974 			if (va >= e.virt && va < e.virt + e.size)
1975 				return (e.phys + (va - e.virt));
1976 		}
1977 	}
1978 
1979 	return (p);
1980 }
1981 
1982 /*
1983  * Initialize the pmap module.
1984  * Called by vm_init, to initialize any structures that the pmap
1985  * system needs to map virtual memory.
1986  */
1987 static void
1988 mmu_booke_init(mmu_t mmu)
1989 {
1990 	int shpgperproc = PMAP_SHPGPERPROC;
1991 
1992 	/*
1993 	 * Initialize the address space (zone) for the pv entries.  Set a
1994 	 * high water mark so that the system can recover from excessive
1995 	 * numbers of pv entries.
1996 	 */
1997 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1998 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1999 
2000 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
2001 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
2002 
2003 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
2004 	pv_entry_high_water = 9 * (pv_entry_max / 10);
2005 
2006 	uma_zone_reserve_kva(pvzone, pv_entry_max);
2007 
2008 	/* Pre-fill pvzone with initial number of pv entries. */
2009 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
2010 
2011 	/* Create a UMA zone for page table roots. */
2012 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
2013 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
2014 
2015 	/* Initialize ptbl allocation. */
2016 	ptbl_init();
2017 }
2018 
2019 /*
2020  * Map a list of wired pages into kernel virtual address space.  This is
2021  * intended for temporary mappings which do not need page modification or
2022  * references recorded.  Existing mappings in the region are overwritten.
2023  */
2024 static void
2025 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
2026 {
2027 	vm_offset_t va;
2028 
2029 	va = sva;
2030 	while (count-- > 0) {
2031 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2032 		va += PAGE_SIZE;
2033 		m++;
2034 	}
2035 }
2036 
2037 /*
2038  * Remove page mappings from kernel virtual address space.  Intended for
2039  * temporary mappings entered by mmu_booke_qenter.
2040  */
2041 static void
2042 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
2043 {
2044 	vm_offset_t va;
2045 
2046 	va = sva;
2047 	while (count-- > 0) {
2048 		mmu_booke_kremove(mmu, va);
2049 		va += PAGE_SIZE;
2050 	}
2051 }
2052 
2053 /*
2054  * Map a wired page into kernel virtual address space.
2055  */
2056 static void
2057 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
2058 {
2059 
2060 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
2061 }
2062 
2063 static void
2064 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2065 {
2066 	uint32_t flags;
2067 	pte_t *pte;
2068 
2069 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
2070 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
2071 
2072 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2073 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
2074 	flags |= PTE_PS_4KB;
2075 
2076 	pte = pte_find(mmu, kernel_pmap, va);
2077 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
2078 
2079 	mtx_lock_spin(&tlbivax_mutex);
2080 	tlb_miss_lock();
2081 
2082 	if (PTE_ISVALID(pte)) {
2083 
2084 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
2085 
2086 		/* Flush entry from TLB0 */
2087 		tlb0_flush_entry(va);
2088 	}
2089 
2090 	*pte = PTE_RPN_FROM_PA(pa) | flags;
2091 
2092 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
2093 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
2094 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
2095 
2096 	/* Flush the real memory from the instruction cache. */
2097 	if ((flags & (PTE_I | PTE_G)) == 0)
2098 		__syncicache((void *)va, PAGE_SIZE);
2099 
2100 	tlb_miss_unlock();
2101 	mtx_unlock_spin(&tlbivax_mutex);
2102 }
2103 
2104 /*
2105  * Remove a page from kernel page table.
2106  */
2107 static void
2108 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
2109 {
2110 	pte_t *pte;
2111 
2112 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
2113 
2114 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
2115 	    (va <= VM_MAX_KERNEL_ADDRESS)),
2116 	    ("mmu_booke_kremove: invalid va"));
2117 
2118 	pte = pte_find(mmu, kernel_pmap, va);
2119 
2120 	if (!PTE_ISVALID(pte)) {
2121 
2122 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
2123 
2124 		return;
2125 	}
2126 
2127 	mtx_lock_spin(&tlbivax_mutex);
2128 	tlb_miss_lock();
2129 
2130 	/* Invalidate entry in TLB0, update PTE. */
2131 	tlb0_flush_entry(va);
2132 	*pte = 0;
2133 
2134 	tlb_miss_unlock();
2135 	mtx_unlock_spin(&tlbivax_mutex);
2136 }
2137 
2138 /*
2139  * Provide a kernel pointer corresponding to a given userland pointer.
2140  * The returned pointer is valid until the next time this function is
2141  * called in this thread. This is used internally in copyin/copyout.
2142  */
2143 int
2144 mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
2145     void **kaddr, size_t ulen, size_t *klen)
2146 {
2147 
2148 	if (trunc_page((uintptr_t)uaddr + ulen) > VM_MAXUSER_ADDRESS)
2149 		return (EFAULT);
2150 
2151 	*kaddr = (void *)(uintptr_t)uaddr;
2152 	if (klen)
2153 		*klen = ulen;
2154 
2155 	return (0);
2156 }
2157 
2158 /*
2159  * Figure out where a given kernel pointer (usually in a fault) points
2160  * to from the VM's perspective, potentially remapping into userland's
2161  * address space.
2162  */
2163 static int
2164 mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2165     vm_offset_t *decoded_addr)
2166 {
2167 
2168 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
2169 		*is_user = 1;
2170 	else
2171 		*is_user = 0;
2172 
2173 	*decoded_addr = addr;
2174 	return (0);
2175 }
2176 
2177 /*
2178  * Initialize pmap associated with process 0.
2179  */
2180 static void
2181 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
2182 {
2183 
2184 	PMAP_LOCK_INIT(pmap);
2185 	mmu_booke_pinit(mmu, pmap);
2186 	PCPU_SET(curpmap, pmap);
2187 }
2188 
2189 /*
2190  * Initialize a preallocated and zeroed pmap structure,
2191  * such as one in a vmspace structure.
2192  */
2193 static void
2194 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
2195 {
2196 	int i;
2197 
2198 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
2199 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
2200 
2201 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
2202 
2203 	for (i = 0; i < MAXCPU; i++)
2204 		pmap->pm_tid[i] = TID_NONE;
2205 	CPU_ZERO(&kernel_pmap->pm_active);
2206 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2207 #ifdef __powerpc64__
2208 	pmap->pm_pp2d = uma_zalloc(ptbl_root_zone, M_WAITOK);
2209 	bzero(pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES);
2210 #else
2211 	pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK);
2212 	bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
2213 	TAILQ_INIT(&pmap->pm_ptbl_list);
2214 #endif
2215 }
2216 
2217 /*
2218  * Release any resources held by the given physical map.
2219  * Called when a pmap initialized by mmu_booke_pinit is being released.
2220  * Should only be called if the map contains no valid mappings.
2221  */
2222 static void
2223 mmu_booke_release(mmu_t mmu, pmap_t pmap)
2224 {
2225 
2226 	KASSERT(pmap->pm_stats.resident_count == 0,
2227 	    ("pmap_release: pmap resident count %ld != 0",
2228 	    pmap->pm_stats.resident_count));
2229 #ifdef __powerpc64__
2230 	uma_zfree(ptbl_root_zone, pmap->pm_pp2d);
2231 #else
2232 	uma_zfree(ptbl_root_zone, pmap->pm_pdir);
2233 #endif
2234 }
2235 
2236 /*
2237  * Insert the given physical page at the specified virtual address in the
2238  * target physical map with the protection requested. If specified the page
2239  * will be wired down.
2240  */
2241 static int
2242 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2243     vm_prot_t prot, u_int flags, int8_t psind)
2244 {
2245 	int error;
2246 
2247 	rw_wlock(&pvh_global_lock);
2248 	PMAP_LOCK(pmap);
2249 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
2250 	PMAP_UNLOCK(pmap);
2251 	rw_wunlock(&pvh_global_lock);
2252 	return (error);
2253 }
2254 
2255 static int
2256 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2257     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
2258 {
2259 	pte_t *pte;
2260 	vm_paddr_t pa;
2261 	uint32_t flags;
2262 	int error, su, sync;
2263 
2264 	pa = VM_PAGE_TO_PHYS(m);
2265 	su = (pmap == kernel_pmap);
2266 	sync = 0;
2267 
2268 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
2269 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
2270 	//		(u_int32_t)pmap, su, pmap->pm_tid,
2271 	//		(u_int32_t)m, va, pa, prot, flags);
2272 
2273 	if (su) {
2274 		KASSERT(((va >= virtual_avail) &&
2275 		    (va <= VM_MAX_KERNEL_ADDRESS)),
2276 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
2277 	} else {
2278 		KASSERT((va <= VM_MAXUSER_ADDRESS),
2279 		    ("mmu_booke_enter_locked: user pmap, non user va"));
2280 	}
2281 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2282 		VM_OBJECT_ASSERT_LOCKED(m->object);
2283 
2284 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2285 
2286 	/*
2287 	 * If there is an existing mapping, and the physical address has not
2288 	 * changed, must be protection or wiring change.
2289 	 */
2290 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
2291 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
2292 
2293 		/*
2294 		 * Before actually updating pte->flags we calculate and
2295 		 * prepare its new value in a helper var.
2296 		 */
2297 		flags = *pte;
2298 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
2299 
2300 		/* Wiring change, just update stats. */
2301 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
2302 			if (!PTE_ISWIRED(pte)) {
2303 				flags |= PTE_WIRED;
2304 				pmap->pm_stats.wired_count++;
2305 			}
2306 		} else {
2307 			if (PTE_ISWIRED(pte)) {
2308 				flags &= ~PTE_WIRED;
2309 				pmap->pm_stats.wired_count--;
2310 			}
2311 		}
2312 
2313 		if (prot & VM_PROT_WRITE) {
2314 			/* Add write permissions. */
2315 			flags |= PTE_SW;
2316 			if (!su)
2317 				flags |= PTE_UW;
2318 
2319 			if ((flags & PTE_MANAGED) != 0)
2320 				vm_page_aflag_set(m, PGA_WRITEABLE);
2321 		} else {
2322 			/* Handle modified pages, sense modify status. */
2323 
2324 			/*
2325 			 * The PTE_MODIFIED flag could be set by underlying
2326 			 * TLB misses since we last read it (above), possibly
2327 			 * other CPUs could update it so we check in the PTE
2328 			 * directly rather than rely on that saved local flags
2329 			 * copy.
2330 			 */
2331 			if (PTE_ISMODIFIED(pte))
2332 				vm_page_dirty(m);
2333 		}
2334 
2335 		if (prot & VM_PROT_EXECUTE) {
2336 			flags |= PTE_SX;
2337 			if (!su)
2338 				flags |= PTE_UX;
2339 
2340 			/*
2341 			 * Check existing flags for execute permissions: if we
2342 			 * are turning execute permissions on, icache should
2343 			 * be flushed.
2344 			 */
2345 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
2346 				sync++;
2347 		}
2348 
2349 		flags &= ~PTE_REFERENCED;
2350 
2351 		/*
2352 		 * The new flags value is all calculated -- only now actually
2353 		 * update the PTE.
2354 		 */
2355 		mtx_lock_spin(&tlbivax_mutex);
2356 		tlb_miss_lock();
2357 
2358 		tlb0_flush_entry(va);
2359 		*pte &= ~PTE_FLAGS_MASK;
2360 		*pte |= flags;
2361 
2362 		tlb_miss_unlock();
2363 		mtx_unlock_spin(&tlbivax_mutex);
2364 
2365 	} else {
2366 		/*
2367 		 * If there is an existing mapping, but it's for a different
2368 		 * physical address, pte_enter() will delete the old mapping.
2369 		 */
2370 		//if ((pte != NULL) && PTE_ISVALID(pte))
2371 		//	debugf("mmu_booke_enter_locked: replace\n");
2372 		//else
2373 		//	debugf("mmu_booke_enter_locked: new\n");
2374 
2375 		/* Now set up the flags and install the new mapping. */
2376 		flags = (PTE_SR | PTE_VALID);
2377 		flags |= PTE_M;
2378 
2379 		if (!su)
2380 			flags |= PTE_UR;
2381 
2382 		if (prot & VM_PROT_WRITE) {
2383 			flags |= PTE_SW;
2384 			if (!su)
2385 				flags |= PTE_UW;
2386 
2387 			if ((m->oflags & VPO_UNMANAGED) == 0)
2388 				vm_page_aflag_set(m, PGA_WRITEABLE);
2389 		}
2390 
2391 		if (prot & VM_PROT_EXECUTE) {
2392 			flags |= PTE_SX;
2393 			if (!su)
2394 				flags |= PTE_UX;
2395 		}
2396 
2397 		/* If its wired update stats. */
2398 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
2399 			flags |= PTE_WIRED;
2400 
2401 		error = pte_enter(mmu, pmap, m, va, flags,
2402 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
2403 		if (error != 0)
2404 			return (KERN_RESOURCE_SHORTAGE);
2405 
2406 		if ((flags & PMAP_ENTER_WIRED) != 0)
2407 			pmap->pm_stats.wired_count++;
2408 
2409 		/* Flush the real memory from the instruction cache. */
2410 		if (prot & VM_PROT_EXECUTE)
2411 			sync++;
2412 	}
2413 
2414 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
2415 		__syncicache((void *)va, PAGE_SIZE);
2416 		sync = 0;
2417 	}
2418 
2419 	return (KERN_SUCCESS);
2420 }
2421 
2422 /*
2423  * Maps a sequence of resident pages belonging to the same object.
2424  * The sequence begins with the given page m_start.  This page is
2425  * mapped at the given virtual address start.  Each subsequent page is
2426  * mapped at a virtual address that is offset from start by the same
2427  * amount as the page is offset from m_start within the object.  The
2428  * last page in the sequence is the page with the largest offset from
2429  * m_start that can be mapped at a virtual address less than the given
2430  * virtual address end.  Not every virtual page between start and end
2431  * is mapped; only those for which a resident page exists with the
2432  * corresponding offset from m_start are mapped.
2433  */
2434 static void
2435 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
2436     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
2437 {
2438 	vm_page_t m;
2439 	vm_pindex_t diff, psize;
2440 
2441 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2442 
2443 	psize = atop(end - start);
2444 	m = m_start;
2445 	rw_wlock(&pvh_global_lock);
2446 	PMAP_LOCK(pmap);
2447 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2448 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
2449 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
2450 		    PMAP_ENTER_NOSLEEP, 0);
2451 		m = TAILQ_NEXT(m, listq);
2452 	}
2453 	rw_wunlock(&pvh_global_lock);
2454 	PMAP_UNLOCK(pmap);
2455 }
2456 
2457 static void
2458 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2459     vm_prot_t prot)
2460 {
2461 
2462 	rw_wlock(&pvh_global_lock);
2463 	PMAP_LOCK(pmap);
2464 	mmu_booke_enter_locked(mmu, pmap, va, m,
2465 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
2466 	    0);
2467 	rw_wunlock(&pvh_global_lock);
2468 	PMAP_UNLOCK(pmap);
2469 }
2470 
2471 /*
2472  * Remove the given range of addresses from the specified map.
2473  *
2474  * It is assumed that the start and end are properly rounded to the page size.
2475  */
2476 static void
2477 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
2478 {
2479 	pte_t *pte;
2480 	uint8_t hold_flag;
2481 
2482 	int su = (pmap == kernel_pmap);
2483 
2484 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
2485 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
2486 
2487 	if (su) {
2488 		KASSERT(((va >= virtual_avail) &&
2489 		    (va <= VM_MAX_KERNEL_ADDRESS)),
2490 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
2491 	} else {
2492 		KASSERT((va <= VM_MAXUSER_ADDRESS),
2493 		    ("mmu_booke_remove: user pmap, non user va"));
2494 	}
2495 
2496 	if (PMAP_REMOVE_DONE(pmap)) {
2497 		//debugf("mmu_booke_remove: e (empty)\n");
2498 		return;
2499 	}
2500 
2501 	hold_flag = PTBL_HOLD_FLAG(pmap);
2502 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
2503 
2504 	rw_wlock(&pvh_global_lock);
2505 	PMAP_LOCK(pmap);
2506 	for (; va < endva; va += PAGE_SIZE) {
2507 		pte = pte_find(mmu, pmap, va);
2508 		if ((pte != NULL) && PTE_ISVALID(pte))
2509 			pte_remove(mmu, pmap, va, hold_flag);
2510 	}
2511 	PMAP_UNLOCK(pmap);
2512 	rw_wunlock(&pvh_global_lock);
2513 
2514 	//debugf("mmu_booke_remove: e\n");
2515 }
2516 
2517 /*
2518  * Remove physical page from all pmaps in which it resides.
2519  */
2520 static void
2521 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
2522 {
2523 	pv_entry_t pv, pvn;
2524 	uint8_t hold_flag;
2525 
2526 	rw_wlock(&pvh_global_lock);
2527 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
2528 		pvn = TAILQ_NEXT(pv, pv_link);
2529 
2530 		PMAP_LOCK(pv->pv_pmap);
2531 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
2532 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
2533 		PMAP_UNLOCK(pv->pv_pmap);
2534 	}
2535 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2536 	rw_wunlock(&pvh_global_lock);
2537 }
2538 
2539 /*
2540  * Map a range of physical addresses into kernel virtual address space.
2541  */
2542 static vm_offset_t
2543 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2544     vm_paddr_t pa_end, int prot)
2545 {
2546 	vm_offset_t sva = *virt;
2547 	vm_offset_t va = sva;
2548 
2549 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
2550 	//		sva, pa_start, pa_end);
2551 
2552 	while (pa_start < pa_end) {
2553 		mmu_booke_kenter(mmu, va, pa_start);
2554 		va += PAGE_SIZE;
2555 		pa_start += PAGE_SIZE;
2556 	}
2557 	*virt = va;
2558 
2559 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
2560 	return (sva);
2561 }
2562 
2563 /*
2564  * The pmap must be activated before it's address space can be accessed in any
2565  * way.
2566  */
2567 static void
2568 mmu_booke_activate(mmu_t mmu, struct thread *td)
2569 {
2570 	pmap_t pmap;
2571 	u_int cpuid;
2572 
2573 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2574 
2575 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
2576 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2577 
2578 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
2579 
2580 	sched_pin();
2581 
2582 	cpuid = PCPU_GET(cpuid);
2583 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2584 	PCPU_SET(curpmap, pmap);
2585 
2586 	if (pmap->pm_tid[cpuid] == TID_NONE)
2587 		tid_alloc(pmap);
2588 
2589 	/* Load PID0 register with pmap tid value. */
2590 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
2591 	__asm __volatile("isync");
2592 
2593 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
2594 
2595 	sched_unpin();
2596 
2597 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2598 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2599 }
2600 
2601 /*
2602  * Deactivate the specified process's address space.
2603  */
2604 static void
2605 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2606 {
2607 	pmap_t pmap;
2608 
2609 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2610 
2611 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
2612 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2613 
2614 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2615 
2616 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2617 	PCPU_SET(curpmap, NULL);
2618 }
2619 
2620 /*
2621  * Copy the range specified by src_addr/len
2622  * from the source map to the range dst_addr/len
2623  * in the destination map.
2624  *
2625  * This routine is only advisory and need not do anything.
2626  */
2627 static void
2628 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2629     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2630 {
2631 
2632 }
2633 
2634 /*
2635  * Set the physical protection on the specified range of this map as requested.
2636  */
2637 static void
2638 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2639     vm_prot_t prot)
2640 {
2641 	vm_offset_t va;
2642 	vm_page_t m;
2643 	pte_t *pte;
2644 
2645 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2646 		mmu_booke_remove(mmu, pmap, sva, eva);
2647 		return;
2648 	}
2649 
2650 	if (prot & VM_PROT_WRITE)
2651 		return;
2652 
2653 	PMAP_LOCK(pmap);
2654 	for (va = sva; va < eva; va += PAGE_SIZE) {
2655 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2656 			if (PTE_ISVALID(pte)) {
2657 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2658 
2659 				mtx_lock_spin(&tlbivax_mutex);
2660 				tlb_miss_lock();
2661 
2662 				/* Handle modified pages. */
2663 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2664 					vm_page_dirty(m);
2665 
2666 				tlb0_flush_entry(va);
2667 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2668 
2669 				tlb_miss_unlock();
2670 				mtx_unlock_spin(&tlbivax_mutex);
2671 			}
2672 		}
2673 	}
2674 	PMAP_UNLOCK(pmap);
2675 }
2676 
2677 /*
2678  * Clear the write and modified bits in each of the given page's mappings.
2679  */
2680 static void
2681 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2682 {
2683 	pv_entry_t pv;
2684 	pte_t *pte;
2685 
2686 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2687 	    ("mmu_booke_remove_write: page %p is not managed", m));
2688 
2689 	/*
2690 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2691 	 * set by another thread while the object is locked.  Thus,
2692 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2693 	 */
2694 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2695 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2696 		return;
2697 	rw_wlock(&pvh_global_lock);
2698 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2699 		PMAP_LOCK(pv->pv_pmap);
2700 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2701 			if (PTE_ISVALID(pte)) {
2702 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2703 
2704 				mtx_lock_spin(&tlbivax_mutex);
2705 				tlb_miss_lock();
2706 
2707 				/* Handle modified pages. */
2708 				if (PTE_ISMODIFIED(pte))
2709 					vm_page_dirty(m);
2710 
2711 				/* Flush mapping from TLB0. */
2712 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2713 
2714 				tlb_miss_unlock();
2715 				mtx_unlock_spin(&tlbivax_mutex);
2716 			}
2717 		}
2718 		PMAP_UNLOCK(pv->pv_pmap);
2719 	}
2720 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2721 	rw_wunlock(&pvh_global_lock);
2722 }
2723 
2724 static void
2725 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2726 {
2727 	pte_t *pte;
2728 	vm_paddr_t pa = 0;
2729 	int sync_sz, valid;
2730 #ifndef __powerpc64__
2731 	pmap_t pmap;
2732 	vm_page_t m;
2733 	vm_offset_t addr;
2734 	int active;
2735 #endif
2736 
2737 #ifndef __powerpc64__
2738 	rw_wlock(&pvh_global_lock);
2739 	pmap = PCPU_GET(curpmap);
2740 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2741 #endif
2742 	while (sz > 0) {
2743 		PMAP_LOCK(pm);
2744 		pte = pte_find(mmu, pm, va);
2745 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2746 		if (valid)
2747 			pa = PTE_PA(pte);
2748 		PMAP_UNLOCK(pm);
2749 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
2750 		sync_sz = min(sync_sz, sz);
2751 		if (valid) {
2752 #ifdef __powerpc64__
2753 			pa += (va & PAGE_MASK);
2754 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
2755 #else
2756 			if (!active) {
2757 				/* Create a mapping in the active pmap. */
2758 				addr = 0;
2759 				m = PHYS_TO_VM_PAGE(pa);
2760 				PMAP_LOCK(pmap);
2761 				pte_enter(mmu, pmap, m, addr,
2762 				    PTE_SR | PTE_VALID, FALSE);
2763 				addr += (va & PAGE_MASK);
2764 				__syncicache((void *)addr, sync_sz);
2765 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2766 				PMAP_UNLOCK(pmap);
2767 			} else
2768 				__syncicache((void *)va, sync_sz);
2769 #endif
2770 		}
2771 		va += sync_sz;
2772 		sz -= sync_sz;
2773 	}
2774 #ifndef __powerpc64__
2775 	rw_wunlock(&pvh_global_lock);
2776 #endif
2777 }
2778 
2779 /*
2780  * Atomically extract and hold the physical page with the given
2781  * pmap and virtual address pair if that mapping permits the given
2782  * protection.
2783  */
2784 static vm_page_t
2785 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2786     vm_prot_t prot)
2787 {
2788 	pte_t *pte;
2789 	vm_page_t m;
2790 	uint32_t pte_wbit;
2791 	vm_paddr_t pa;
2792 
2793 	m = NULL;
2794 	pa = 0;
2795 	PMAP_LOCK(pmap);
2796 retry:
2797 	pte = pte_find(mmu, pmap, va);
2798 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2799 		if (pmap == kernel_pmap)
2800 			pte_wbit = PTE_SW;
2801 		else
2802 			pte_wbit = PTE_UW;
2803 
2804 		if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2805 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2806 				goto retry;
2807 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2808 			m->wire_count++;
2809 		}
2810 	}
2811 
2812 	PA_UNLOCK_COND(pa);
2813 	PMAP_UNLOCK(pmap);
2814 	return (m);
2815 }
2816 
2817 /*
2818  * Initialize a vm_page's machine-dependent fields.
2819  */
2820 static void
2821 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2822 {
2823 
2824 	m->md.pv_tracked = 0;
2825 	TAILQ_INIT(&m->md.pv_list);
2826 }
2827 
2828 /*
2829  * mmu_booke_zero_page_area zeros the specified hardware page by
2830  * mapping it into virtual memory and using bzero to clear
2831  * its contents.
2832  *
2833  * off and size must reside within a single page.
2834  */
2835 static void
2836 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2837 {
2838 	vm_offset_t va;
2839 
2840 	/* XXX KASSERT off and size are within a single page? */
2841 
2842 #ifdef __powerpc64__
2843 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2844 	bzero((caddr_t)va + off, size);
2845 #else
2846 	mtx_lock(&zero_page_mutex);
2847 	va = zero_page_va;
2848 
2849 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2850 	bzero((caddr_t)va + off, size);
2851 	mmu_booke_kremove(mmu, va);
2852 
2853 	mtx_unlock(&zero_page_mutex);
2854 #endif
2855 }
2856 
2857 /*
2858  * mmu_booke_zero_page zeros the specified hardware page.
2859  */
2860 static void
2861 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2862 {
2863 	vm_offset_t off, va;
2864 
2865 #ifdef __powerpc64__
2866 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2867 
2868 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2869 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2870 #else
2871 	va = zero_page_va;
2872 	mtx_lock(&zero_page_mutex);
2873 
2874 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2875 
2876 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2877 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2878 
2879 	mmu_booke_kremove(mmu, va);
2880 
2881 	mtx_unlock(&zero_page_mutex);
2882 #endif
2883 }
2884 
2885 /*
2886  * mmu_booke_copy_page copies the specified (machine independent) page by
2887  * mapping the page into virtual memory and using memcopy to copy the page,
2888  * one machine dependent page at a time.
2889  */
2890 static void
2891 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2892 {
2893 	vm_offset_t sva, dva;
2894 
2895 #ifdef __powerpc64__
2896 	sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm));
2897 	dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm));
2898 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2899 #else
2900 	sva = copy_page_src_va;
2901 	dva = copy_page_dst_va;
2902 
2903 	mtx_lock(&copy_page_mutex);
2904 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2905 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2906 
2907 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2908 
2909 	mmu_booke_kremove(mmu, dva);
2910 	mmu_booke_kremove(mmu, sva);
2911 	mtx_unlock(&copy_page_mutex);
2912 #endif
2913 }
2914 
2915 static inline void
2916 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2917     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2918 {
2919 	void *a_cp, *b_cp;
2920 	vm_offset_t a_pg_offset, b_pg_offset;
2921 	int cnt;
2922 
2923 #ifdef __powerpc64__
2924 	vm_page_t pa, pb;
2925 
2926 	while (xfersize > 0) {
2927 		a_pg_offset = a_offset & PAGE_MASK;
2928 		pa = ma[a_offset >> PAGE_SHIFT];
2929 		b_pg_offset = b_offset & PAGE_MASK;
2930 		pb = mb[b_offset >> PAGE_SHIFT];
2931 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2932 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2933 		a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) +
2934 		    a_pg_offset);
2935 		b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) +
2936 		    b_pg_offset);
2937 		bcopy(a_cp, b_cp, cnt);
2938 		a_offset += cnt;
2939 		b_offset += cnt;
2940 		xfersize -= cnt;
2941 	}
2942 #else
2943 	mtx_lock(&copy_page_mutex);
2944 	while (xfersize > 0) {
2945 		a_pg_offset = a_offset & PAGE_MASK;
2946 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2947 		mmu_booke_kenter(mmu, copy_page_src_va,
2948 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2949 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2950 		b_pg_offset = b_offset & PAGE_MASK;
2951 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2952 		mmu_booke_kenter(mmu, copy_page_dst_va,
2953 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2954 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2955 		bcopy(a_cp, b_cp, cnt);
2956 		mmu_booke_kremove(mmu, copy_page_dst_va);
2957 		mmu_booke_kremove(mmu, copy_page_src_va);
2958 		a_offset += cnt;
2959 		b_offset += cnt;
2960 		xfersize -= cnt;
2961 	}
2962 	mtx_unlock(&copy_page_mutex);
2963 #endif
2964 }
2965 
2966 static vm_offset_t
2967 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2968 {
2969 #ifdef __powerpc64__
2970 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
2971 #else
2972 	vm_paddr_t paddr;
2973 	vm_offset_t qaddr;
2974 	uint32_t flags;
2975 	pte_t *pte;
2976 
2977 	paddr = VM_PAGE_TO_PHYS(m);
2978 
2979 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2980 	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
2981 	flags |= PTE_PS_4KB;
2982 
2983 	critical_enter();
2984 	qaddr = PCPU_GET(qmap_addr);
2985 
2986 	pte = pte_find(mmu, kernel_pmap, qaddr);
2987 
2988 	KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2989 
2990 	/*
2991 	 * XXX: tlbivax is broadcast to other cores, but qaddr should
2992  	 * not be present in other TLBs.  Is there a better instruction
2993 	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2994 	 */
2995 	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2996 	__asm __volatile("isync; msync");
2997 
2998 	*pte = PTE_RPN_FROM_PA(paddr) | flags;
2999 
3000 	/* Flush the real memory from the instruction cache. */
3001 	if ((flags & (PTE_I | PTE_G)) == 0)
3002 		__syncicache((void *)qaddr, PAGE_SIZE);
3003 
3004 	return (qaddr);
3005 #endif
3006 }
3007 
3008 static void
3009 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
3010 {
3011 #ifndef __powerpc64__
3012 	pte_t *pte;
3013 
3014 	pte = pte_find(mmu, kernel_pmap, addr);
3015 
3016 	KASSERT(PCPU_GET(qmap_addr) == addr,
3017 	    ("mmu_booke_quick_remove_page: invalid address"));
3018 	KASSERT(*pte != 0,
3019 	    ("mmu_booke_quick_remove_page: PTE not in use"));
3020 
3021 	*pte = 0;
3022 	critical_exit();
3023 #endif
3024 }
3025 
3026 /*
3027  * Return whether or not the specified physical page was modified
3028  * in any of physical maps.
3029  */
3030 static boolean_t
3031 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
3032 {
3033 	pte_t *pte;
3034 	pv_entry_t pv;
3035 	boolean_t rv;
3036 
3037 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3038 	    ("mmu_booke_is_modified: page %p is not managed", m));
3039 	rv = FALSE;
3040 
3041 	/*
3042 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3043 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3044 	 * is clear, no PTEs can be modified.
3045 	 */
3046 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3047 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3048 		return (rv);
3049 	rw_wlock(&pvh_global_lock);
3050 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3051 		PMAP_LOCK(pv->pv_pmap);
3052 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3053 		    PTE_ISVALID(pte)) {
3054 			if (PTE_ISMODIFIED(pte))
3055 				rv = TRUE;
3056 		}
3057 		PMAP_UNLOCK(pv->pv_pmap);
3058 		if (rv)
3059 			break;
3060 	}
3061 	rw_wunlock(&pvh_global_lock);
3062 	return (rv);
3063 }
3064 
3065 /*
3066  * Return whether or not the specified virtual address is eligible
3067  * for prefault.
3068  */
3069 static boolean_t
3070 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
3071 {
3072 
3073 	return (FALSE);
3074 }
3075 
3076 /*
3077  * Return whether or not the specified physical page was referenced
3078  * in any physical maps.
3079  */
3080 static boolean_t
3081 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
3082 {
3083 	pte_t *pte;
3084 	pv_entry_t pv;
3085 	boolean_t rv;
3086 
3087 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3088 	    ("mmu_booke_is_referenced: page %p is not managed", m));
3089 	rv = FALSE;
3090 	rw_wlock(&pvh_global_lock);
3091 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3092 		PMAP_LOCK(pv->pv_pmap);
3093 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3094 		    PTE_ISVALID(pte)) {
3095 			if (PTE_ISREFERENCED(pte))
3096 				rv = TRUE;
3097 		}
3098 		PMAP_UNLOCK(pv->pv_pmap);
3099 		if (rv)
3100 			break;
3101 	}
3102 	rw_wunlock(&pvh_global_lock);
3103 	return (rv);
3104 }
3105 
3106 /*
3107  * Clear the modify bits on the specified physical page.
3108  */
3109 static void
3110 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
3111 {
3112 	pte_t *pte;
3113 	pv_entry_t pv;
3114 
3115 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3116 	    ("mmu_booke_clear_modify: page %p is not managed", m));
3117 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3118 	KASSERT(!vm_page_xbusied(m),
3119 	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
3120 
3121 	/*
3122 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
3123 	 * If the object containing the page is locked and the page is not
3124 	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
3125 	 */
3126 	if ((m->aflags & PGA_WRITEABLE) == 0)
3127 		return;
3128 	rw_wlock(&pvh_global_lock);
3129 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3130 		PMAP_LOCK(pv->pv_pmap);
3131 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3132 		    PTE_ISVALID(pte)) {
3133 			mtx_lock_spin(&tlbivax_mutex);
3134 			tlb_miss_lock();
3135 
3136 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
3137 				tlb0_flush_entry(pv->pv_va);
3138 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
3139 				    PTE_REFERENCED);
3140 			}
3141 
3142 			tlb_miss_unlock();
3143 			mtx_unlock_spin(&tlbivax_mutex);
3144 		}
3145 		PMAP_UNLOCK(pv->pv_pmap);
3146 	}
3147 	rw_wunlock(&pvh_global_lock);
3148 }
3149 
3150 /*
3151  * Return a count of reference bits for a page, clearing those bits.
3152  * It is not necessary for every reference bit to be cleared, but it
3153  * is necessary that 0 only be returned when there are truly no
3154  * reference bits set.
3155  *
3156  * As an optimization, update the page's dirty field if a modified bit is
3157  * found while counting reference bits.  This opportunistic update can be
3158  * performed at low cost and can eliminate the need for some future calls
3159  * to pmap_is_modified().  However, since this function stops after
3160  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3161  * dirty pages.  Those dirty pages will only be detected by a future call
3162  * to pmap_is_modified().
3163  */
3164 static int
3165 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
3166 {
3167 	pte_t *pte;
3168 	pv_entry_t pv;
3169 	int count;
3170 
3171 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3172 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
3173 	count = 0;
3174 	rw_wlock(&pvh_global_lock);
3175 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3176 		PMAP_LOCK(pv->pv_pmap);
3177 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3178 		    PTE_ISVALID(pte)) {
3179 			if (PTE_ISMODIFIED(pte))
3180 				vm_page_dirty(m);
3181 			if (PTE_ISREFERENCED(pte)) {
3182 				mtx_lock_spin(&tlbivax_mutex);
3183 				tlb_miss_lock();
3184 
3185 				tlb0_flush_entry(pv->pv_va);
3186 				*pte &= ~PTE_REFERENCED;
3187 
3188 				tlb_miss_unlock();
3189 				mtx_unlock_spin(&tlbivax_mutex);
3190 
3191 				if (++count >= PMAP_TS_REFERENCED_MAX) {
3192 					PMAP_UNLOCK(pv->pv_pmap);
3193 					break;
3194 				}
3195 			}
3196 		}
3197 		PMAP_UNLOCK(pv->pv_pmap);
3198 	}
3199 	rw_wunlock(&pvh_global_lock);
3200 	return (count);
3201 }
3202 
3203 /*
3204  * Clear the wired attribute from the mappings for the specified range of
3205  * addresses in the given pmap.  Every valid mapping within that range must
3206  * have the wired attribute set.  In contrast, invalid mappings cannot have
3207  * the wired attribute set, so they are ignored.
3208  *
3209  * The wired attribute of the page table entry is not a hardware feature, so
3210  * there is no need to invalidate any TLB entries.
3211  */
3212 static void
3213 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3214 {
3215 	vm_offset_t va;
3216 	pte_t *pte;
3217 
3218 	PMAP_LOCK(pmap);
3219 	for (va = sva; va < eva; va += PAGE_SIZE) {
3220 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
3221 		    PTE_ISVALID(pte)) {
3222 			if (!PTE_ISWIRED(pte))
3223 				panic("mmu_booke_unwire: pte %p isn't wired",
3224 				    pte);
3225 			*pte &= ~PTE_WIRED;
3226 			pmap->pm_stats.wired_count--;
3227 		}
3228 	}
3229 	PMAP_UNLOCK(pmap);
3230 
3231 }
3232 
3233 /*
3234  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
3235  * page.  This count may be changed upwards or downwards in the future; it is
3236  * only necessary that true be returned for a small subset of pmaps for proper
3237  * page aging.
3238  */
3239 static boolean_t
3240 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
3241 {
3242 	pv_entry_t pv;
3243 	int loops;
3244 	boolean_t rv;
3245 
3246 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3247 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
3248 	loops = 0;
3249 	rv = FALSE;
3250 	rw_wlock(&pvh_global_lock);
3251 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3252 		if (pv->pv_pmap == pmap) {
3253 			rv = TRUE;
3254 			break;
3255 		}
3256 		if (++loops >= 16)
3257 			break;
3258 	}
3259 	rw_wunlock(&pvh_global_lock);
3260 	return (rv);
3261 }
3262 
3263 /*
3264  * Return the number of managed mappings to the given physical page that are
3265  * wired.
3266  */
3267 static int
3268 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
3269 {
3270 	pv_entry_t pv;
3271 	pte_t *pte;
3272 	int count = 0;
3273 
3274 	if ((m->oflags & VPO_UNMANAGED) != 0)
3275 		return (count);
3276 	rw_wlock(&pvh_global_lock);
3277 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3278 		PMAP_LOCK(pv->pv_pmap);
3279 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
3280 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
3281 				count++;
3282 		PMAP_UNLOCK(pv->pv_pmap);
3283 	}
3284 	rw_wunlock(&pvh_global_lock);
3285 	return (count);
3286 }
3287 
3288 static int
3289 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
3290 {
3291 	int i;
3292 	vm_offset_t va;
3293 
3294 	/*
3295 	 * This currently does not work for entries that
3296 	 * overlap TLB1 entries.
3297 	 */
3298 	for (i = 0; i < TLB1_ENTRIES; i ++) {
3299 		if (tlb1_iomapped(i, pa, size, &va) == 0)
3300 			return (0);
3301 	}
3302 
3303 	return (EFAULT);
3304 }
3305 
3306 void
3307 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
3308 {
3309 	vm_paddr_t ppa;
3310 	vm_offset_t ofs;
3311 	vm_size_t gran;
3312 
3313 	/* Minidumps are based on virtual memory addresses. */
3314 	if (do_minidump) {
3315 		*va = (void *)(vm_offset_t)pa;
3316 		return;
3317 	}
3318 
3319 	/* Raw physical memory dumps don't have a virtual address. */
3320 	/* We always map a 256MB page at 256M. */
3321 	gran = 256 * 1024 * 1024;
3322 	ppa = rounddown2(pa, gran);
3323 	ofs = pa - ppa;
3324 	*va = (void *)gran;
3325 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
3326 
3327 	if (sz > (gran - ofs))
3328 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
3329 		    _TLB_ENTRY_IO);
3330 }
3331 
3332 void
3333 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
3334 {
3335 	vm_paddr_t ppa;
3336 	vm_offset_t ofs;
3337 	vm_size_t gran;
3338 	tlb_entry_t e;
3339 	int i;
3340 
3341 	/* Minidumps are based on virtual memory addresses. */
3342 	/* Nothing to do... */
3343 	if (do_minidump)
3344 		return;
3345 
3346 	for (i = 0; i < TLB1_ENTRIES; i++) {
3347 		tlb1_read_entry(&e, i);
3348 		if (!(e.mas1 & MAS1_VALID))
3349 			break;
3350 	}
3351 
3352 	/* Raw physical memory dumps don't have a virtual address. */
3353 	i--;
3354 	e.mas1 = 0;
3355 	e.mas2 = 0;
3356 	e.mas3 = 0;
3357 	tlb1_write_entry(&e, i);
3358 
3359 	gran = 256 * 1024 * 1024;
3360 	ppa = rounddown2(pa, gran);
3361 	ofs = pa - ppa;
3362 	if (sz > (gran - ofs)) {
3363 		i--;
3364 		e.mas1 = 0;
3365 		e.mas2 = 0;
3366 		e.mas3 = 0;
3367 		tlb1_write_entry(&e, i);
3368 	}
3369 }
3370 
3371 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3372 
3373 void
3374 mmu_booke_scan_init(mmu_t mmu)
3375 {
3376 	vm_offset_t va;
3377 	pte_t *pte;
3378 	int i;
3379 
3380 	if (!do_minidump) {
3381 		/* Initialize phys. segments for dumpsys(). */
3382 		memset(&dump_map, 0, sizeof(dump_map));
3383 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
3384 		    &availmem_regions_sz);
3385 		for (i = 0; i < physmem_regions_sz; i++) {
3386 			dump_map[i].pa_start = physmem_regions[i].mr_start;
3387 			dump_map[i].pa_size = physmem_regions[i].mr_size;
3388 		}
3389 		return;
3390 	}
3391 
3392 	/* Virtual segments for minidumps: */
3393 	memset(&dump_map, 0, sizeof(dump_map));
3394 
3395 	/* 1st: kernel .data and .bss. */
3396 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3397 	dump_map[0].pa_size =
3398 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
3399 
3400 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3401 	dump_map[1].pa_start = data_start;
3402 	dump_map[1].pa_size = data_end - data_start;
3403 
3404 	/* 3rd: kernel VM. */
3405 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3406 	/* Find start of next chunk (from va). */
3407 	while (va < virtual_end) {
3408 		/* Don't dump the buffer cache. */
3409 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3410 			va = kmi.buffer_eva;
3411 			continue;
3412 		}
3413 		pte = pte_find(mmu, kernel_pmap, va);
3414 		if (pte != NULL && PTE_ISVALID(pte))
3415 			break;
3416 		va += PAGE_SIZE;
3417 	}
3418 	if (va < virtual_end) {
3419 		dump_map[2].pa_start = va;
3420 		va += PAGE_SIZE;
3421 		/* Find last page in chunk. */
3422 		while (va < virtual_end) {
3423 			/* Don't run into the buffer cache. */
3424 			if (va == kmi.buffer_sva)
3425 				break;
3426 			pte = pte_find(mmu, kernel_pmap, va);
3427 			if (pte == NULL || !PTE_ISVALID(pte))
3428 				break;
3429 			va += PAGE_SIZE;
3430 		}
3431 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3432 	}
3433 }
3434 
3435 /*
3436  * Map a set of physical memory pages into the kernel virtual address space.
3437  * Return a pointer to where it is mapped. This routine is intended to be used
3438  * for mapping device memory, NOT real memory.
3439  */
3440 static void *
3441 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
3442 {
3443 
3444 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
3445 }
3446 
3447 static void *
3448 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3449 {
3450 	tlb_entry_t e;
3451 	void *res;
3452 	uintptr_t va, tmpva;
3453 	vm_size_t sz;
3454 	int i;
3455 
3456 	/*
3457 	 * Check if this is premapped in TLB1. Note: this should probably also
3458 	 * check whether a sequence of TLB1 entries exist that match the
3459 	 * requirement, but now only checks the easy case.
3460 	 */
3461 	for (i = 0; i < TLB1_ENTRIES; i++) {
3462 		tlb1_read_entry(&e, i);
3463 		if (!(e.mas1 & MAS1_VALID))
3464 			continue;
3465 		if (pa >= e.phys &&
3466 		    (pa + size) <= (e.phys + e.size) &&
3467 		    (ma == VM_MEMATTR_DEFAULT ||
3468 		     tlb_calc_wimg(pa, ma) ==
3469 		      (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED))))
3470 			return (void *)(e.virt +
3471 			    (vm_offset_t)(pa - e.phys));
3472 	}
3473 
3474 	size = roundup(size, PAGE_SIZE);
3475 
3476 	/*
3477 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
3478 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
3479 	 */
3480 #ifdef SPARSE_MAPDEV
3481 	/*
3482 	 * With a sparse mapdev, align to the largest starting region.  This
3483 	 * could feasibly be optimized for a 'best-fit' alignment, but that
3484 	 * calculation could be very costly.
3485 	 * Align to the smaller of:
3486 	 * - first set bit in overlap of (pa & size mask)
3487 	 * - largest size envelope
3488 	 *
3489 	 * It's possible the device mapping may start at a PA that's not larger
3490 	 * than the size mask, so we need to offset in to maximize the TLB entry
3491 	 * range and minimize the number of used TLB entries.
3492 	 */
3493 	do {
3494 	    tmpva = tlb1_map_base;
3495 	    sz = ffsl(((1 << flsl(size-1)) - 1) & pa);
3496 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
3497 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
3498 #ifdef __powerpc64__
3499 	} while (!atomic_cmpset_long(&tlb1_map_base, tmpva, va + size));
3500 #else
3501 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
3502 #endif
3503 #else
3504 #ifdef __powerpc64__
3505 	va = atomic_fetchadd_long(&tlb1_map_base, size);
3506 #else
3507 	va = atomic_fetchadd_int(&tlb1_map_base, size);
3508 #endif
3509 #endif
3510 	res = (void *)va;
3511 
3512 	do {
3513 		sz = 1 << (ilog2(size) & ~1);
3514 		/* Align size to PA */
3515 		if (pa % sz != 0) {
3516 			do {
3517 				sz >>= 2;
3518 			} while (pa % sz != 0);
3519 		}
3520 		/* Now align from there to VA */
3521 		if (va % sz != 0) {
3522 			do {
3523 				sz >>= 2;
3524 			} while (va % sz != 0);
3525 		}
3526 		if (bootverbose)
3527 			printf("Wiring VA=%lx to PA=%jx (size=%lx)\n",
3528 			    va, (uintmax_t)pa, sz);
3529 		if (tlb1_set_entry(va, pa, sz,
3530 		    _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)) < 0)
3531 			return (NULL);
3532 		size -= sz;
3533 		pa += sz;
3534 		va += sz;
3535 	} while (size > 0);
3536 
3537 	return (res);
3538 }
3539 
3540 /*
3541  * 'Unmap' a range mapped by mmu_booke_mapdev().
3542  */
3543 static void
3544 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
3545 {
3546 #ifdef SUPPORTS_SHRINKING_TLB1
3547 	vm_offset_t base, offset;
3548 
3549 	/*
3550 	 * Unmap only if this is inside kernel virtual space.
3551 	 */
3552 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
3553 		base = trunc_page(va);
3554 		offset = va & PAGE_MASK;
3555 		size = roundup(offset + size, PAGE_SIZE);
3556 		kva_free(base, size);
3557 	}
3558 #endif
3559 }
3560 
3561 /*
3562  * mmu_booke_object_init_pt preloads the ptes for a given object into the
3563  * specified pmap. This eliminates the blast of soft faults on process startup
3564  * and immediately after an mmap.
3565  */
3566 static void
3567 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
3568     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3569 {
3570 
3571 	VM_OBJECT_ASSERT_WLOCKED(object);
3572 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3573 	    ("mmu_booke_object_init_pt: non-device object"));
3574 }
3575 
3576 /*
3577  * Perform the pmap work for mincore.
3578  */
3579 static int
3580 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
3581     vm_paddr_t *locked_pa)
3582 {
3583 
3584 	/* XXX: this should be implemented at some point */
3585 	return (0);
3586 }
3587 
3588 static int
3589 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz,
3590     vm_memattr_t mode)
3591 {
3592 	vm_offset_t va;
3593 	pte_t *pte;
3594 	int i, j;
3595 	tlb_entry_t e;
3596 
3597 	/* Check TLB1 mappings */
3598 	for (i = 0; i < TLB1_ENTRIES; i++) {
3599 		tlb1_read_entry(&e, i);
3600 		if (!(e.mas1 & MAS1_VALID))
3601 			continue;
3602 		if (addr >= e.virt && addr < e.virt + e.size)
3603 			break;
3604 	}
3605 	if (i < TLB1_ENTRIES) {
3606 		/* Only allow full mappings to be modified for now. */
3607 		/* Validate the range. */
3608 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
3609 			tlb1_read_entry(&e, j);
3610 			if (va != e.virt || (sz - (va - addr) < e.size))
3611 				return (EINVAL);
3612 		}
3613 		for (va = addr; va < addr + sz; va += e.size, i++) {
3614 			tlb1_read_entry(&e, i);
3615 			e.mas2 &= ~MAS2_WIMGE_MASK;
3616 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
3617 
3618 			/*
3619 			 * Write it out to the TLB.  Should really re-sync with other
3620 			 * cores.
3621 			 */
3622 			tlb1_write_entry(&e, i);
3623 		}
3624 		return (0);
3625 	}
3626 
3627 	/* Not in TLB1, try through pmap */
3628 	/* First validate the range. */
3629 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
3630 		pte = pte_find(mmu, kernel_pmap, va);
3631 		if (pte == NULL || !PTE_ISVALID(pte))
3632 			return (EINVAL);
3633 	}
3634 
3635 	mtx_lock_spin(&tlbivax_mutex);
3636 	tlb_miss_lock();
3637 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
3638 		pte = pte_find(mmu, kernel_pmap, va);
3639 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
3640 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
3641 		tlb0_flush_entry(va);
3642 	}
3643 	tlb_miss_unlock();
3644 	mtx_unlock_spin(&tlbivax_mutex);
3645 
3646 	return (0);
3647 }
3648 
3649 /**************************************************************************/
3650 /* TID handling */
3651 /**************************************************************************/
3652 
3653 /*
3654  * Allocate a TID. If necessary, steal one from someone else.
3655  * The new TID is flushed from the TLB before returning.
3656  */
3657 static tlbtid_t
3658 tid_alloc(pmap_t pmap)
3659 {
3660 	tlbtid_t tid;
3661 	int thiscpu;
3662 
3663 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
3664 
3665 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
3666 
3667 	thiscpu = PCPU_GET(cpuid);
3668 
3669 	tid = PCPU_GET(booke.tid_next);
3670 	if (tid > TID_MAX)
3671 		tid = TID_MIN;
3672 	PCPU_SET(booke.tid_next, tid + 1);
3673 
3674 	/* If we are stealing TID then clear the relevant pmap's field */
3675 	if (tidbusy[thiscpu][tid] != NULL) {
3676 
3677 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
3678 
3679 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
3680 
3681 		/* Flush all entries from TLB0 matching this TID. */
3682 		tid_flush(tid);
3683 	}
3684 
3685 	tidbusy[thiscpu][tid] = pmap;
3686 	pmap->pm_tid[thiscpu] = tid;
3687 	__asm __volatile("msync; isync");
3688 
3689 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
3690 	    PCPU_GET(booke.tid_next));
3691 
3692 	return (tid);
3693 }
3694 
3695 /**************************************************************************/
3696 /* TLB0 handling */
3697 /**************************************************************************/
3698 
3699 /* Convert TLB0 va and way number to tlb0[] table index. */
3700 static inline unsigned int
3701 tlb0_tableidx(vm_offset_t va, unsigned int way)
3702 {
3703 	unsigned int idx;
3704 
3705 	idx = (way * TLB0_ENTRIES_PER_WAY);
3706 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
3707 	return (idx);
3708 }
3709 
3710 /*
3711  * Invalidate TLB0 entry.
3712  */
3713 static inline void
3714 tlb0_flush_entry(vm_offset_t va)
3715 {
3716 
3717 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3718 
3719 	mtx_assert(&tlbivax_mutex, MA_OWNED);
3720 
3721 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3722 	__asm __volatile("isync; msync");
3723 	__asm __volatile("tlbsync; msync");
3724 
3725 	CTR1(KTR_PMAP, "%s: e", __func__);
3726 }
3727 
3728 
3729 /**************************************************************************/
3730 /* TLB1 handling */
3731 /**************************************************************************/
3732 
3733 /*
3734  * TLB1 mapping notes:
3735  *
3736  * TLB1[0]	Kernel text and data.
3737  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3738  *		windows, other devices mappings.
3739  */
3740 
3741  /*
3742  * Read an entry from given TLB1 slot.
3743  */
3744 void
3745 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
3746 {
3747 	register_t msr;
3748 	uint32_t mas0;
3749 
3750 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
3751 
3752 	msr = mfmsr();
3753 	__asm __volatile("wrteei 0");
3754 
3755 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
3756 	mtspr(SPR_MAS0, mas0);
3757 	__asm __volatile("isync; tlbre");
3758 
3759 	entry->mas1 = mfspr(SPR_MAS1);
3760 	entry->mas2 = mfspr(SPR_MAS2);
3761 	entry->mas3 = mfspr(SPR_MAS3);
3762 
3763 	switch ((mfpvr() >> 16) & 0xFFFF) {
3764 	case FSL_E500v2:
3765 	case FSL_E500mc:
3766 	case FSL_E5500:
3767 	case FSL_E6500:
3768 		entry->mas7 = mfspr(SPR_MAS7);
3769 		break;
3770 	default:
3771 		entry->mas7 = 0;
3772 		break;
3773 	}
3774 	__asm __volatile("wrtee %0" :: "r"(msr));
3775 
3776 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
3777 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
3778 	    (entry->mas3 & MAS3_RPN);
3779 	entry->size =
3780 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
3781 }
3782 
3783 struct tlbwrite_args {
3784 	tlb_entry_t *e;
3785 	unsigned int idx;
3786 };
3787 
3788 static void
3789 tlb1_write_entry_int(void *arg)
3790 {
3791 	struct tlbwrite_args *args = arg;
3792 	uint32_t mas0;
3793 
3794 	/* Select entry */
3795 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(args->idx);
3796 
3797 	mtspr(SPR_MAS0, mas0);
3798 	mtspr(SPR_MAS1, args->e->mas1);
3799 	mtspr(SPR_MAS2, args->e->mas2);
3800 	mtspr(SPR_MAS3, args->e->mas3);
3801 	switch ((mfpvr() >> 16) & 0xFFFF) {
3802 	case FSL_E500mc:
3803 	case FSL_E5500:
3804 	case FSL_E6500:
3805 		mtspr(SPR_MAS8, 0);
3806 		/* FALLTHROUGH */
3807 	case FSL_E500v2:
3808 		mtspr(SPR_MAS7, args->e->mas7);
3809 		break;
3810 	default:
3811 		break;
3812 	}
3813 
3814 	__asm __volatile("isync; tlbwe; isync; msync");
3815 
3816 }
3817 
3818 static void
3819 tlb1_write_entry_sync(void *arg)
3820 {
3821 	/* Empty synchronization point for smp_rendezvous(). */
3822 }
3823 
3824 /*
3825  * Write given entry to TLB1 hardware.
3826  */
3827 static void
3828 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
3829 {
3830 	struct tlbwrite_args args;
3831 
3832 	args.e = e;
3833 	args.idx = idx;
3834 
3835 #ifdef SMP
3836 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
3837 		mb();
3838 		smp_rendezvous(tlb1_write_entry_sync,
3839 		    tlb1_write_entry_int,
3840 		    tlb1_write_entry_sync, &args);
3841 	} else
3842 #endif
3843 	{
3844 		register_t msr;
3845 
3846 		msr = mfmsr();
3847 		__asm __volatile("wrteei 0");
3848 		tlb1_write_entry_int(&args);
3849 		__asm __volatile("wrtee %0" :: "r"(msr));
3850 	}
3851 }
3852 
3853 /*
3854  * Return the largest uint value log such that 2^log <= num.
3855  */
3856 static unsigned int
3857 ilog2(unsigned long num)
3858 {
3859 	long lz;
3860 
3861 #ifdef __powerpc64__
3862 	__asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num));
3863 	return (63 - lz);
3864 #else
3865 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3866 	return (31 - lz);
3867 #endif
3868 }
3869 
3870 /*
3871  * Convert TLB TSIZE value to mapped region size.
3872  */
3873 static vm_size_t
3874 tsize2size(unsigned int tsize)
3875 {
3876 
3877 	/*
3878 	 * size = 4^tsize KB
3879 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3880 	 */
3881 
3882 	return ((1 << (2 * tsize)) * 1024);
3883 }
3884 
3885 /*
3886  * Convert region size (must be power of 4) to TLB TSIZE value.
3887  */
3888 static unsigned int
3889 size2tsize(vm_size_t size)
3890 {
3891 
3892 	return (ilog2(size) / 2 - 5);
3893 }
3894 
3895 /*
3896  * Register permanent kernel mapping in TLB1.
3897  *
3898  * Entries are created starting from index 0 (current free entry is
3899  * kept in tlb1_idx) and are not supposed to be invalidated.
3900  */
3901 int
3902 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3903     uint32_t flags)
3904 {
3905 	tlb_entry_t e;
3906 	uint32_t ts, tid;
3907 	int tsize, index;
3908 
3909 	for (index = 0; index < TLB1_ENTRIES; index++) {
3910 		tlb1_read_entry(&e, index);
3911 		if ((e.mas1 & MAS1_VALID) == 0)
3912 			break;
3913 		/* Check if we're just updating the flags, and update them. */
3914 		if (e.phys == pa && e.virt == va && e.size == size) {
3915 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
3916 			tlb1_write_entry(&e, index);
3917 			return (0);
3918 		}
3919 	}
3920 	if (index >= TLB1_ENTRIES) {
3921 		printf("tlb1_set_entry: TLB1 full!\n");
3922 		return (-1);
3923 	}
3924 
3925 	/* Convert size to TSIZE */
3926 	tsize = size2tsize(size);
3927 
3928 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3929 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3930 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3931 
3932 	e.phys = pa;
3933 	e.virt = va;
3934 	e.size = size;
3935 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3936 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3937 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
3938 
3939 	/* Set supervisor RWX permission bits */
3940 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3941 	e.mas7 = (pa >> 32) & MAS7_RPN;
3942 
3943 	tlb1_write_entry(&e, index);
3944 
3945 	/*
3946 	 * XXX in general TLB1 updates should be propagated between CPUs,
3947 	 * since current design assumes to have the same TLB1 set-up on all
3948 	 * cores.
3949 	 */
3950 	return (0);
3951 }
3952 
3953 /*
3954  * Map in contiguous RAM region into the TLB1 using maximum of
3955  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3956  *
3957  * If necessary round up last entry size and return total size
3958  * used by all allocated entries.
3959  */
3960 vm_size_t
3961 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3962 {
3963 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3964 	vm_size_t mapped, pgsz, base, mask;
3965 	int idx, nents;
3966 
3967 	/* Round up to the next 1M */
3968 	size = roundup2(size, 1 << 20);
3969 
3970 	mapped = 0;
3971 	idx = 0;
3972 	base = va;
3973 	pgsz = 64*1024*1024;
3974 	while (mapped < size) {
3975 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3976 			while (pgsz > (size - mapped))
3977 				pgsz >>= 2;
3978 			pgs[idx++] = pgsz;
3979 			mapped += pgsz;
3980 		}
3981 
3982 		/* We under-map. Correct for this. */
3983 		if (mapped < size) {
3984 			while (pgs[idx - 1] == pgsz) {
3985 				idx--;
3986 				mapped -= pgsz;
3987 			}
3988 			/* XXX We may increase beyond out starting point. */
3989 			pgsz <<= 2;
3990 			pgs[idx++] = pgsz;
3991 			mapped += pgsz;
3992 		}
3993 	}
3994 
3995 	nents = idx;
3996 	mask = pgs[0] - 1;
3997 	/* Align address to the boundary */
3998 	if (va & mask) {
3999 		va = (va + mask) & ~mask;
4000 		pa = (pa + mask) & ~mask;
4001 	}
4002 
4003 	for (idx = 0; idx < nents; idx++) {
4004 		pgsz = pgs[idx];
4005 		debugf("%u: %llx -> %jx, size=%jx\n", idx, pa,
4006 		    (uintmax_t)va, (uintmax_t)pgsz);
4007 		tlb1_set_entry(va, pa, pgsz,
4008 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM);
4009 		pa += pgsz;
4010 		va += pgsz;
4011 	}
4012 
4013 	mapped = (va - base);
4014 	if (bootverbose)
4015 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
4016 		    mapped, mapped - size);
4017 	return (mapped);
4018 }
4019 
4020 /*
4021  * TLB1 initialization routine, to be called after the very first
4022  * assembler level setup done in locore.S.
4023  */
4024 void
4025 tlb1_init()
4026 {
4027 	vm_offset_t mas2;
4028 	uint32_t mas0, mas1, mas3, mas7;
4029 	uint32_t tsz;
4030 
4031 	tlb1_get_tlbconf();
4032 
4033 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
4034 	mtspr(SPR_MAS0, mas0);
4035 	__asm __volatile("isync; tlbre");
4036 
4037 	mas1 = mfspr(SPR_MAS1);
4038 	mas2 = mfspr(SPR_MAS2);
4039 	mas3 = mfspr(SPR_MAS3);
4040 	mas7 = mfspr(SPR_MAS7);
4041 
4042 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
4043 	    (mas3 & MAS3_RPN);
4044 
4045 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4046 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
4047 	kernstart = trunc_page(mas2);
4048 
4049 	/* Setup TLB miss defaults */
4050 	set_mas4_defaults();
4051 }
4052 
4053 /*
4054  * pmap_early_io_unmap() should be used in short conjunction with
4055  * pmap_early_io_map(), as in the following snippet:
4056  *
4057  * x = pmap_early_io_map(...);
4058  * <do something with x>
4059  * pmap_early_io_unmap(x, size);
4060  *
4061  * And avoiding more allocations between.
4062  */
4063 void
4064 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
4065 {
4066 	int i;
4067 	tlb_entry_t e;
4068 	vm_size_t isize;
4069 
4070 	size = roundup(size, PAGE_SIZE);
4071 	isize = size;
4072 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
4073 		tlb1_read_entry(&e, i);
4074 		if (!(e.mas1 & MAS1_VALID))
4075 			continue;
4076 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
4077 			size -= e.size;
4078 			e.mas1 &= ~MAS1_VALID;
4079 			tlb1_write_entry(&e, i);
4080 		}
4081 	}
4082 	if (tlb1_map_base == va + isize)
4083 		tlb1_map_base -= isize;
4084 }
4085 
4086 vm_offset_t
4087 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
4088 {
4089 	vm_paddr_t pa_base;
4090 	vm_offset_t va, sz;
4091 	int i;
4092 	tlb_entry_t e;
4093 
4094 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
4095 
4096 	for (i = 0; i < TLB1_ENTRIES; i++) {
4097 		tlb1_read_entry(&e, i);
4098 		if (!(e.mas1 & MAS1_VALID))
4099 			continue;
4100 		if (pa >= e.phys && (pa + size) <=
4101 		    (e.phys + e.size))
4102 			return (e.virt + (pa - e.phys));
4103 	}
4104 
4105 	pa_base = rounddown(pa, PAGE_SIZE);
4106 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
4107 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
4108 	va = tlb1_map_base + (pa - pa_base);
4109 
4110 	do {
4111 		sz = 1 << (ilog2(size) & ~1);
4112 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
4113 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
4114 		size -= sz;
4115 		pa_base += sz;
4116 		tlb1_map_base += sz;
4117 	} while (size > 0);
4118 
4119 	return (va);
4120 }
4121 
4122 void
4123 pmap_track_page(pmap_t pmap, vm_offset_t va)
4124 {
4125 	vm_paddr_t pa;
4126 	vm_page_t page;
4127 	struct pv_entry *pve;
4128 
4129 	va = trunc_page(va);
4130 	pa = pmap_kextract(va);
4131 	page = PHYS_TO_VM_PAGE(pa);
4132 
4133 	rw_wlock(&pvh_global_lock);
4134 	PMAP_LOCK(pmap);
4135 
4136 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
4137 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
4138 			goto out;
4139 		}
4140 	}
4141 	page->md.pv_tracked = true;
4142 	pv_insert(pmap, va, page);
4143 out:
4144 	PMAP_UNLOCK(pmap);
4145 	rw_wunlock(&pvh_global_lock);
4146 }
4147 
4148 
4149 /*
4150  * Setup MAS4 defaults.
4151  * These values are loaded to MAS0-2 on a TLB miss.
4152  */
4153 static void
4154 set_mas4_defaults(void)
4155 {
4156 	uint32_t mas4;
4157 
4158 	/* Defaults: TLB0, PID0, TSIZED=4K */
4159 	mas4 = MAS4_TLBSELD0;
4160 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
4161 #ifdef SMP
4162 	mas4 |= MAS4_MD;
4163 #endif
4164 	mtspr(SPR_MAS4, mas4);
4165 	__asm __volatile("isync");
4166 }
4167 
4168 
4169 /*
4170  * Return 0 if the physical IO range is encompassed by one of the
4171  * the TLB1 entries, otherwise return related error code.
4172  */
4173 static int
4174 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
4175 {
4176 	uint32_t prot;
4177 	vm_paddr_t pa_start;
4178 	vm_paddr_t pa_end;
4179 	unsigned int entry_tsize;
4180 	vm_size_t entry_size;
4181 	tlb_entry_t e;
4182 
4183 	*va = (vm_offset_t)NULL;
4184 
4185 	tlb1_read_entry(&e, i);
4186 	/* Skip invalid entries */
4187 	if (!(e.mas1 & MAS1_VALID))
4188 		return (EINVAL);
4189 
4190 	/*
4191 	 * The entry must be cache-inhibited, guarded, and r/w
4192 	 * so it can function as an i/o page
4193 	 */
4194 	prot = e.mas2 & (MAS2_I | MAS2_G);
4195 	if (prot != (MAS2_I | MAS2_G))
4196 		return (EPERM);
4197 
4198 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
4199 	if (prot != (MAS3_SR | MAS3_SW))
4200 		return (EPERM);
4201 
4202 	/* The address should be within the entry range. */
4203 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4204 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
4205 
4206 	entry_size = tsize2size(entry_tsize);
4207 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
4208 	    (e.mas3 & MAS3_RPN);
4209 	pa_end = pa_start + entry_size;
4210 
4211 	if ((pa < pa_start) || ((pa + size) > pa_end))
4212 		return (ERANGE);
4213 
4214 	/* Return virtual address of this mapping. */
4215 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
4216 	return (0);
4217 }
4218 
4219 /*
4220  * Invalidate all TLB0 entries which match the given TID. Note this is
4221  * dedicated for cases when invalidations should NOT be propagated to other
4222  * CPUs.
4223  */
4224 static void
4225 tid_flush(tlbtid_t tid)
4226 {
4227 	register_t msr;
4228 	uint32_t mas0, mas1, mas2;
4229 	int entry, way;
4230 
4231 
4232 	/* Don't evict kernel translations */
4233 	if (tid == TID_KERNEL)
4234 		return;
4235 
4236 	msr = mfmsr();
4237 	__asm __volatile("wrteei 0");
4238 
4239 	/*
4240 	 * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use
4241 	 * it for PID invalidation.
4242 	 */
4243 	switch ((mfpvr() >> 16) & 0xffff) {
4244 	case FSL_E500mc:
4245 	case FSL_E5500:
4246 	case FSL_E6500:
4247 		mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT);
4248 		/* tlbilxpid */
4249 		__asm __volatile("isync; .long 0x7c000024; isync; msync");
4250 		__asm __volatile("wrtee %0" :: "r"(msr));
4251 		return;
4252 	}
4253 
4254 	for (way = 0; way < TLB0_WAYS; way++)
4255 		for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
4256 
4257 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
4258 			mtspr(SPR_MAS0, mas0);
4259 
4260 			mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
4261 			mtspr(SPR_MAS2, mas2);
4262 
4263 			__asm __volatile("isync; tlbre");
4264 
4265 			mas1 = mfspr(SPR_MAS1);
4266 
4267 			if (!(mas1 & MAS1_VALID))
4268 				continue;
4269 			if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
4270 				continue;
4271 			mas1 &= ~MAS1_VALID;
4272 			mtspr(SPR_MAS1, mas1);
4273 			__asm __volatile("isync; tlbwe; isync; msync");
4274 		}
4275 	__asm __volatile("wrtee %0" :: "r"(msr));
4276 }
4277 
4278 #ifdef DDB
4279 /* Print out contents of the MAS registers for each TLB0 entry */
4280 static void
4281 #ifdef __powerpc64__
4282 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
4283 #else
4284 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
4285 #endif
4286     uint32_t mas7)
4287 {
4288 	int as;
4289 	char desc[3];
4290 	tlbtid_t tid;
4291 	vm_size_t size;
4292 	unsigned int tsize;
4293 
4294 	desc[2] = '\0';
4295 	if (mas1 & MAS1_VALID)
4296 		desc[0] = 'V';
4297 	else
4298 		desc[0] = ' ';
4299 
4300 	if (mas1 & MAS1_IPROT)
4301 		desc[1] = 'P';
4302 	else
4303 		desc[1] = ' ';
4304 
4305 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
4306 	tid = MAS1_GETTID(mas1);
4307 
4308 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4309 	size = 0;
4310 	if (tsize)
4311 		size = tsize2size(tsize);
4312 
4313 	printf("%3d: (%s) [AS=%d] "
4314 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
4315 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
4316 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
4317 }
4318 
4319 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
4320 {
4321 	uint32_t mas0, mas1, mas3, mas7;
4322 #ifdef __powerpc64__
4323 	uint64_t mas2;
4324 #else
4325 	uint32_t mas2;
4326 #endif
4327 	int entryidx, way, idx;
4328 
4329 	printf("TLB0 entries:\n");
4330 	for (way = 0; way < TLB0_WAYS; way ++)
4331 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
4332 
4333 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
4334 			mtspr(SPR_MAS0, mas0);
4335 
4336 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
4337 			mtspr(SPR_MAS2, mas2);
4338 
4339 			__asm __volatile("isync; tlbre");
4340 
4341 			mas1 = mfspr(SPR_MAS1);
4342 			mas2 = mfspr(SPR_MAS2);
4343 			mas3 = mfspr(SPR_MAS3);
4344 			mas7 = mfspr(SPR_MAS7);
4345 
4346 			idx = tlb0_tableidx(mas2, way);
4347 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
4348 		}
4349 }
4350 
4351 /*
4352  * Print out contents of the MAS registers for each TLB1 entry
4353  */
4354 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
4355 {
4356 	uint32_t mas0, mas1, mas3, mas7;
4357 #ifdef __powerpc64__
4358 	uint64_t mas2;
4359 #else
4360 	uint32_t mas2;
4361 #endif
4362 	int i;
4363 
4364 	printf("TLB1 entries:\n");
4365 	for (i = 0; i < TLB1_ENTRIES; i++) {
4366 
4367 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
4368 		mtspr(SPR_MAS0, mas0);
4369 
4370 		__asm __volatile("isync; tlbre");
4371 
4372 		mas1 = mfspr(SPR_MAS1);
4373 		mas2 = mfspr(SPR_MAS2);
4374 		mas3 = mfspr(SPR_MAS3);
4375 		mas7 = mfspr(SPR_MAS7);
4376 
4377 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
4378 	}
4379 }
4380 #endif
4381