xref: /freebsd/sys/powerpc/booke/pmap.c (revision 8655c70597b0e0918c82114b1186df5669b83eb6)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - kernelend	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/malloc.h>
57 #include <sys/ktr.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/queue.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/msgbuf.h>
64 #include <sys/lock.h>
65 #include <sys/mutex.h>
66 #include <sys/vmmeter.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_pager.h>
77 #include <vm/uma.h>
78 
79 #include <machine/cpu.h>
80 #include <machine/pcb.h>
81 #include <machine/powerpc.h>
82 
83 #include <machine/tlb.h>
84 #include <machine/spr.h>
85 #include <machine/vmparam.h>
86 #include <machine/md_var.h>
87 #include <machine/mmuvar.h>
88 #include <machine/pmap.h>
89 #include <machine/pte.h>
90 
91 #include "mmu_if.h"
92 
93 #define DEBUG
94 #undef DEBUG
95 
96 #ifdef  DEBUG
97 #define debugf(fmt, args...) printf(fmt, ##args)
98 #else
99 #define debugf(fmt, args...)
100 #endif
101 
102 #define TODO			panic("%s: not implemented", __func__);
103 
104 #include "opt_sched.h"
105 #ifndef SCHED_4BSD
106 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
107 #endif
108 extern struct mtx sched_lock;
109 
110 /* Kernel physical load address. */
111 extern uint32_t kernload;
112 
113 struct mem_region availmem_regions[MEM_REGIONS];
114 int availmem_regions_sz;
115 
116 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
117 static vm_offset_t zero_page_va;
118 static struct mtx zero_page_mutex;
119 
120 static struct mtx tlbivax_mutex;
121 
122 /*
123  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
124  * by idle thred only, no lock required.
125  */
126 static vm_offset_t zero_page_idle_va;
127 
128 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
129 static vm_offset_t copy_page_src_va;
130 static vm_offset_t copy_page_dst_va;
131 static struct mtx copy_page_mutex;
132 
133 /**************************************************************************/
134 /* PMAP */
135 /**************************************************************************/
136 
137 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
138     vm_prot_t, boolean_t);
139 
140 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
141 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
142 
143 static int pagedaemon_waken;
144 
145 /*
146  * If user pmap is processed with mmu_booke_remove and the resident count
147  * drops to 0, there are no more pages to remove, so we need not continue.
148  */
149 #define PMAP_REMOVE_DONE(pmap) \
150 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
151 
152 extern void tlb_lock(uint32_t *);
153 extern void tlb_unlock(uint32_t *);
154 extern void tid_flush(tlbtid_t);
155 
156 /**************************************************************************/
157 /* TLB and TID handling */
158 /**************************************************************************/
159 
160 /* Translation ID busy table */
161 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
162 
163 /*
164  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
165  * core revisions and should be read from h/w registers during early config.
166  */
167 uint32_t tlb0_entries;
168 uint32_t tlb0_ways;
169 uint32_t tlb0_entries_per_way;
170 
171 #define TLB0_ENTRIES		(tlb0_entries)
172 #define TLB0_WAYS		(tlb0_ways)
173 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
174 
175 #define TLB1_ENTRIES 16
176 
177 /* In-ram copy of the TLB1 */
178 static tlb_entry_t tlb1[TLB1_ENTRIES];
179 
180 /* Next free entry in the TLB1 */
181 static unsigned int tlb1_idx;
182 
183 static tlbtid_t tid_alloc(struct pmap *);
184 
185 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
186 
187 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
188 static void tlb1_write_entry(unsigned int);
189 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
190 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
191 
192 static vm_size_t tsize2size(unsigned int);
193 static unsigned int size2tsize(vm_size_t);
194 static unsigned int ilog2(unsigned int);
195 
196 static void set_mas4_defaults(void);
197 
198 static inline void tlb0_flush_entry(vm_offset_t);
199 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
200 
201 /**************************************************************************/
202 /* Page table management */
203 /**************************************************************************/
204 
205 /* Data for the pv entry allocation mechanism */
206 static uma_zone_t pvzone;
207 static struct vm_object pvzone_obj;
208 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
209 
210 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
211 
212 #ifndef PMAP_SHPGPERPROC
213 #define PMAP_SHPGPERPROC	200
214 #endif
215 
216 static void ptbl_init(void);
217 static struct ptbl_buf *ptbl_buf_alloc(void);
218 static void ptbl_buf_free(struct ptbl_buf *);
219 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
220 
221 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
222 static void ptbl_free(mmu_t, pmap_t, unsigned int);
223 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
224 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
225 
226 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
227 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
228 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
229 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
230 
231 static pv_entry_t pv_alloc(void);
232 static void pv_free(pv_entry_t);
233 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
234 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
235 
236 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
237 #define PTBL_BUFS		(128 * 16)
238 
239 struct ptbl_buf {
240 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
241 	vm_offset_t kva;		/* va of mapping */
242 };
243 
244 /* ptbl free list and a lock used for access synchronization. */
245 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
246 static struct mtx ptbl_buf_freelist_lock;
247 
248 /* Base address of kva space allocated fot ptbl bufs. */
249 static vm_offset_t ptbl_buf_pool_vabase;
250 
251 /* Pointer to ptbl_buf structures. */
252 static struct ptbl_buf *ptbl_bufs;
253 
254 /*
255  * Kernel MMU interface
256  */
257 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
258 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
259 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
260 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t,
261     vm_offset_t);
262 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
263 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
264     vm_prot_t, boolean_t);
265 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
266     vm_page_t, vm_prot_t);
267 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
268     vm_prot_t);
269 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
270 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
271     vm_prot_t);
272 static void		mmu_booke_init(mmu_t);
273 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
274 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
275 static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
276 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
277     int);
278 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
279 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
280     vm_object_t, vm_pindex_t, vm_size_t);
281 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
282 static void		mmu_booke_page_init(mmu_t, vm_page_t);
283 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
284 static void		mmu_booke_pinit(mmu_t, pmap_t);
285 static void		mmu_booke_pinit0(mmu_t, pmap_t);
286 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
287     vm_prot_t);
288 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
289 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
290 static void		mmu_booke_release(mmu_t, pmap_t);
291 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
292 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
293 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
294 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
295 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
296 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
297 static void		mmu_booke_activate(mmu_t, struct thread *);
298 static void		mmu_booke_deactivate(mmu_t, struct thread *);
299 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
300 static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
301 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
302 static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
303 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
304 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
305 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
306 static boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
307 
308 static mmu_method_t mmu_booke_methods[] = {
309 	/* pmap dispatcher interface */
310 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
311 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
312 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
313 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
314 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
315 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
316 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
317 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
318 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
319 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
320 	MMUMETHOD(mmu_init,		mmu_booke_init),
321 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
322 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
323 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
324 	MMUMETHOD(mmu_map,		mmu_booke_map),
325 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
326 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
327 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
328 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
329 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
330 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
331 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
332 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
333 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
334 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
335 	MMUMETHOD(mmu_release,		mmu_booke_release),
336 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
337 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
338 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
339 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
340 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
341 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
342 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
343 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
344 
345 	/* Internal interfaces */
346 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
347 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
348 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
349 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
350 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
351 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
352 	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
353 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
354 
355 	{ 0, 0 }
356 };
357 
358 static mmu_def_t booke_mmu = {
359 	MMU_TYPE_BOOKE,
360 	mmu_booke_methods,
361 	0
362 };
363 MMU_DEF(booke_mmu);
364 
365 /* Return number of entries in TLB0. */
366 static __inline void
367 tlb0_get_tlbconf(void)
368 {
369 	uint32_t tlb0_cfg;
370 
371 	tlb0_cfg = mfspr(SPR_TLB0CFG);
372 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
373 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
374 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
375 }
376 
377 /* Initialize pool of kva ptbl buffers. */
378 static void
379 ptbl_init(void)
380 {
381 	int i;
382 
383 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
384 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
385 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
386 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
387 
388 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
389 	TAILQ_INIT(&ptbl_buf_freelist);
390 
391 	for (i = 0; i < PTBL_BUFS; i++) {
392 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
393 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
394 	}
395 }
396 
397 /* Get a ptbl_buf from the freelist. */
398 static struct ptbl_buf *
399 ptbl_buf_alloc(void)
400 {
401 	struct ptbl_buf *buf;
402 
403 	mtx_lock(&ptbl_buf_freelist_lock);
404 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
405 	if (buf != NULL)
406 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
407 	mtx_unlock(&ptbl_buf_freelist_lock);
408 
409 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
410 
411 	return (buf);
412 }
413 
414 /* Return ptbl buff to free pool. */
415 static void
416 ptbl_buf_free(struct ptbl_buf *buf)
417 {
418 
419 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
420 
421 	mtx_lock(&ptbl_buf_freelist_lock);
422 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
423 	mtx_unlock(&ptbl_buf_freelist_lock);
424 }
425 
426 /*
427  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
428  */
429 static void
430 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
431 {
432 	struct ptbl_buf *pbuf;
433 
434 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
435 
436 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
437 
438 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
439 		if (pbuf->kva == (vm_offset_t)ptbl) {
440 			/* Remove from pmap ptbl buf list. */
441 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
442 
443 			/* Free corresponding ptbl buf. */
444 			ptbl_buf_free(pbuf);
445 			break;
446 		}
447 }
448 
449 /* Allocate page table. */
450 static pte_t *
451 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
452 {
453 	vm_page_t mtbl[PTBL_PAGES];
454 	vm_page_t m;
455 	struct ptbl_buf *pbuf;
456 	unsigned int pidx;
457 	pte_t *ptbl;
458 	int i;
459 
460 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
461 	    (pmap == kernel_pmap), pdir_idx);
462 
463 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
464 	    ("ptbl_alloc: invalid pdir_idx"));
465 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
466 	    ("pte_alloc: valid ptbl entry exists!"));
467 
468 	pbuf = ptbl_buf_alloc();
469 	if (pbuf == NULL)
470 		panic("pte_alloc: couldn't alloc kernel virtual memory");
471 
472 	ptbl = (pte_t *)pbuf->kva;
473 
474 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
475 
476 	/* Allocate ptbl pages, this will sleep! */
477 	for (i = 0; i < PTBL_PAGES; i++) {
478 		pidx = (PTBL_PAGES * pdir_idx) + i;
479 		while ((m = vm_page_alloc(NULL, pidx,
480 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
481 
482 			PMAP_UNLOCK(pmap);
483 			vm_page_unlock_queues();
484 			VM_WAIT;
485 			vm_page_lock_queues();
486 			PMAP_LOCK(pmap);
487 		}
488 		mtbl[i] = m;
489 	}
490 
491 	/* Map allocated pages into kernel_pmap. */
492 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
493 
494 	/* Zero whole ptbl. */
495 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
496 
497 	/* Add pbuf to the pmap ptbl bufs list. */
498 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
499 
500 	return (ptbl);
501 }
502 
503 /* Free ptbl pages and invalidate pdir entry. */
504 static void
505 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
506 {
507 	pte_t *ptbl;
508 	vm_paddr_t pa;
509 	vm_offset_t va;
510 	vm_page_t m;
511 	int i;
512 
513 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
514 	    (pmap == kernel_pmap), pdir_idx);
515 
516 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
517 	    ("ptbl_free: invalid pdir_idx"));
518 
519 	ptbl = pmap->pm_pdir[pdir_idx];
520 
521 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
522 
523 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
524 
525 	/*
526 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
527 	 * don't attempt to look up the page tables we are releasing.
528 	 */
529 	mtx_lock_spin(&tlbivax_mutex);
530 
531 	pmap->pm_pdir[pdir_idx] = NULL;
532 
533 	mtx_unlock_spin(&tlbivax_mutex);
534 
535 	for (i = 0; i < PTBL_PAGES; i++) {
536 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
537 		pa = pte_vatopa(mmu, kernel_pmap, va);
538 		m = PHYS_TO_VM_PAGE(pa);
539 		vm_page_free_zero(m);
540 		atomic_subtract_int(&cnt.v_wire_count, 1);
541 		mmu_booke_kremove(mmu, va);
542 	}
543 
544 	ptbl_free_pmap_ptbl(pmap, ptbl);
545 }
546 
547 /*
548  * Decrement ptbl pages hold count and attempt to free ptbl pages.
549  * Called when removing pte entry from ptbl.
550  *
551  * Return 1 if ptbl pages were freed.
552  */
553 static int
554 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
555 {
556 	pte_t *ptbl;
557 	vm_paddr_t pa;
558 	vm_page_t m;
559 	int i;
560 
561 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
562 	    (pmap == kernel_pmap), pdir_idx);
563 
564 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
565 	    ("ptbl_unhold: invalid pdir_idx"));
566 	KASSERT((pmap != kernel_pmap),
567 	    ("ptbl_unhold: unholding kernel ptbl!"));
568 
569 	ptbl = pmap->pm_pdir[pdir_idx];
570 
571 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
572 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
573 	    ("ptbl_unhold: non kva ptbl"));
574 
575 	/* decrement hold count */
576 	for (i = 0; i < PTBL_PAGES; i++) {
577 		pa = pte_vatopa(mmu, kernel_pmap,
578 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
579 		m = PHYS_TO_VM_PAGE(pa);
580 		m->wire_count--;
581 	}
582 
583 	/*
584 	 * Free ptbl pages if there are no pte etries in this ptbl.
585 	 * wire_count has the same value for all ptbl pages, so check the last
586 	 * page.
587 	 */
588 	if (m->wire_count == 0) {
589 		ptbl_free(mmu, pmap, pdir_idx);
590 
591 		//debugf("ptbl_unhold: e (freed ptbl)\n");
592 		return (1);
593 	}
594 
595 	return (0);
596 }
597 
598 /*
599  * Increment hold count for ptbl pages. This routine is used when a new pte
600  * entry is being inserted into the ptbl.
601  */
602 static void
603 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
604 {
605 	vm_paddr_t pa;
606 	pte_t *ptbl;
607 	vm_page_t m;
608 	int i;
609 
610 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
611 	    pdir_idx);
612 
613 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
614 	    ("ptbl_hold: invalid pdir_idx"));
615 	KASSERT((pmap != kernel_pmap),
616 	    ("ptbl_hold: holding kernel ptbl!"));
617 
618 	ptbl = pmap->pm_pdir[pdir_idx];
619 
620 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
621 
622 	for (i = 0; i < PTBL_PAGES; i++) {
623 		pa = pte_vatopa(mmu, kernel_pmap,
624 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
625 		m = PHYS_TO_VM_PAGE(pa);
626 		m->wire_count++;
627 	}
628 }
629 
630 /* Allocate pv_entry structure. */
631 pv_entry_t
632 pv_alloc(void)
633 {
634 	pv_entry_t pv;
635 
636 	pv_entry_count++;
637 	if ((pv_entry_count > pv_entry_high_water) &&
638 	    (pagedaemon_waken == 0)) {
639 		pagedaemon_waken = 1;
640 		wakeup(&vm_pages_needed);
641 	}
642 	pv = uma_zalloc(pvzone, M_NOWAIT);
643 
644 	return (pv);
645 }
646 
647 /* Free pv_entry structure. */
648 static __inline void
649 pv_free(pv_entry_t pve)
650 {
651 
652 	pv_entry_count--;
653 	uma_zfree(pvzone, pve);
654 }
655 
656 
657 /* Allocate and initialize pv_entry structure. */
658 static void
659 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
660 {
661 	pv_entry_t pve;
662 
663 	//int su = (pmap == kernel_pmap);
664 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
665 	//	(u_int32_t)pmap, va, (u_int32_t)m);
666 
667 	pve = pv_alloc();
668 	if (pve == NULL)
669 		panic("pv_insert: no pv entries!");
670 
671 	pve->pv_pmap = pmap;
672 	pve->pv_va = va;
673 
674 	/* add to pv_list */
675 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
676 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
677 
678 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
679 
680 	//debugf("pv_insert: e\n");
681 }
682 
683 /* Destroy pv entry. */
684 static void
685 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
686 {
687 	pv_entry_t pve;
688 
689 	//int su = (pmap == kernel_pmap);
690 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
691 
692 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
693 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
694 
695 	/* find pv entry */
696 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
697 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
698 			/* remove from pv_list */
699 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
700 			if (TAILQ_EMPTY(&m->md.pv_list))
701 				vm_page_flag_clear(m, PG_WRITEABLE);
702 
703 			/* free pv entry struct */
704 			pv_free(pve);
705 			break;
706 		}
707 	}
708 
709 	//debugf("pv_remove: e\n");
710 }
711 
712 /*
713  * Clean pte entry, try to free page table page if requested.
714  *
715  * Return 1 if ptbl pages were freed, otherwise return 0.
716  */
717 static int
718 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
719 {
720 	unsigned int pdir_idx = PDIR_IDX(va);
721 	unsigned int ptbl_idx = PTBL_IDX(va);
722 	vm_page_t m;
723 	pte_t *ptbl;
724 	pte_t *pte;
725 
726 	//int su = (pmap == kernel_pmap);
727 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
728 	//		su, (u_int32_t)pmap, va, flags);
729 
730 	ptbl = pmap->pm_pdir[pdir_idx];
731 	KASSERT(ptbl, ("pte_remove: null ptbl"));
732 
733 	pte = &ptbl[ptbl_idx];
734 
735 	if (pte == NULL || !PTE_ISVALID(pte))
736 		return (0);
737 
738 	/* Get vm_page_t for mapped pte. */
739 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
740 
741 	if (PTE_ISWIRED(pte))
742 		pmap->pm_stats.wired_count--;
743 
744 	if (!PTE_ISFAKE(pte)) {
745 		/* Handle managed entry. */
746 		if (PTE_ISMANAGED(pte)) {
747 
748 			/* Handle modified pages. */
749 			if (PTE_ISMODIFIED(pte))
750 				vm_page_dirty(m);
751 
752 			/* Referenced pages. */
753 			if (PTE_ISREFERENCED(pte))
754 				vm_page_flag_set(m, PG_REFERENCED);
755 
756 			/* Remove pv_entry from pv_list. */
757 			pv_remove(pmap, va, m);
758 		}
759 	}
760 
761 	mtx_lock_spin(&tlbivax_mutex);
762 
763 	tlb0_flush_entry(va);
764 	pte->flags = 0;
765 	pte->rpn = 0;
766 
767 	mtx_unlock_spin(&tlbivax_mutex);
768 
769 	pmap->pm_stats.resident_count--;
770 
771 	if (flags & PTBL_UNHOLD) {
772 		//debugf("pte_remove: e (unhold)\n");
773 		return (ptbl_unhold(mmu, pmap, pdir_idx));
774 	}
775 
776 	//debugf("pte_remove: e\n");
777 	return (0);
778 }
779 
780 /*
781  * Insert PTE for a given page and virtual address.
782  */
783 static void
784 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
785 {
786 	unsigned int pdir_idx = PDIR_IDX(va);
787 	unsigned int ptbl_idx = PTBL_IDX(va);
788 	pte_t *ptbl, *pte;
789 
790 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
791 	    pmap == kernel_pmap, pmap, va);
792 
793 	/* Get the page table pointer. */
794 	ptbl = pmap->pm_pdir[pdir_idx];
795 
796 	if (ptbl == NULL) {
797 		/* Allocate page table pages. */
798 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
799 	} else {
800 		/*
801 		 * Check if there is valid mapping for requested
802 		 * va, if there is, remove it.
803 		 */
804 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
805 		if (PTE_ISVALID(pte)) {
806 			pte_remove(mmu, pmap, va, PTBL_HOLD);
807 		} else {
808 			/*
809 			 * pte is not used, increment hold count
810 			 * for ptbl pages.
811 			 */
812 			if (pmap != kernel_pmap)
813 				ptbl_hold(mmu, pmap, pdir_idx);
814 		}
815 	}
816 
817 	/*
818 	 * Insert pv_entry into pv_list for mapped page if part of managed
819 	 * memory.
820 	 */
821         if ((m->flags & PG_FICTITIOUS) == 0) {
822 		if ((m->flags & PG_UNMANAGED) == 0) {
823 			flags |= PTE_MANAGED;
824 
825 			/* Create and insert pv entry. */
826 			pv_insert(pmap, va, m);
827 		}
828         } else {
829 		flags |= PTE_FAKE;
830 	}
831 
832 	pmap->pm_stats.resident_count++;
833 
834 	mtx_lock_spin(&tlbivax_mutex);
835 
836 	tlb0_flush_entry(va);
837 	if (pmap->pm_pdir[pdir_idx] == NULL) {
838 		/*
839 		 * If we just allocated a new page table, hook it in
840 		 * the pdir.
841 		 */
842 		pmap->pm_pdir[pdir_idx] = ptbl;
843 	}
844 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
845 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
846 	pte->flags |= (PTE_VALID | flags);
847 
848 	mtx_unlock_spin(&tlbivax_mutex);
849 }
850 
851 /* Return the pa for the given pmap/va. */
852 static vm_paddr_t
853 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
854 {
855 	vm_paddr_t pa = 0;
856 	pte_t *pte;
857 
858 	pte = pte_find(mmu, pmap, va);
859 	if ((pte != NULL) && PTE_ISVALID(pte))
860 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
861 	return (pa);
862 }
863 
864 /* Get a pointer to a PTE in a page table. */
865 static pte_t *
866 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
867 {
868 	unsigned int pdir_idx = PDIR_IDX(va);
869 	unsigned int ptbl_idx = PTBL_IDX(va);
870 
871 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
872 
873 	if (pmap->pm_pdir[pdir_idx])
874 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
875 
876 	return (NULL);
877 }
878 
879 /**************************************************************************/
880 /* PMAP related */
881 /**************************************************************************/
882 
883 /*
884  * This is called during e500_init, before the system is really initialized.
885  */
886 static void
887 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t kernelstart, vm_offset_t kernelend)
888 {
889 	vm_offset_t phys_kernelend;
890 	struct mem_region *mp, *mp1;
891 	int cnt, i, j;
892 	u_int s, e, sz;
893 	u_int phys_avail_count;
894 	vm_size_t physsz, hwphyssz, kstack0_sz;
895 	vm_offset_t kernel_pdir, kstack0;
896 	vm_paddr_t kstack0_phys;
897 
898 	debugf("mmu_booke_bootstrap: entered\n");
899 
900 	/* Initialize invalidation mutex */
901 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
902 
903 	/* Read TLB0 size and associativity. */
904 	tlb0_get_tlbconf();
905 
906 	/* Align kernel start and end address (kernel image). */
907 	kernelstart = trunc_page(kernelstart);
908 	kernelend = round_page(kernelend);
909 
910 	/* Allocate space for the message buffer. */
911 	msgbufp = (struct msgbuf *)kernelend;
912 	kernelend += MSGBUF_SIZE;
913 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
914 	    kernelend);
915 
916 	kernelend = round_page(kernelend);
917 
918 	/* Allocate space for ptbl_bufs. */
919 	ptbl_bufs = (struct ptbl_buf *)kernelend;
920 	kernelend += sizeof(struct ptbl_buf) * PTBL_BUFS;
921 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
922 	    kernelend);
923 
924 	kernelend = round_page(kernelend);
925 
926 	/* Allocate PTE tables for kernel KVA. */
927 	kernel_pdir = kernelend;
928 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
929 	    PDIR_SIZE - 1) / PDIR_SIZE;
930 	kernelend += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
931 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
932 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, kernelend);
933 
934 	debugf(" kernelend: 0x%08x\n", kernelend);
935 	if (kernelend - kernelstart > 0x1000000) {
936 		kernelend = (kernelend + 0x3fffff) & ~0x3fffff;
937 		tlb1_mapin_region(kernelstart + 0x1000000,
938 		    kernload + 0x1000000, kernelend - kernelstart - 0x1000000);
939 	} else
940 		kernelend = (kernelend + 0xffffff) & ~0xffffff;
941 
942 	debugf(" updated kernelend: 0x%08x\n", kernelend);
943 
944 	/*
945 	 * Clear the structures - note we can only do it safely after the
946 	 * possible additional TLB1 translations are in place (above) so that
947 	 * all range up to the currently calculated 'kernelend' is covered.
948 	 */
949 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
950 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
951 
952 	/*******************************************************/
953 	/* Set the start and end of kva. */
954 	/*******************************************************/
955 	virtual_avail = kernelend;
956 	virtual_end = VM_MAX_KERNEL_ADDRESS;
957 
958 	/* Allocate KVA space for page zero/copy operations. */
959 	zero_page_va = virtual_avail;
960 	virtual_avail += PAGE_SIZE;
961 	zero_page_idle_va = virtual_avail;
962 	virtual_avail += PAGE_SIZE;
963 	copy_page_src_va = virtual_avail;
964 	virtual_avail += PAGE_SIZE;
965 	copy_page_dst_va = virtual_avail;
966 	virtual_avail += PAGE_SIZE;
967 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
968 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
969 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
970 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
971 
972 	/* Initialize page zero/copy mutexes. */
973 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
974 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
975 
976 	/* Allocate KVA space for ptbl bufs. */
977 	ptbl_buf_pool_vabase = virtual_avail;
978 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
979 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
980 	    ptbl_buf_pool_vabase, virtual_avail);
981 
982 	/* Calculate corresponding physical addresses for the kernel region. */
983 	phys_kernelend = kernload + (kernelend - kernelstart);
984 	debugf("kernel image and allocated data:\n");
985 	debugf(" kernload    = 0x%08x\n", kernload);
986 	debugf(" kernelstart = 0x%08x\n", kernelstart);
987 	debugf(" kernelend   = 0x%08x\n", kernelend);
988 	debugf(" kernel size = 0x%08x\n", kernelend - kernelstart);
989 
990 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
991 		panic("mmu_booke_bootstrap: phys_avail too small");
992 
993 	/*
994 	 * Remove kernel physical address range from avail regions list. Page
995 	 * align all regions.  Non-page aligned memory isn't very interesting
996 	 * to us.  Also, sort the entries for ascending addresses.
997 	 */
998 	sz = 0;
999 	cnt = availmem_regions_sz;
1000 	debugf("processing avail regions:\n");
1001 	for (mp = availmem_regions; mp->mr_size; mp++) {
1002 		s = mp->mr_start;
1003 		e = mp->mr_start + mp->mr_size;
1004 		debugf(" %08x-%08x -> ", s, e);
1005 		/* Check whether this region holds all of the kernel. */
1006 		if (s < kernload && e > phys_kernelend) {
1007 			availmem_regions[cnt].mr_start = phys_kernelend;
1008 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1009 			e = kernload;
1010 		}
1011 		/* Look whether this regions starts within the kernel. */
1012 		if (s >= kernload && s < phys_kernelend) {
1013 			if (e <= phys_kernelend)
1014 				goto empty;
1015 			s = phys_kernelend;
1016 		}
1017 		/* Now look whether this region ends within the kernel. */
1018 		if (e > kernload && e <= phys_kernelend) {
1019 			if (s >= kernload)
1020 				goto empty;
1021 			e = kernload;
1022 		}
1023 		/* Now page align the start and size of the region. */
1024 		s = round_page(s);
1025 		e = trunc_page(e);
1026 		if (e < s)
1027 			e = s;
1028 		sz = e - s;
1029 		debugf("%08x-%08x = %x\n", s, e, sz);
1030 
1031 		/* Check whether some memory is left here. */
1032 		if (sz == 0) {
1033 		empty:
1034 			memmove(mp, mp + 1,
1035 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1036 			cnt--;
1037 			mp--;
1038 			continue;
1039 		}
1040 
1041 		/* Do an insertion sort. */
1042 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1043 			if (s < mp1->mr_start)
1044 				break;
1045 		if (mp1 < mp) {
1046 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1047 			mp1->mr_start = s;
1048 			mp1->mr_size = sz;
1049 		} else {
1050 			mp->mr_start = s;
1051 			mp->mr_size = sz;
1052 		}
1053 	}
1054 	availmem_regions_sz = cnt;
1055 
1056 	/*******************************************************/
1057 	/* Steal physical memory for kernel stack from the end */
1058 	/* of the first avail region                           */
1059 	/*******************************************************/
1060 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1061 	kstack0_phys = availmem_regions[0].mr_start +
1062 	    availmem_regions[0].mr_size;
1063 	kstack0_phys -= kstack0_sz;
1064 	availmem_regions[0].mr_size -= kstack0_sz;
1065 
1066 	/*******************************************************/
1067 	/* Fill in phys_avail table, based on availmem_regions */
1068 	/*******************************************************/
1069 	phys_avail_count = 0;
1070 	physsz = 0;
1071 	hwphyssz = 0;
1072 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1073 
1074 	debugf("fill in phys_avail:\n");
1075 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1076 
1077 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1078 		    availmem_regions[i].mr_start,
1079 		    availmem_regions[i].mr_start +
1080 		        availmem_regions[i].mr_size,
1081 		    availmem_regions[i].mr_size);
1082 
1083 		if (hwphyssz != 0 &&
1084 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1085 			debugf(" hw.physmem adjust\n");
1086 			if (physsz < hwphyssz) {
1087 				phys_avail[j] = availmem_regions[i].mr_start;
1088 				phys_avail[j + 1] =
1089 				    availmem_regions[i].mr_start +
1090 				    hwphyssz - physsz;
1091 				physsz = hwphyssz;
1092 				phys_avail_count++;
1093 			}
1094 			break;
1095 		}
1096 
1097 		phys_avail[j] = availmem_regions[i].mr_start;
1098 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1099 		    availmem_regions[i].mr_size;
1100 		phys_avail_count++;
1101 		physsz += availmem_regions[i].mr_size;
1102 	}
1103 	physmem = btoc(physsz);
1104 
1105 	/* Calculate the last available physical address. */
1106 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1107 		;
1108 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1109 
1110 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1111 	debugf("phys_avail_count = %d\n", phys_avail_count);
1112 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1113 	    physmem);
1114 
1115 	/*******************************************************/
1116 	/* Initialize (statically allocated) kernel pmap. */
1117 	/*******************************************************/
1118 	PMAP_LOCK_INIT(kernel_pmap);
1119 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1120 
1121 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1122 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1123 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1124 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1125 
1126 	/* Initialize kernel pdir */
1127 	for (i = 0; i < kernel_ptbls; i++)
1128 		kernel_pmap->pm_pdir[kptbl_min + i] =
1129 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1130 
1131 	for (i = 0; i < MAXCPU; i++) {
1132 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1133 
1134 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1135 		tidbusy[i][0] = kernel_pmap;
1136 	}
1137 	/* Mark kernel_pmap active on all CPUs */
1138 	kernel_pmap->pm_active = ~0;
1139 
1140 	/*******************************************************/
1141 	/* Final setup */
1142 	/*******************************************************/
1143 
1144 	/* Enter kstack0 into kernel map, provide guard page */
1145 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1146 	thread0.td_kstack = kstack0;
1147 	thread0.td_kstack_pages = KSTACK_PAGES;
1148 
1149 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1150 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1151 	    kstack0_phys, kstack0_phys + kstack0_sz);
1152 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1153 
1154 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1155 	for (i = 0; i < KSTACK_PAGES; i++) {
1156 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1157 		kstack0 += PAGE_SIZE;
1158 		kstack0_phys += PAGE_SIZE;
1159 	}
1160 
1161 	debugf("virtual_avail = %08x\n", virtual_avail);
1162 	debugf("virtual_end   = %08x\n", virtual_end);
1163 
1164 	debugf("mmu_booke_bootstrap: exit\n");
1165 }
1166 
1167 /*
1168  * Get the physical page address for the given pmap/virtual address.
1169  */
1170 static vm_paddr_t
1171 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1172 {
1173 	vm_paddr_t pa;
1174 
1175 	PMAP_LOCK(pmap);
1176 	pa = pte_vatopa(mmu, pmap, va);
1177 	PMAP_UNLOCK(pmap);
1178 
1179 	return (pa);
1180 }
1181 
1182 /*
1183  * Extract the physical page address associated with the given
1184  * kernel virtual address.
1185  */
1186 static vm_paddr_t
1187 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1188 {
1189 
1190 	return (pte_vatopa(mmu, kernel_pmap, va));
1191 }
1192 
1193 /*
1194  * Initialize the pmap module.
1195  * Called by vm_init, to initialize any structures that the pmap
1196  * system needs to map virtual memory.
1197  */
1198 static void
1199 mmu_booke_init(mmu_t mmu)
1200 {
1201 	int shpgperproc = PMAP_SHPGPERPROC;
1202 
1203 	/*
1204 	 * Initialize the address space (zone) for the pv entries.  Set a
1205 	 * high water mark so that the system can recover from excessive
1206 	 * numbers of pv entries.
1207 	 */
1208 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1209 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1210 
1211 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1212 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1213 
1214 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1215 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1216 
1217 	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1218 
1219 	/* Pre-fill pvzone with initial number of pv entries. */
1220 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1221 
1222 	/* Initialize ptbl allocation. */
1223 	ptbl_init();
1224 }
1225 
1226 /*
1227  * Map a list of wired pages into kernel virtual address space.  This is
1228  * intended for temporary mappings which do not need page modification or
1229  * references recorded.  Existing mappings in the region are overwritten.
1230  */
1231 static void
1232 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1233 {
1234 	vm_offset_t va;
1235 
1236 	va = sva;
1237 	while (count-- > 0) {
1238 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1239 		va += PAGE_SIZE;
1240 		m++;
1241 	}
1242 }
1243 
1244 /*
1245  * Remove page mappings from kernel virtual address space.  Intended for
1246  * temporary mappings entered by mmu_booke_qenter.
1247  */
1248 static void
1249 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1250 {
1251 	vm_offset_t va;
1252 
1253 	va = sva;
1254 	while (count-- > 0) {
1255 		mmu_booke_kremove(mmu, va);
1256 		va += PAGE_SIZE;
1257 	}
1258 }
1259 
1260 /*
1261  * Map a wired page into kernel virtual address space.
1262  */
1263 static void
1264 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1265 {
1266 	unsigned int pdir_idx = PDIR_IDX(va);
1267 	unsigned int ptbl_idx = PTBL_IDX(va);
1268 	uint32_t flags;
1269 	pte_t *pte;
1270 
1271 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1272 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1273 
1274 #if 0
1275 	/* assume IO mapping, set I, G bits */
1276 	flags = (PTE_G | PTE_I | PTE_FAKE);
1277 
1278 	/* if mapping is within system memory, do not set I, G bits */
1279 	for (i = 0; i < totalmem_regions_sz; i++) {
1280 		if ((pa >= totalmem_regions[i].mr_start) &&
1281 				(pa < (totalmem_regions[i].mr_start +
1282 				       totalmem_regions[i].mr_size))) {
1283 			flags &= ~(PTE_I | PTE_G | PTE_FAKE);
1284 			break;
1285 		}
1286 	}
1287 #else
1288 	flags = 0;
1289 #endif
1290 
1291 	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1292 	flags |= PTE_M;
1293 
1294 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1295 
1296 	mtx_lock_spin(&tlbivax_mutex);
1297 
1298 	if (PTE_ISVALID(pte)) {
1299 
1300 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1301 
1302 		/* Flush entry from TLB0 */
1303 		tlb0_flush_entry(va);
1304 	}
1305 
1306 	pte->rpn = pa & ~PTE_PA_MASK;
1307 	pte->flags = flags;
1308 
1309 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1310 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1311 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1312 
1313 	/* Flush the real memory from the instruction cache. */
1314 	if ((flags & (PTE_I | PTE_G)) == 0) {
1315 		__syncicache((void *)va, PAGE_SIZE);
1316 	}
1317 
1318 	mtx_unlock_spin(&tlbivax_mutex);
1319 }
1320 
1321 /*
1322  * Remove a page from kernel page table.
1323  */
1324 static void
1325 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1326 {
1327 	unsigned int pdir_idx = PDIR_IDX(va);
1328 	unsigned int ptbl_idx = PTBL_IDX(va);
1329 	pte_t *pte;
1330 
1331 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1332 
1333 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1334 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1335 	    ("mmu_booke_kremove: invalid va"));
1336 
1337 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1338 
1339 	if (!PTE_ISVALID(pte)) {
1340 
1341 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1342 
1343 		return;
1344 	}
1345 
1346 	mtx_lock_spin(&tlbivax_mutex);
1347 
1348 	/* Invalidate entry in TLB0, update PTE. */
1349 	tlb0_flush_entry(va);
1350 	pte->flags = 0;
1351 	pte->rpn = 0;
1352 
1353 	mtx_unlock_spin(&tlbivax_mutex);
1354 }
1355 
1356 /*
1357  * Initialize pmap associated with process 0.
1358  */
1359 static void
1360 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1361 {
1362 
1363 	mmu_booke_pinit(mmu, pmap);
1364 	PCPU_SET(curpmap, pmap);
1365 }
1366 
1367 /*
1368  * Initialize a preallocated and zeroed pmap structure,
1369  * such as one in a vmspace structure.
1370  */
1371 static void
1372 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1373 {
1374 	int i;
1375 
1376 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1377 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1378 
1379 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1380 
1381 	PMAP_LOCK_INIT(pmap);
1382 	for (i = 0; i < MAXCPU; i++)
1383 		pmap->pm_tid[i] = TID_NONE;
1384 	pmap->pm_active = 0;
1385 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1386 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1387 	TAILQ_INIT(&pmap->pm_ptbl_list);
1388 }
1389 
1390 /*
1391  * Release any resources held by the given physical map.
1392  * Called when a pmap initialized by mmu_booke_pinit is being released.
1393  * Should only be called if the map contains no valid mappings.
1394  */
1395 static void
1396 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1397 {
1398 
1399 	printf("mmu_booke_release: s\n");
1400 
1401 	KASSERT(pmap->pm_stats.resident_count == 0,
1402 	    ("pmap_release: pmap resident count %ld != 0",
1403 	    pmap->pm_stats.resident_count));
1404 
1405 	PMAP_LOCK_DESTROY(pmap);
1406 }
1407 
1408 #if 0
1409 /* Not needed, kernel page tables are statically allocated. */
1410 void
1411 mmu_booke_growkernel(vm_offset_t maxkvaddr)
1412 {
1413 }
1414 #endif
1415 
1416 /*
1417  * Insert the given physical page at the specified virtual address in the
1418  * target physical map with the protection requested. If specified the page
1419  * will be wired down.
1420  */
1421 static void
1422 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1423     vm_prot_t prot, boolean_t wired)
1424 {
1425 
1426 	vm_page_lock_queues();
1427 	PMAP_LOCK(pmap);
1428 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1429 	vm_page_unlock_queues();
1430 	PMAP_UNLOCK(pmap);
1431 }
1432 
1433 static void
1434 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1435     vm_prot_t prot, boolean_t wired)
1436 {
1437 	pte_t *pte;
1438 	vm_paddr_t pa;
1439 	uint32_t flags;
1440 	int su, sync;
1441 
1442 	pa = VM_PAGE_TO_PHYS(m);
1443 	su = (pmap == kernel_pmap);
1444 	sync = 0;
1445 
1446 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1447 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1448 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1449 	//		(u_int32_t)m, va, pa, prot, wired);
1450 
1451 	if (su) {
1452 		KASSERT(((va >= virtual_avail) &&
1453 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1454 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1455 	} else {
1456 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1457 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1458 	}
1459 
1460 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1461 
1462 	/*
1463 	 * If there is an existing mapping, and the physical address has not
1464 	 * changed, must be protection or wiring change.
1465 	 */
1466 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1467 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1468 
1469 		/*
1470 		 * Before actually updating pte->flags we calculate and
1471 		 * prepare its new value in a helper var.
1472 		 */
1473 		flags = pte->flags;
1474 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1475 
1476 		/* Wiring change, just update stats. */
1477 		if (wired) {
1478 			if (!PTE_ISWIRED(pte)) {
1479 				flags |= PTE_WIRED;
1480 				pmap->pm_stats.wired_count++;
1481 			}
1482 		} else {
1483 			if (PTE_ISWIRED(pte)) {
1484 				flags &= ~PTE_WIRED;
1485 				pmap->pm_stats.wired_count--;
1486 			}
1487 		}
1488 
1489 		if (prot & VM_PROT_WRITE) {
1490 			/* Add write permissions. */
1491 			flags |= PTE_SW;
1492 			if (!su)
1493 				flags |= PTE_UW;
1494 		} else {
1495 			/* Handle modified pages, sense modify status. */
1496 
1497 			/*
1498 			 * The PTE_MODIFIED flag could be set by underlying
1499 			 * TLB misses since we last read it (above), possibly
1500 			 * other CPUs could update it so we check in the PTE
1501 			 * directly rather than rely on that saved local flags
1502 			 * copy.
1503 			 */
1504 			if (PTE_ISMODIFIED(pte))
1505 				vm_page_dirty(m);
1506 		}
1507 
1508 		if (prot & VM_PROT_EXECUTE) {
1509 			flags |= PTE_SX;
1510 			if (!su)
1511 				flags |= PTE_UX;
1512 
1513 			/*
1514 			 * Check existing flags for execute permissions: if we
1515 			 * are turning execute permissions on, icache should
1516 			 * be flushed.
1517 			 */
1518 			if ((flags & (PTE_UX | PTE_SX)) == 0)
1519 				sync++;
1520 		}
1521 
1522 		flags &= ~PTE_REFERENCED;
1523 
1524 		/*
1525 		 * The new flags value is all calculated -- only now actually
1526 		 * update the PTE.
1527 		 */
1528 		mtx_lock_spin(&tlbivax_mutex);
1529 
1530 		tlb0_flush_entry(va);
1531 		pte->flags = flags;
1532 
1533 		mtx_unlock_spin(&tlbivax_mutex);
1534 
1535 	} else {
1536 		/*
1537 		 * If there is an existing mapping, but it's for a different
1538 		 * physical address, pte_enter() will delete the old mapping.
1539 		 */
1540 		//if ((pte != NULL) && PTE_ISVALID(pte))
1541 		//	debugf("mmu_booke_enter_locked: replace\n");
1542 		//else
1543 		//	debugf("mmu_booke_enter_locked: new\n");
1544 
1545 		/* Now set up the flags and install the new mapping. */
1546 		flags = (PTE_SR | PTE_VALID);
1547 		flags |= PTE_M;
1548 
1549 		if (!su)
1550 			flags |= PTE_UR;
1551 
1552 		if (prot & VM_PROT_WRITE) {
1553 			flags |= PTE_SW;
1554 			if (!su)
1555 				flags |= PTE_UW;
1556 		}
1557 
1558 		if (prot & VM_PROT_EXECUTE) {
1559 			flags |= PTE_SX;
1560 			if (!su)
1561 				flags |= PTE_UX;
1562 		}
1563 
1564 		/* If its wired update stats. */
1565 		if (wired) {
1566 			pmap->pm_stats.wired_count++;
1567 			flags |= PTE_WIRED;
1568 		}
1569 
1570 		pte_enter(mmu, pmap, m, va, flags);
1571 
1572 		/* Flush the real memory from the instruction cache. */
1573 		if (prot & VM_PROT_EXECUTE)
1574 			sync++;
1575 	}
1576 
1577 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1578 		__syncicache((void *)va, PAGE_SIZE);
1579 		sync = 0;
1580 	}
1581 
1582 	if (sync) {
1583 		/* Create a temporary mapping. */
1584 		pmap = PCPU_GET(curpmap);
1585 
1586 		va = 0;
1587 		pte = pte_find(mmu, pmap, va);
1588 		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1589 
1590 		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1591 
1592 		pte_enter(mmu, pmap, m, va, flags);
1593 		__syncicache((void *)va, PAGE_SIZE);
1594 		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1595 	}
1596 }
1597 
1598 /*
1599  * Maps a sequence of resident pages belonging to the same object.
1600  * The sequence begins with the given page m_start.  This page is
1601  * mapped at the given virtual address start.  Each subsequent page is
1602  * mapped at a virtual address that is offset from start by the same
1603  * amount as the page is offset from m_start within the object.  The
1604  * last page in the sequence is the page with the largest offset from
1605  * m_start that can be mapped at a virtual address less than the given
1606  * virtual address end.  Not every virtual page between start and end
1607  * is mapped; only those for which a resident page exists with the
1608  * corresponding offset from m_start are mapped.
1609  */
1610 static void
1611 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1612     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1613 {
1614 	vm_page_t m;
1615 	vm_pindex_t diff, psize;
1616 
1617 	psize = atop(end - start);
1618 	m = m_start;
1619 	PMAP_LOCK(pmap);
1620 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1621 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1622 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1623 		m = TAILQ_NEXT(m, listq);
1624 	}
1625 	PMAP_UNLOCK(pmap);
1626 }
1627 
1628 static void
1629 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1630     vm_prot_t prot)
1631 {
1632 
1633 	PMAP_LOCK(pmap);
1634 	mmu_booke_enter_locked(mmu, pmap, va, m,
1635 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1636 	PMAP_UNLOCK(pmap);
1637 }
1638 
1639 /*
1640  * Remove the given range of addresses from the specified map.
1641  *
1642  * It is assumed that the start and end are properly rounded to the page size.
1643  */
1644 static void
1645 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1646 {
1647 	pte_t *pte;
1648 	uint8_t hold_flag;
1649 
1650 	int su = (pmap == kernel_pmap);
1651 
1652 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1653 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1654 
1655 	if (su) {
1656 		KASSERT(((va >= virtual_avail) &&
1657 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1658 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1659 	} else {
1660 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1661 		    ("mmu_booke_remove: user pmap, non user va"));
1662 	}
1663 
1664 	if (PMAP_REMOVE_DONE(pmap)) {
1665 		//debugf("mmu_booke_remove: e (empty)\n");
1666 		return;
1667 	}
1668 
1669 	hold_flag = PTBL_HOLD_FLAG(pmap);
1670 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1671 
1672 	vm_page_lock_queues();
1673 	PMAP_LOCK(pmap);
1674 	for (; va < endva; va += PAGE_SIZE) {
1675 		pte = pte_find(mmu, pmap, va);
1676 		if ((pte != NULL) && PTE_ISVALID(pte))
1677 			pte_remove(mmu, pmap, va, hold_flag);
1678 	}
1679 	PMAP_UNLOCK(pmap);
1680 	vm_page_unlock_queues();
1681 
1682 	//debugf("mmu_booke_remove: e\n");
1683 }
1684 
1685 /*
1686  * Remove physical page from all pmaps in which it resides.
1687  */
1688 static void
1689 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1690 {
1691 	pv_entry_t pv, pvn;
1692 	uint8_t hold_flag;
1693 
1694 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1695 
1696 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1697 		pvn = TAILQ_NEXT(pv, pv_link);
1698 
1699 		PMAP_LOCK(pv->pv_pmap);
1700 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1701 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1702 		PMAP_UNLOCK(pv->pv_pmap);
1703 	}
1704 	vm_page_flag_clear(m, PG_WRITEABLE);
1705 }
1706 
1707 /*
1708  * Map a range of physical addresses into kernel virtual address space.
1709  */
1710 static vm_offset_t
1711 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1712     vm_offset_t pa_end, int prot)
1713 {
1714 	vm_offset_t sva = *virt;
1715 	vm_offset_t va = sva;
1716 
1717 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1718 	//		sva, pa_start, pa_end);
1719 
1720 	while (pa_start < pa_end) {
1721 		mmu_booke_kenter(mmu, va, pa_start);
1722 		va += PAGE_SIZE;
1723 		pa_start += PAGE_SIZE;
1724 	}
1725 	*virt = va;
1726 
1727 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1728 	return (sva);
1729 }
1730 
1731 /*
1732  * The pmap must be activated before it's address space can be accessed in any
1733  * way.
1734  */
1735 static void
1736 mmu_booke_activate(mmu_t mmu, struct thread *td)
1737 {
1738 	pmap_t pmap;
1739 
1740 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1741 
1742 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1743 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1744 
1745 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1746 
1747 	mtx_lock_spin(&sched_lock);
1748 
1749 	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1750 	PCPU_SET(curpmap, pmap);
1751 
1752 	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1753 		tid_alloc(pmap);
1754 
1755 	/* Load PID0 register with pmap tid value. */
1756 	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1757 	__asm __volatile("isync");
1758 
1759 	mtx_unlock_spin(&sched_lock);
1760 
1761 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1762 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1763 }
1764 
1765 /*
1766  * Deactivate the specified process's address space.
1767  */
1768 static void
1769 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1770 {
1771 	pmap_t pmap;
1772 
1773 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1774 
1775 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1776 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1777 
1778 	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1779 	PCPU_SET(curpmap, NULL);
1780 }
1781 
1782 /*
1783  * Copy the range specified by src_addr/len
1784  * from the source map to the range dst_addr/len
1785  * in the destination map.
1786  *
1787  * This routine is only advisory and need not do anything.
1788  */
1789 static void
1790 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
1791     vm_size_t len, vm_offset_t src_addr)
1792 {
1793 
1794 }
1795 
1796 /*
1797  * Set the physical protection on the specified range of this map as requested.
1798  */
1799 static void
1800 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1801     vm_prot_t prot)
1802 {
1803 	vm_offset_t va;
1804 	vm_page_t m;
1805 	pte_t *pte;
1806 
1807 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1808 		mmu_booke_remove(mmu, pmap, sva, eva);
1809 		return;
1810 	}
1811 
1812 	if (prot & VM_PROT_WRITE)
1813 		return;
1814 
1815 	vm_page_lock_queues();
1816 	PMAP_LOCK(pmap);
1817 	for (va = sva; va < eva; va += PAGE_SIZE) {
1818 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1819 			if (PTE_ISVALID(pte)) {
1820 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1821 
1822 				mtx_lock_spin(&tlbivax_mutex);
1823 
1824 				/* Handle modified pages. */
1825 				if (PTE_ISMODIFIED(pte))
1826 					vm_page_dirty(m);
1827 
1828 				/* Referenced pages. */
1829 				if (PTE_ISREFERENCED(pte))
1830 					vm_page_flag_set(m, PG_REFERENCED);
1831 
1832 				tlb0_flush_entry(va);
1833 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1834 				    PTE_REFERENCED);
1835 
1836 				mtx_unlock_spin(&tlbivax_mutex);
1837 			}
1838 		}
1839 	}
1840 	PMAP_UNLOCK(pmap);
1841 	vm_page_unlock_queues();
1842 }
1843 
1844 /*
1845  * Clear the write and modified bits in each of the given page's mappings.
1846  */
1847 static void
1848 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1849 {
1850 	pv_entry_t pv;
1851 	pte_t *pte;
1852 
1853 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1854 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1855 	    (m->flags & PG_WRITEABLE) == 0)
1856 		return;
1857 
1858 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1859 		PMAP_LOCK(pv->pv_pmap);
1860 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1861 			if (PTE_ISVALID(pte)) {
1862 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1863 
1864 				mtx_lock_spin(&tlbivax_mutex);
1865 
1866 				/* Handle modified pages. */
1867 				if (PTE_ISMODIFIED(pte))
1868 					vm_page_dirty(m);
1869 
1870 				/* Referenced pages. */
1871 				if (PTE_ISREFERENCED(pte))
1872 					vm_page_flag_set(m, PG_REFERENCED);
1873 
1874 				/* Flush mapping from TLB0. */
1875 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1876 				    PTE_REFERENCED);
1877 
1878 				mtx_unlock_spin(&tlbivax_mutex);
1879 			}
1880 		}
1881 		PMAP_UNLOCK(pv->pv_pmap);
1882 	}
1883 	vm_page_flag_clear(m, PG_WRITEABLE);
1884 }
1885 
1886 static boolean_t
1887 mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1888 {
1889 	pv_entry_t pv;
1890 	pte_t *pte;
1891 	boolean_t executable;
1892 
1893 	executable = FALSE;
1894 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1895 		PMAP_LOCK(pv->pv_pmap);
1896 		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
1897 		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
1898 			executable = TRUE;
1899 		PMAP_UNLOCK(pv->pv_pmap);
1900 		if (executable)
1901 			break;
1902 	}
1903 
1904 	return (executable);
1905 }
1906 
1907 /*
1908  * Atomically extract and hold the physical page with the given
1909  * pmap and virtual address pair if that mapping permits the given
1910  * protection.
1911  */
1912 static vm_page_t
1913 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
1914     vm_prot_t prot)
1915 {
1916 	pte_t *pte;
1917 	vm_page_t m;
1918 	uint32_t pte_wbit;
1919 
1920 	m = NULL;
1921 	vm_page_lock_queues();
1922 	PMAP_LOCK(pmap);
1923 
1924 	pte = pte_find(mmu, pmap, va);
1925 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1926 		if (pmap == kernel_pmap)
1927 			pte_wbit = PTE_SW;
1928 		else
1929 			pte_wbit = PTE_UW;
1930 
1931 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
1932 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1933 			vm_page_hold(m);
1934 		}
1935 	}
1936 
1937 	vm_page_unlock_queues();
1938 	PMAP_UNLOCK(pmap);
1939 	return (m);
1940 }
1941 
1942 /*
1943  * Initialize a vm_page's machine-dependent fields.
1944  */
1945 static void
1946 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
1947 {
1948 
1949 	TAILQ_INIT(&m->md.pv_list);
1950 }
1951 
1952 /*
1953  * mmu_booke_zero_page_area zeros the specified hardware page by
1954  * mapping it into virtual memory and using bzero to clear
1955  * its contents.
1956  *
1957  * off and size must reside within a single page.
1958  */
1959 static void
1960 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1961 {
1962 	vm_offset_t va;
1963 
1964 	/* XXX KASSERT off and size are within a single page? */
1965 
1966 	mtx_lock(&zero_page_mutex);
1967 	va = zero_page_va;
1968 
1969 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
1970 	bzero((caddr_t)va + off, size);
1971 	mmu_booke_kremove(mmu, va);
1972 
1973 	mtx_unlock(&zero_page_mutex);
1974 }
1975 
1976 /*
1977  * mmu_booke_zero_page zeros the specified hardware page.
1978  */
1979 static void
1980 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
1981 {
1982 
1983 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
1984 }
1985 
1986 /*
1987  * mmu_booke_copy_page copies the specified (machine independent) page by
1988  * mapping the page into virtual memory and using memcopy to copy the page,
1989  * one machine dependent page at a time.
1990  */
1991 static void
1992 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
1993 {
1994 	vm_offset_t sva, dva;
1995 
1996 	sva = copy_page_src_va;
1997 	dva = copy_page_dst_va;
1998 
1999 	mtx_lock(&copy_page_mutex);
2000 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2001 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2002 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2003 	mmu_booke_kremove(mmu, dva);
2004 	mmu_booke_kremove(mmu, sva);
2005 	mtx_unlock(&copy_page_mutex);
2006 }
2007 
2008 #if 0
2009 /*
2010  * Remove all pages from specified address space, this aids process exit
2011  * speeds. This is much faster than mmu_booke_remove in the case of running
2012  * down an entire address space. Only works for the current pmap.
2013  */
2014 void
2015 mmu_booke_remove_pages(pmap_t pmap)
2016 {
2017 }
2018 #endif
2019 
2020 /*
2021  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2022  * into virtual memory and using bzero to clear its contents. This is intended
2023  * to be called from the vm_pagezero process only and outside of Giant. No
2024  * lock is required.
2025  */
2026 static void
2027 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2028 {
2029 	vm_offset_t va;
2030 
2031 	va = zero_page_idle_va;
2032 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2033 	bzero((caddr_t)va, PAGE_SIZE);
2034 	mmu_booke_kremove(mmu, va);
2035 }
2036 
2037 /*
2038  * Return whether or not the specified physical page was modified
2039  * in any of physical maps.
2040  */
2041 static boolean_t
2042 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2043 {
2044 	pte_t *pte;
2045 	pv_entry_t pv;
2046 
2047 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2048 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2049 		return (FALSE);
2050 
2051 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2052 		PMAP_LOCK(pv->pv_pmap);
2053 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2054 			if (!PTE_ISVALID(pte))
2055 				goto make_sure_to_unlock;
2056 
2057 			if (PTE_ISMODIFIED(pte)) {
2058 				PMAP_UNLOCK(pv->pv_pmap);
2059 				return (TRUE);
2060 			}
2061 		}
2062 make_sure_to_unlock:
2063 		PMAP_UNLOCK(pv->pv_pmap);
2064 	}
2065 	return (FALSE);
2066 }
2067 
2068 /*
2069  * Return whether or not the specified virtual address is eligible
2070  * for prefault.
2071  */
2072 static boolean_t
2073 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2074 {
2075 
2076 	return (FALSE);
2077 }
2078 
2079 /*
2080  * Clear the modify bits on the specified physical page.
2081  */
2082 static void
2083 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2084 {
2085 	pte_t *pte;
2086 	pv_entry_t pv;
2087 
2088 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2089 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2090 		return;
2091 
2092 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2093 		PMAP_LOCK(pv->pv_pmap);
2094 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2095 			if (!PTE_ISVALID(pte))
2096 				goto make_sure_to_unlock;
2097 
2098 			mtx_lock_spin(&tlbivax_mutex);
2099 
2100 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2101 				tlb0_flush_entry(pv->pv_va);
2102 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2103 				    PTE_REFERENCED);
2104 			}
2105 
2106 			mtx_unlock_spin(&tlbivax_mutex);
2107 		}
2108 make_sure_to_unlock:
2109 		PMAP_UNLOCK(pv->pv_pmap);
2110 	}
2111 }
2112 
2113 /*
2114  * Return a count of reference bits for a page, clearing those bits.
2115  * It is not necessary for every reference bit to be cleared, but it
2116  * is necessary that 0 only be returned when there are truly no
2117  * reference bits set.
2118  *
2119  * XXX: The exact number of bits to check and clear is a matter that
2120  * should be tested and standardized at some point in the future for
2121  * optimal aging of shared pages.
2122  */
2123 static int
2124 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2125 {
2126 	pte_t *pte;
2127 	pv_entry_t pv;
2128 	int count;
2129 
2130 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2131 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2132 		return (0);
2133 
2134 	count = 0;
2135 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2136 		PMAP_LOCK(pv->pv_pmap);
2137 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2138 			if (!PTE_ISVALID(pte))
2139 				goto make_sure_to_unlock;
2140 
2141 			if (PTE_ISREFERENCED(pte)) {
2142 				mtx_lock_spin(&tlbivax_mutex);
2143 
2144 				tlb0_flush_entry(pv->pv_va);
2145 				pte->flags &= ~PTE_REFERENCED;
2146 
2147 				mtx_unlock_spin(&tlbivax_mutex);
2148 
2149 				if (++count > 4) {
2150 					PMAP_UNLOCK(pv->pv_pmap);
2151 					break;
2152 				}
2153 			}
2154 		}
2155 make_sure_to_unlock:
2156 		PMAP_UNLOCK(pv->pv_pmap);
2157 	}
2158 	return (count);
2159 }
2160 
2161 /*
2162  * Clear the reference bit on the specified physical page.
2163  */
2164 static void
2165 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2166 {
2167 	pte_t *pte;
2168 	pv_entry_t pv;
2169 
2170 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2171 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2172 		return;
2173 
2174 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2175 		PMAP_LOCK(pv->pv_pmap);
2176 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2177 			if (!PTE_ISVALID(pte))
2178 				goto make_sure_to_unlock;
2179 
2180 			if (PTE_ISREFERENCED(pte)) {
2181 				mtx_lock_spin(&tlbivax_mutex);
2182 
2183 				tlb0_flush_entry(pv->pv_va);
2184 				pte->flags &= ~PTE_REFERENCED;
2185 
2186 				mtx_unlock_spin(&tlbivax_mutex);
2187 			}
2188 		}
2189 make_sure_to_unlock:
2190 		PMAP_UNLOCK(pv->pv_pmap);
2191 	}
2192 }
2193 
2194 /*
2195  * Change wiring attribute for a map/virtual-address pair.
2196  */
2197 static void
2198 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2199 {
2200 	pte_t *pte;;
2201 
2202 	PMAP_LOCK(pmap);
2203 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2204 		if (wired) {
2205 			if (!PTE_ISWIRED(pte)) {
2206 				pte->flags |= PTE_WIRED;
2207 				pmap->pm_stats.wired_count++;
2208 			}
2209 		} else {
2210 			if (PTE_ISWIRED(pte)) {
2211 				pte->flags &= ~PTE_WIRED;
2212 				pmap->pm_stats.wired_count--;
2213 			}
2214 		}
2215 	}
2216 	PMAP_UNLOCK(pmap);
2217 }
2218 
2219 /*
2220  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2221  * page.  This count may be changed upwards or downwards in the future; it is
2222  * only necessary that true be returned for a small subset of pmaps for proper
2223  * page aging.
2224  */
2225 static boolean_t
2226 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2227 {
2228 	pv_entry_t pv;
2229 	int loops;
2230 
2231 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2232 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2233 		return (FALSE);
2234 
2235 	loops = 0;
2236 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2237 		if (pv->pv_pmap == pmap)
2238 			return (TRUE);
2239 
2240 		if (++loops >= 16)
2241 			break;
2242 	}
2243 	return (FALSE);
2244 }
2245 
2246 /*
2247  * Return the number of managed mappings to the given physical page that are
2248  * wired.
2249  */
2250 static int
2251 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2252 {
2253 	pv_entry_t pv;
2254 	pte_t *pte;
2255 	int count = 0;
2256 
2257 	if ((m->flags & PG_FICTITIOUS) != 0)
2258 		return (count);
2259 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2260 
2261 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2262 		PMAP_LOCK(pv->pv_pmap);
2263 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2264 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2265 				count++;
2266 		PMAP_UNLOCK(pv->pv_pmap);
2267 	}
2268 
2269 	return (count);
2270 }
2271 
2272 static int
2273 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2274 {
2275 	int i;
2276 	vm_offset_t va;
2277 
2278 	/*
2279 	 * This currently does not work for entries that
2280 	 * overlap TLB1 entries.
2281 	 */
2282 	for (i = 0; i < tlb1_idx; i ++) {
2283 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2284 			return (0);
2285 	}
2286 
2287 	return (EFAULT);
2288 }
2289 
2290 /*
2291  * Map a set of physical memory pages into the kernel virtual address space.
2292  * Return a pointer to where it is mapped. This routine is intended to be used
2293  * for mapping device memory, NOT real memory.
2294  */
2295 static void *
2296 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2297 {
2298 	void *res;
2299 	uintptr_t va;
2300 	vm_size_t sz;
2301 
2302 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2303 	res = (void *)va;
2304 
2305 	do {
2306 		sz = 1 << (ilog2(size) & ~1);
2307 		if (bootverbose)
2308 			printf("Wiring VA=%x to PA=%x (size=%x), "
2309 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2310 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2311 		size -= sz;
2312 		pa += sz;
2313 		va += sz;
2314 	} while (size > 0);
2315 
2316 	return (res);
2317 }
2318 
2319 /*
2320  * 'Unmap' a range mapped by mmu_booke_mapdev().
2321  */
2322 static void
2323 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2324 {
2325 	vm_offset_t base, offset;
2326 
2327 	/*
2328 	 * Unmap only if this is inside kernel virtual space.
2329 	 */
2330 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2331 		base = trunc_page(va);
2332 		offset = va & PAGE_MASK;
2333 		size = roundup(offset + size, PAGE_SIZE);
2334 		kmem_free(kernel_map, base, size);
2335 	}
2336 }
2337 
2338 /*
2339  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2340  * specified pmap. This eliminates the blast of soft faults on process startup
2341  * and immediately after an mmap.
2342  */
2343 static void
2344 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2345     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2346 {
2347 
2348 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2349 	KASSERT(object->type == OBJT_DEVICE,
2350 	    ("mmu_booke_object_init_pt: non-device object"));
2351 }
2352 
2353 /*
2354  * Perform the pmap work for mincore.
2355  */
2356 static int
2357 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2358 {
2359 
2360 	TODO;
2361 	return (0);
2362 }
2363 
2364 /**************************************************************************/
2365 /* TID handling */
2366 /**************************************************************************/
2367 
2368 /*
2369  * Allocate a TID. If necessary, steal one from someone else.
2370  * The new TID is flushed from the TLB before returning.
2371  */
2372 static tlbtid_t
2373 tid_alloc(pmap_t pmap)
2374 {
2375 	tlbtid_t tid;
2376 	int thiscpu;
2377 
2378 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2379 
2380 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2381 
2382 	thiscpu = PCPU_GET(cpuid);
2383 
2384 	tid = PCPU_GET(tid_next);
2385 	if (tid > TID_MAX)
2386 		tid = TID_MIN;
2387 	PCPU_SET(tid_next, tid + 1);
2388 
2389 	/* If we are stealing TID then clear the relevant pmap's field */
2390 	if (tidbusy[thiscpu][tid] != NULL) {
2391 
2392 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2393 
2394 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2395 
2396 		/* Flush all entries from TLB0 matching this TID. */
2397 		tid_flush(tid);
2398 	}
2399 
2400 	tidbusy[thiscpu][tid] = pmap;
2401 	pmap->pm_tid[thiscpu] = tid;
2402 	__asm __volatile("msync; isync");
2403 
2404 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2405 	    PCPU_GET(tid_next));
2406 
2407 	return (tid);
2408 }
2409 
2410 /**************************************************************************/
2411 /* TLB0 handling */
2412 /**************************************************************************/
2413 
2414 static void
2415 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2416     uint32_t mas7)
2417 {
2418 	int as;
2419 	char desc[3];
2420 	tlbtid_t tid;
2421 	vm_size_t size;
2422 	unsigned int tsize;
2423 
2424 	desc[2] = '\0';
2425 	if (mas1 & MAS1_VALID)
2426 		desc[0] = 'V';
2427 	else
2428 		desc[0] = ' ';
2429 
2430 	if (mas1 & MAS1_IPROT)
2431 		desc[1] = 'P';
2432 	else
2433 		desc[1] = ' ';
2434 
2435 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2436 	tid = MAS1_GETTID(mas1);
2437 
2438 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2439 	size = 0;
2440 	if (tsize)
2441 		size = tsize2size(tsize);
2442 
2443 	debugf("%3d: (%s) [AS=%d] "
2444 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2445 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2446 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2447 }
2448 
2449 /* Convert TLB0 va and way number to tlb0[] table index. */
2450 static inline unsigned int
2451 tlb0_tableidx(vm_offset_t va, unsigned int way)
2452 {
2453 	unsigned int idx;
2454 
2455 	idx = (way * TLB0_ENTRIES_PER_WAY);
2456 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2457 	return (idx);
2458 }
2459 
2460 /*
2461  * Invalidate TLB0 entry.
2462  */
2463 static inline void
2464 tlb0_flush_entry(vm_offset_t va)
2465 {
2466 
2467 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2468 
2469 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2470 
2471 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2472 	__asm __volatile("isync; msync");
2473 	__asm __volatile("tlbsync; msync");
2474 
2475 	CTR1(KTR_PMAP, "%s: e", __func__);
2476 }
2477 
2478 /* Print out contents of the MAS registers for each TLB0 entry */
2479 void
2480 tlb0_print_tlbentries(void)
2481 {
2482 	uint32_t mas0, mas1, mas2, mas3, mas7;
2483 	int entryidx, way, idx;
2484 
2485 	debugf("TLB0 entries:\n");
2486 	for (way = 0; way < TLB0_WAYS; way ++)
2487 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2488 
2489 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2490 			mtspr(SPR_MAS0, mas0);
2491 			__asm __volatile("isync");
2492 
2493 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2494 			mtspr(SPR_MAS2, mas2);
2495 
2496 			__asm __volatile("isync; tlbre");
2497 
2498 			mas1 = mfspr(SPR_MAS1);
2499 			mas2 = mfspr(SPR_MAS2);
2500 			mas3 = mfspr(SPR_MAS3);
2501 			mas7 = mfspr(SPR_MAS7);
2502 
2503 			idx = tlb0_tableidx(mas2, way);
2504 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2505 		}
2506 }
2507 
2508 /**************************************************************************/
2509 /* TLB1 handling */
2510 /**************************************************************************/
2511 
2512 /*
2513  * TLB1 mapping notes:
2514  *
2515  * TLB1[0]	CCSRBAR
2516  * TLB1[1]	Kernel text and data.
2517  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2518  *		windows, other devices mappings.
2519  */
2520 
2521 /*
2522  * Write given entry to TLB1 hardware.
2523  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2524  */
2525 static void
2526 tlb1_write_entry(unsigned int idx)
2527 {
2528 	uint32_t mas0, mas7;
2529 
2530 	//debugf("tlb1_write_entry: s\n");
2531 
2532 	/* Clear high order RPN bits */
2533 	mas7 = 0;
2534 
2535 	/* Select entry */
2536 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2537 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2538 
2539 	mtspr(SPR_MAS0, mas0);
2540 	__asm __volatile("isync");
2541 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2542 	__asm __volatile("isync");
2543 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2544 	__asm __volatile("isync");
2545 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2546 	__asm __volatile("isync");
2547 	mtspr(SPR_MAS7, mas7);
2548 	__asm __volatile("isync; tlbwe; isync; msync");
2549 
2550 	//debugf("tlb1_write_entry: e\n");;
2551 }
2552 
2553 /*
2554  * Return the largest uint value log such that 2^log <= num.
2555  */
2556 static unsigned int
2557 ilog2(unsigned int num)
2558 {
2559 	int lz;
2560 
2561 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2562 	return (31 - lz);
2563 }
2564 
2565 /*
2566  * Convert TLB TSIZE value to mapped region size.
2567  */
2568 static vm_size_t
2569 tsize2size(unsigned int tsize)
2570 {
2571 
2572 	/*
2573 	 * size = 4^tsize KB
2574 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2575 	 */
2576 
2577 	return ((1 << (2 * tsize)) * 1024);
2578 }
2579 
2580 /*
2581  * Convert region size (must be power of 4) to TLB TSIZE value.
2582  */
2583 static unsigned int
2584 size2tsize(vm_size_t size)
2585 {
2586 
2587 	return (ilog2(size) / 2 - 5);
2588 }
2589 
2590 /*
2591  * Register permanent kernel mapping in TLB1.
2592  *
2593  * Entries are created starting from index 0 (current free entry is
2594  * kept in tlb1_idx) and are not supposed to be invalidated.
2595  */
2596 static int
2597 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2598     uint32_t flags)
2599 {
2600 	uint32_t ts, tid;
2601 	int tsize;
2602 
2603 	if (tlb1_idx >= TLB1_ENTRIES) {
2604 		printf("tlb1_set_entry: TLB1 full!\n");
2605 		return (-1);
2606 	}
2607 
2608 	/* Convert size to TSIZE */
2609 	tsize = size2tsize(size);
2610 
2611 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2612 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2613 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2614 
2615 	/* XXX LOCK tlb1[] */
2616 
2617 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2618 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2619 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2620 
2621 	/* Set supervisor RWX permission bits */
2622 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2623 
2624 	tlb1_write_entry(tlb1_idx++);
2625 
2626 	/* XXX UNLOCK tlb1[] */
2627 
2628 	/*
2629 	 * XXX in general TLB1 updates should be propagated between CPUs,
2630 	 * since current design assumes to have the same TLB1 set-up on all
2631 	 * cores.
2632 	 */
2633 	return (0);
2634 }
2635 
2636 static int
2637 tlb1_entry_size_cmp(const void *a, const void *b)
2638 {
2639 	const vm_size_t *sza;
2640 	const vm_size_t *szb;
2641 
2642 	sza = a;
2643 	szb = b;
2644 	if (*sza > *szb)
2645 		return (-1);
2646 	else if (*sza < *szb)
2647 		return (1);
2648 	else
2649 		return (0);
2650 }
2651 
2652 /*
2653  * Map in contiguous RAM region into the TLB1 using maximum of
2654  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2655  *
2656  * If necessary round up last entry size and return total size
2657  * used by all allocated entries.
2658  */
2659 vm_size_t
2660 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2661 {
2662 	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2663 	vm_size_t mapped_size, sz, esz;
2664 	unsigned int log;
2665 	int i;
2666 
2667 	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2668 	    __func__, size, va, pa);
2669 
2670 	mapped_size = 0;
2671 	sz = size;
2672 	memset(entry_size, 0, sizeof(entry_size));
2673 
2674 	/* Calculate entry sizes. */
2675 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2676 
2677 		/* Largest region that is power of 4 and fits within size */
2678 		log = ilog2(sz) / 2;
2679 		esz = 1 << (2 * log);
2680 
2681 		/* If this is last entry cover remaining size. */
2682 		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2683 			while (esz < sz)
2684 				esz = esz << 2;
2685 		}
2686 
2687 		entry_size[i] = esz;
2688 		mapped_size += esz;
2689 		if (esz < sz)
2690 			sz -= esz;
2691 		else
2692 			sz = 0;
2693 	}
2694 
2695 	/* Sort entry sizes, required to get proper entry address alignment. */
2696 	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2697 	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2698 
2699 	/* Load TLB1 entries. */
2700 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2701 		esz = entry_size[i];
2702 		if (!esz)
2703 			break;
2704 
2705 		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2706 		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2707 
2708 		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2709 
2710 		va += esz;
2711 		pa += esz;
2712 	}
2713 
2714 	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2715 	    __func__, mapped_size, mapped_size - size);
2716 
2717 	return (mapped_size);
2718 }
2719 
2720 /*
2721  * TLB1 initialization routine, to be called after the very first
2722  * assembler level setup done in locore.S.
2723  */
2724 void
2725 tlb1_init(vm_offset_t ccsrbar)
2726 {
2727 	uint32_t mas0;
2728 
2729 	/* TLB1[1] is used to map the kernel. Save that entry. */
2730 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2731 	mtspr(SPR_MAS0, mas0);
2732 	__asm __volatile("isync; tlbre");
2733 
2734 	tlb1[1].mas1 = mfspr(SPR_MAS1);
2735 	tlb1[1].mas2 = mfspr(SPR_MAS2);
2736 	tlb1[1].mas3 = mfspr(SPR_MAS3);
2737 
2738 	/* Map in CCSRBAR in TLB1[0] */
2739 	tlb1_idx = 0;
2740 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2741 	/*
2742 	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2743 	 * for initial mapping of kernel text+data, which was set early in
2744 	 * locore, we need to skip this [busy] entry.
2745 	 */
2746 	tlb1_idx = 2;
2747 
2748 	/* Setup TLB miss defaults */
2749 	set_mas4_defaults();
2750 }
2751 
2752 /*
2753  * Setup MAS4 defaults.
2754  * These values are loaded to MAS0-2 on a TLB miss.
2755  */
2756 static void
2757 set_mas4_defaults(void)
2758 {
2759 	uint32_t mas4;
2760 
2761 	/* Defaults: TLB0, PID0, TSIZED=4K */
2762 	mas4 = MAS4_TLBSELD0;
2763 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2764 
2765 	mtspr(SPR_MAS4, mas4);
2766 	__asm __volatile("isync");
2767 }
2768 
2769 /*
2770  * Print out contents of the MAS registers for each TLB1 entry
2771  */
2772 void
2773 tlb1_print_tlbentries(void)
2774 {
2775 	uint32_t mas0, mas1, mas2, mas3, mas7;
2776 	int i;
2777 
2778 	debugf("TLB1 entries:\n");
2779 	for (i = 0; i < TLB1_ENTRIES; i++) {
2780 
2781 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
2782 		mtspr(SPR_MAS0, mas0);
2783 
2784 		__asm __volatile("isync; tlbre");
2785 
2786 		mas1 = mfspr(SPR_MAS1);
2787 		mas2 = mfspr(SPR_MAS2);
2788 		mas3 = mfspr(SPR_MAS3);
2789 		mas7 = mfspr(SPR_MAS7);
2790 
2791 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
2792 	}
2793 }
2794 
2795 /*
2796  * Print out contents of the in-ram tlb1 table.
2797  */
2798 void
2799 tlb1_print_entries(void)
2800 {
2801 	int i;
2802 
2803 	debugf("tlb1[] table entries:\n");
2804 	for (i = 0; i < TLB1_ENTRIES; i++)
2805 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
2806 }
2807 
2808 /*
2809  * Return 0 if the physical IO range is encompassed by one of the
2810  * the TLB1 entries, otherwise return related error code.
2811  */
2812 static int
2813 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2814 {
2815 	uint32_t prot;
2816 	vm_paddr_t pa_start;
2817 	vm_paddr_t pa_end;
2818 	unsigned int entry_tsize;
2819 	vm_size_t entry_size;
2820 
2821 	*va = (vm_offset_t)NULL;
2822 
2823 	/* Skip invalid entries */
2824 	if (!(tlb1[i].mas1 & MAS1_VALID))
2825 		return (EINVAL);
2826 
2827 	/*
2828 	 * The entry must be cache-inhibited, guarded, and r/w
2829 	 * so it can function as an i/o page
2830 	 */
2831 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
2832 	if (prot != (MAS2_I | MAS2_G))
2833 		return (EPERM);
2834 
2835 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
2836 	if (prot != (MAS3_SR | MAS3_SW))
2837 		return (EPERM);
2838 
2839 	/* The address should be within the entry range. */
2840 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2841 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
2842 
2843 	entry_size = tsize2size(entry_tsize);
2844 	pa_start = tlb1[i].mas3 & MAS3_RPN;
2845 	pa_end = pa_start + entry_size - 1;
2846 
2847 	if ((pa < pa_start) || ((pa + size) > pa_end))
2848 		return (ERANGE);
2849 
2850 	/* Return virtual address of this mapping. */
2851 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
2852 	return (0);
2853 }
2854