xref: /freebsd/sys/powerpc/booke/pmap.c (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 #include "opt_ddb.h"
78 #include "opt_kstack_pages.h"
79 
80 #include <sys/param.h>
81 #include <sys/conf.h>
82 #include <sys/malloc.h>
83 #include <sys/ktr.h>
84 #include <sys/proc.h>
85 #include <sys/user.h>
86 #include <sys/queue.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kerneldump.h>
90 #include <sys/linker.h>
91 #include <sys/msgbuf.h>
92 #include <sys/lock.h>
93 #include <sys/mutex.h>
94 #include <sys/rwlock.h>
95 #include <sys/sched.h>
96 #include <sys/smp.h>
97 #include <sys/vmmeter.h>
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_phys.h>
109 #include <vm/vm_pagequeue.h>
110 #include <vm/vm_dumpset.h>
111 #include <vm/uma.h>
112 
113 #include <machine/_inttypes.h>
114 #include <machine/cpu.h>
115 #include <machine/pcb.h>
116 #include <machine/platform.h>
117 
118 #include <machine/tlb.h>
119 #include <machine/spr.h>
120 #include <machine/md_var.h>
121 #include <machine/mmuvar.h>
122 #include <machine/pmap.h>
123 #include <machine/pte.h>
124 
125 #include <ddb/ddb.h>
126 
127 #define	SPARSE_MAPDEV
128 
129 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
130 #define	POW2_MAPPINGS
131 
132 #ifdef  DEBUG
133 #define debugf(fmt, args...) printf(fmt, ##args)
134 #define	__debug_used
135 #else
136 #define debugf(fmt, args...)
137 #define	__debug_used	__unused
138 #endif
139 
140 #ifdef __powerpc64__
141 #define	PRI0ptrX	"016lx"
142 #else
143 #define	PRI0ptrX	"08x"
144 #endif
145 
146 #define TODO			panic("%s: not implemented", __func__);
147 
148 extern unsigned char _etext[];
149 extern unsigned char _end[];
150 
151 extern uint32_t *bootinfo;
152 
153 vm_paddr_t kernload;
154 vm_offset_t kernstart;
155 vm_size_t kernsize;
156 
157 /* Message buffer and tables. */
158 static vm_offset_t data_start;
159 static vm_size_t data_end;
160 
161 /* Phys/avail memory regions. */
162 static struct mem_region *availmem_regions;
163 static int availmem_regions_sz;
164 static struct mem_region *physmem_regions;
165 static int physmem_regions_sz;
166 
167 #ifndef __powerpc64__
168 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
169 static vm_offset_t zero_page_va;
170 static struct mtx zero_page_mutex;
171 
172 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
173 static vm_offset_t copy_page_src_va;
174 static vm_offset_t copy_page_dst_va;
175 static struct mtx copy_page_mutex;
176 #endif
177 
178 static struct mtx tlbivax_mutex;
179 
180 /**************************************************************************/
181 /* PMAP */
182 /**************************************************************************/
183 
184 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
185     vm_prot_t, u_int flags, int8_t psind);
186 
187 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
188 static uma_zone_t ptbl_root_zone;
189 
190 /*
191  * If user pmap is processed with mmu_booke_remove and the resident count
192  * drops to 0, there are no more pages to remove, so we need not continue.
193  */
194 #define PMAP_REMOVE_DONE(pmap) \
195 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
196 
197 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
198 extern int elf32_nxstack;
199 #endif
200 
201 /**************************************************************************/
202 /* TLB and TID handling */
203 /**************************************************************************/
204 
205 /* Translation ID busy table */
206 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
207 
208 /*
209  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
210  * core revisions and should be read from h/w registers during early config.
211  */
212 uint32_t tlb0_entries;
213 uint32_t tlb0_ways;
214 uint32_t tlb0_entries_per_way;
215 uint32_t tlb1_entries;
216 
217 #define TLB0_ENTRIES		(tlb0_entries)
218 #define TLB0_WAYS		(tlb0_ways)
219 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
220 
221 #define TLB1_ENTRIES (tlb1_entries)
222 
223 static tlbtid_t tid_alloc(struct pmap *);
224 
225 #ifdef DDB
226 #ifdef __powerpc64__
227 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
228 #else
229 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
230 #endif
231 #endif
232 
233 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
234 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
235 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
236 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
237 
238 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
239 
240 static vm_size_t tsize2size(unsigned int);
241 static unsigned int size2tsize(vm_size_t);
242 static unsigned long ilog2(unsigned long);
243 
244 static void set_mas4_defaults(void);
245 
246 static inline void tlb0_flush_entry(vm_offset_t);
247 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
248 
249 /**************************************************************************/
250 /* Page table management */
251 /**************************************************************************/
252 
253 static struct rwlock_padalign pvh_global_lock;
254 
255 /* Data for the pv entry allocation mechanism */
256 static uma_zone_t pvzone;
257 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
258 
259 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
260 
261 #ifndef PMAP_SHPGPERPROC
262 #define PMAP_SHPGPERPROC	200
263 #endif
264 
265 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
266 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, bool);
267 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
268 static pte_t *pte_find(pmap_t, vm_offset_t);
269 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
270 
271 static pv_entry_t pv_alloc(void);
272 static void pv_free(pv_entry_t);
273 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
274 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
275 
276 static void booke_pmap_init_qpages(void);
277 
278 static inline void tlb_miss_lock(void);
279 static inline void tlb_miss_unlock(void);
280 
281 #ifdef SMP
282 extern tlb_entry_t __boot_tlb1[];
283 void pmap_bootstrap_ap(volatile uint32_t *);
284 #endif
285 
286 /*
287  * Kernel MMU interface
288  */
289 static void		mmu_booke_clear_modify(vm_page_t);
290 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
291     vm_size_t, vm_offset_t);
292 static void		mmu_booke_copy_page(vm_page_t, vm_page_t);
293 static void		mmu_booke_copy_pages(vm_page_t *,
294     vm_offset_t, vm_page_t *, vm_offset_t, int);
295 static int		mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
296     vm_prot_t, u_int flags, int8_t psind);
297 static void		mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
298     vm_page_t, vm_prot_t);
299 static void		mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
300     vm_prot_t);
301 static vm_paddr_t	mmu_booke_extract(pmap_t, vm_offset_t);
302 static vm_page_t	mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
303     vm_prot_t);
304 static void		mmu_booke_init(void);
305 static bool		mmu_booke_is_modified(vm_page_t);
306 static bool		mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
307 static bool		mmu_booke_is_referenced(vm_page_t);
308 static int		mmu_booke_ts_referenced(vm_page_t);
309 static vm_offset_t	mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
310     int);
311 static int		mmu_booke_mincore(pmap_t, vm_offset_t,
312     vm_paddr_t *);
313 static void		mmu_booke_object_init_pt(pmap_t, vm_offset_t,
314     vm_object_t, vm_pindex_t, vm_size_t);
315 static bool		mmu_booke_page_exists_quick(pmap_t, vm_page_t);
316 static void		mmu_booke_page_init(vm_page_t);
317 static int		mmu_booke_page_wired_mappings(vm_page_t);
318 static int		mmu_booke_pinit(pmap_t);
319 static void		mmu_booke_pinit0(pmap_t);
320 static void		mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
321     vm_prot_t);
322 static void		mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
323 static void		mmu_booke_qremove(vm_offset_t, int);
324 static void		mmu_booke_release(pmap_t);
325 static void		mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
326 static void		mmu_booke_remove_all(vm_page_t);
327 static void		mmu_booke_remove_write(vm_page_t);
328 static void		mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
329 static void		mmu_booke_zero_page(vm_page_t);
330 static void		mmu_booke_zero_page_area(vm_page_t, int, int);
331 static void		mmu_booke_activate(struct thread *);
332 static void		mmu_booke_deactivate(struct thread *);
333 static void		mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
334 static void		*mmu_booke_mapdev(vm_paddr_t, vm_size_t);
335 static void		*mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
336 static void		mmu_booke_unmapdev(void *, vm_size_t);
337 static vm_paddr_t	mmu_booke_kextract(vm_offset_t);
338 static void		mmu_booke_kenter(vm_offset_t, vm_paddr_t);
339 static void		mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
340 static void		mmu_booke_kremove(vm_offset_t);
341 static int		mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
342 static void		mmu_booke_sync_icache(pmap_t, vm_offset_t,
343     vm_size_t);
344 static void		mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
345     void **);
346 static void		mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
347     void *);
348 static void		mmu_booke_scan_init(void);
349 static vm_offset_t	mmu_booke_quick_enter_page(vm_page_t m);
350 static void		mmu_booke_quick_remove_page(vm_offset_t addr);
351 static int		mmu_booke_change_attr(vm_offset_t addr,
352     vm_size_t sz, vm_memattr_t mode);
353 static int		mmu_booke_decode_kernel_ptr(vm_offset_t addr,
354     int *is_user, vm_offset_t *decoded_addr);
355 static void		mmu_booke_page_array_startup(long);
356 static bool mmu_booke_page_is_mapped(vm_page_t m);
357 static bool mmu_booke_ps_enabled(pmap_t pmap);
358 
359 static struct pmap_funcs mmu_booke_methods = {
360 	/* pmap dispatcher interface */
361 	.clear_modify = mmu_booke_clear_modify,
362 	.copy = mmu_booke_copy,
363 	.copy_page = mmu_booke_copy_page,
364 	.copy_pages = mmu_booke_copy_pages,
365 	.enter = mmu_booke_enter,
366 	.enter_object = mmu_booke_enter_object,
367 	.enter_quick = mmu_booke_enter_quick,
368 	.extract = mmu_booke_extract,
369 	.extract_and_hold = mmu_booke_extract_and_hold,
370 	.init = mmu_booke_init,
371 	.is_modified = mmu_booke_is_modified,
372 	.is_prefaultable = mmu_booke_is_prefaultable,
373 	.is_referenced = mmu_booke_is_referenced,
374 	.ts_referenced = mmu_booke_ts_referenced,
375 	.map = mmu_booke_map,
376 	.mincore = mmu_booke_mincore,
377 	.object_init_pt = mmu_booke_object_init_pt,
378 	.page_exists_quick = mmu_booke_page_exists_quick,
379 	.page_init = mmu_booke_page_init,
380 	.page_wired_mappings =  mmu_booke_page_wired_mappings,
381 	.pinit = mmu_booke_pinit,
382 	.pinit0 = mmu_booke_pinit0,
383 	.protect = mmu_booke_protect,
384 	.qenter = mmu_booke_qenter,
385 	.qremove = mmu_booke_qremove,
386 	.release = mmu_booke_release,
387 	.remove = mmu_booke_remove,
388 	.remove_all = mmu_booke_remove_all,
389 	.remove_write = mmu_booke_remove_write,
390 	.sync_icache = mmu_booke_sync_icache,
391 	.unwire = mmu_booke_unwire,
392 	.zero_page = mmu_booke_zero_page,
393 	.zero_page_area = mmu_booke_zero_page_area,
394 	.activate = mmu_booke_activate,
395 	.deactivate = mmu_booke_deactivate,
396 	.quick_enter_page =  mmu_booke_quick_enter_page,
397 	.quick_remove_page =  mmu_booke_quick_remove_page,
398 	.page_array_startup = mmu_booke_page_array_startup,
399 	.page_is_mapped = mmu_booke_page_is_mapped,
400 	.ps_enabled = mmu_booke_ps_enabled,
401 
402 	/* Internal interfaces */
403 	.bootstrap = mmu_booke_bootstrap,
404 	.dev_direct_mapped = mmu_booke_dev_direct_mapped,
405 	.mapdev = mmu_booke_mapdev,
406 	.mapdev_attr = mmu_booke_mapdev_attr,
407 	.kenter = mmu_booke_kenter,
408 	.kenter_attr = mmu_booke_kenter_attr,
409 	.kextract = mmu_booke_kextract,
410 	.kremove = mmu_booke_kremove,
411 	.unmapdev = mmu_booke_unmapdev,
412 	.change_attr = mmu_booke_change_attr,
413 	.decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
414 
415 	/* dumpsys() support */
416 	.dumpsys_map_chunk = mmu_booke_dumpsys_map,
417 	.dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
418 	.dumpsys_pa_init = mmu_booke_scan_init,
419 };
420 
421 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
422 
423 #ifdef __powerpc64__
424 #include "pmap_64.c"
425 #else
426 #include "pmap_32.c"
427 #endif
428 
429 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
430 
431 static __inline uint32_t
432 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
433 {
434 	uint32_t attrib;
435 	int i;
436 
437 	if (ma != VM_MEMATTR_DEFAULT) {
438 		switch (ma) {
439 		case VM_MEMATTR_UNCACHEABLE:
440 			return (MAS2_I | MAS2_G);
441 		case VM_MEMATTR_WRITE_COMBINING:
442 		case VM_MEMATTR_WRITE_BACK:
443 		case VM_MEMATTR_PREFETCHABLE:
444 			return (MAS2_I);
445 		case VM_MEMATTR_WRITE_THROUGH:
446 			return (MAS2_W | MAS2_M);
447 		case VM_MEMATTR_CACHEABLE:
448 			return (MAS2_M);
449 		}
450 	}
451 
452 	/*
453 	 * Assume the page is cache inhibited and access is guarded unless
454 	 * it's in our available memory array.
455 	 */
456 	attrib = _TLB_ENTRY_IO;
457 	for (i = 0; i < physmem_regions_sz; i++) {
458 		if ((pa >= physmem_regions[i].mr_start) &&
459 		    (pa < (physmem_regions[i].mr_start +
460 		     physmem_regions[i].mr_size))) {
461 			attrib = _TLB_ENTRY_MEM;
462 			break;
463 		}
464 	}
465 
466 	return (attrib);
467 }
468 
469 static inline void
470 tlb_miss_lock(void)
471 {
472 #ifdef SMP
473 	struct pcpu *pc;
474 
475 	if (!smp_started)
476 		return;
477 
478 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
479 		if (pc != pcpup) {
480 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
481 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
482 
483 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
484 			    ("tlb_miss_lock: tried to lock self"));
485 
486 			tlb_lock(pc->pc_booke.tlb_lock);
487 
488 			CTR1(KTR_PMAP, "%s: locked", __func__);
489 		}
490 	}
491 #endif
492 }
493 
494 static inline void
495 tlb_miss_unlock(void)
496 {
497 #ifdef SMP
498 	struct pcpu *pc;
499 
500 	if (!smp_started)
501 		return;
502 
503 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
504 		if (pc != pcpup) {
505 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
506 			    __func__, pc->pc_cpuid);
507 
508 			tlb_unlock(pc->pc_booke.tlb_lock);
509 
510 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
511 		}
512 	}
513 #endif
514 }
515 
516 /* Return number of entries in TLB0. */
517 static __inline void
518 tlb0_get_tlbconf(void)
519 {
520 	uint32_t tlb0_cfg;
521 
522 	tlb0_cfg = mfspr(SPR_TLB0CFG);
523 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
524 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
525 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
526 }
527 
528 /* Return number of entries in TLB1. */
529 static __inline void
530 tlb1_get_tlbconf(void)
531 {
532 	uint32_t tlb1_cfg;
533 
534 	tlb1_cfg = mfspr(SPR_TLB1CFG);
535 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
536 }
537 
538 /**************************************************************************/
539 /* Page table related */
540 /**************************************************************************/
541 
542 /* Allocate pv_entry structure. */
543 pv_entry_t
544 pv_alloc(void)
545 {
546 	pv_entry_t pv;
547 
548 	pv_entry_count++;
549 	if (pv_entry_count > pv_entry_high_water)
550 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
551 	pv = uma_zalloc(pvzone, M_NOWAIT);
552 
553 	return (pv);
554 }
555 
556 /* Free pv_entry structure. */
557 static __inline void
558 pv_free(pv_entry_t pve)
559 {
560 
561 	pv_entry_count--;
562 	uma_zfree(pvzone, pve);
563 }
564 
565 /* Allocate and initialize pv_entry structure. */
566 static void
567 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
568 {
569 	pv_entry_t pve;
570 
571 	//int su = (pmap == kernel_pmap);
572 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
573 	//	(u_int32_t)pmap, va, (u_int32_t)m);
574 
575 	pve = pv_alloc();
576 	if (pve == NULL)
577 		panic("pv_insert: no pv entries!");
578 
579 	pve->pv_pmap = pmap;
580 	pve->pv_va = va;
581 
582 	/* add to pv_list */
583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
584 	rw_assert(&pvh_global_lock, RA_WLOCKED);
585 
586 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
587 
588 	//debugf("pv_insert: e\n");
589 }
590 
591 /* Destroy pv entry. */
592 static void
593 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
594 {
595 	pv_entry_t pve;
596 
597 	//int su = (pmap == kernel_pmap);
598 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
599 
600 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
601 	rw_assert(&pvh_global_lock, RA_WLOCKED);
602 
603 	/* find pv entry */
604 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
605 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
606 			/* remove from pv_list */
607 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
608 			if (TAILQ_EMPTY(&m->md.pv_list))
609 				vm_page_aflag_clear(m, PGA_WRITEABLE);
610 
611 			/* free pv entry struct */
612 			pv_free(pve);
613 			break;
614 		}
615 	}
616 
617 	//debugf("pv_remove: e\n");
618 }
619 
620 /**************************************************************************/
621 /* PMAP related */
622 /**************************************************************************/
623 
624 /*
625  * This is called during booke_init, before the system is really initialized.
626  */
627 static void
628 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
629 {
630 	vm_paddr_t phys_kernelend;
631 	struct mem_region *mp, *mp1;
632 	int cnt, i, j;
633 	vm_paddr_t s, e, sz;
634 	vm_paddr_t physsz, hwphyssz;
635 	u_int phys_avail_count __debug_used;
636 	vm_size_t kstack0_sz;
637 	vm_paddr_t kstack0_phys;
638 	vm_offset_t kstack0;
639 	void *dpcpu;
640 
641 	debugf("mmu_booke_bootstrap: entered\n");
642 
643 	/* Set interesting system properties */
644 #ifdef __powerpc64__
645 	hw_direct_map = 1;
646 #else
647 	hw_direct_map = 0;
648 #endif
649 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
650 	elf32_nxstack = 1;
651 #endif
652 
653 	/* Initialize invalidation mutex */
654 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
655 
656 	/* Read TLB0 size and associativity. */
657 	tlb0_get_tlbconf();
658 
659 	/*
660 	 * Align kernel start and end address (kernel image).
661 	 * Note that kernel end does not necessarily relate to kernsize.
662 	 * kernsize is the size of the kernel that is actually mapped.
663 	 */
664 	data_start = round_page(kernelend);
665 	data_end = data_start;
666 
667 	/* Allocate the dynamic per-cpu area. */
668 	dpcpu = (void *)data_end;
669 	data_end += DPCPU_SIZE;
670 
671 	/* Allocate space for the message buffer. */
672 	msgbufp = (struct msgbuf *)data_end;
673 	data_end += msgbufsize;
674 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
675 	    (uintptr_t)msgbufp, data_end);
676 
677 	data_end = round_page(data_end);
678 	data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
679 
680 	/* Retrieve phys/avail mem regions */
681 	mem_regions(&physmem_regions, &physmem_regions_sz,
682 	    &availmem_regions, &availmem_regions_sz);
683 
684 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
685 		panic("mmu_booke_bootstrap: phys_avail too small");
686 
687 	data_end = round_page(data_end);
688 	vm_page_array = (vm_page_t)data_end;
689 	/*
690 	 * Get a rough idea (upper bound) on the size of the page array.  The
691 	 * vm_page_array will not handle any more pages than we have in the
692 	 * avail_regions array, and most likely much less.
693 	 */
694 	sz = 0;
695 	for (mp = availmem_regions; mp->mr_size; mp++) {
696 		sz += mp->mr_size;
697 	}
698 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
699 	data_end += round_page(sz * sizeof(struct vm_page));
700 
701 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
702 	data_end = roundup2(data_end, 1 << 20);
703 
704 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
705 	debugf(" kernstart: %#zx\n", kernstart);
706 	debugf(" kernsize: %#zx\n", kernsize);
707 
708 	if (data_end - kernstart > kernsize) {
709 		kernsize += tlb1_mapin_region(kernstart + kernsize,
710 		    kernload + kernsize, (data_end - kernstart) - kernsize,
711 		    _TLB_ENTRY_MEM);
712 	}
713 	data_end = kernstart + kernsize;
714 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
715 
716 	/*
717 	 * Clear the structures - note we can only do it safely after the
718 	 * possible additional TLB1 translations are in place (above) so that
719 	 * all range up to the currently calculated 'data_end' is covered.
720 	 */
721 	bzero((void *)data_start, data_end - data_start);
722 	dpcpu_init(dpcpu, 0);
723 
724 	/*******************************************************/
725 	/* Set the start and end of kva. */
726 	/*******************************************************/
727 	virtual_avail = round_page(data_end);
728 	virtual_end = VM_MAX_KERNEL_ADDRESS;
729 
730 #ifndef __powerpc64__
731 	/* Allocate KVA space for page zero/copy operations. */
732 	zero_page_va = virtual_avail;
733 	virtual_avail += PAGE_SIZE;
734 	copy_page_src_va = virtual_avail;
735 	virtual_avail += PAGE_SIZE;
736 	copy_page_dst_va = virtual_avail;
737 	virtual_avail += PAGE_SIZE;
738 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
739 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
740 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
741 
742 	/* Initialize page zero/copy mutexes. */
743 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
744 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
745 
746 	/* Allocate KVA space for ptbl bufs. */
747 	ptbl_buf_pool_vabase = virtual_avail;
748 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
749 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
750 	    ptbl_buf_pool_vabase, virtual_avail);
751 #endif
752 
753 	/* Calculate corresponding physical addresses for the kernel region. */
754 	phys_kernelend = kernload + kernsize;
755 	debugf("kernel image and allocated data:\n");
756 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
757 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
758 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
759 
760 	/*
761 	 * Remove kernel physical address range from avail regions list. Page
762 	 * align all regions.  Non-page aligned memory isn't very interesting
763 	 * to us.  Also, sort the entries for ascending addresses.
764 	 */
765 
766 	sz = 0;
767 	cnt = availmem_regions_sz;
768 	debugf("processing avail regions:\n");
769 	for (mp = availmem_regions; mp->mr_size; mp++) {
770 		s = mp->mr_start;
771 		e = mp->mr_start + mp->mr_size;
772 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
773 		/* Check whether this region holds all of the kernel. */
774 		if (s < kernload && e > phys_kernelend) {
775 			availmem_regions[cnt].mr_start = phys_kernelend;
776 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
777 			e = kernload;
778 		}
779 		/* Look whether this regions starts within the kernel. */
780 		if (s >= kernload && s < phys_kernelend) {
781 			if (e <= phys_kernelend)
782 				goto empty;
783 			s = phys_kernelend;
784 		}
785 		/* Now look whether this region ends within the kernel. */
786 		if (e > kernload && e <= phys_kernelend) {
787 			if (s >= kernload)
788 				goto empty;
789 			e = kernload;
790 		}
791 		/* Now page align the start and size of the region. */
792 		s = round_page(s);
793 		e = trunc_page(e);
794 		if (e < s)
795 			e = s;
796 		sz = e - s;
797 		debugf("%09jx-%09jx = %jx\n",
798 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
799 
800 		/* Check whether some memory is left here. */
801 		if (sz == 0) {
802 		empty:
803 			memmove(mp, mp + 1,
804 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
805 			cnt--;
806 			mp--;
807 			continue;
808 		}
809 
810 		/* Do an insertion sort. */
811 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
812 			if (s < mp1->mr_start)
813 				break;
814 		if (mp1 < mp) {
815 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
816 			mp1->mr_start = s;
817 			mp1->mr_size = sz;
818 		} else {
819 			mp->mr_start = s;
820 			mp->mr_size = sz;
821 		}
822 	}
823 	availmem_regions_sz = cnt;
824 
825 	/*******************************************************/
826 	/* Steal physical memory for kernel stack from the end */
827 	/* of the first avail region                           */
828 	/*******************************************************/
829 	kstack0_sz = kstack_pages * PAGE_SIZE;
830 	kstack0_phys = availmem_regions[0].mr_start +
831 	    availmem_regions[0].mr_size;
832 	kstack0_phys -= kstack0_sz;
833 	availmem_regions[0].mr_size -= kstack0_sz;
834 
835 	/*******************************************************/
836 	/* Fill in phys_avail table, based on availmem_regions */
837 	/*******************************************************/
838 	phys_avail_count = 0;
839 	physsz = 0;
840 	hwphyssz = 0;
841 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
842 
843 	debugf("fill in phys_avail:\n");
844 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
845 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
846 		    (uintmax_t)availmem_regions[i].mr_start,
847 		    (uintmax_t)availmem_regions[i].mr_start +
848 		        availmem_regions[i].mr_size,
849 		    (uintmax_t)availmem_regions[i].mr_size);
850 
851 		if (hwphyssz != 0 &&
852 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
853 			debugf(" hw.physmem adjust\n");
854 			if (physsz < hwphyssz) {
855 				phys_avail[j] = availmem_regions[i].mr_start;
856 				phys_avail[j + 1] =
857 				    availmem_regions[i].mr_start +
858 				    hwphyssz - physsz;
859 				physsz = hwphyssz;
860 				phys_avail_count++;
861 				dump_avail[j] = phys_avail[j];
862 				dump_avail[j + 1] = phys_avail[j + 1];
863 			}
864 			break;
865 		}
866 
867 		phys_avail[j] = availmem_regions[i].mr_start;
868 		phys_avail[j + 1] = availmem_regions[i].mr_start +
869 		    availmem_regions[i].mr_size;
870 		phys_avail_count++;
871 		physsz += availmem_regions[i].mr_size;
872 		dump_avail[j] = phys_avail[j];
873 		dump_avail[j + 1] = phys_avail[j + 1];
874 	}
875 	physmem = btoc(physsz);
876 
877 	/* Calculate the last available physical address. */
878 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
879 		;
880 	Maxmem = powerpc_btop(phys_avail[i + 1]);
881 
882 	debugf("Maxmem = 0x%08lx\n", Maxmem);
883 	debugf("phys_avail_count = %d\n", phys_avail_count);
884 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
885 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
886 
887 #ifdef __powerpc64__
888 	/*
889 	 * Map the physical memory contiguously in TLB1.
890 	 * Round so it fits into a single mapping.
891 	 */
892 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
893 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
894 #endif
895 
896 	/*******************************************************/
897 	/* Initialize (statically allocated) kernel pmap. */
898 	/*******************************************************/
899 	PMAP_LOCK_INIT(kernel_pmap);
900 
901 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
902 	kernel_pte_alloc(virtual_avail, kernstart);
903 	for (i = 0; i < MAXCPU; i++) {
904 		kernel_pmap->pm_tid[i] = TID_KERNEL;
905 
906 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
907 		tidbusy[i][TID_KERNEL] = kernel_pmap;
908 	}
909 
910 	/* Mark kernel_pmap active on all CPUs */
911 	CPU_FILL(&kernel_pmap->pm_active);
912 
913  	/*
914 	 * Initialize the global pv list lock.
915 	 */
916 	rw_init(&pvh_global_lock, "pmap pv global");
917 
918 	/*******************************************************/
919 	/* Final setup */
920 	/*******************************************************/
921 
922 	/* Enter kstack0 into kernel map, provide guard page */
923 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
924 	thread0.td_kstack = kstack0;
925 	thread0.td_kstack_pages = kstack_pages;
926 
927 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
928 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
929 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
930 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
931 	    kstack0, kstack0 + kstack0_sz);
932 
933 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
934 	for (i = 0; i < kstack_pages; i++) {
935 		mmu_booke_kenter(kstack0, kstack0_phys);
936 		kstack0 += PAGE_SIZE;
937 		kstack0_phys += PAGE_SIZE;
938 	}
939 
940 	pmap_bootstrapped = 1;
941 
942 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
943 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
944 
945 	debugf("mmu_booke_bootstrap: exit\n");
946 }
947 
948 #ifdef SMP
949 void
950 tlb1_ap_prep(void)
951 {
952 	tlb_entry_t *e, tmp;
953 	unsigned int i;
954 
955 	/* Prepare TLB1 image for AP processors */
956 	e = __boot_tlb1;
957 	for (i = 0; i < TLB1_ENTRIES; i++) {
958 		tlb1_read_entry(&tmp, i);
959 
960 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
961 			memcpy(e++, &tmp, sizeof(tmp));
962 	}
963 }
964 
965 void
966 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
967 {
968 	int i;
969 
970 	/*
971 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
972 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
973 	 * created by tlb1_ap_prep(), so use these values directly to
974 	 * (re)program AP's TLB1 hardware.
975 	 *
976 	 * Start at index 1 because index 0 has the kernel map.
977 	 */
978 	for (i = 1; i < TLB1_ENTRIES; i++) {
979 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
980 			tlb1_write_entry(&__boot_tlb1[i], i);
981 	}
982 
983 	set_mas4_defaults();
984 }
985 #endif
986 
987 static void
988 booke_pmap_init_qpages(void)
989 {
990 	struct pcpu *pc;
991 	int i;
992 
993 	CPU_FOREACH(i) {
994 		pc = pcpu_find(i);
995 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
996 		if (pc->pc_qmap_addr == 0)
997 			panic("pmap_init_qpages: unable to allocate KVA");
998 	}
999 }
1000 
1001 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1002 
1003 /*
1004  * Get the physical page address for the given pmap/virtual address.
1005  */
1006 static vm_paddr_t
1007 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
1008 {
1009 	vm_paddr_t pa;
1010 
1011 	PMAP_LOCK(pmap);
1012 	pa = pte_vatopa(pmap, va);
1013 	PMAP_UNLOCK(pmap);
1014 
1015 	return (pa);
1016 }
1017 
1018 /*
1019  * Extract the physical page address associated with the given
1020  * kernel virtual address.
1021  */
1022 static vm_paddr_t
1023 mmu_booke_kextract(vm_offset_t va)
1024 {
1025 	tlb_entry_t e;
1026 	vm_paddr_t p = 0;
1027 	int i;
1028 
1029 #ifdef __powerpc64__
1030 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1031 		return (DMAP_TO_PHYS(va));
1032 #endif
1033 
1034 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1035 		p = pte_vatopa(kernel_pmap, va);
1036 
1037 	if (p == 0) {
1038 		/* Check TLB1 mappings */
1039 		for (i = 0; i < TLB1_ENTRIES; i++) {
1040 			tlb1_read_entry(&e, i);
1041 			if (!(e.mas1 & MAS1_VALID))
1042 				continue;
1043 			if (va >= e.virt && va < e.virt + e.size)
1044 				return (e.phys + (va - e.virt));
1045 		}
1046 	}
1047 
1048 	return (p);
1049 }
1050 
1051 /*
1052  * Initialize the pmap module.
1053  * Called by vm_init, to initialize any structures that the pmap
1054  * system needs to map virtual memory.
1055  */
1056 static void
1057 mmu_booke_init(void)
1058 {
1059 	int shpgperproc = PMAP_SHPGPERPROC;
1060 
1061 	/*
1062 	 * Initialize the address space (zone) for the pv entries.  Set a
1063 	 * high water mark so that the system can recover from excessive
1064 	 * numbers of pv entries.
1065 	 */
1066 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1067 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1068 
1069 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1070 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1071 
1072 	TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
1073 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1074 
1075 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1076 
1077 	/* Pre-fill pvzone with initial number of pv entries. */
1078 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1079 
1080 	/* Create a UMA zone for page table roots. */
1081 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
1082 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
1083 
1084 	/* Initialize ptbl allocation. */
1085 	ptbl_init();
1086 }
1087 
1088 /*
1089  * Map a list of wired pages into kernel virtual address space.  This is
1090  * intended for temporary mappings which do not need page modification or
1091  * references recorded.  Existing mappings in the region are overwritten.
1092  */
1093 static void
1094 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
1095 {
1096 	vm_offset_t va;
1097 
1098 	va = sva;
1099 	while (count-- > 0) {
1100 		mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
1101 		va += PAGE_SIZE;
1102 		m++;
1103 	}
1104 }
1105 
1106 /*
1107  * Remove page mappings from kernel virtual address space.  Intended for
1108  * temporary mappings entered by mmu_booke_qenter.
1109  */
1110 static void
1111 mmu_booke_qremove(vm_offset_t sva, int count)
1112 {
1113 	vm_offset_t va;
1114 
1115 	va = sva;
1116 	while (count-- > 0) {
1117 		mmu_booke_kremove(va);
1118 		va += PAGE_SIZE;
1119 	}
1120 }
1121 
1122 /*
1123  * Map a wired page into kernel virtual address space.
1124  */
1125 static void
1126 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
1127 {
1128 
1129 	mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1130 }
1131 
1132 static void
1133 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1134 {
1135 	uint32_t flags;
1136 	pte_t *pte;
1137 
1138 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1139 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1140 
1141 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1142 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1143 	flags |= PTE_PS_4KB;
1144 
1145 	pte = pte_find(kernel_pmap, va);
1146 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
1147 
1148 	mtx_lock_spin(&tlbivax_mutex);
1149 	tlb_miss_lock();
1150 
1151 	if (PTE_ISVALID(pte)) {
1152 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1153 
1154 		/* Flush entry from TLB0 */
1155 		tlb0_flush_entry(va);
1156 	}
1157 
1158 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1159 
1160 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1161 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1162 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1163 
1164 	/* Flush the real memory from the instruction cache. */
1165 	if ((flags & (PTE_I | PTE_G)) == 0)
1166 		__syncicache((void *)va, PAGE_SIZE);
1167 
1168 	tlb_miss_unlock();
1169 	mtx_unlock_spin(&tlbivax_mutex);
1170 }
1171 
1172 /*
1173  * Remove a page from kernel page table.
1174  */
1175 static void
1176 mmu_booke_kremove(vm_offset_t va)
1177 {
1178 	pte_t *pte;
1179 
1180 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
1181 
1182 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1183 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1184 	    ("mmu_booke_kremove: invalid va"));
1185 
1186 	pte = pte_find(kernel_pmap, va);
1187 
1188 	if (!PTE_ISVALID(pte)) {
1189 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1190 
1191 		return;
1192 	}
1193 
1194 	mtx_lock_spin(&tlbivax_mutex);
1195 	tlb_miss_lock();
1196 
1197 	/* Invalidate entry in TLB0, update PTE. */
1198 	tlb0_flush_entry(va);
1199 	*pte = 0;
1200 
1201 	tlb_miss_unlock();
1202 	mtx_unlock_spin(&tlbivax_mutex);
1203 }
1204 
1205 /*
1206  * Figure out where a given kernel pointer (usually in a fault) points
1207  * to from the VM's perspective, potentially remapping into userland's
1208  * address space.
1209  */
1210 static int
1211 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1212     vm_offset_t *decoded_addr)
1213 {
1214 
1215 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
1216 		*is_user = 1;
1217 	else
1218 		*is_user = 0;
1219 
1220 	*decoded_addr = addr;
1221 	return (0);
1222 }
1223 
1224 static bool
1225 mmu_booke_page_is_mapped(vm_page_t m)
1226 {
1227 
1228 	return (!TAILQ_EMPTY(&(m)->md.pv_list));
1229 }
1230 
1231 static bool
1232 mmu_booke_ps_enabled(pmap_t pmap __unused)
1233 {
1234 	return (false);
1235 }
1236 
1237 /*
1238  * Initialize pmap associated with process 0.
1239  */
1240 static void
1241 mmu_booke_pinit0(pmap_t pmap)
1242 {
1243 
1244 	PMAP_LOCK_INIT(pmap);
1245 	mmu_booke_pinit(pmap);
1246 	PCPU_SET(curpmap, pmap);
1247 }
1248 
1249 /*
1250  * Insert the given physical page at the specified virtual address in the
1251  * target physical map with the protection requested. If specified the page
1252  * will be wired down.
1253  */
1254 static int
1255 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1256     vm_prot_t prot, u_int flags, int8_t psind)
1257 {
1258 	int error;
1259 
1260 	rw_wlock(&pvh_global_lock);
1261 	PMAP_LOCK(pmap);
1262 	error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
1263 	PMAP_UNLOCK(pmap);
1264 	rw_wunlock(&pvh_global_lock);
1265 	return (error);
1266 }
1267 
1268 static int
1269 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1270     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1271 {
1272 	pte_t *pte;
1273 	vm_paddr_t pa;
1274 	pte_t flags;
1275 	int error, su, sync;
1276 
1277 	pa = VM_PAGE_TO_PHYS(m);
1278 	su = (pmap == kernel_pmap);
1279 	sync = 0;
1280 
1281 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1282 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1283 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1284 	//		(u_int32_t)m, va, pa, prot, flags);
1285 
1286 	if (su) {
1287 		KASSERT(((va >= virtual_avail) &&
1288 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1289 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1290 	} else {
1291 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1292 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1293 	}
1294 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1295 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1296 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1297 		else
1298 			VM_OBJECT_ASSERT_LOCKED(m->object);
1299 	}
1300 
1301 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1302 
1303 	/*
1304 	 * If there is an existing mapping, and the physical address has not
1305 	 * changed, must be protection or wiring change.
1306 	 */
1307 	if (((pte = pte_find(pmap, va)) != NULL) &&
1308 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1309 
1310 		/*
1311 		 * Before actually updating pte->flags we calculate and
1312 		 * prepare its new value in a helper var.
1313 		 */
1314 		flags = *pte;
1315 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1316 
1317 		/* Wiring change, just update stats. */
1318 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1319 			if (!PTE_ISWIRED(pte)) {
1320 				flags |= PTE_WIRED;
1321 				pmap->pm_stats.wired_count++;
1322 			}
1323 		} else {
1324 			if (PTE_ISWIRED(pte)) {
1325 				flags &= ~PTE_WIRED;
1326 				pmap->pm_stats.wired_count--;
1327 			}
1328 		}
1329 
1330 		if (prot & VM_PROT_WRITE) {
1331 			/* Add write permissions. */
1332 			flags |= PTE_SW;
1333 			if (!su)
1334 				flags |= PTE_UW;
1335 
1336 			if ((flags & PTE_MANAGED) != 0)
1337 				vm_page_aflag_set(m, PGA_WRITEABLE);
1338 		} else {
1339 			/* Handle modified pages, sense modify status. */
1340 
1341 			/*
1342 			 * The PTE_MODIFIED flag could be set by underlying
1343 			 * TLB misses since we last read it (above), possibly
1344 			 * other CPUs could update it so we check in the PTE
1345 			 * directly rather than rely on that saved local flags
1346 			 * copy.
1347 			 */
1348 			if (PTE_ISMODIFIED(pte))
1349 				vm_page_dirty(m);
1350 		}
1351 
1352 		if (prot & VM_PROT_EXECUTE) {
1353 			flags |= PTE_SX;
1354 			if (!su)
1355 				flags |= PTE_UX;
1356 
1357 			/*
1358 			 * Check existing flags for execute permissions: if we
1359 			 * are turning execute permissions on, icache should
1360 			 * be flushed.
1361 			 */
1362 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1363 				sync++;
1364 		}
1365 
1366 		flags &= ~PTE_REFERENCED;
1367 
1368 		/*
1369 		 * The new flags value is all calculated -- only now actually
1370 		 * update the PTE.
1371 		 */
1372 		mtx_lock_spin(&tlbivax_mutex);
1373 		tlb_miss_lock();
1374 
1375 		tlb0_flush_entry(va);
1376 		*pte &= ~PTE_FLAGS_MASK;
1377 		*pte |= flags;
1378 
1379 		tlb_miss_unlock();
1380 		mtx_unlock_spin(&tlbivax_mutex);
1381 
1382 	} else {
1383 		/*
1384 		 * If there is an existing mapping, but it's for a different
1385 		 * physical address, pte_enter() will delete the old mapping.
1386 		 */
1387 		//if ((pte != NULL) && PTE_ISVALID(pte))
1388 		//	debugf("mmu_booke_enter_locked: replace\n");
1389 		//else
1390 		//	debugf("mmu_booke_enter_locked: new\n");
1391 
1392 		/* Now set up the flags and install the new mapping. */
1393 		flags = (PTE_SR | PTE_VALID);
1394 		flags |= PTE_M;
1395 
1396 		if (!su)
1397 			flags |= PTE_UR;
1398 
1399 		if (prot & VM_PROT_WRITE) {
1400 			flags |= PTE_SW;
1401 			if (!su)
1402 				flags |= PTE_UW;
1403 
1404 			if ((m->oflags & VPO_UNMANAGED) == 0)
1405 				vm_page_aflag_set(m, PGA_WRITEABLE);
1406 		}
1407 
1408 		if (prot & VM_PROT_EXECUTE) {
1409 			flags |= PTE_SX;
1410 			if (!su)
1411 				flags |= PTE_UX;
1412 		}
1413 
1414 		/* If its wired update stats. */
1415 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1416 			flags |= PTE_WIRED;
1417 
1418 		error = pte_enter(pmap, m, va, flags,
1419 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1420 		if (error != 0)
1421 			return (KERN_RESOURCE_SHORTAGE);
1422 
1423 		if ((flags & PMAP_ENTER_WIRED) != 0)
1424 			pmap->pm_stats.wired_count++;
1425 
1426 		/* Flush the real memory from the instruction cache. */
1427 		if (prot & VM_PROT_EXECUTE)
1428 			sync++;
1429 	}
1430 
1431 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1432 		__syncicache((void *)va, PAGE_SIZE);
1433 		sync = 0;
1434 	}
1435 
1436 	return (KERN_SUCCESS);
1437 }
1438 
1439 /*
1440  * Maps a sequence of resident pages belonging to the same object.
1441  * The sequence begins with the given page m_start.  This page is
1442  * mapped at the given virtual address start.  Each subsequent page is
1443  * mapped at a virtual address that is offset from start by the same
1444  * amount as the page is offset from m_start within the object.  The
1445  * last page in the sequence is the page with the largest offset from
1446  * m_start that can be mapped at a virtual address less than the given
1447  * virtual address end.  Not every virtual page between start and end
1448  * is mapped; only those for which a resident page exists with the
1449  * corresponding offset from m_start are mapped.
1450  */
1451 static void
1452 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
1453     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1454 {
1455 	vm_page_t m;
1456 	vm_pindex_t diff, psize;
1457 
1458 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1459 
1460 	psize = atop(end - start);
1461 	m = m_start;
1462 	rw_wlock(&pvh_global_lock);
1463 	PMAP_LOCK(pmap);
1464 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1465 		mmu_booke_enter_locked(pmap, start + ptoa(diff), m,
1466 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1467 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1468 		m = TAILQ_NEXT(m, listq);
1469 	}
1470 	PMAP_UNLOCK(pmap);
1471 	rw_wunlock(&pvh_global_lock);
1472 }
1473 
1474 static void
1475 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
1476     vm_prot_t prot)
1477 {
1478 
1479 	rw_wlock(&pvh_global_lock);
1480 	PMAP_LOCK(pmap);
1481 	mmu_booke_enter_locked(pmap, va, m,
1482 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1483 	    PMAP_ENTER_QUICK_LOCKED, 0);
1484 	PMAP_UNLOCK(pmap);
1485 	rw_wunlock(&pvh_global_lock);
1486 }
1487 
1488 /*
1489  * Remove the given range of addresses from the specified map.
1490  *
1491  * It is assumed that the start and end are properly rounded to the page size.
1492  */
1493 static void
1494 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1495 {
1496 	pte_t *pte;
1497 	uint8_t hold_flag;
1498 
1499 	int su = (pmap == kernel_pmap);
1500 
1501 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1502 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1503 
1504 	if (su) {
1505 		KASSERT(((va >= virtual_avail) &&
1506 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1507 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1508 	} else {
1509 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1510 		    ("mmu_booke_remove: user pmap, non user va"));
1511 	}
1512 
1513 	if (PMAP_REMOVE_DONE(pmap)) {
1514 		//debugf("mmu_booke_remove: e (empty)\n");
1515 		return;
1516 	}
1517 
1518 	hold_flag = PTBL_HOLD_FLAG(pmap);
1519 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1520 
1521 	rw_wlock(&pvh_global_lock);
1522 	PMAP_LOCK(pmap);
1523 	for (; va < endva; va += PAGE_SIZE) {
1524 		pte = pte_find_next(pmap, &va);
1525 		if ((pte == NULL) || !PTE_ISVALID(pte))
1526 			break;
1527 		if (va >= endva)
1528 			break;
1529 		pte_remove(pmap, va, hold_flag);
1530 	}
1531 	PMAP_UNLOCK(pmap);
1532 	rw_wunlock(&pvh_global_lock);
1533 
1534 	//debugf("mmu_booke_remove: e\n");
1535 }
1536 
1537 /*
1538  * Remove physical page from all pmaps in which it resides.
1539  */
1540 static void
1541 mmu_booke_remove_all(vm_page_t m)
1542 {
1543 	pv_entry_t pv, pvn;
1544 	uint8_t hold_flag;
1545 
1546 	rw_wlock(&pvh_global_lock);
1547 	TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
1548 		PMAP_LOCK(pv->pv_pmap);
1549 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1550 		pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
1551 		PMAP_UNLOCK(pv->pv_pmap);
1552 	}
1553 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1554 	rw_wunlock(&pvh_global_lock);
1555 }
1556 
1557 /*
1558  * Map a range of physical addresses into kernel virtual address space.
1559  */
1560 static vm_offset_t
1561 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
1562     vm_paddr_t pa_end, int prot)
1563 {
1564 	vm_offset_t sva = *virt;
1565 	vm_offset_t va = sva;
1566 
1567 #ifdef __powerpc64__
1568 	/* XXX: Handle memory not starting at 0x0. */
1569 	if (pa_end < ctob(Maxmem))
1570 		return (PHYS_TO_DMAP(pa_start));
1571 #endif
1572 
1573 	while (pa_start < pa_end) {
1574 		mmu_booke_kenter(va, pa_start);
1575 		va += PAGE_SIZE;
1576 		pa_start += PAGE_SIZE;
1577 	}
1578 	*virt = va;
1579 
1580 	return (sva);
1581 }
1582 
1583 /*
1584  * The pmap must be activated before it's address space can be accessed in any
1585  * way.
1586  */
1587 static void
1588 mmu_booke_activate(struct thread *td)
1589 {
1590 	pmap_t pmap;
1591 	u_int cpuid;
1592 
1593 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1594 
1595 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
1596 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1597 
1598 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1599 
1600 	sched_pin();
1601 
1602 	cpuid = PCPU_GET(cpuid);
1603 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1604 	PCPU_SET(curpmap, pmap);
1605 
1606 	if (pmap->pm_tid[cpuid] == TID_NONE)
1607 		tid_alloc(pmap);
1608 
1609 	/* Load PID0 register with pmap tid value. */
1610 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1611 	__asm __volatile("isync");
1612 
1613 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1614 
1615 	sched_unpin();
1616 
1617 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1618 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1619 }
1620 
1621 /*
1622  * Deactivate the specified process's address space.
1623  */
1624 static void
1625 mmu_booke_deactivate(struct thread *td)
1626 {
1627 	pmap_t pmap;
1628 
1629 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1630 
1631 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
1632 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1633 
1634 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1635 
1636 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1637 	PCPU_SET(curpmap, NULL);
1638 }
1639 
1640 /*
1641  * Copy the range specified by src_addr/len
1642  * from the source map to the range dst_addr/len
1643  * in the destination map.
1644  *
1645  * This routine is only advisory and need not do anything.
1646  */
1647 static void
1648 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
1649     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1650 {
1651 
1652 }
1653 
1654 /*
1655  * Set the physical protection on the specified range of this map as requested.
1656  */
1657 static void
1658 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1659     vm_prot_t prot)
1660 {
1661 	vm_offset_t va;
1662 	vm_page_t m;
1663 	pte_t *pte;
1664 
1665 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1666 		mmu_booke_remove(pmap, sva, eva);
1667 		return;
1668 	}
1669 
1670 	if (prot & VM_PROT_WRITE)
1671 		return;
1672 
1673 	PMAP_LOCK(pmap);
1674 	for (va = sva; va < eva; va += PAGE_SIZE) {
1675 		if ((pte = pte_find(pmap, va)) != NULL) {
1676 			if (PTE_ISVALID(pte)) {
1677 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1678 
1679 				mtx_lock_spin(&tlbivax_mutex);
1680 				tlb_miss_lock();
1681 
1682 				/* Handle modified pages. */
1683 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1684 					vm_page_dirty(m);
1685 
1686 				tlb0_flush_entry(va);
1687 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1688 
1689 				tlb_miss_unlock();
1690 				mtx_unlock_spin(&tlbivax_mutex);
1691 			}
1692 		}
1693 	}
1694 	PMAP_UNLOCK(pmap);
1695 }
1696 
1697 /*
1698  * Clear the write and modified bits in each of the given page's mappings.
1699  */
1700 static void
1701 mmu_booke_remove_write(vm_page_t m)
1702 {
1703 	pv_entry_t pv;
1704 	pte_t *pte;
1705 
1706 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1707 	    ("mmu_booke_remove_write: page %p is not managed", m));
1708 	vm_page_assert_busied(m);
1709 
1710 	if (!pmap_page_is_write_mapped(m))
1711 	        return;
1712 	rw_wlock(&pvh_global_lock);
1713 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1714 		PMAP_LOCK(pv->pv_pmap);
1715 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
1716 			if (PTE_ISVALID(pte)) {
1717 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1718 
1719 				mtx_lock_spin(&tlbivax_mutex);
1720 				tlb_miss_lock();
1721 
1722 				/* Handle modified pages. */
1723 				if (PTE_ISMODIFIED(pte))
1724 					vm_page_dirty(m);
1725 
1726 				/* Flush mapping from TLB0. */
1727 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1728 
1729 				tlb_miss_unlock();
1730 				mtx_unlock_spin(&tlbivax_mutex);
1731 			}
1732 		}
1733 		PMAP_UNLOCK(pv->pv_pmap);
1734 	}
1735 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1736 	rw_wunlock(&pvh_global_lock);
1737 }
1738 
1739 /*
1740  * Atomically extract and hold the physical page with the given
1741  * pmap and virtual address pair if that mapping permits the given
1742  * protection.
1743  */
1744 static vm_page_t
1745 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
1746     vm_prot_t prot)
1747 {
1748 	pte_t *pte;
1749 	vm_page_t m;
1750 	uint32_t pte_wbit;
1751 
1752 	m = NULL;
1753 	PMAP_LOCK(pmap);
1754 	pte = pte_find(pmap, va);
1755 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1756 		if (pmap == kernel_pmap)
1757 			pte_wbit = PTE_SW;
1758 		else
1759 			pte_wbit = PTE_UW;
1760 
1761 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
1762 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1763 			if (!vm_page_wire_mapped(m))
1764 				m = NULL;
1765 		}
1766 	}
1767 	PMAP_UNLOCK(pmap);
1768 	return (m);
1769 }
1770 
1771 /*
1772  * Initialize a vm_page's machine-dependent fields.
1773  */
1774 static void
1775 mmu_booke_page_init(vm_page_t m)
1776 {
1777 
1778 	m->md.pv_tracked = 0;
1779 	TAILQ_INIT(&m->md.pv_list);
1780 }
1781 
1782 /*
1783  * Return whether or not the specified physical page was modified
1784  * in any of physical maps.
1785  */
1786 static bool
1787 mmu_booke_is_modified(vm_page_t m)
1788 {
1789 	pte_t *pte;
1790 	pv_entry_t pv;
1791 	bool rv;
1792 
1793 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1794 	    ("mmu_booke_is_modified: page %p is not managed", m));
1795 	rv = false;
1796 
1797 	/*
1798 	 * If the page is not busied then this check is racy.
1799 	 */
1800 	if (!pmap_page_is_write_mapped(m))
1801 		return (false);
1802 
1803 	rw_wlock(&pvh_global_lock);
1804 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1805 		PMAP_LOCK(pv->pv_pmap);
1806 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1807 		    PTE_ISVALID(pte)) {
1808 			if (PTE_ISMODIFIED(pte))
1809 				rv = true;
1810 		}
1811 		PMAP_UNLOCK(pv->pv_pmap);
1812 		if (rv)
1813 			break;
1814 	}
1815 	rw_wunlock(&pvh_global_lock);
1816 	return (rv);
1817 }
1818 
1819 /*
1820  * Return whether or not the specified virtual address is eligible
1821  * for prefault.
1822  */
1823 static bool
1824 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1825 {
1826 
1827 	return (false);
1828 }
1829 
1830 /*
1831  * Return whether or not the specified physical page was referenced
1832  * in any physical maps.
1833  */
1834 static bool
1835 mmu_booke_is_referenced(vm_page_t m)
1836 {
1837 	pte_t *pte;
1838 	pv_entry_t pv;
1839 	bool rv;
1840 
1841 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1842 	    ("mmu_booke_is_referenced: page %p is not managed", m));
1843 	rv = false;
1844 	rw_wlock(&pvh_global_lock);
1845 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1846 		PMAP_LOCK(pv->pv_pmap);
1847 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1848 		    PTE_ISVALID(pte)) {
1849 			if (PTE_ISREFERENCED(pte))
1850 				rv = true;
1851 		}
1852 		PMAP_UNLOCK(pv->pv_pmap);
1853 		if (rv)
1854 			break;
1855 	}
1856 	rw_wunlock(&pvh_global_lock);
1857 	return (rv);
1858 }
1859 
1860 /*
1861  * Clear the modify bits on the specified physical page.
1862  */
1863 static void
1864 mmu_booke_clear_modify(vm_page_t m)
1865 {
1866 	pte_t *pte;
1867 	pv_entry_t pv;
1868 
1869 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1870 	    ("mmu_booke_clear_modify: page %p is not managed", m));
1871 	vm_page_assert_busied(m);
1872 
1873 	if (!pmap_page_is_write_mapped(m))
1874 	        return;
1875 
1876 	rw_wlock(&pvh_global_lock);
1877 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1878 		PMAP_LOCK(pv->pv_pmap);
1879 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1880 		    PTE_ISVALID(pte)) {
1881 			mtx_lock_spin(&tlbivax_mutex);
1882 			tlb_miss_lock();
1883 
1884 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
1885 				tlb0_flush_entry(pv->pv_va);
1886 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
1887 				    PTE_REFERENCED);
1888 			}
1889 
1890 			tlb_miss_unlock();
1891 			mtx_unlock_spin(&tlbivax_mutex);
1892 		}
1893 		PMAP_UNLOCK(pv->pv_pmap);
1894 	}
1895 	rw_wunlock(&pvh_global_lock);
1896 }
1897 
1898 /*
1899  * Return a count of reference bits for a page, clearing those bits.
1900  * It is not necessary for every reference bit to be cleared, but it
1901  * is necessary that 0 only be returned when there are truly no
1902  * reference bits set.
1903  *
1904  * As an optimization, update the page's dirty field if a modified bit is
1905  * found while counting reference bits.  This opportunistic update can be
1906  * performed at low cost and can eliminate the need for some future calls
1907  * to pmap_is_modified().  However, since this function stops after
1908  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
1909  * dirty pages.  Those dirty pages will only be detected by a future call
1910  * to pmap_is_modified().
1911  */
1912 static int
1913 mmu_booke_ts_referenced(vm_page_t m)
1914 {
1915 	pte_t *pte;
1916 	pv_entry_t pv;
1917 	int count;
1918 
1919 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1920 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
1921 	count = 0;
1922 	rw_wlock(&pvh_global_lock);
1923 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1924 		PMAP_LOCK(pv->pv_pmap);
1925 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1926 		    PTE_ISVALID(pte)) {
1927 			if (PTE_ISMODIFIED(pte))
1928 				vm_page_dirty(m);
1929 			if (PTE_ISREFERENCED(pte)) {
1930 				mtx_lock_spin(&tlbivax_mutex);
1931 				tlb_miss_lock();
1932 
1933 				tlb0_flush_entry(pv->pv_va);
1934 				*pte &= ~PTE_REFERENCED;
1935 
1936 				tlb_miss_unlock();
1937 				mtx_unlock_spin(&tlbivax_mutex);
1938 
1939 				if (++count >= PMAP_TS_REFERENCED_MAX) {
1940 					PMAP_UNLOCK(pv->pv_pmap);
1941 					break;
1942 				}
1943 			}
1944 		}
1945 		PMAP_UNLOCK(pv->pv_pmap);
1946 	}
1947 	rw_wunlock(&pvh_global_lock);
1948 	return (count);
1949 }
1950 
1951 /*
1952  * Clear the wired attribute from the mappings for the specified range of
1953  * addresses in the given pmap.  Every valid mapping within that range must
1954  * have the wired attribute set.  In contrast, invalid mappings cannot have
1955  * the wired attribute set, so they are ignored.
1956  *
1957  * The wired attribute of the page table entry is not a hardware feature, so
1958  * there is no need to invalidate any TLB entries.
1959  */
1960 static void
1961 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1962 {
1963 	vm_offset_t va;
1964 	pte_t *pte;
1965 
1966 	PMAP_LOCK(pmap);
1967 	for (va = sva; va < eva; va += PAGE_SIZE) {
1968 		if ((pte = pte_find(pmap, va)) != NULL &&
1969 		    PTE_ISVALID(pte)) {
1970 			if (!PTE_ISWIRED(pte))
1971 				panic("mmu_booke_unwire: pte %p isn't wired",
1972 				    pte);
1973 			*pte &= ~PTE_WIRED;
1974 			pmap->pm_stats.wired_count--;
1975 		}
1976 	}
1977 	PMAP_UNLOCK(pmap);
1978 
1979 }
1980 
1981 /*
1982  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
1983  * page.  This count may be changed upwards or downwards in the future; it is
1984  * only necessary that true be returned for a small subset of pmaps for proper
1985  * page aging.
1986  */
1987 static bool
1988 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
1989 {
1990 	pv_entry_t pv;
1991 	int loops;
1992 	bool rv;
1993 
1994 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1995 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
1996 	loops = 0;
1997 	rv = false;
1998 	rw_wlock(&pvh_global_lock);
1999 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2000 		if (pv->pv_pmap == pmap) {
2001 			rv = true;
2002 			break;
2003 		}
2004 		if (++loops >= 16)
2005 			break;
2006 	}
2007 	rw_wunlock(&pvh_global_lock);
2008 	return (rv);
2009 }
2010 
2011 /*
2012  * Return the number of managed mappings to the given physical page that are
2013  * wired.
2014  */
2015 static int
2016 mmu_booke_page_wired_mappings(vm_page_t m)
2017 {
2018 	pv_entry_t pv;
2019 	pte_t *pte;
2020 	int count = 0;
2021 
2022 	if ((m->oflags & VPO_UNMANAGED) != 0)
2023 		return (count);
2024 	rw_wlock(&pvh_global_lock);
2025 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2026 		PMAP_LOCK(pv->pv_pmap);
2027 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
2028 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2029 				count++;
2030 		PMAP_UNLOCK(pv->pv_pmap);
2031 	}
2032 	rw_wunlock(&pvh_global_lock);
2033 	return (count);
2034 }
2035 
2036 static int
2037 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2038 {
2039 	int i;
2040 	vm_offset_t va;
2041 
2042 	/*
2043 	 * This currently does not work for entries that
2044 	 * overlap TLB1 entries.
2045 	 */
2046 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2047 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2048 			return (0);
2049 	}
2050 
2051 	return (EFAULT);
2052 }
2053 
2054 void
2055 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2056 {
2057 	vm_paddr_t ppa;
2058 	vm_offset_t ofs;
2059 	vm_size_t gran;
2060 
2061 	/* Minidumps are based on virtual memory addresses. */
2062 	if (do_minidump) {
2063 		*va = (void *)(vm_offset_t)pa;
2064 		return;
2065 	}
2066 
2067 	/* Raw physical memory dumps don't have a virtual address. */
2068 	/* We always map a 256MB page at 256M. */
2069 	gran = 256 * 1024 * 1024;
2070 	ppa = rounddown2(pa, gran);
2071 	ofs = pa - ppa;
2072 	*va = (void *)gran;
2073 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2074 
2075 	if (sz > (gran - ofs))
2076 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2077 		    _TLB_ENTRY_IO);
2078 }
2079 
2080 void
2081 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
2082 {
2083 	vm_paddr_t ppa;
2084 	vm_offset_t ofs;
2085 	vm_size_t gran;
2086 	tlb_entry_t e;
2087 	int i;
2088 
2089 	/* Minidumps are based on virtual memory addresses. */
2090 	/* Nothing to do... */
2091 	if (do_minidump)
2092 		return;
2093 
2094 	for (i = 0; i < TLB1_ENTRIES; i++) {
2095 		tlb1_read_entry(&e, i);
2096 		if (!(e.mas1 & MAS1_VALID))
2097 			break;
2098 	}
2099 
2100 	/* Raw physical memory dumps don't have a virtual address. */
2101 	i--;
2102 	e.mas1 = 0;
2103 	e.mas2 = 0;
2104 	e.mas3 = 0;
2105 	tlb1_write_entry(&e, i);
2106 
2107 	gran = 256 * 1024 * 1024;
2108 	ppa = rounddown2(pa, gran);
2109 	ofs = pa - ppa;
2110 	if (sz > (gran - ofs)) {
2111 		i--;
2112 		e.mas1 = 0;
2113 		e.mas2 = 0;
2114 		e.mas3 = 0;
2115 		tlb1_write_entry(&e, i);
2116 	}
2117 }
2118 
2119 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2120 
2121 void
2122 mmu_booke_scan_init(void)
2123 {
2124 	vm_offset_t va;
2125 	pte_t *pte;
2126 	int i;
2127 
2128 	if (!do_minidump) {
2129 		/* Initialize phys. segments for dumpsys(). */
2130 		memset(&dump_map, 0, sizeof(dump_map));
2131 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2132 		    &availmem_regions_sz);
2133 		for (i = 0; i < physmem_regions_sz; i++) {
2134 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2135 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2136 		}
2137 		return;
2138 	}
2139 
2140 	/* Virtual segments for minidumps: */
2141 	memset(&dump_map, 0, sizeof(dump_map));
2142 
2143 	/* 1st: kernel .data and .bss. */
2144 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2145 	dump_map[0].pa_size =
2146 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2147 
2148 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2149 	dump_map[1].pa_start = data_start;
2150 	dump_map[1].pa_size = data_end - data_start;
2151 
2152 	/* 3rd: kernel VM. */
2153 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2154 	/* Find start of next chunk (from va). */
2155 	while (va < virtual_end) {
2156 		/* Don't dump the buffer cache. */
2157 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2158 			va = kmi.buffer_eva;
2159 			continue;
2160 		}
2161 		pte = pte_find(kernel_pmap, va);
2162 		if (pte != NULL && PTE_ISVALID(pte))
2163 			break;
2164 		va += PAGE_SIZE;
2165 	}
2166 	if (va < virtual_end) {
2167 		dump_map[2].pa_start = va;
2168 		va += PAGE_SIZE;
2169 		/* Find last page in chunk. */
2170 		while (va < virtual_end) {
2171 			/* Don't run into the buffer cache. */
2172 			if (va == kmi.buffer_sva)
2173 				break;
2174 			pte = pte_find(kernel_pmap, va);
2175 			if (pte == NULL || !PTE_ISVALID(pte))
2176 				break;
2177 			va += PAGE_SIZE;
2178 		}
2179 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2180 	}
2181 }
2182 
2183 /*
2184  * Map a set of physical memory pages into the kernel virtual address space.
2185  * Return a pointer to where it is mapped. This routine is intended to be used
2186  * for mapping device memory, NOT real memory.
2187  */
2188 static void *
2189 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
2190 {
2191 
2192 	return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2193 }
2194 
2195 static int
2196 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
2197 {
2198 	int i;
2199 
2200 	for (i = 0; i < TLB1_ENTRIES; i++) {
2201 		tlb1_read_entry(e, i);
2202 		if ((e->mas1 & MAS1_VALID) == 0)
2203 			continue;
2204 		if (e->phys == pa)
2205 			return (i);
2206 	}
2207 	return (-1);
2208 }
2209 
2210 static void *
2211 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2212 {
2213 	tlb_entry_t e;
2214 	vm_paddr_t tmppa;
2215 #ifndef __powerpc64__
2216 	uintptr_t tmpva;
2217 #endif
2218 	uintptr_t va, retva;
2219 	vm_size_t sz;
2220 	int i;
2221 	int wimge;
2222 
2223 	/*
2224 	 * Check if this is premapped in TLB1.
2225 	 */
2226 	sz = size;
2227 	tmppa = pa;
2228 	va = ~0;
2229 	wimge = tlb_calc_wimg(pa, ma);
2230 	for (i = 0; i < TLB1_ENTRIES; i++) {
2231 		tlb1_read_entry(&e, i);
2232 		if (!(e.mas1 & MAS1_VALID))
2233 			continue;
2234 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2235 			continue;
2236 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
2237 			va = e.virt + (pa - e.phys);
2238 			tmppa = e.phys + e.size;
2239 			sz -= MIN(sz, e.size - (pa - e.phys));
2240 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
2241 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2242 					break;
2243 				sz -= MIN(sz, e.size);
2244 				tmppa = e.phys + e.size;
2245 			}
2246 			if (sz != 0)
2247 				break;
2248 			return ((void *)va);
2249 		}
2250 	}
2251 
2252 	size = roundup(size, PAGE_SIZE);
2253 
2254 #ifdef __powerpc64__
2255 	KASSERT(pa < VM_MAPDEV_PA_MAX,
2256 	    ("Unsupported physical address! %lx", pa));
2257 	va = VM_MAPDEV_BASE + pa;
2258 	retva = va;
2259 #ifdef POW2_MAPPINGS
2260 	/*
2261 	 * Align the mapping to a power of 2 size, taking into account that we
2262 	 * may need to increase the size multiple times to satisfy the size and
2263 	 * alignment requirements.
2264 	 *
2265 	 * This works in the general case because it's very rare (near never?)
2266 	 * to have different access properties (WIMG) within a single
2267 	 * power-of-two region.  If a design does call for that, POW2_MAPPINGS
2268 	 * can be undefined, and exact mappings will be used instead.
2269 	 */
2270 	sz = size;
2271 	size = roundup2(size, 1 << ilog2(size));
2272 	while (rounddown2(va, size) + size < va + sz)
2273 		size <<= 1;
2274 	va = rounddown2(va, size);
2275 	pa = rounddown2(pa, size);
2276 #endif
2277 #else
2278 	/*
2279 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2280 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2281 	 */
2282 #ifdef SPARSE_MAPDEV
2283 	/*
2284 	 * With a sparse mapdev, align to the largest starting region.  This
2285 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2286 	 * calculation could be very costly.
2287 	 * Align to the smaller of:
2288 	 * - first set bit in overlap of (pa & size mask)
2289 	 * - largest size envelope
2290 	 *
2291 	 * It's possible the device mapping may start at a PA that's not larger
2292 	 * than the size mask, so we need to offset in to maximize the TLB entry
2293 	 * range and minimize the number of used TLB entries.
2294 	 */
2295 	do {
2296 	    tmpva = tlb1_map_base;
2297 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
2298 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
2299 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
2300 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2301 #endif
2302 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2303 	retva = va;
2304 #endif
2305 
2306 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
2307 		return (NULL);
2308 
2309 	return ((void *)retva);
2310 }
2311 
2312 /*
2313  * 'Unmap' a range mapped by mmu_booke_mapdev().
2314  */
2315 static void
2316 mmu_booke_unmapdev(void *p, vm_size_t size)
2317 {
2318 #ifdef SUPPORTS_SHRINKING_TLB1
2319 	vm_offset_t base, offset, va;
2320 
2321 	/*
2322 	 * Unmap only if this is inside kernel virtual space.
2323 	 */
2324 	va = (vm_offset_t)p;
2325 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2326 		base = trunc_page(va);
2327 		offset = va & PAGE_MASK;
2328 		size = roundup(offset + size, PAGE_SIZE);
2329 		mmu_booke_qremove(base, atop(size));
2330 		kva_free(base, size);
2331 	}
2332 #endif
2333 }
2334 
2335 /*
2336  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2337  * specified pmap. This eliminates the blast of soft faults on process startup
2338  * and immediately after an mmap.
2339  */
2340 static void
2341 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
2342     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2343 {
2344 
2345 	VM_OBJECT_ASSERT_WLOCKED(object);
2346 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2347 	    ("mmu_booke_object_init_pt: non-device object"));
2348 }
2349 
2350 /*
2351  * Perform the pmap work for mincore.
2352  */
2353 static int
2354 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
2355 {
2356 
2357 	/* XXX: this should be implemented at some point */
2358 	return (0);
2359 }
2360 
2361 static int
2362 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
2363 {
2364 	vm_offset_t va;
2365 	pte_t *pte;
2366 	int i, j;
2367 	tlb_entry_t e;
2368 
2369 	addr = trunc_page(addr);
2370 
2371 	/* Only allow changes to mapped kernel addresses.  This includes:
2372 	 * - KVA
2373 	 * - DMAP (powerpc64)
2374 	 * - Device mappings
2375 	 */
2376 	if (addr <= VM_MAXUSER_ADDRESS ||
2377 #ifdef __powerpc64__
2378 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
2379 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
2380 #else
2381 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
2382 #endif
2383 	    (addr > VM_MAX_KERNEL_ADDRESS))
2384 		return (EINVAL);
2385 
2386 	/* Check TLB1 mappings */
2387 	for (i = 0; i < TLB1_ENTRIES; i++) {
2388 		tlb1_read_entry(&e, i);
2389 		if (!(e.mas1 & MAS1_VALID))
2390 			continue;
2391 		if (addr >= e.virt && addr < e.virt + e.size)
2392 			break;
2393 	}
2394 	if (i < TLB1_ENTRIES) {
2395 		/* Only allow full mappings to be modified for now. */
2396 		/* Validate the range. */
2397 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2398 			tlb1_read_entry(&e, j);
2399 			if (va != e.virt || (sz - (va - addr) < e.size))
2400 				return (EINVAL);
2401 		}
2402 		for (va = addr; va < addr + sz; va += e.size, i++) {
2403 			tlb1_read_entry(&e, i);
2404 			e.mas2 &= ~MAS2_WIMGE_MASK;
2405 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2406 
2407 			/*
2408 			 * Write it out to the TLB.  Should really re-sync with other
2409 			 * cores.
2410 			 */
2411 			tlb1_write_entry(&e, i);
2412 		}
2413 		return (0);
2414 	}
2415 
2416 	/* Not in TLB1, try through pmap */
2417 	/* First validate the range. */
2418 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2419 		pte = pte_find(kernel_pmap, va);
2420 		if (pte == NULL || !PTE_ISVALID(pte))
2421 			return (EINVAL);
2422 	}
2423 
2424 	mtx_lock_spin(&tlbivax_mutex);
2425 	tlb_miss_lock();
2426 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2427 		pte = pte_find(kernel_pmap, va);
2428 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2429 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2430 		tlb0_flush_entry(va);
2431 	}
2432 	tlb_miss_unlock();
2433 	mtx_unlock_spin(&tlbivax_mutex);
2434 
2435 	return (0);
2436 }
2437 
2438 static void
2439 mmu_booke_page_array_startup(long pages)
2440 {
2441 	vm_page_array_size = pages;
2442 }
2443 
2444 /**************************************************************************/
2445 /* TID handling */
2446 /**************************************************************************/
2447 
2448 /*
2449  * Allocate a TID. If necessary, steal one from someone else.
2450  * The new TID is flushed from the TLB before returning.
2451  */
2452 static tlbtid_t
2453 tid_alloc(pmap_t pmap)
2454 {
2455 	tlbtid_t tid;
2456 	int thiscpu;
2457 
2458 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2459 
2460 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2461 
2462 	thiscpu = PCPU_GET(cpuid);
2463 
2464 	tid = PCPU_GET(booke.tid_next);
2465 	if (tid > TID_MAX)
2466 		tid = TID_MIN;
2467 	PCPU_SET(booke.tid_next, tid + 1);
2468 
2469 	/* If we are stealing TID then clear the relevant pmap's field */
2470 	if (tidbusy[thiscpu][tid] != NULL) {
2471 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2472 
2473 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2474 
2475 		/* Flush all entries from TLB0 matching this TID. */
2476 		tid_flush(tid);
2477 	}
2478 
2479 	tidbusy[thiscpu][tid] = pmap;
2480 	pmap->pm_tid[thiscpu] = tid;
2481 	__asm __volatile("msync; isync");
2482 
2483 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2484 	    PCPU_GET(booke.tid_next));
2485 
2486 	return (tid);
2487 }
2488 
2489 /**************************************************************************/
2490 /* TLB0 handling */
2491 /**************************************************************************/
2492 
2493 /* Convert TLB0 va and way number to tlb0[] table index. */
2494 static inline unsigned int
2495 tlb0_tableidx(vm_offset_t va, unsigned int way)
2496 {
2497 	unsigned int idx;
2498 
2499 	idx = (way * TLB0_ENTRIES_PER_WAY);
2500 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2501 	return (idx);
2502 }
2503 
2504 /*
2505  * Invalidate TLB0 entry.
2506  */
2507 static inline void
2508 tlb0_flush_entry(vm_offset_t va)
2509 {
2510 
2511 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2512 
2513 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2514 
2515 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2516 	__asm __volatile("isync; msync");
2517 	__asm __volatile("tlbsync; msync");
2518 
2519 	CTR1(KTR_PMAP, "%s: e", __func__);
2520 }
2521 
2522 /**************************************************************************/
2523 /* TLB1 handling */
2524 /**************************************************************************/
2525 
2526 /*
2527  * TLB1 mapping notes:
2528  *
2529  * TLB1[0]	Kernel text and data.
2530  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2531  *		windows, other devices mappings.
2532  */
2533 
2534  /*
2535  * Read an entry from given TLB1 slot.
2536  */
2537 void
2538 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
2539 {
2540 	register_t msr;
2541 	uint32_t mas0;
2542 
2543 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
2544 
2545 	msr = mfmsr();
2546 	__asm __volatile("wrteei 0");
2547 
2548 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
2549 	mtspr(SPR_MAS0, mas0);
2550 	__asm __volatile("isync; tlbre");
2551 
2552 	entry->mas1 = mfspr(SPR_MAS1);
2553 	entry->mas2 = mfspr(SPR_MAS2);
2554 	entry->mas3 = mfspr(SPR_MAS3);
2555 
2556 	switch ((mfpvr() >> 16) & 0xFFFF) {
2557 	case FSL_E500v2:
2558 	case FSL_E500mc:
2559 	case FSL_E5500:
2560 	case FSL_E6500:
2561 		entry->mas7 = mfspr(SPR_MAS7);
2562 		break;
2563 	default:
2564 		entry->mas7 = 0;
2565 		break;
2566 	}
2567 	__asm __volatile("wrtee %0" :: "r"(msr));
2568 
2569 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
2570 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
2571 	    (entry->mas3 & MAS3_RPN);
2572 	entry->size =
2573 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
2574 }
2575 
2576 struct tlbwrite_args {
2577 	tlb_entry_t *e;
2578 	unsigned int idx;
2579 };
2580 
2581 static uint32_t
2582 tlb1_find_free(void)
2583 {
2584 	tlb_entry_t e;
2585 	int i;
2586 
2587 	for (i = 0; i < TLB1_ENTRIES; i++) {
2588 		tlb1_read_entry(&e, i);
2589 		if ((e.mas1 & MAS1_VALID) == 0)
2590 			return (i);
2591 	}
2592 	return (-1);
2593 }
2594 
2595 static void
2596 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
2597 {
2598 	tlb_entry_t e;
2599 	int i;
2600 
2601 	for (i = 0; i < TLB1_ENTRIES; i++) {
2602 		tlb1_read_entry(&e, i);
2603 		if ((e.mas1 & MAS1_VALID) == 0)
2604 			continue;
2605 		if ((e.mas2 & MAS2_EPN_MASK) >= va &&
2606 		    (e.mas2 & MAS2_EPN_MASK) < va + size) {
2607 			mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
2608 			__asm __volatile("isync; tlbwe; isync; msync");
2609 		}
2610 	}
2611 }
2612 
2613 static void
2614 tlb1_write_entry_int(void *arg)
2615 {
2616 	struct tlbwrite_args *args = arg;
2617 	uint32_t idx, mas0;
2618 
2619 	idx = args->idx;
2620 	if (idx == -1) {
2621 		tlb1_purge_va_range(args->e->virt, args->e->size);
2622 		idx = tlb1_find_free();
2623 		if (idx == -1)
2624 			panic("No free TLB1 entries!\n");
2625 	}
2626 	/* Select entry */
2627 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2628 
2629 	mtspr(SPR_MAS0, mas0);
2630 	mtspr(SPR_MAS1, args->e->mas1);
2631 	mtspr(SPR_MAS2, args->e->mas2);
2632 	mtspr(SPR_MAS3, args->e->mas3);
2633 	switch ((mfpvr() >> 16) & 0xFFFF) {
2634 	case FSL_E500mc:
2635 	case FSL_E5500:
2636 	case FSL_E6500:
2637 		mtspr(SPR_MAS8, 0);
2638 		/* FALLTHROUGH */
2639 	case FSL_E500v2:
2640 		mtspr(SPR_MAS7, args->e->mas7);
2641 		break;
2642 	default:
2643 		break;
2644 	}
2645 
2646 	__asm __volatile("isync; tlbwe; isync; msync");
2647 
2648 }
2649 
2650 static void
2651 tlb1_write_entry_sync(void *arg)
2652 {
2653 	/* Empty synchronization point for smp_rendezvous(). */
2654 }
2655 
2656 /*
2657  * Write given entry to TLB1 hardware.
2658  */
2659 static void
2660 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
2661 {
2662 	struct tlbwrite_args args;
2663 
2664 	args.e = e;
2665 	args.idx = idx;
2666 
2667 #ifdef SMP
2668 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
2669 		mb();
2670 		smp_rendezvous(tlb1_write_entry_sync,
2671 		    tlb1_write_entry_int,
2672 		    tlb1_write_entry_sync, &args);
2673 	} else
2674 #endif
2675 	{
2676 		register_t msr;
2677 
2678 		msr = mfmsr();
2679 		__asm __volatile("wrteei 0");
2680 		tlb1_write_entry_int(&args);
2681 		__asm __volatile("wrtee %0" :: "r"(msr));
2682 	}
2683 }
2684 
2685 /*
2686  * Convert TLB TSIZE value to mapped region size.
2687  */
2688 static vm_size_t
2689 tsize2size(unsigned int tsize)
2690 {
2691 
2692 	/*
2693 	 * size = 4^tsize KB
2694 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2695 	 */
2696 
2697 	return ((1 << (2 * tsize)) * 1024);
2698 }
2699 
2700 /*
2701  * Convert region size (must be power of 4) to TLB TSIZE value.
2702  */
2703 static unsigned int
2704 size2tsize(vm_size_t size)
2705 {
2706 
2707 	return (ilog2(size) / 2 - 5);
2708 }
2709 
2710 /*
2711  * Register permanent kernel mapping in TLB1.
2712  *
2713  * Entries are created starting from index 0 (current free entry is
2714  * kept in tlb1_idx) and are not supposed to be invalidated.
2715  */
2716 int
2717 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
2718     uint32_t flags)
2719 {
2720 	tlb_entry_t e;
2721 	uint32_t ts, tid;
2722 	int tsize, index;
2723 
2724 	/* First try to update an existing entry. */
2725 	for (index = 0; index < TLB1_ENTRIES; index++) {
2726 		tlb1_read_entry(&e, index);
2727 		/* Check if we're just updating the flags, and update them. */
2728 		if (e.phys == pa && e.virt == va && e.size == size) {
2729 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
2730 			tlb1_write_entry(&e, index);
2731 			return (0);
2732 		}
2733 	}
2734 
2735 	/* Convert size to TSIZE */
2736 	tsize = size2tsize(size);
2737 
2738 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2739 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2740 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2741 
2742 	e.phys = pa;
2743 	e.virt = va;
2744 	e.size = size;
2745 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2746 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2747 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
2748 
2749 	/* Set supervisor RWX permission bits */
2750 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2751 	e.mas7 = (pa >> 32) & MAS7_RPN;
2752 
2753 	tlb1_write_entry(&e, -1);
2754 
2755 	return (0);
2756 }
2757 
2758 /*
2759  * Map in contiguous RAM region into the TLB1.
2760  */
2761 static vm_size_t
2762 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
2763 {
2764 	vm_offset_t base;
2765 	vm_size_t mapped, sz, ssize;
2766 
2767 	mapped = 0;
2768 	base = va;
2769 	ssize = size;
2770 
2771 	while (size > 0) {
2772 		sz = 1UL << (ilog2(size) & ~1);
2773 		/* Align size to PA */
2774 		if (pa % sz != 0) {
2775 			do {
2776 				sz >>= 2;
2777 			} while (pa % sz != 0);
2778 		}
2779 		/* Now align from there to VA */
2780 		if (va % sz != 0) {
2781 			do {
2782 				sz >>= 2;
2783 			} while (va % sz != 0);
2784 		}
2785 #ifdef __powerpc64__
2786 		/*
2787 		 * Clamp TLB1 entries to 4G.
2788 		 *
2789 		 * While the e6500 supports up to 1TB mappings, the e5500
2790 		 * only supports up to 4G mappings. (0b1011)
2791 		 *
2792 		 * If any e6500 machines capable of supporting a very
2793 		 * large amount of memory appear in the future, we can
2794 		 * revisit this.
2795 		 *
2796 		 * For now, though, since we have plenty of space in TLB1,
2797 		 * always avoid creating entries larger than 4GB.
2798 		 */
2799 		sz = MIN(sz, 1UL << 32);
2800 #endif
2801 		if (bootverbose)
2802 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
2803 			    (void *)va, (uintmax_t)pa, (long)sz);
2804 		if (tlb1_set_entry(va, pa, sz,
2805 		    _TLB_ENTRY_SHARED | wimge) < 0)
2806 			return (mapped);
2807 		size -= sz;
2808 		pa += sz;
2809 		va += sz;
2810 	}
2811 
2812 	mapped = (va - base);
2813 	if (bootverbose)
2814 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
2815 		    mapped, mapped - ssize);
2816 
2817 	return (mapped);
2818 }
2819 
2820 /*
2821  * TLB1 initialization routine, to be called after the very first
2822  * assembler level setup done in locore.S.
2823  */
2824 void
2825 tlb1_init(void)
2826 {
2827 	vm_offset_t mas2;
2828 	uint32_t mas0, mas1, mas3, mas7;
2829 	uint32_t tsz;
2830 
2831 	tlb1_get_tlbconf();
2832 
2833 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
2834 	mtspr(SPR_MAS0, mas0);
2835 	__asm __volatile("isync; tlbre");
2836 
2837 	mas1 = mfspr(SPR_MAS1);
2838 	mas2 = mfspr(SPR_MAS2);
2839 	mas3 = mfspr(SPR_MAS3);
2840 	mas7 = mfspr(SPR_MAS7);
2841 
2842 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
2843 	    (mas3 & MAS3_RPN);
2844 
2845 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2846 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
2847 	kernstart = trunc_page(mas2);
2848 
2849 	/* Setup TLB miss defaults */
2850 	set_mas4_defaults();
2851 }
2852 
2853 /*
2854  * pmap_early_io_unmap() should be used in short conjunction with
2855  * pmap_early_io_map(), as in the following snippet:
2856  *
2857  * x = pmap_early_io_map(...);
2858  * <do something with x>
2859  * pmap_early_io_unmap(x, size);
2860  *
2861  * And avoiding more allocations between.
2862  */
2863 void
2864 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
2865 {
2866 	int i;
2867 	tlb_entry_t e;
2868 	vm_size_t isize;
2869 
2870 	size = roundup(size, PAGE_SIZE);
2871 	isize = size;
2872 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
2873 		tlb1_read_entry(&e, i);
2874 		if (!(e.mas1 & MAS1_VALID))
2875 			continue;
2876 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
2877 			size -= e.size;
2878 			e.mas1 &= ~MAS1_VALID;
2879 			tlb1_write_entry(&e, i);
2880 		}
2881 	}
2882 	if (tlb1_map_base == va + isize)
2883 		tlb1_map_base -= isize;
2884 }
2885 
2886 vm_offset_t
2887 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
2888 {
2889 	vm_paddr_t pa_base;
2890 	vm_offset_t va, sz;
2891 	int i;
2892 	tlb_entry_t e;
2893 
2894 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
2895 
2896 	for (i = 0; i < TLB1_ENTRIES; i++) {
2897 		tlb1_read_entry(&e, i);
2898 		if (!(e.mas1 & MAS1_VALID))
2899 			continue;
2900 		if (pa >= e.phys && (pa + size) <=
2901 		    (e.phys + e.size))
2902 			return (e.virt + (pa - e.phys));
2903 	}
2904 
2905 	pa_base = rounddown(pa, PAGE_SIZE);
2906 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
2907 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
2908 	va = tlb1_map_base + (pa - pa_base);
2909 
2910 	do {
2911 		sz = 1 << (ilog2(size) & ~1);
2912 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
2913 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
2914 		size -= sz;
2915 		pa_base += sz;
2916 		tlb1_map_base += sz;
2917 	} while (size > 0);
2918 
2919 	return (va);
2920 }
2921 
2922 void
2923 pmap_track_page(pmap_t pmap, vm_offset_t va)
2924 {
2925 	vm_paddr_t pa;
2926 	vm_page_t page;
2927 	struct pv_entry *pve;
2928 
2929 	va = trunc_page(va);
2930 	pa = pmap_kextract(va);
2931 	page = PHYS_TO_VM_PAGE(pa);
2932 
2933 	rw_wlock(&pvh_global_lock);
2934 	PMAP_LOCK(pmap);
2935 
2936 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
2937 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
2938 			goto out;
2939 		}
2940 	}
2941 	page->md.pv_tracked = true;
2942 	pv_insert(pmap, va, page);
2943 out:
2944 	PMAP_UNLOCK(pmap);
2945 	rw_wunlock(&pvh_global_lock);
2946 }
2947 
2948 /*
2949  * Setup MAS4 defaults.
2950  * These values are loaded to MAS0-2 on a TLB miss.
2951  */
2952 static void
2953 set_mas4_defaults(void)
2954 {
2955 	uint32_t mas4;
2956 
2957 	/* Defaults: TLB0, PID0, TSIZED=4K */
2958 	mas4 = MAS4_TLBSELD0;
2959 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2960 #ifdef SMP
2961 	mas4 |= MAS4_MD;
2962 #endif
2963 	mtspr(SPR_MAS4, mas4);
2964 	__asm __volatile("isync");
2965 }
2966 
2967 /*
2968  * Return 0 if the physical IO range is encompassed by one of the
2969  * the TLB1 entries, otherwise return related error code.
2970  */
2971 static int
2972 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2973 {
2974 	uint32_t prot;
2975 	vm_paddr_t pa_start;
2976 	vm_paddr_t pa_end;
2977 	unsigned int entry_tsize;
2978 	vm_size_t entry_size;
2979 	tlb_entry_t e;
2980 
2981 	*va = (vm_offset_t)NULL;
2982 
2983 	tlb1_read_entry(&e, i);
2984 	/* Skip invalid entries */
2985 	if (!(e.mas1 & MAS1_VALID))
2986 		return (EINVAL);
2987 
2988 	/*
2989 	 * The entry must be cache-inhibited, guarded, and r/w
2990 	 * so it can function as an i/o page
2991 	 */
2992 	prot = e.mas2 & (MAS2_I | MAS2_G);
2993 	if (prot != (MAS2_I | MAS2_G))
2994 		return (EPERM);
2995 
2996 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
2997 	if (prot != (MAS3_SR | MAS3_SW))
2998 		return (EPERM);
2999 
3000 	/* The address should be within the entry range. */
3001 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3002 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3003 
3004 	entry_size = tsize2size(entry_tsize);
3005 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3006 	    (e.mas3 & MAS3_RPN);
3007 	pa_end = pa_start + entry_size;
3008 
3009 	if ((pa < pa_start) || ((pa + size) > pa_end))
3010 		return (ERANGE);
3011 
3012 	/* Return virtual address of this mapping. */
3013 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3014 	return (0);
3015 }
3016 
3017 #ifdef DDB
3018 /* Print out contents of the MAS registers for each TLB0 entry */
3019 static void
3020 #ifdef __powerpc64__
3021 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
3022 #else
3023 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3024 #endif
3025     uint32_t mas7)
3026 {
3027 	int as;
3028 	char desc[3];
3029 	tlbtid_t tid;
3030 	vm_size_t size;
3031 	unsigned int tsize;
3032 
3033 	desc[2] = '\0';
3034 	if (mas1 & MAS1_VALID)
3035 		desc[0] = 'V';
3036 	else
3037 		desc[0] = ' ';
3038 
3039 	if (mas1 & MAS1_IPROT)
3040 		desc[1] = 'P';
3041 	else
3042 		desc[1] = ' ';
3043 
3044 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3045 	tid = MAS1_GETTID(mas1);
3046 
3047 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3048 	size = 0;
3049 	if (tsize)
3050 		size = tsize2size(tsize);
3051 
3052 	printf("%3d: (%s) [AS=%d] "
3053 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
3054 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3055 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
3056 }
3057 
3058 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
3059 {
3060 	uint32_t mas0, mas1, mas3, mas7;
3061 #ifdef __powerpc64__
3062 	uint64_t mas2;
3063 #else
3064 	uint32_t mas2;
3065 #endif
3066 	int entryidx, way, idx;
3067 
3068 	printf("TLB0 entries:\n");
3069 	for (way = 0; way < TLB0_WAYS; way ++)
3070 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3071 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3072 			mtspr(SPR_MAS0, mas0);
3073 
3074 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3075 			mtspr(SPR_MAS2, mas2);
3076 
3077 			__asm __volatile("isync; tlbre");
3078 
3079 			mas1 = mfspr(SPR_MAS1);
3080 			mas2 = mfspr(SPR_MAS2);
3081 			mas3 = mfspr(SPR_MAS3);
3082 			mas7 = mfspr(SPR_MAS7);
3083 
3084 			idx = tlb0_tableidx(mas2, way);
3085 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3086 		}
3087 }
3088 
3089 /*
3090  * Print out contents of the MAS registers for each TLB1 entry
3091  */
3092 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
3093 {
3094 	uint32_t mas0, mas1, mas3, mas7;
3095 #ifdef __powerpc64__
3096 	uint64_t mas2;
3097 #else
3098 	uint32_t mas2;
3099 #endif
3100 	int i;
3101 
3102 	printf("TLB1 entries:\n");
3103 	for (i = 0; i < TLB1_ENTRIES; i++) {
3104 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3105 		mtspr(SPR_MAS0, mas0);
3106 
3107 		__asm __volatile("isync; tlbre");
3108 
3109 		mas1 = mfspr(SPR_MAS1);
3110 		mas2 = mfspr(SPR_MAS2);
3111 		mas3 = mfspr(SPR_MAS3);
3112 		mas7 = mfspr(SPR_MAS7);
3113 
3114 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3115 	}
3116 }
3117 #endif
3118