xref: /freebsd/sys/powerpc/booke/pmap.c (revision 830940567b49bb0c08dfaed40418999e76616909)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/malloc.h>
57 #include <sys/ktr.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/queue.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/msgbuf.h>
64 #include <sys/lock.h>
65 #include <sys/mutex.h>
66 #include <sys/smp.h>
67 #include <sys/vmmeter.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_pager.h>
78 #include <vm/uma.h>
79 
80 #include <machine/bootinfo.h>
81 #include <machine/cpu.h>
82 #include <machine/pcb.h>
83 #include <machine/platform.h>
84 
85 #include <machine/tlb.h>
86 #include <machine/spr.h>
87 #include <machine/vmparam.h>
88 #include <machine/md_var.h>
89 #include <machine/mmuvar.h>
90 #include <machine/pmap.h>
91 #include <machine/pte.h>
92 
93 #include "mmu_if.h"
94 
95 #define DEBUG
96 #undef DEBUG
97 
98 #ifdef  DEBUG
99 #define debugf(fmt, args...) printf(fmt, ##args)
100 #else
101 #define debugf(fmt, args...)
102 #endif
103 
104 #define TODO			panic("%s: not implemented", __func__);
105 
106 #include "opt_sched.h"
107 #ifndef SCHED_4BSD
108 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109 #endif
110 extern struct mtx sched_lock;
111 
112 extern int dumpsys_minidump;
113 
114 extern unsigned char _etext[];
115 extern unsigned char _end[];
116 
117 /* Kernel physical load address. */
118 extern uint32_t kernload;
119 vm_offset_t kernstart;
120 vm_size_t kernsize;
121 
122 /* Message buffer and tables. */
123 static vm_offset_t data_start;
124 static vm_size_t data_end;
125 
126 /* Phys/avail memory regions. */
127 static struct mem_region *availmem_regions;
128 static int availmem_regions_sz;
129 static struct mem_region *physmem_regions;
130 static int physmem_regions_sz;
131 
132 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
133 static vm_offset_t zero_page_va;
134 static struct mtx zero_page_mutex;
135 
136 static struct mtx tlbivax_mutex;
137 
138 /*
139  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140  * by idle thred only, no lock required.
141  */
142 static vm_offset_t zero_page_idle_va;
143 
144 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
145 static vm_offset_t copy_page_src_va;
146 static vm_offset_t copy_page_dst_va;
147 static struct mtx copy_page_mutex;
148 
149 /**************************************************************************/
150 /* PMAP */
151 /**************************************************************************/
152 
153 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154     vm_prot_t, boolean_t);
155 
156 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158 
159 /*
160  * If user pmap is processed with mmu_booke_remove and the resident count
161  * drops to 0, there are no more pages to remove, so we need not continue.
162  */
163 #define PMAP_REMOVE_DONE(pmap) \
164 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165 
166 extern void tlb_lock(uint32_t *);
167 extern void tlb_unlock(uint32_t *);
168 extern void tid_flush(tlbtid_t);
169 
170 /**************************************************************************/
171 /* TLB and TID handling */
172 /**************************************************************************/
173 
174 /* Translation ID busy table */
175 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
176 
177 /*
178  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
179  * core revisions and should be read from h/w registers during early config.
180  */
181 uint32_t tlb0_entries;
182 uint32_t tlb0_ways;
183 uint32_t tlb0_entries_per_way;
184 
185 #define TLB0_ENTRIES		(tlb0_entries)
186 #define TLB0_WAYS		(tlb0_ways)
187 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
188 
189 #define TLB1_ENTRIES 16
190 
191 /* In-ram copy of the TLB1 */
192 static tlb_entry_t tlb1[TLB1_ENTRIES];
193 
194 /* Next free entry in the TLB1 */
195 static unsigned int tlb1_idx;
196 
197 static tlbtid_t tid_alloc(struct pmap *);
198 
199 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200 
201 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
202 static void tlb1_write_entry(unsigned int);
203 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
205 
206 static vm_size_t tsize2size(unsigned int);
207 static unsigned int size2tsize(vm_size_t);
208 static unsigned int ilog2(unsigned int);
209 
210 static void set_mas4_defaults(void);
211 
212 static inline void tlb0_flush_entry(vm_offset_t);
213 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214 
215 /**************************************************************************/
216 /* Page table management */
217 /**************************************************************************/
218 
219 /* Data for the pv entry allocation mechanism */
220 static uma_zone_t pvzone;
221 static struct vm_object pvzone_obj;
222 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
223 
224 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
225 
226 #ifndef PMAP_SHPGPERPROC
227 #define PMAP_SHPGPERPROC	200
228 #endif
229 
230 static void ptbl_init(void);
231 static struct ptbl_buf *ptbl_buf_alloc(void);
232 static void ptbl_buf_free(struct ptbl_buf *);
233 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
234 
235 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
236 static void ptbl_free(mmu_t, pmap_t, unsigned int);
237 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
238 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
239 
240 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
241 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
242 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
243 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
244 
245 static pv_entry_t pv_alloc(void);
246 static void pv_free(pv_entry_t);
247 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
248 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
249 
250 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
251 #define PTBL_BUFS		(128 * 16)
252 
253 struct ptbl_buf {
254 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
255 	vm_offset_t kva;		/* va of mapping */
256 };
257 
258 /* ptbl free list and a lock used for access synchronization. */
259 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
260 static struct mtx ptbl_buf_freelist_lock;
261 
262 /* Base address of kva space allocated fot ptbl bufs. */
263 static vm_offset_t ptbl_buf_pool_vabase;
264 
265 /* Pointer to ptbl_buf structures. */
266 static struct ptbl_buf *ptbl_bufs;
267 
268 void pmap_bootstrap_ap(volatile uint32_t *);
269 
270 /*
271  * Kernel MMU interface
272  */
273 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
277     vm_size_t, vm_offset_t);
278 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280     vm_prot_t, boolean_t);
281 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282     vm_page_t, vm_prot_t);
283 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284     vm_prot_t);
285 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287     vm_prot_t);
288 static void		mmu_booke_init(mmu_t);
289 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291 static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
292 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
293     int);
294 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
295 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296     vm_object_t, vm_pindex_t, vm_size_t);
297 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298 static void		mmu_booke_page_init(mmu_t, vm_page_t);
299 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300 static void		mmu_booke_pinit(mmu_t, pmap_t);
301 static void		mmu_booke_pinit0(mmu_t, pmap_t);
302 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303     vm_prot_t);
304 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306 static void		mmu_booke_release(mmu_t, pmap_t);
307 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313 static void		mmu_booke_activate(mmu_t, struct thread *);
314 static void		mmu_booke_deactivate(mmu_t, struct thread *);
315 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316 static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
317 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318 static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
320 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
321 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
322 static boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
323 static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
324     vm_size_t, vm_size_t *);
325 static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
326     vm_size_t, vm_offset_t);
327 static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
328 
329 static mmu_method_t mmu_booke_methods[] = {
330 	/* pmap dispatcher interface */
331 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
332 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
333 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
334 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
337 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
338 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
339 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
340 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
341 	MMUMETHOD(mmu_init,		mmu_booke_init),
342 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
343 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
344 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
345 	MMUMETHOD(mmu_map,		mmu_booke_map),
346 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
347 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
348 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
349 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
350 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
351 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
352 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
353 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
354 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
355 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
356 	MMUMETHOD(mmu_release,		mmu_booke_release),
357 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
358 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
359 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
360 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
361 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
362 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
363 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
364 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
365 
366 	/* Internal interfaces */
367 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
368 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
369 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
370 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
371 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
372 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
373 	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
374 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
375 
376 	/* dumpsys() support */
377 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
378 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
379 	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
380 
381 	{ 0, 0 }
382 };
383 
384 static mmu_def_t booke_mmu = {
385 	MMU_TYPE_BOOKE,
386 	mmu_booke_methods,
387 	0
388 };
389 MMU_DEF(booke_mmu);
390 
391 static inline void
392 tlb_miss_lock(void)
393 {
394 #ifdef SMP
395 	struct pcpu *pc;
396 
397 	if (!smp_started)
398 		return;
399 
400 	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
401 		if (pc != pcpup) {
402 
403 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405 
406 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407 			    ("tlb_miss_lock: tried to lock self"));
408 
409 			tlb_lock(pc->pc_booke_tlb_lock);
410 
411 			CTR1(KTR_PMAP, "%s: locked", __func__);
412 		}
413 	}
414 #endif
415 }
416 
417 static inline void
418 tlb_miss_unlock(void)
419 {
420 #ifdef SMP
421 	struct pcpu *pc;
422 
423 	if (!smp_started)
424 		return;
425 
426 	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
427 		if (pc != pcpup) {
428 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429 			    __func__, pc->pc_cpuid);
430 
431 			tlb_unlock(pc->pc_booke_tlb_lock);
432 
433 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434 		}
435 	}
436 #endif
437 }
438 
439 /* Return number of entries in TLB0. */
440 static __inline void
441 tlb0_get_tlbconf(void)
442 {
443 	uint32_t tlb0_cfg;
444 
445 	tlb0_cfg = mfspr(SPR_TLB0CFG);
446 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449 }
450 
451 /* Initialize pool of kva ptbl buffers. */
452 static void
453 ptbl_init(void)
454 {
455 	int i;
456 
457 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461 
462 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463 	TAILQ_INIT(&ptbl_buf_freelist);
464 
465 	for (i = 0; i < PTBL_BUFS; i++) {
466 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468 	}
469 }
470 
471 /* Get a ptbl_buf from the freelist. */
472 static struct ptbl_buf *
473 ptbl_buf_alloc(void)
474 {
475 	struct ptbl_buf *buf;
476 
477 	mtx_lock(&ptbl_buf_freelist_lock);
478 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479 	if (buf != NULL)
480 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481 	mtx_unlock(&ptbl_buf_freelist_lock);
482 
483 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484 
485 	return (buf);
486 }
487 
488 /* Return ptbl buff to free pool. */
489 static void
490 ptbl_buf_free(struct ptbl_buf *buf)
491 {
492 
493 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494 
495 	mtx_lock(&ptbl_buf_freelist_lock);
496 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497 	mtx_unlock(&ptbl_buf_freelist_lock);
498 }
499 
500 /*
501  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502  */
503 static void
504 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505 {
506 	struct ptbl_buf *pbuf;
507 
508 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509 
510 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511 
512 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513 		if (pbuf->kva == (vm_offset_t)ptbl) {
514 			/* Remove from pmap ptbl buf list. */
515 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516 
517 			/* Free corresponding ptbl buf. */
518 			ptbl_buf_free(pbuf);
519 			break;
520 		}
521 }
522 
523 /* Allocate page table. */
524 static pte_t *
525 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526 {
527 	vm_page_t mtbl[PTBL_PAGES];
528 	vm_page_t m;
529 	struct ptbl_buf *pbuf;
530 	unsigned int pidx;
531 	pte_t *ptbl;
532 	int i;
533 
534 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535 	    (pmap == kernel_pmap), pdir_idx);
536 
537 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538 	    ("ptbl_alloc: invalid pdir_idx"));
539 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540 	    ("pte_alloc: valid ptbl entry exists!"));
541 
542 	pbuf = ptbl_buf_alloc();
543 	if (pbuf == NULL)
544 		panic("pte_alloc: couldn't alloc kernel virtual memory");
545 
546 	ptbl = (pte_t *)pbuf->kva;
547 
548 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549 
550 	/* Allocate ptbl pages, this will sleep! */
551 	for (i = 0; i < PTBL_PAGES; i++) {
552 		pidx = (PTBL_PAGES * pdir_idx) + i;
553 		while ((m = vm_page_alloc(NULL, pidx,
554 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555 
556 			PMAP_UNLOCK(pmap);
557 			vm_page_unlock_queues();
558 			VM_WAIT;
559 			vm_page_lock_queues();
560 			PMAP_LOCK(pmap);
561 		}
562 		mtbl[i] = m;
563 	}
564 
565 	/* Map allocated pages into kernel_pmap. */
566 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567 
568 	/* Zero whole ptbl. */
569 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570 
571 	/* Add pbuf to the pmap ptbl bufs list. */
572 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573 
574 	return (ptbl);
575 }
576 
577 /* Free ptbl pages and invalidate pdir entry. */
578 static void
579 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580 {
581 	pte_t *ptbl;
582 	vm_paddr_t pa;
583 	vm_offset_t va;
584 	vm_page_t m;
585 	int i;
586 
587 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588 	    (pmap == kernel_pmap), pdir_idx);
589 
590 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591 	    ("ptbl_free: invalid pdir_idx"));
592 
593 	ptbl = pmap->pm_pdir[pdir_idx];
594 
595 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596 
597 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598 
599 	/*
600 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601 	 * don't attempt to look up the page tables we are releasing.
602 	 */
603 	mtx_lock_spin(&tlbivax_mutex);
604 	tlb_miss_lock();
605 
606 	pmap->pm_pdir[pdir_idx] = NULL;
607 
608 	tlb_miss_unlock();
609 	mtx_unlock_spin(&tlbivax_mutex);
610 
611 	for (i = 0; i < PTBL_PAGES; i++) {
612 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613 		pa = pte_vatopa(mmu, kernel_pmap, va);
614 		m = PHYS_TO_VM_PAGE(pa);
615 		vm_page_free_zero(m);
616 		atomic_subtract_int(&cnt.v_wire_count, 1);
617 		mmu_booke_kremove(mmu, va);
618 	}
619 
620 	ptbl_free_pmap_ptbl(pmap, ptbl);
621 }
622 
623 /*
624  * Decrement ptbl pages hold count and attempt to free ptbl pages.
625  * Called when removing pte entry from ptbl.
626  *
627  * Return 1 if ptbl pages were freed.
628  */
629 static int
630 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631 {
632 	pte_t *ptbl;
633 	vm_paddr_t pa;
634 	vm_page_t m;
635 	int i;
636 
637 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638 	    (pmap == kernel_pmap), pdir_idx);
639 
640 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641 	    ("ptbl_unhold: invalid pdir_idx"));
642 	KASSERT((pmap != kernel_pmap),
643 	    ("ptbl_unhold: unholding kernel ptbl!"));
644 
645 	ptbl = pmap->pm_pdir[pdir_idx];
646 
647 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649 	    ("ptbl_unhold: non kva ptbl"));
650 
651 	/* decrement hold count */
652 	for (i = 0; i < PTBL_PAGES; i++) {
653 		pa = pte_vatopa(mmu, kernel_pmap,
654 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655 		m = PHYS_TO_VM_PAGE(pa);
656 		m->wire_count--;
657 	}
658 
659 	/*
660 	 * Free ptbl pages if there are no pte etries in this ptbl.
661 	 * wire_count has the same value for all ptbl pages, so check the last
662 	 * page.
663 	 */
664 	if (m->wire_count == 0) {
665 		ptbl_free(mmu, pmap, pdir_idx);
666 
667 		//debugf("ptbl_unhold: e (freed ptbl)\n");
668 		return (1);
669 	}
670 
671 	return (0);
672 }
673 
674 /*
675  * Increment hold count for ptbl pages. This routine is used when a new pte
676  * entry is being inserted into the ptbl.
677  */
678 static void
679 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680 {
681 	vm_paddr_t pa;
682 	pte_t *ptbl;
683 	vm_page_t m;
684 	int i;
685 
686 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687 	    pdir_idx);
688 
689 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690 	    ("ptbl_hold: invalid pdir_idx"));
691 	KASSERT((pmap != kernel_pmap),
692 	    ("ptbl_hold: holding kernel ptbl!"));
693 
694 	ptbl = pmap->pm_pdir[pdir_idx];
695 
696 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697 
698 	for (i = 0; i < PTBL_PAGES; i++) {
699 		pa = pte_vatopa(mmu, kernel_pmap,
700 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701 		m = PHYS_TO_VM_PAGE(pa);
702 		m->wire_count++;
703 	}
704 }
705 
706 /* Allocate pv_entry structure. */
707 pv_entry_t
708 pv_alloc(void)
709 {
710 	pv_entry_t pv;
711 
712 	pv_entry_count++;
713 	if (pv_entry_count > pv_entry_high_water)
714 		pagedaemon_wakeup();
715 	pv = uma_zalloc(pvzone, M_NOWAIT);
716 
717 	return (pv);
718 }
719 
720 /* Free pv_entry structure. */
721 static __inline void
722 pv_free(pv_entry_t pve)
723 {
724 
725 	pv_entry_count--;
726 	uma_zfree(pvzone, pve);
727 }
728 
729 
730 /* Allocate and initialize pv_entry structure. */
731 static void
732 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733 {
734 	pv_entry_t pve;
735 
736 	//int su = (pmap == kernel_pmap);
737 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738 	//	(u_int32_t)pmap, va, (u_int32_t)m);
739 
740 	pve = pv_alloc();
741 	if (pve == NULL)
742 		panic("pv_insert: no pv entries!");
743 
744 	pve->pv_pmap = pmap;
745 	pve->pv_va = va;
746 
747 	/* add to pv_list */
748 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
750 
751 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752 
753 	//debugf("pv_insert: e\n");
754 }
755 
756 /* Destroy pv entry. */
757 static void
758 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759 {
760 	pv_entry_t pve;
761 
762 	//int su = (pmap == kernel_pmap);
763 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764 
765 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
767 
768 	/* find pv entry */
769 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771 			/* remove from pv_list */
772 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773 			if (TAILQ_EMPTY(&m->md.pv_list))
774 				vm_page_flag_clear(m, PG_WRITEABLE);
775 
776 			/* free pv entry struct */
777 			pv_free(pve);
778 			break;
779 		}
780 	}
781 
782 	//debugf("pv_remove: e\n");
783 }
784 
785 /*
786  * Clean pte entry, try to free page table page if requested.
787  *
788  * Return 1 if ptbl pages were freed, otherwise return 0.
789  */
790 static int
791 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792 {
793 	unsigned int pdir_idx = PDIR_IDX(va);
794 	unsigned int ptbl_idx = PTBL_IDX(va);
795 	vm_page_t m;
796 	pte_t *ptbl;
797 	pte_t *pte;
798 
799 	//int su = (pmap == kernel_pmap);
800 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801 	//		su, (u_int32_t)pmap, va, flags);
802 
803 	ptbl = pmap->pm_pdir[pdir_idx];
804 	KASSERT(ptbl, ("pte_remove: null ptbl"));
805 
806 	pte = &ptbl[ptbl_idx];
807 
808 	if (pte == NULL || !PTE_ISVALID(pte))
809 		return (0);
810 
811 	if (PTE_ISWIRED(pte))
812 		pmap->pm_stats.wired_count--;
813 
814 	/* Handle managed entry. */
815 	if (PTE_ISMANAGED(pte)) {
816 		/* Get vm_page_t for mapped pte. */
817 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818 
819 		if (PTE_ISMODIFIED(pte))
820 			vm_page_dirty(m);
821 
822 		if (PTE_ISREFERENCED(pte))
823 			vm_page_flag_set(m, PG_REFERENCED);
824 
825 		pv_remove(pmap, va, m);
826 	}
827 
828 	mtx_lock_spin(&tlbivax_mutex);
829 	tlb_miss_lock();
830 
831 	tlb0_flush_entry(va);
832 	pte->flags = 0;
833 	pte->rpn = 0;
834 
835 	tlb_miss_unlock();
836 	mtx_unlock_spin(&tlbivax_mutex);
837 
838 	pmap->pm_stats.resident_count--;
839 
840 	if (flags & PTBL_UNHOLD) {
841 		//debugf("pte_remove: e (unhold)\n");
842 		return (ptbl_unhold(mmu, pmap, pdir_idx));
843 	}
844 
845 	//debugf("pte_remove: e\n");
846 	return (0);
847 }
848 
849 /*
850  * Insert PTE for a given page and virtual address.
851  */
852 static void
853 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854 {
855 	unsigned int pdir_idx = PDIR_IDX(va);
856 	unsigned int ptbl_idx = PTBL_IDX(va);
857 	pte_t *ptbl, *pte;
858 
859 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860 	    pmap == kernel_pmap, pmap, va);
861 
862 	/* Get the page table pointer. */
863 	ptbl = pmap->pm_pdir[pdir_idx];
864 
865 	if (ptbl == NULL) {
866 		/* Allocate page table pages. */
867 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868 	} else {
869 		/*
870 		 * Check if there is valid mapping for requested
871 		 * va, if there is, remove it.
872 		 */
873 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874 		if (PTE_ISVALID(pte)) {
875 			pte_remove(mmu, pmap, va, PTBL_HOLD);
876 		} else {
877 			/*
878 			 * pte is not used, increment hold count
879 			 * for ptbl pages.
880 			 */
881 			if (pmap != kernel_pmap)
882 				ptbl_hold(mmu, pmap, pdir_idx);
883 		}
884 	}
885 
886 	/*
887 	 * Insert pv_entry into pv_list for mapped page if part of managed
888 	 * memory.
889 	 */
890         if ((m->flags & PG_FICTITIOUS) == 0) {
891 		if ((m->flags & PG_UNMANAGED) == 0) {
892 			flags |= PTE_MANAGED;
893 
894 			/* Create and insert pv entry. */
895 			pv_insert(pmap, va, m);
896 		}
897 	}
898 
899 	pmap->pm_stats.resident_count++;
900 
901 	mtx_lock_spin(&tlbivax_mutex);
902 	tlb_miss_lock();
903 
904 	tlb0_flush_entry(va);
905 	if (pmap->pm_pdir[pdir_idx] == NULL) {
906 		/*
907 		 * If we just allocated a new page table, hook it in
908 		 * the pdir.
909 		 */
910 		pmap->pm_pdir[pdir_idx] = ptbl;
911 	}
912 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
913 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
914 	pte->flags |= (PTE_VALID | flags);
915 
916 	tlb_miss_unlock();
917 	mtx_unlock_spin(&tlbivax_mutex);
918 }
919 
920 /* Return the pa for the given pmap/va. */
921 static vm_paddr_t
922 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
923 {
924 	vm_paddr_t pa = 0;
925 	pte_t *pte;
926 
927 	pte = pte_find(mmu, pmap, va);
928 	if ((pte != NULL) && PTE_ISVALID(pte))
929 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
930 	return (pa);
931 }
932 
933 /* Get a pointer to a PTE in a page table. */
934 static pte_t *
935 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
936 {
937 	unsigned int pdir_idx = PDIR_IDX(va);
938 	unsigned int ptbl_idx = PTBL_IDX(va);
939 
940 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
941 
942 	if (pmap->pm_pdir[pdir_idx])
943 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
944 
945 	return (NULL);
946 }
947 
948 /**************************************************************************/
949 /* PMAP related */
950 /**************************************************************************/
951 
952 /*
953  * This is called during e500_init, before the system is really initialized.
954  */
955 static void
956 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
957 {
958 	vm_offset_t phys_kernelend;
959 	struct mem_region *mp, *mp1;
960 	int cnt, i, j;
961 	u_int s, e, sz;
962 	u_int phys_avail_count;
963 	vm_size_t physsz, hwphyssz, kstack0_sz;
964 	vm_offset_t kernel_pdir, kstack0, va;
965 	vm_paddr_t kstack0_phys;
966 	void *dpcpu;
967 	pte_t *pte;
968 
969 	debugf("mmu_booke_bootstrap: entered\n");
970 
971 	/* Initialize invalidation mutex */
972 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
973 
974 	/* Read TLB0 size and associativity. */
975 	tlb0_get_tlbconf();
976 
977 	/* Align kernel start and end address (kernel image). */
978 	kernstart = trunc_page(start);
979 	data_start = round_page(kernelend);
980 	kernsize = data_start - kernstart;
981 
982 	data_end = data_start;
983 
984 	/* Allocate space for the message buffer. */
985 	msgbufp = (struct msgbuf *)data_end;
986 	data_end += MSGBUF_SIZE;
987 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
988 	    data_end);
989 
990 	data_end = round_page(data_end);
991 
992 	/* Allocate the dynamic per-cpu area. */
993 	dpcpu = (void *)data_end;
994 	data_end += DPCPU_SIZE;
995 	dpcpu_init(dpcpu, 0);
996 
997 	/* Allocate space for ptbl_bufs. */
998 	ptbl_bufs = (struct ptbl_buf *)data_end;
999 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1000 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1001 	    data_end);
1002 
1003 	data_end = round_page(data_end);
1004 
1005 	/* Allocate PTE tables for kernel KVA. */
1006 	kernel_pdir = data_end;
1007 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1008 	    PDIR_SIZE - 1) / PDIR_SIZE;
1009 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1010 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1011 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1012 
1013 	debugf(" data_end: 0x%08x\n", data_end);
1014 	if (data_end - kernstart > 0x1000000) {
1015 		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1016 		tlb1_mapin_region(kernstart + 0x1000000,
1017 		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1018 	} else
1019 		data_end = (data_end + 0xffffff) & ~0xffffff;
1020 
1021 	debugf(" updated data_end: 0x%08x\n", data_end);
1022 
1023 	kernsize += data_end - data_start;
1024 
1025 	/*
1026 	 * Clear the structures - note we can only do it safely after the
1027 	 * possible additional TLB1 translations are in place (above) so that
1028 	 * all range up to the currently calculated 'data_end' is covered.
1029 	 */
1030 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1031 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1032 
1033 	/*******************************************************/
1034 	/* Set the start and end of kva. */
1035 	/*******************************************************/
1036 	virtual_avail = round_page(data_end);
1037 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1038 
1039 	/* Allocate KVA space for page zero/copy operations. */
1040 	zero_page_va = virtual_avail;
1041 	virtual_avail += PAGE_SIZE;
1042 	zero_page_idle_va = virtual_avail;
1043 	virtual_avail += PAGE_SIZE;
1044 	copy_page_src_va = virtual_avail;
1045 	virtual_avail += PAGE_SIZE;
1046 	copy_page_dst_va = virtual_avail;
1047 	virtual_avail += PAGE_SIZE;
1048 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1049 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1050 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1051 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1052 
1053 	/* Initialize page zero/copy mutexes. */
1054 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1055 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1056 
1057 	/* Allocate KVA space for ptbl bufs. */
1058 	ptbl_buf_pool_vabase = virtual_avail;
1059 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1060 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1061 	    ptbl_buf_pool_vabase, virtual_avail);
1062 
1063 	/* Calculate corresponding physical addresses for the kernel region. */
1064 	phys_kernelend = kernload + kernsize;
1065 	debugf("kernel image and allocated data:\n");
1066 	debugf(" kernload    = 0x%08x\n", kernload);
1067 	debugf(" kernstart   = 0x%08x\n", kernstart);
1068 	debugf(" kernsize    = 0x%08x\n", kernsize);
1069 
1070 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1071 		panic("mmu_booke_bootstrap: phys_avail too small");
1072 
1073 	/*
1074 	 * Remove kernel physical address range from avail regions list. Page
1075 	 * align all regions.  Non-page aligned memory isn't very interesting
1076 	 * to us.  Also, sort the entries for ascending addresses.
1077 	 */
1078 
1079 	/* Retrieve phys/avail mem regions */
1080 	mem_regions(&physmem_regions, &physmem_regions_sz,
1081 	    &availmem_regions, &availmem_regions_sz);
1082 	sz = 0;
1083 	cnt = availmem_regions_sz;
1084 	debugf("processing avail regions:\n");
1085 	for (mp = availmem_regions; mp->mr_size; mp++) {
1086 		s = mp->mr_start;
1087 		e = mp->mr_start + mp->mr_size;
1088 		debugf(" %08x-%08x -> ", s, e);
1089 		/* Check whether this region holds all of the kernel. */
1090 		if (s < kernload && e > phys_kernelend) {
1091 			availmem_regions[cnt].mr_start = phys_kernelend;
1092 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1093 			e = kernload;
1094 		}
1095 		/* Look whether this regions starts within the kernel. */
1096 		if (s >= kernload && s < phys_kernelend) {
1097 			if (e <= phys_kernelend)
1098 				goto empty;
1099 			s = phys_kernelend;
1100 		}
1101 		/* Now look whether this region ends within the kernel. */
1102 		if (e > kernload && e <= phys_kernelend) {
1103 			if (s >= kernload)
1104 				goto empty;
1105 			e = kernload;
1106 		}
1107 		/* Now page align the start and size of the region. */
1108 		s = round_page(s);
1109 		e = trunc_page(e);
1110 		if (e < s)
1111 			e = s;
1112 		sz = e - s;
1113 		debugf("%08x-%08x = %x\n", s, e, sz);
1114 
1115 		/* Check whether some memory is left here. */
1116 		if (sz == 0) {
1117 		empty:
1118 			memmove(mp, mp + 1,
1119 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1120 			cnt--;
1121 			mp--;
1122 			continue;
1123 		}
1124 
1125 		/* Do an insertion sort. */
1126 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1127 			if (s < mp1->mr_start)
1128 				break;
1129 		if (mp1 < mp) {
1130 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1131 			mp1->mr_start = s;
1132 			mp1->mr_size = sz;
1133 		} else {
1134 			mp->mr_start = s;
1135 			mp->mr_size = sz;
1136 		}
1137 	}
1138 	availmem_regions_sz = cnt;
1139 
1140 	/*******************************************************/
1141 	/* Steal physical memory for kernel stack from the end */
1142 	/* of the first avail region                           */
1143 	/*******************************************************/
1144 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1145 	kstack0_phys = availmem_regions[0].mr_start +
1146 	    availmem_regions[0].mr_size;
1147 	kstack0_phys -= kstack0_sz;
1148 	availmem_regions[0].mr_size -= kstack0_sz;
1149 
1150 	/*******************************************************/
1151 	/* Fill in phys_avail table, based on availmem_regions */
1152 	/*******************************************************/
1153 	phys_avail_count = 0;
1154 	physsz = 0;
1155 	hwphyssz = 0;
1156 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1157 
1158 	debugf("fill in phys_avail:\n");
1159 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1160 
1161 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1162 		    availmem_regions[i].mr_start,
1163 		    availmem_regions[i].mr_start +
1164 		        availmem_regions[i].mr_size,
1165 		    availmem_regions[i].mr_size);
1166 
1167 		if (hwphyssz != 0 &&
1168 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1169 			debugf(" hw.physmem adjust\n");
1170 			if (physsz < hwphyssz) {
1171 				phys_avail[j] = availmem_regions[i].mr_start;
1172 				phys_avail[j + 1] =
1173 				    availmem_regions[i].mr_start +
1174 				    hwphyssz - physsz;
1175 				physsz = hwphyssz;
1176 				phys_avail_count++;
1177 			}
1178 			break;
1179 		}
1180 
1181 		phys_avail[j] = availmem_regions[i].mr_start;
1182 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1183 		    availmem_regions[i].mr_size;
1184 		phys_avail_count++;
1185 		physsz += availmem_regions[i].mr_size;
1186 	}
1187 	physmem = btoc(physsz);
1188 
1189 	/* Calculate the last available physical address. */
1190 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1191 		;
1192 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1193 
1194 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1195 	debugf("phys_avail_count = %d\n", phys_avail_count);
1196 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1197 	    physmem);
1198 
1199 	/*******************************************************/
1200 	/* Initialize (statically allocated) kernel pmap. */
1201 	/*******************************************************/
1202 	PMAP_LOCK_INIT(kernel_pmap);
1203 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1204 
1205 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1206 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1207 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1208 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1209 
1210 	/* Initialize kernel pdir */
1211 	for (i = 0; i < kernel_ptbls; i++)
1212 		kernel_pmap->pm_pdir[kptbl_min + i] =
1213 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1214 
1215 	for (i = 0; i < MAXCPU; i++) {
1216 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1217 
1218 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1219 		tidbusy[i][0] = kernel_pmap;
1220 	}
1221 
1222 	/*
1223 	 * Fill in PTEs covering kernel code and data. They are not required
1224 	 * for address translation, as this area is covered by static TLB1
1225 	 * entries, but for pte_vatopa() to work correctly with kernel area
1226 	 * addresses.
1227 	 */
1228 	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1229 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1230 		pte->rpn = kernload + (va - KERNBASE);
1231 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1232 		    PTE_VALID;
1233 	}
1234 	/* Mark kernel_pmap active on all CPUs */
1235 	kernel_pmap->pm_active = ~0;
1236 
1237 	/*******************************************************/
1238 	/* Final setup */
1239 	/*******************************************************/
1240 
1241 	/* Enter kstack0 into kernel map, provide guard page */
1242 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1243 	thread0.td_kstack = kstack0;
1244 	thread0.td_kstack_pages = KSTACK_PAGES;
1245 
1246 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1247 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1248 	    kstack0_phys, kstack0_phys + kstack0_sz);
1249 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1250 
1251 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1252 	for (i = 0; i < KSTACK_PAGES; i++) {
1253 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1254 		kstack0 += PAGE_SIZE;
1255 		kstack0_phys += PAGE_SIZE;
1256 	}
1257 
1258 	debugf("virtual_avail = %08x\n", virtual_avail);
1259 	debugf("virtual_end   = %08x\n", virtual_end);
1260 
1261 	debugf("mmu_booke_bootstrap: exit\n");
1262 }
1263 
1264 void
1265 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1266 {
1267 	int i;
1268 
1269 	/*
1270 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1271 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1272 	 * these values directly to (re)program AP's TLB1 hardware.
1273 	 */
1274 	for (i = 0; i < tlb1_idx; i ++) {
1275 		/* Skip invalid entries */
1276 		if (!(tlb1[i].mas1 & MAS1_VALID))
1277 			continue;
1278 
1279 		tlb1_write_entry(i);
1280 	}
1281 
1282 	set_mas4_defaults();
1283 }
1284 
1285 /*
1286  * Get the physical page address for the given pmap/virtual address.
1287  */
1288 static vm_paddr_t
1289 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1290 {
1291 	vm_paddr_t pa;
1292 
1293 	PMAP_LOCK(pmap);
1294 	pa = pte_vatopa(mmu, pmap, va);
1295 	PMAP_UNLOCK(pmap);
1296 
1297 	return (pa);
1298 }
1299 
1300 /*
1301  * Extract the physical page address associated with the given
1302  * kernel virtual address.
1303  */
1304 static vm_paddr_t
1305 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1306 {
1307 
1308 	return (pte_vatopa(mmu, kernel_pmap, va));
1309 }
1310 
1311 /*
1312  * Initialize the pmap module.
1313  * Called by vm_init, to initialize any structures that the pmap
1314  * system needs to map virtual memory.
1315  */
1316 static void
1317 mmu_booke_init(mmu_t mmu)
1318 {
1319 	int shpgperproc = PMAP_SHPGPERPROC;
1320 
1321 	/*
1322 	 * Initialize the address space (zone) for the pv entries.  Set a
1323 	 * high water mark so that the system can recover from excessive
1324 	 * numbers of pv entries.
1325 	 */
1326 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1327 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1328 
1329 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1330 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1331 
1332 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1333 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1334 
1335 	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1336 
1337 	/* Pre-fill pvzone with initial number of pv entries. */
1338 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1339 
1340 	/* Initialize ptbl allocation. */
1341 	ptbl_init();
1342 }
1343 
1344 /*
1345  * Map a list of wired pages into kernel virtual address space.  This is
1346  * intended for temporary mappings which do not need page modification or
1347  * references recorded.  Existing mappings in the region are overwritten.
1348  */
1349 static void
1350 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1351 {
1352 	vm_offset_t va;
1353 
1354 	va = sva;
1355 	while (count-- > 0) {
1356 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1357 		va += PAGE_SIZE;
1358 		m++;
1359 	}
1360 }
1361 
1362 /*
1363  * Remove page mappings from kernel virtual address space.  Intended for
1364  * temporary mappings entered by mmu_booke_qenter.
1365  */
1366 static void
1367 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1368 {
1369 	vm_offset_t va;
1370 
1371 	va = sva;
1372 	while (count-- > 0) {
1373 		mmu_booke_kremove(mmu, va);
1374 		va += PAGE_SIZE;
1375 	}
1376 }
1377 
1378 /*
1379  * Map a wired page into kernel virtual address space.
1380  */
1381 static void
1382 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1383 {
1384 	unsigned int pdir_idx = PDIR_IDX(va);
1385 	unsigned int ptbl_idx = PTBL_IDX(va);
1386 	uint32_t flags;
1387 	pte_t *pte;
1388 
1389 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1390 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1391 
1392 	flags = 0;
1393 	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1394 	flags |= PTE_M;
1395 
1396 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1397 
1398 	mtx_lock_spin(&tlbivax_mutex);
1399 	tlb_miss_lock();
1400 
1401 	if (PTE_ISVALID(pte)) {
1402 
1403 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1404 
1405 		/* Flush entry from TLB0 */
1406 		tlb0_flush_entry(va);
1407 	}
1408 
1409 	pte->rpn = pa & ~PTE_PA_MASK;
1410 	pte->flags = flags;
1411 
1412 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1413 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1414 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1415 
1416 	/* Flush the real memory from the instruction cache. */
1417 	if ((flags & (PTE_I | PTE_G)) == 0) {
1418 		__syncicache((void *)va, PAGE_SIZE);
1419 	}
1420 
1421 	tlb_miss_unlock();
1422 	mtx_unlock_spin(&tlbivax_mutex);
1423 }
1424 
1425 /*
1426  * Remove a page from kernel page table.
1427  */
1428 static void
1429 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1430 {
1431 	unsigned int pdir_idx = PDIR_IDX(va);
1432 	unsigned int ptbl_idx = PTBL_IDX(va);
1433 	pte_t *pte;
1434 
1435 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1436 
1437 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1438 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1439 	    ("mmu_booke_kremove: invalid va"));
1440 
1441 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1442 
1443 	if (!PTE_ISVALID(pte)) {
1444 
1445 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1446 
1447 		return;
1448 	}
1449 
1450 	mtx_lock_spin(&tlbivax_mutex);
1451 	tlb_miss_lock();
1452 
1453 	/* Invalidate entry in TLB0, update PTE. */
1454 	tlb0_flush_entry(va);
1455 	pte->flags = 0;
1456 	pte->rpn = 0;
1457 
1458 	tlb_miss_unlock();
1459 	mtx_unlock_spin(&tlbivax_mutex);
1460 }
1461 
1462 /*
1463  * Initialize pmap associated with process 0.
1464  */
1465 static void
1466 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1467 {
1468 
1469 	mmu_booke_pinit(mmu, pmap);
1470 	PCPU_SET(curpmap, pmap);
1471 }
1472 
1473 /*
1474  * Initialize a preallocated and zeroed pmap structure,
1475  * such as one in a vmspace structure.
1476  */
1477 static void
1478 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1479 {
1480 	int i;
1481 
1482 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1483 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1484 
1485 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1486 
1487 	PMAP_LOCK_INIT(pmap);
1488 	for (i = 0; i < MAXCPU; i++)
1489 		pmap->pm_tid[i] = TID_NONE;
1490 	pmap->pm_active = 0;
1491 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1492 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1493 	TAILQ_INIT(&pmap->pm_ptbl_list);
1494 }
1495 
1496 /*
1497  * Release any resources held by the given physical map.
1498  * Called when a pmap initialized by mmu_booke_pinit is being released.
1499  * Should only be called if the map contains no valid mappings.
1500  */
1501 static void
1502 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1503 {
1504 
1505 	printf("mmu_booke_release: s\n");
1506 
1507 	KASSERT(pmap->pm_stats.resident_count == 0,
1508 	    ("pmap_release: pmap resident count %ld != 0",
1509 	    pmap->pm_stats.resident_count));
1510 
1511 	PMAP_LOCK_DESTROY(pmap);
1512 }
1513 
1514 /*
1515  * Insert the given physical page at the specified virtual address in the
1516  * target physical map with the protection requested. If specified the page
1517  * will be wired down.
1518  */
1519 static void
1520 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1521     vm_prot_t prot, boolean_t wired)
1522 {
1523 
1524 	vm_page_lock_queues();
1525 	PMAP_LOCK(pmap);
1526 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1527 	vm_page_unlock_queues();
1528 	PMAP_UNLOCK(pmap);
1529 }
1530 
1531 static void
1532 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1533     vm_prot_t prot, boolean_t wired)
1534 {
1535 	pte_t *pte;
1536 	vm_paddr_t pa;
1537 	uint32_t flags;
1538 	int su, sync;
1539 
1540 	pa = VM_PAGE_TO_PHYS(m);
1541 	su = (pmap == kernel_pmap);
1542 	sync = 0;
1543 
1544 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1545 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1546 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1547 	//		(u_int32_t)m, va, pa, prot, wired);
1548 
1549 	if (su) {
1550 		KASSERT(((va >= virtual_avail) &&
1551 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1552 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1553 	} else {
1554 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1555 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1556 	}
1557 
1558 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1559 
1560 	/*
1561 	 * If there is an existing mapping, and the physical address has not
1562 	 * changed, must be protection or wiring change.
1563 	 */
1564 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1565 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1566 
1567 		/*
1568 		 * Before actually updating pte->flags we calculate and
1569 		 * prepare its new value in a helper var.
1570 		 */
1571 		flags = pte->flags;
1572 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1573 
1574 		/* Wiring change, just update stats. */
1575 		if (wired) {
1576 			if (!PTE_ISWIRED(pte)) {
1577 				flags |= PTE_WIRED;
1578 				pmap->pm_stats.wired_count++;
1579 			}
1580 		} else {
1581 			if (PTE_ISWIRED(pte)) {
1582 				flags &= ~PTE_WIRED;
1583 				pmap->pm_stats.wired_count--;
1584 			}
1585 		}
1586 
1587 		if (prot & VM_PROT_WRITE) {
1588 			/* Add write permissions. */
1589 			flags |= PTE_SW;
1590 			if (!su)
1591 				flags |= PTE_UW;
1592 
1593 			vm_page_flag_set(m, PG_WRITEABLE);
1594 		} else {
1595 			/* Handle modified pages, sense modify status. */
1596 
1597 			/*
1598 			 * The PTE_MODIFIED flag could be set by underlying
1599 			 * TLB misses since we last read it (above), possibly
1600 			 * other CPUs could update it so we check in the PTE
1601 			 * directly rather than rely on that saved local flags
1602 			 * copy.
1603 			 */
1604 			if (PTE_ISMODIFIED(pte))
1605 				vm_page_dirty(m);
1606 		}
1607 
1608 		if (prot & VM_PROT_EXECUTE) {
1609 			flags |= PTE_SX;
1610 			if (!su)
1611 				flags |= PTE_UX;
1612 
1613 			/*
1614 			 * Check existing flags for execute permissions: if we
1615 			 * are turning execute permissions on, icache should
1616 			 * be flushed.
1617 			 */
1618 			if ((flags & (PTE_UX | PTE_SX)) == 0)
1619 				sync++;
1620 		}
1621 
1622 		flags &= ~PTE_REFERENCED;
1623 
1624 		/*
1625 		 * The new flags value is all calculated -- only now actually
1626 		 * update the PTE.
1627 		 */
1628 		mtx_lock_spin(&tlbivax_mutex);
1629 		tlb_miss_lock();
1630 
1631 		tlb0_flush_entry(va);
1632 		pte->flags = flags;
1633 
1634 		tlb_miss_unlock();
1635 		mtx_unlock_spin(&tlbivax_mutex);
1636 
1637 	} else {
1638 		/*
1639 		 * If there is an existing mapping, but it's for a different
1640 		 * physical address, pte_enter() will delete the old mapping.
1641 		 */
1642 		//if ((pte != NULL) && PTE_ISVALID(pte))
1643 		//	debugf("mmu_booke_enter_locked: replace\n");
1644 		//else
1645 		//	debugf("mmu_booke_enter_locked: new\n");
1646 
1647 		/* Now set up the flags and install the new mapping. */
1648 		flags = (PTE_SR | PTE_VALID);
1649 		flags |= PTE_M;
1650 
1651 		if (!su)
1652 			flags |= PTE_UR;
1653 
1654 		if (prot & VM_PROT_WRITE) {
1655 			flags |= PTE_SW;
1656 			if (!su)
1657 				flags |= PTE_UW;
1658 
1659 			vm_page_flag_set(m, PG_WRITEABLE);
1660 		}
1661 
1662 		if (prot & VM_PROT_EXECUTE) {
1663 			flags |= PTE_SX;
1664 			if (!su)
1665 				flags |= PTE_UX;
1666 		}
1667 
1668 		/* If its wired update stats. */
1669 		if (wired) {
1670 			pmap->pm_stats.wired_count++;
1671 			flags |= PTE_WIRED;
1672 		}
1673 
1674 		pte_enter(mmu, pmap, m, va, flags);
1675 
1676 		/* Flush the real memory from the instruction cache. */
1677 		if (prot & VM_PROT_EXECUTE)
1678 			sync++;
1679 	}
1680 
1681 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1682 		__syncicache((void *)va, PAGE_SIZE);
1683 		sync = 0;
1684 	}
1685 
1686 	if (sync) {
1687 		/* Create a temporary mapping. */
1688 		pmap = PCPU_GET(curpmap);
1689 
1690 		va = 0;
1691 		pte = pte_find(mmu, pmap, va);
1692 		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1693 
1694 		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1695 
1696 		pte_enter(mmu, pmap, m, va, flags);
1697 		__syncicache((void *)va, PAGE_SIZE);
1698 		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1699 	}
1700 }
1701 
1702 /*
1703  * Maps a sequence of resident pages belonging to the same object.
1704  * The sequence begins with the given page m_start.  This page is
1705  * mapped at the given virtual address start.  Each subsequent page is
1706  * mapped at a virtual address that is offset from start by the same
1707  * amount as the page is offset from m_start within the object.  The
1708  * last page in the sequence is the page with the largest offset from
1709  * m_start that can be mapped at a virtual address less than the given
1710  * virtual address end.  Not every virtual page between start and end
1711  * is mapped; only those for which a resident page exists with the
1712  * corresponding offset from m_start are mapped.
1713  */
1714 static void
1715 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1716     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1717 {
1718 	vm_page_t m;
1719 	vm_pindex_t diff, psize;
1720 
1721 	psize = atop(end - start);
1722 	m = m_start;
1723 	PMAP_LOCK(pmap);
1724 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1725 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1726 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1727 		m = TAILQ_NEXT(m, listq);
1728 	}
1729 	PMAP_UNLOCK(pmap);
1730 }
1731 
1732 static void
1733 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1734     vm_prot_t prot)
1735 {
1736 
1737 	PMAP_LOCK(pmap);
1738 	mmu_booke_enter_locked(mmu, pmap, va, m,
1739 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1740 	PMAP_UNLOCK(pmap);
1741 }
1742 
1743 /*
1744  * Remove the given range of addresses from the specified map.
1745  *
1746  * It is assumed that the start and end are properly rounded to the page size.
1747  */
1748 static void
1749 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1750 {
1751 	pte_t *pte;
1752 	uint8_t hold_flag;
1753 
1754 	int su = (pmap == kernel_pmap);
1755 
1756 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1757 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1758 
1759 	if (su) {
1760 		KASSERT(((va >= virtual_avail) &&
1761 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1762 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1763 	} else {
1764 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1765 		    ("mmu_booke_remove: user pmap, non user va"));
1766 	}
1767 
1768 	if (PMAP_REMOVE_DONE(pmap)) {
1769 		//debugf("mmu_booke_remove: e (empty)\n");
1770 		return;
1771 	}
1772 
1773 	hold_flag = PTBL_HOLD_FLAG(pmap);
1774 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1775 
1776 	vm_page_lock_queues();
1777 	PMAP_LOCK(pmap);
1778 	for (; va < endva; va += PAGE_SIZE) {
1779 		pte = pte_find(mmu, pmap, va);
1780 		if ((pte != NULL) && PTE_ISVALID(pte))
1781 			pte_remove(mmu, pmap, va, hold_flag);
1782 	}
1783 	PMAP_UNLOCK(pmap);
1784 	vm_page_unlock_queues();
1785 
1786 	//debugf("mmu_booke_remove: e\n");
1787 }
1788 
1789 /*
1790  * Remove physical page from all pmaps in which it resides.
1791  */
1792 static void
1793 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1794 {
1795 	pv_entry_t pv, pvn;
1796 	uint8_t hold_flag;
1797 
1798 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1799 
1800 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1801 		pvn = TAILQ_NEXT(pv, pv_link);
1802 
1803 		PMAP_LOCK(pv->pv_pmap);
1804 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1805 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1806 		PMAP_UNLOCK(pv->pv_pmap);
1807 	}
1808 	vm_page_flag_clear(m, PG_WRITEABLE);
1809 }
1810 
1811 /*
1812  * Map a range of physical addresses into kernel virtual address space.
1813  */
1814 static vm_offset_t
1815 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1816     vm_offset_t pa_end, int prot)
1817 {
1818 	vm_offset_t sva = *virt;
1819 	vm_offset_t va = sva;
1820 
1821 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1822 	//		sva, pa_start, pa_end);
1823 
1824 	while (pa_start < pa_end) {
1825 		mmu_booke_kenter(mmu, va, pa_start);
1826 		va += PAGE_SIZE;
1827 		pa_start += PAGE_SIZE;
1828 	}
1829 	*virt = va;
1830 
1831 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1832 	return (sva);
1833 }
1834 
1835 /*
1836  * The pmap must be activated before it's address space can be accessed in any
1837  * way.
1838  */
1839 static void
1840 mmu_booke_activate(mmu_t mmu, struct thread *td)
1841 {
1842 	pmap_t pmap;
1843 
1844 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1845 
1846 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1847 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1848 
1849 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1850 
1851 	mtx_lock_spin(&sched_lock);
1852 
1853 	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1854 	PCPU_SET(curpmap, pmap);
1855 
1856 	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1857 		tid_alloc(pmap);
1858 
1859 	/* Load PID0 register with pmap tid value. */
1860 	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1861 	__asm __volatile("isync");
1862 
1863 	mtx_unlock_spin(&sched_lock);
1864 
1865 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1866 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1867 }
1868 
1869 /*
1870  * Deactivate the specified process's address space.
1871  */
1872 static void
1873 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1874 {
1875 	pmap_t pmap;
1876 
1877 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1878 
1879 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1880 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1881 
1882 	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1883 	PCPU_SET(curpmap, NULL);
1884 }
1885 
1886 /*
1887  * Copy the range specified by src_addr/len
1888  * from the source map to the range dst_addr/len
1889  * in the destination map.
1890  *
1891  * This routine is only advisory and need not do anything.
1892  */
1893 static void
1894 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1895     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1896 {
1897 
1898 }
1899 
1900 /*
1901  * Set the physical protection on the specified range of this map as requested.
1902  */
1903 static void
1904 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1905     vm_prot_t prot)
1906 {
1907 	vm_offset_t va;
1908 	vm_page_t m;
1909 	pte_t *pte;
1910 
1911 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1912 		mmu_booke_remove(mmu, pmap, sva, eva);
1913 		return;
1914 	}
1915 
1916 	if (prot & VM_PROT_WRITE)
1917 		return;
1918 
1919 	vm_page_lock_queues();
1920 	PMAP_LOCK(pmap);
1921 	for (va = sva; va < eva; va += PAGE_SIZE) {
1922 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1923 			if (PTE_ISVALID(pte)) {
1924 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1925 
1926 				mtx_lock_spin(&tlbivax_mutex);
1927 				tlb_miss_lock();
1928 
1929 				/* Handle modified pages. */
1930 				if (PTE_ISMODIFIED(pte))
1931 					vm_page_dirty(m);
1932 
1933 				/* Referenced pages. */
1934 				if (PTE_ISREFERENCED(pte))
1935 					vm_page_flag_set(m, PG_REFERENCED);
1936 
1937 				tlb0_flush_entry(va);
1938 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1939 				    PTE_REFERENCED);
1940 
1941 				tlb_miss_unlock();
1942 				mtx_unlock_spin(&tlbivax_mutex);
1943 			}
1944 		}
1945 	}
1946 	PMAP_UNLOCK(pmap);
1947 	vm_page_unlock_queues();
1948 }
1949 
1950 /*
1951  * Clear the write and modified bits in each of the given page's mappings.
1952  */
1953 static void
1954 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1955 {
1956 	pv_entry_t pv;
1957 	pte_t *pte;
1958 
1959 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1960 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1961 	    (m->flags & PG_WRITEABLE) == 0)
1962 		return;
1963 
1964 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1965 		PMAP_LOCK(pv->pv_pmap);
1966 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1967 			if (PTE_ISVALID(pte)) {
1968 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1969 
1970 				mtx_lock_spin(&tlbivax_mutex);
1971 				tlb_miss_lock();
1972 
1973 				/* Handle modified pages. */
1974 				if (PTE_ISMODIFIED(pte))
1975 					vm_page_dirty(m);
1976 
1977 				/* Referenced pages. */
1978 				if (PTE_ISREFERENCED(pte))
1979 					vm_page_flag_set(m, PG_REFERENCED);
1980 
1981 				/* Flush mapping from TLB0. */
1982 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1983 				    PTE_REFERENCED);
1984 
1985 				tlb_miss_unlock();
1986 				mtx_unlock_spin(&tlbivax_mutex);
1987 			}
1988 		}
1989 		PMAP_UNLOCK(pv->pv_pmap);
1990 	}
1991 	vm_page_flag_clear(m, PG_WRITEABLE);
1992 }
1993 
1994 static boolean_t
1995 mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1996 {
1997 	pv_entry_t pv;
1998 	pte_t *pte;
1999 	boolean_t executable;
2000 
2001 	executable = FALSE;
2002 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2003 		PMAP_LOCK(pv->pv_pmap);
2004 		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
2005 		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
2006 			executable = TRUE;
2007 		PMAP_UNLOCK(pv->pv_pmap);
2008 		if (executable)
2009 			break;
2010 	}
2011 
2012 	return (executable);
2013 }
2014 
2015 /*
2016  * Atomically extract and hold the physical page with the given
2017  * pmap and virtual address pair if that mapping permits the given
2018  * protection.
2019  */
2020 static vm_page_t
2021 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2022     vm_prot_t prot)
2023 {
2024 	pte_t *pte;
2025 	vm_page_t m;
2026 	uint32_t pte_wbit;
2027 
2028 	m = NULL;
2029 	vm_page_lock_queues();
2030 	PMAP_LOCK(pmap);
2031 
2032 	pte = pte_find(mmu, pmap, va);
2033 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2034 		if (pmap == kernel_pmap)
2035 			pte_wbit = PTE_SW;
2036 		else
2037 			pte_wbit = PTE_UW;
2038 
2039 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2040 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2041 			vm_page_hold(m);
2042 		}
2043 	}
2044 
2045 	vm_page_unlock_queues();
2046 	PMAP_UNLOCK(pmap);
2047 	return (m);
2048 }
2049 
2050 /*
2051  * Initialize a vm_page's machine-dependent fields.
2052  */
2053 static void
2054 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2055 {
2056 
2057 	TAILQ_INIT(&m->md.pv_list);
2058 }
2059 
2060 /*
2061  * mmu_booke_zero_page_area zeros the specified hardware page by
2062  * mapping it into virtual memory and using bzero to clear
2063  * its contents.
2064  *
2065  * off and size must reside within a single page.
2066  */
2067 static void
2068 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2069 {
2070 	vm_offset_t va;
2071 
2072 	/* XXX KASSERT off and size are within a single page? */
2073 
2074 	mtx_lock(&zero_page_mutex);
2075 	va = zero_page_va;
2076 
2077 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2078 	bzero((caddr_t)va + off, size);
2079 	mmu_booke_kremove(mmu, va);
2080 
2081 	mtx_unlock(&zero_page_mutex);
2082 }
2083 
2084 /*
2085  * mmu_booke_zero_page zeros the specified hardware page.
2086  */
2087 static void
2088 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2089 {
2090 
2091 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2092 }
2093 
2094 /*
2095  * mmu_booke_copy_page copies the specified (machine independent) page by
2096  * mapping the page into virtual memory and using memcopy to copy the page,
2097  * one machine dependent page at a time.
2098  */
2099 static void
2100 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2101 {
2102 	vm_offset_t sva, dva;
2103 
2104 	sva = copy_page_src_va;
2105 	dva = copy_page_dst_va;
2106 
2107 	mtx_lock(&copy_page_mutex);
2108 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2109 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2110 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2111 	mmu_booke_kremove(mmu, dva);
2112 	mmu_booke_kremove(mmu, sva);
2113 	mtx_unlock(&copy_page_mutex);
2114 }
2115 
2116 /*
2117  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2118  * into virtual memory and using bzero to clear its contents. This is intended
2119  * to be called from the vm_pagezero process only and outside of Giant. No
2120  * lock is required.
2121  */
2122 static void
2123 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2124 {
2125 	vm_offset_t va;
2126 
2127 	va = zero_page_idle_va;
2128 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2129 	bzero((caddr_t)va, PAGE_SIZE);
2130 	mmu_booke_kremove(mmu, va);
2131 }
2132 
2133 /*
2134  * Return whether or not the specified physical page was modified
2135  * in any of physical maps.
2136  */
2137 static boolean_t
2138 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2139 {
2140 	pte_t *pte;
2141 	pv_entry_t pv;
2142 
2143 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2144 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2145 		return (FALSE);
2146 
2147 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2148 		PMAP_LOCK(pv->pv_pmap);
2149 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2150 			if (!PTE_ISVALID(pte))
2151 				goto make_sure_to_unlock;
2152 
2153 			if (PTE_ISMODIFIED(pte)) {
2154 				PMAP_UNLOCK(pv->pv_pmap);
2155 				return (TRUE);
2156 			}
2157 		}
2158 make_sure_to_unlock:
2159 		PMAP_UNLOCK(pv->pv_pmap);
2160 	}
2161 	return (FALSE);
2162 }
2163 
2164 /*
2165  * Return whether or not the specified virtual address is eligible
2166  * for prefault.
2167  */
2168 static boolean_t
2169 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2170 {
2171 
2172 	return (FALSE);
2173 }
2174 
2175 /*
2176  * Clear the modify bits on the specified physical page.
2177  */
2178 static void
2179 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2180 {
2181 	pte_t *pte;
2182 	pv_entry_t pv;
2183 
2184 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2185 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2186 		return;
2187 
2188 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2189 		PMAP_LOCK(pv->pv_pmap);
2190 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2191 			if (!PTE_ISVALID(pte))
2192 				goto make_sure_to_unlock;
2193 
2194 			mtx_lock_spin(&tlbivax_mutex);
2195 			tlb_miss_lock();
2196 
2197 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2198 				tlb0_flush_entry(pv->pv_va);
2199 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2200 				    PTE_REFERENCED);
2201 			}
2202 
2203 			tlb_miss_unlock();
2204 			mtx_unlock_spin(&tlbivax_mutex);
2205 		}
2206 make_sure_to_unlock:
2207 		PMAP_UNLOCK(pv->pv_pmap);
2208 	}
2209 }
2210 
2211 /*
2212  * Return a count of reference bits for a page, clearing those bits.
2213  * It is not necessary for every reference bit to be cleared, but it
2214  * is necessary that 0 only be returned when there are truly no
2215  * reference bits set.
2216  *
2217  * XXX: The exact number of bits to check and clear is a matter that
2218  * should be tested and standardized at some point in the future for
2219  * optimal aging of shared pages.
2220  */
2221 static int
2222 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2223 {
2224 	pte_t *pte;
2225 	pv_entry_t pv;
2226 	int count;
2227 
2228 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2229 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2230 		return (0);
2231 
2232 	count = 0;
2233 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2234 		PMAP_LOCK(pv->pv_pmap);
2235 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2236 			if (!PTE_ISVALID(pte))
2237 				goto make_sure_to_unlock;
2238 
2239 			if (PTE_ISREFERENCED(pte)) {
2240 				mtx_lock_spin(&tlbivax_mutex);
2241 				tlb_miss_lock();
2242 
2243 				tlb0_flush_entry(pv->pv_va);
2244 				pte->flags &= ~PTE_REFERENCED;
2245 
2246 				tlb_miss_unlock();
2247 				mtx_unlock_spin(&tlbivax_mutex);
2248 
2249 				if (++count > 4) {
2250 					PMAP_UNLOCK(pv->pv_pmap);
2251 					break;
2252 				}
2253 			}
2254 		}
2255 make_sure_to_unlock:
2256 		PMAP_UNLOCK(pv->pv_pmap);
2257 	}
2258 	return (count);
2259 }
2260 
2261 /*
2262  * Clear the reference bit on the specified physical page.
2263  */
2264 static void
2265 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2266 {
2267 	pte_t *pte;
2268 	pv_entry_t pv;
2269 
2270 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2271 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2272 		return;
2273 
2274 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2275 		PMAP_LOCK(pv->pv_pmap);
2276 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2277 			if (!PTE_ISVALID(pte))
2278 				goto make_sure_to_unlock;
2279 
2280 			if (PTE_ISREFERENCED(pte)) {
2281 				mtx_lock_spin(&tlbivax_mutex);
2282 				tlb_miss_lock();
2283 
2284 				tlb0_flush_entry(pv->pv_va);
2285 				pte->flags &= ~PTE_REFERENCED;
2286 
2287 				tlb_miss_unlock();
2288 				mtx_unlock_spin(&tlbivax_mutex);
2289 			}
2290 		}
2291 make_sure_to_unlock:
2292 		PMAP_UNLOCK(pv->pv_pmap);
2293 	}
2294 }
2295 
2296 /*
2297  * Change wiring attribute for a map/virtual-address pair.
2298  */
2299 static void
2300 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2301 {
2302 	pte_t *pte;;
2303 
2304 	PMAP_LOCK(pmap);
2305 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2306 		if (wired) {
2307 			if (!PTE_ISWIRED(pte)) {
2308 				pte->flags |= PTE_WIRED;
2309 				pmap->pm_stats.wired_count++;
2310 			}
2311 		} else {
2312 			if (PTE_ISWIRED(pte)) {
2313 				pte->flags &= ~PTE_WIRED;
2314 				pmap->pm_stats.wired_count--;
2315 			}
2316 		}
2317 	}
2318 	PMAP_UNLOCK(pmap);
2319 }
2320 
2321 /*
2322  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2323  * page.  This count may be changed upwards or downwards in the future; it is
2324  * only necessary that true be returned for a small subset of pmaps for proper
2325  * page aging.
2326  */
2327 static boolean_t
2328 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2329 {
2330 	pv_entry_t pv;
2331 	int loops;
2332 
2333 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2334 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2335 		return (FALSE);
2336 
2337 	loops = 0;
2338 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2339 		if (pv->pv_pmap == pmap)
2340 			return (TRUE);
2341 
2342 		if (++loops >= 16)
2343 			break;
2344 	}
2345 	return (FALSE);
2346 }
2347 
2348 /*
2349  * Return the number of managed mappings to the given physical page that are
2350  * wired.
2351  */
2352 static int
2353 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2354 {
2355 	pv_entry_t pv;
2356 	pte_t *pte;
2357 	int count = 0;
2358 
2359 	if ((m->flags & PG_FICTITIOUS) != 0)
2360 		return (count);
2361 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2362 
2363 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2364 		PMAP_LOCK(pv->pv_pmap);
2365 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2366 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2367 				count++;
2368 		PMAP_UNLOCK(pv->pv_pmap);
2369 	}
2370 
2371 	return (count);
2372 }
2373 
2374 static int
2375 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2376 {
2377 	int i;
2378 	vm_offset_t va;
2379 
2380 	/*
2381 	 * This currently does not work for entries that
2382 	 * overlap TLB1 entries.
2383 	 */
2384 	for (i = 0; i < tlb1_idx; i ++) {
2385 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2386 			return (0);
2387 	}
2388 
2389 	return (EFAULT);
2390 }
2391 
2392 vm_offset_t
2393 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2394     vm_size_t *sz)
2395 {
2396 	vm_paddr_t pa, ppa;
2397 	vm_offset_t va;
2398 	vm_size_t gran;
2399 
2400 	/* Raw physical memory dumps don't have a virtual address. */
2401 	if (md->md_vaddr == ~0UL) {
2402 		/* We always map a 256MB page at 256M. */
2403 		gran = 256 * 1024 * 1024;
2404 		pa = md->md_paddr + ofs;
2405 		ppa = pa & ~(gran - 1);
2406 		ofs = pa - ppa;
2407 		va = gran;
2408 		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2409 		if (*sz > (gran - ofs))
2410 			*sz = gran - ofs;
2411 		return (va + ofs);
2412 	}
2413 
2414 	/* Minidumps are based on virtual memory addresses. */
2415 	va = md->md_vaddr + ofs;
2416 	if (va >= kernstart + kernsize) {
2417 		gran = PAGE_SIZE - (va & PAGE_MASK);
2418 		if (*sz > gran)
2419 			*sz = gran;
2420 	}
2421 	return (va);
2422 }
2423 
2424 void
2425 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2426     vm_offset_t va)
2427 {
2428 
2429 	/* Raw physical memory dumps don't have a virtual address. */
2430 	if (md->md_vaddr == ~0UL) {
2431 		tlb1_idx--;
2432 		tlb1[tlb1_idx].mas1 = 0;
2433 		tlb1[tlb1_idx].mas2 = 0;
2434 		tlb1[tlb1_idx].mas3 = 0;
2435 		tlb1_write_entry(tlb1_idx);
2436 		return;
2437 	}
2438 
2439 	/* Minidumps are based on virtual memory addresses. */
2440 	/* Nothing to do... */
2441 }
2442 
2443 struct pmap_md *
2444 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2445 {
2446 	static struct pmap_md md;
2447 	struct bi_mem_region *mr;
2448 	pte_t *pte;
2449 	vm_offset_t va;
2450 
2451 	if (dumpsys_minidump) {
2452 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2453 		if (prev == NULL) {
2454 			/* 1st: kernel .data and .bss. */
2455 			md.md_index = 1;
2456 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2457 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2458 			return (&md);
2459 		}
2460 		switch (prev->md_index) {
2461 		case 1:
2462 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2463 			md.md_index = 2;
2464 			md.md_vaddr = data_start;
2465 			md.md_size = data_end - data_start;
2466 			break;
2467 		case 2:
2468 			/* 3rd: kernel VM. */
2469 			va = prev->md_vaddr + prev->md_size;
2470 			/* Find start of next chunk (from va). */
2471 			while (va < virtual_end) {
2472 				/* Don't dump the buffer cache. */
2473 				if (va >= kmi.buffer_sva &&
2474 				    va < kmi.buffer_eva) {
2475 					va = kmi.buffer_eva;
2476 					continue;
2477 				}
2478 				pte = pte_find(mmu, kernel_pmap, va);
2479 				if (pte != NULL && PTE_ISVALID(pte))
2480 					break;
2481 				va += PAGE_SIZE;
2482 			}
2483 			if (va < virtual_end) {
2484 				md.md_vaddr = va;
2485 				va += PAGE_SIZE;
2486 				/* Find last page in chunk. */
2487 				while (va < virtual_end) {
2488 					/* Don't run into the buffer cache. */
2489 					if (va == kmi.buffer_sva)
2490 						break;
2491 					pte = pte_find(mmu, kernel_pmap, va);
2492 					if (pte == NULL || !PTE_ISVALID(pte))
2493 						break;
2494 					va += PAGE_SIZE;
2495 				}
2496 				md.md_size = va - md.md_vaddr;
2497 				break;
2498 			}
2499 			md.md_index = 3;
2500 			/* FALLTHROUGH */
2501 		default:
2502 			return (NULL);
2503 		}
2504 	} else { /* minidumps */
2505 		mr = bootinfo_mr();
2506 		if (prev == NULL) {
2507 			/* first physical chunk. */
2508 			md.md_paddr = mr->mem_base;
2509 			md.md_size = mr->mem_size;
2510 			md.md_vaddr = ~0UL;
2511 			md.md_index = 1;
2512 		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2513 			md.md_paddr = mr[md.md_index].mem_base;
2514 			md.md_size = mr[md.md_index].mem_size;
2515 			md.md_vaddr = ~0UL;
2516 			md.md_index++;
2517 		} else {
2518 			/* There's no next physical chunk. */
2519 			return (NULL);
2520 		}
2521 	}
2522 
2523 	return (&md);
2524 }
2525 
2526 /*
2527  * Map a set of physical memory pages into the kernel virtual address space.
2528  * Return a pointer to where it is mapped. This routine is intended to be used
2529  * for mapping device memory, NOT real memory.
2530  */
2531 static void *
2532 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2533 {
2534 	void *res;
2535 	uintptr_t va;
2536 	vm_size_t sz;
2537 
2538 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2539 	res = (void *)va;
2540 
2541 	do {
2542 		sz = 1 << (ilog2(size) & ~1);
2543 		if (bootverbose)
2544 			printf("Wiring VA=%x to PA=%x (size=%x), "
2545 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2546 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2547 		size -= sz;
2548 		pa += sz;
2549 		va += sz;
2550 	} while (size > 0);
2551 
2552 	return (res);
2553 }
2554 
2555 /*
2556  * 'Unmap' a range mapped by mmu_booke_mapdev().
2557  */
2558 static void
2559 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2560 {
2561 	vm_offset_t base, offset;
2562 
2563 	/*
2564 	 * Unmap only if this is inside kernel virtual space.
2565 	 */
2566 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2567 		base = trunc_page(va);
2568 		offset = va & PAGE_MASK;
2569 		size = roundup(offset + size, PAGE_SIZE);
2570 		kmem_free(kernel_map, base, size);
2571 	}
2572 }
2573 
2574 /*
2575  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2576  * specified pmap. This eliminates the blast of soft faults on process startup
2577  * and immediately after an mmap.
2578  */
2579 static void
2580 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2581     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2582 {
2583 
2584 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2585 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2586 	    ("mmu_booke_object_init_pt: non-device object"));
2587 }
2588 
2589 /*
2590  * Perform the pmap work for mincore.
2591  */
2592 static int
2593 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2594 {
2595 
2596 	TODO;
2597 	return (0);
2598 }
2599 
2600 /**************************************************************************/
2601 /* TID handling */
2602 /**************************************************************************/
2603 
2604 /*
2605  * Allocate a TID. If necessary, steal one from someone else.
2606  * The new TID is flushed from the TLB before returning.
2607  */
2608 static tlbtid_t
2609 tid_alloc(pmap_t pmap)
2610 {
2611 	tlbtid_t tid;
2612 	int thiscpu;
2613 
2614 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2615 
2616 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2617 
2618 	thiscpu = PCPU_GET(cpuid);
2619 
2620 	tid = PCPU_GET(tid_next);
2621 	if (tid > TID_MAX)
2622 		tid = TID_MIN;
2623 	PCPU_SET(tid_next, tid + 1);
2624 
2625 	/* If we are stealing TID then clear the relevant pmap's field */
2626 	if (tidbusy[thiscpu][tid] != NULL) {
2627 
2628 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2629 
2630 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2631 
2632 		/* Flush all entries from TLB0 matching this TID. */
2633 		tid_flush(tid);
2634 	}
2635 
2636 	tidbusy[thiscpu][tid] = pmap;
2637 	pmap->pm_tid[thiscpu] = tid;
2638 	__asm __volatile("msync; isync");
2639 
2640 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2641 	    PCPU_GET(tid_next));
2642 
2643 	return (tid);
2644 }
2645 
2646 /**************************************************************************/
2647 /* TLB0 handling */
2648 /**************************************************************************/
2649 
2650 static void
2651 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2652     uint32_t mas7)
2653 {
2654 	int as;
2655 	char desc[3];
2656 	tlbtid_t tid;
2657 	vm_size_t size;
2658 	unsigned int tsize;
2659 
2660 	desc[2] = '\0';
2661 	if (mas1 & MAS1_VALID)
2662 		desc[0] = 'V';
2663 	else
2664 		desc[0] = ' ';
2665 
2666 	if (mas1 & MAS1_IPROT)
2667 		desc[1] = 'P';
2668 	else
2669 		desc[1] = ' ';
2670 
2671 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2672 	tid = MAS1_GETTID(mas1);
2673 
2674 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2675 	size = 0;
2676 	if (tsize)
2677 		size = tsize2size(tsize);
2678 
2679 	debugf("%3d: (%s) [AS=%d] "
2680 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2681 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2682 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2683 }
2684 
2685 /* Convert TLB0 va and way number to tlb0[] table index. */
2686 static inline unsigned int
2687 tlb0_tableidx(vm_offset_t va, unsigned int way)
2688 {
2689 	unsigned int idx;
2690 
2691 	idx = (way * TLB0_ENTRIES_PER_WAY);
2692 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2693 	return (idx);
2694 }
2695 
2696 /*
2697  * Invalidate TLB0 entry.
2698  */
2699 static inline void
2700 tlb0_flush_entry(vm_offset_t va)
2701 {
2702 
2703 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2704 
2705 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2706 
2707 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2708 	__asm __volatile("isync; msync");
2709 	__asm __volatile("tlbsync; msync");
2710 
2711 	CTR1(KTR_PMAP, "%s: e", __func__);
2712 }
2713 
2714 /* Print out contents of the MAS registers for each TLB0 entry */
2715 void
2716 tlb0_print_tlbentries(void)
2717 {
2718 	uint32_t mas0, mas1, mas2, mas3, mas7;
2719 	int entryidx, way, idx;
2720 
2721 	debugf("TLB0 entries:\n");
2722 	for (way = 0; way < TLB0_WAYS; way ++)
2723 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2724 
2725 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2726 			mtspr(SPR_MAS0, mas0);
2727 			__asm __volatile("isync");
2728 
2729 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2730 			mtspr(SPR_MAS2, mas2);
2731 
2732 			__asm __volatile("isync; tlbre");
2733 
2734 			mas1 = mfspr(SPR_MAS1);
2735 			mas2 = mfspr(SPR_MAS2);
2736 			mas3 = mfspr(SPR_MAS3);
2737 			mas7 = mfspr(SPR_MAS7);
2738 
2739 			idx = tlb0_tableidx(mas2, way);
2740 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2741 		}
2742 }
2743 
2744 /**************************************************************************/
2745 /* TLB1 handling */
2746 /**************************************************************************/
2747 
2748 /*
2749  * TLB1 mapping notes:
2750  *
2751  * TLB1[0]	CCSRBAR
2752  * TLB1[1]	Kernel text and data.
2753  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2754  *		windows, other devices mappings.
2755  */
2756 
2757 /*
2758  * Write given entry to TLB1 hardware.
2759  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2760  */
2761 static void
2762 tlb1_write_entry(unsigned int idx)
2763 {
2764 	uint32_t mas0, mas7;
2765 
2766 	//debugf("tlb1_write_entry: s\n");
2767 
2768 	/* Clear high order RPN bits */
2769 	mas7 = 0;
2770 
2771 	/* Select entry */
2772 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2773 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2774 
2775 	mtspr(SPR_MAS0, mas0);
2776 	__asm __volatile("isync");
2777 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2778 	__asm __volatile("isync");
2779 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2780 	__asm __volatile("isync");
2781 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2782 	__asm __volatile("isync");
2783 	mtspr(SPR_MAS7, mas7);
2784 	__asm __volatile("isync; tlbwe; isync; msync");
2785 
2786 	//debugf("tlb1_write_entry: e\n");;
2787 }
2788 
2789 /*
2790  * Return the largest uint value log such that 2^log <= num.
2791  */
2792 static unsigned int
2793 ilog2(unsigned int num)
2794 {
2795 	int lz;
2796 
2797 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2798 	return (31 - lz);
2799 }
2800 
2801 /*
2802  * Convert TLB TSIZE value to mapped region size.
2803  */
2804 static vm_size_t
2805 tsize2size(unsigned int tsize)
2806 {
2807 
2808 	/*
2809 	 * size = 4^tsize KB
2810 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2811 	 */
2812 
2813 	return ((1 << (2 * tsize)) * 1024);
2814 }
2815 
2816 /*
2817  * Convert region size (must be power of 4) to TLB TSIZE value.
2818  */
2819 static unsigned int
2820 size2tsize(vm_size_t size)
2821 {
2822 
2823 	return (ilog2(size) / 2 - 5);
2824 }
2825 
2826 /*
2827  * Register permanent kernel mapping in TLB1.
2828  *
2829  * Entries are created starting from index 0 (current free entry is
2830  * kept in tlb1_idx) and are not supposed to be invalidated.
2831  */
2832 static int
2833 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2834     uint32_t flags)
2835 {
2836 	uint32_t ts, tid;
2837 	int tsize;
2838 
2839 	if (tlb1_idx >= TLB1_ENTRIES) {
2840 		printf("tlb1_set_entry: TLB1 full!\n");
2841 		return (-1);
2842 	}
2843 
2844 	/* Convert size to TSIZE */
2845 	tsize = size2tsize(size);
2846 
2847 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2848 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2849 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2850 
2851 	/* XXX LOCK tlb1[] */
2852 
2853 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2854 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2855 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2856 
2857 	/* Set supervisor RWX permission bits */
2858 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2859 
2860 	tlb1_write_entry(tlb1_idx++);
2861 
2862 	/* XXX UNLOCK tlb1[] */
2863 
2864 	/*
2865 	 * XXX in general TLB1 updates should be propagated between CPUs,
2866 	 * since current design assumes to have the same TLB1 set-up on all
2867 	 * cores.
2868 	 */
2869 	return (0);
2870 }
2871 
2872 static int
2873 tlb1_entry_size_cmp(const void *a, const void *b)
2874 {
2875 	const vm_size_t *sza;
2876 	const vm_size_t *szb;
2877 
2878 	sza = a;
2879 	szb = b;
2880 	if (*sza > *szb)
2881 		return (-1);
2882 	else if (*sza < *szb)
2883 		return (1);
2884 	else
2885 		return (0);
2886 }
2887 
2888 /*
2889  * Map in contiguous RAM region into the TLB1 using maximum of
2890  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2891  *
2892  * If necessary round up last entry size and return total size
2893  * used by all allocated entries.
2894  */
2895 vm_size_t
2896 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2897 {
2898 	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2899 	vm_size_t mapped_size, sz, esz;
2900 	unsigned int log;
2901 	int i;
2902 
2903 	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2904 	    __func__, size, va, pa);
2905 
2906 	mapped_size = 0;
2907 	sz = size;
2908 	memset(entry_size, 0, sizeof(entry_size));
2909 
2910 	/* Calculate entry sizes. */
2911 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2912 
2913 		/* Largest region that is power of 4 and fits within size */
2914 		log = ilog2(sz) / 2;
2915 		esz = 1 << (2 * log);
2916 
2917 		/* If this is last entry cover remaining size. */
2918 		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2919 			while (esz < sz)
2920 				esz = esz << 2;
2921 		}
2922 
2923 		entry_size[i] = esz;
2924 		mapped_size += esz;
2925 		if (esz < sz)
2926 			sz -= esz;
2927 		else
2928 			sz = 0;
2929 	}
2930 
2931 	/* Sort entry sizes, required to get proper entry address alignment. */
2932 	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2933 	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2934 
2935 	/* Load TLB1 entries. */
2936 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2937 		esz = entry_size[i];
2938 		if (!esz)
2939 			break;
2940 
2941 		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2942 		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2943 
2944 		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2945 
2946 		va += esz;
2947 		pa += esz;
2948 	}
2949 
2950 	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2951 	    __func__, mapped_size, mapped_size - size);
2952 
2953 	return (mapped_size);
2954 }
2955 
2956 /*
2957  * TLB1 initialization routine, to be called after the very first
2958  * assembler level setup done in locore.S.
2959  */
2960 void
2961 tlb1_init(vm_offset_t ccsrbar)
2962 {
2963 	uint32_t mas0;
2964 
2965 	/* TLB1[1] is used to map the kernel. Save that entry. */
2966 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2967 	mtspr(SPR_MAS0, mas0);
2968 	__asm __volatile("isync; tlbre");
2969 
2970 	tlb1[1].mas1 = mfspr(SPR_MAS1);
2971 	tlb1[1].mas2 = mfspr(SPR_MAS2);
2972 	tlb1[1].mas3 = mfspr(SPR_MAS3);
2973 
2974 	/* Map in CCSRBAR in TLB1[0] */
2975 	tlb1_idx = 0;
2976 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2977 	/*
2978 	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2979 	 * for initial mapping of kernel text+data, which was set early in
2980 	 * locore, we need to skip this [busy] entry.
2981 	 */
2982 	tlb1_idx = 2;
2983 
2984 	/* Setup TLB miss defaults */
2985 	set_mas4_defaults();
2986 }
2987 
2988 /*
2989  * Setup MAS4 defaults.
2990  * These values are loaded to MAS0-2 on a TLB miss.
2991  */
2992 static void
2993 set_mas4_defaults(void)
2994 {
2995 	uint32_t mas4;
2996 
2997 	/* Defaults: TLB0, PID0, TSIZED=4K */
2998 	mas4 = MAS4_TLBSELD0;
2999 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3000 #ifdef SMP
3001 	mas4 |= MAS4_MD;
3002 #endif
3003 	mtspr(SPR_MAS4, mas4);
3004 	__asm __volatile("isync");
3005 }
3006 
3007 /*
3008  * Print out contents of the MAS registers for each TLB1 entry
3009  */
3010 void
3011 tlb1_print_tlbentries(void)
3012 {
3013 	uint32_t mas0, mas1, mas2, mas3, mas7;
3014 	int i;
3015 
3016 	debugf("TLB1 entries:\n");
3017 	for (i = 0; i < TLB1_ENTRIES; i++) {
3018 
3019 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3020 		mtspr(SPR_MAS0, mas0);
3021 
3022 		__asm __volatile("isync; tlbre");
3023 
3024 		mas1 = mfspr(SPR_MAS1);
3025 		mas2 = mfspr(SPR_MAS2);
3026 		mas3 = mfspr(SPR_MAS3);
3027 		mas7 = mfspr(SPR_MAS7);
3028 
3029 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3030 	}
3031 }
3032 
3033 /*
3034  * Print out contents of the in-ram tlb1 table.
3035  */
3036 void
3037 tlb1_print_entries(void)
3038 {
3039 	int i;
3040 
3041 	debugf("tlb1[] table entries:\n");
3042 	for (i = 0; i < TLB1_ENTRIES; i++)
3043 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3044 }
3045 
3046 /*
3047  * Return 0 if the physical IO range is encompassed by one of the
3048  * the TLB1 entries, otherwise return related error code.
3049  */
3050 static int
3051 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3052 {
3053 	uint32_t prot;
3054 	vm_paddr_t pa_start;
3055 	vm_paddr_t pa_end;
3056 	unsigned int entry_tsize;
3057 	vm_size_t entry_size;
3058 
3059 	*va = (vm_offset_t)NULL;
3060 
3061 	/* Skip invalid entries */
3062 	if (!(tlb1[i].mas1 & MAS1_VALID))
3063 		return (EINVAL);
3064 
3065 	/*
3066 	 * The entry must be cache-inhibited, guarded, and r/w
3067 	 * so it can function as an i/o page
3068 	 */
3069 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3070 	if (prot != (MAS2_I | MAS2_G))
3071 		return (EPERM);
3072 
3073 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3074 	if (prot != (MAS3_SR | MAS3_SW))
3075 		return (EPERM);
3076 
3077 	/* The address should be within the entry range. */
3078 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3079 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3080 
3081 	entry_size = tsize2size(entry_tsize);
3082 	pa_start = tlb1[i].mas3 & MAS3_RPN;
3083 	pa_end = pa_start + entry_size - 1;
3084 
3085 	if ((pa < pa_start) || ((pa + size) > pa_end))
3086 		return (ERANGE);
3087 
3088 	/* Return virtual address of this mapping. */
3089 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3090 	return (0);
3091 }
3092