xref: /freebsd/sys/powerpc/booke/pmap.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/malloc.h>
57 #include <sys/ktr.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/queue.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/linker.h>
64 #include <sys/msgbuf.h>
65 #include <sys/lock.h>
66 #include <sys/mutex.h>
67 #include <sys/sched.h>
68 #include <sys/smp.h>
69 #include <sys/vmmeter.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_pageout.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_pager.h>
80 #include <vm/uma.h>
81 
82 #include <machine/cpu.h>
83 #include <machine/pcb.h>
84 #include <machine/platform.h>
85 
86 #include <machine/tlb.h>
87 #include <machine/spr.h>
88 #include <machine/vmparam.h>
89 #include <machine/md_var.h>
90 #include <machine/mmuvar.h>
91 #include <machine/pmap.h>
92 #include <machine/pte.h>
93 
94 #include "mmu_if.h"
95 
96 #ifdef  DEBUG
97 #define debugf(fmt, args...) printf(fmt, ##args)
98 #else
99 #define debugf(fmt, args...)
100 #endif
101 
102 #define TODO			panic("%s: not implemented", __func__);
103 
104 extern struct mtx sched_lock;
105 
106 extern int dumpsys_minidump;
107 
108 extern unsigned char _etext[];
109 extern unsigned char _end[];
110 
111 extern uint32_t *bootinfo;
112 
113 #ifdef SMP
114 extern uint32_t bp_kernload;
115 #endif
116 
117 vm_paddr_t kernload;
118 vm_offset_t kernstart;
119 vm_size_t kernsize;
120 
121 /* Message buffer and tables. */
122 static vm_offset_t data_start;
123 static vm_size_t data_end;
124 
125 /* Phys/avail memory regions. */
126 static struct mem_region *availmem_regions;
127 static int availmem_regions_sz;
128 static struct mem_region *physmem_regions;
129 static int physmem_regions_sz;
130 
131 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
132 static vm_offset_t zero_page_va;
133 static struct mtx zero_page_mutex;
134 
135 static struct mtx tlbivax_mutex;
136 
137 /*
138  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139  * by idle thred only, no lock required.
140  */
141 static vm_offset_t zero_page_idle_va;
142 
143 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
144 static vm_offset_t copy_page_src_va;
145 static vm_offset_t copy_page_dst_va;
146 static struct mtx copy_page_mutex;
147 
148 /**************************************************************************/
149 /* PMAP */
150 /**************************************************************************/
151 
152 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153     vm_prot_t, boolean_t);
154 
155 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157 
158 /*
159  * If user pmap is processed with mmu_booke_remove and the resident count
160  * drops to 0, there are no more pages to remove, so we need not continue.
161  */
162 #define PMAP_REMOVE_DONE(pmap) \
163 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164 
165 extern void tid_flush(tlbtid_t);
166 
167 /**************************************************************************/
168 /* TLB and TID handling */
169 /**************************************************************************/
170 
171 /* Translation ID busy table */
172 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173 
174 /*
175  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176  * core revisions and should be read from h/w registers during early config.
177  */
178 uint32_t tlb0_entries;
179 uint32_t tlb0_ways;
180 uint32_t tlb0_entries_per_way;
181 
182 #define TLB0_ENTRIES		(tlb0_entries)
183 #define TLB0_WAYS		(tlb0_ways)
184 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185 
186 #define TLB1_ENTRIES 16
187 
188 /* In-ram copy of the TLB1 */
189 static tlb_entry_t tlb1[TLB1_ENTRIES];
190 
191 /* Next free entry in the TLB1 */
192 static unsigned int tlb1_idx;
193 
194 static tlbtid_t tid_alloc(struct pmap *);
195 
196 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197 
198 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199 static void tlb1_write_entry(unsigned int);
200 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202 
203 static vm_size_t tsize2size(unsigned int);
204 static unsigned int size2tsize(vm_size_t);
205 static unsigned int ilog2(unsigned int);
206 
207 static void set_mas4_defaults(void);
208 
209 static inline void tlb0_flush_entry(vm_offset_t);
210 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211 
212 /**************************************************************************/
213 /* Page table management */
214 /**************************************************************************/
215 
216 /* Data for the pv entry allocation mechanism */
217 static uma_zone_t pvzone;
218 static struct vm_object pvzone_obj;
219 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
220 
221 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
222 
223 #ifndef PMAP_SHPGPERPROC
224 #define PMAP_SHPGPERPROC	200
225 #endif
226 
227 static void ptbl_init(void);
228 static struct ptbl_buf *ptbl_buf_alloc(void);
229 static void ptbl_buf_free(struct ptbl_buf *);
230 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
231 
232 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
233 static void ptbl_free(mmu_t, pmap_t, unsigned int);
234 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
235 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
236 
237 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
238 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
239 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
240 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
241 
242 static pv_entry_t pv_alloc(void);
243 static void pv_free(pv_entry_t);
244 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
245 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
246 
247 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248 #define PTBL_BUFS		(128 * 16)
249 
250 struct ptbl_buf {
251 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
252 	vm_offset_t kva;		/* va of mapping */
253 };
254 
255 /* ptbl free list and a lock used for access synchronization. */
256 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257 static struct mtx ptbl_buf_freelist_lock;
258 
259 /* Base address of kva space allocated fot ptbl bufs. */
260 static vm_offset_t ptbl_buf_pool_vabase;
261 
262 /* Pointer to ptbl_buf structures. */
263 static struct ptbl_buf *ptbl_bufs;
264 
265 void pmap_bootstrap_ap(volatile uint32_t *);
266 
267 /*
268  * Kernel MMU interface
269  */
270 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
271 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
272 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
273 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
274     vm_size_t, vm_offset_t);
275 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
276 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
277     vm_prot_t, boolean_t);
278 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
279     vm_page_t, vm_prot_t);
280 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281     vm_prot_t);
282 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
283 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
284     vm_prot_t);
285 static void		mmu_booke_init(mmu_t);
286 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
287 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
289 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
290 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
291     int);
292 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
293     vm_paddr_t *);
294 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
295     vm_object_t, vm_pindex_t, vm_size_t);
296 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297 static void		mmu_booke_page_init(mmu_t, vm_page_t);
298 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
299 static void		mmu_booke_pinit(mmu_t, pmap_t);
300 static void		mmu_booke_pinit0(mmu_t, pmap_t);
301 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
302     vm_prot_t);
303 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
304 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
305 static void		mmu_booke_release(mmu_t, pmap_t);
306 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
308 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
309 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
310 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312 static void		mmu_booke_activate(mmu_t, struct thread *);
313 static void		mmu_booke_deactivate(mmu_t, struct thread *);
314 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
316 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
317 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
318 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
319 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
320 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
321 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
322     vm_size_t);
323 static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
324     vm_size_t, vm_size_t *);
325 static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
326     vm_size_t, vm_offset_t);
327 static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
328 
329 static mmu_method_t mmu_booke_methods[] = {
330 	/* pmap dispatcher interface */
331 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
332 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
333 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
334 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
337 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
338 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
339 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
340 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
341 	MMUMETHOD(mmu_init,		mmu_booke_init),
342 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
343 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
344 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
345 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
346 	MMUMETHOD(mmu_map,		mmu_booke_map),
347 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
348 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
349 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
350 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
351 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
352 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
353 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
354 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
355 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
356 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
357 	MMUMETHOD(mmu_release,		mmu_booke_release),
358 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
359 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
360 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
361 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
362 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
363 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
364 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
365 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
366 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
367 
368 	/* Internal interfaces */
369 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
370 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
371 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
372 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
373 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
374 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
375 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
376 
377 	/* dumpsys() support */
378 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
379 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
380 	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
381 
382 	{ 0, 0 }
383 };
384 
385 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
386 
387 static inline void
388 tlb_miss_lock(void)
389 {
390 #ifdef SMP
391 	struct pcpu *pc;
392 
393 	if (!smp_started)
394 		return;
395 
396 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
397 		if (pc != pcpup) {
398 
399 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
400 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
401 
402 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
403 			    ("tlb_miss_lock: tried to lock self"));
404 
405 			tlb_lock(pc->pc_booke_tlb_lock);
406 
407 			CTR1(KTR_PMAP, "%s: locked", __func__);
408 		}
409 	}
410 #endif
411 }
412 
413 static inline void
414 tlb_miss_unlock(void)
415 {
416 #ifdef SMP
417 	struct pcpu *pc;
418 
419 	if (!smp_started)
420 		return;
421 
422 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
423 		if (pc != pcpup) {
424 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
425 			    __func__, pc->pc_cpuid);
426 
427 			tlb_unlock(pc->pc_booke_tlb_lock);
428 
429 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
430 		}
431 	}
432 #endif
433 }
434 
435 /* Return number of entries in TLB0. */
436 static __inline void
437 tlb0_get_tlbconf(void)
438 {
439 	uint32_t tlb0_cfg;
440 
441 	tlb0_cfg = mfspr(SPR_TLB0CFG);
442 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
443 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
444 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
445 }
446 
447 /* Initialize pool of kva ptbl buffers. */
448 static void
449 ptbl_init(void)
450 {
451 	int i;
452 
453 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
454 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
455 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
456 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
457 
458 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
459 	TAILQ_INIT(&ptbl_buf_freelist);
460 
461 	for (i = 0; i < PTBL_BUFS; i++) {
462 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
463 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
464 	}
465 }
466 
467 /* Get a ptbl_buf from the freelist. */
468 static struct ptbl_buf *
469 ptbl_buf_alloc(void)
470 {
471 	struct ptbl_buf *buf;
472 
473 	mtx_lock(&ptbl_buf_freelist_lock);
474 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
475 	if (buf != NULL)
476 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
477 	mtx_unlock(&ptbl_buf_freelist_lock);
478 
479 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
480 
481 	return (buf);
482 }
483 
484 /* Return ptbl buff to free pool. */
485 static void
486 ptbl_buf_free(struct ptbl_buf *buf)
487 {
488 
489 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
490 
491 	mtx_lock(&ptbl_buf_freelist_lock);
492 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
493 	mtx_unlock(&ptbl_buf_freelist_lock);
494 }
495 
496 /*
497  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
498  */
499 static void
500 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
501 {
502 	struct ptbl_buf *pbuf;
503 
504 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
505 
506 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
507 
508 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
509 		if (pbuf->kva == (vm_offset_t)ptbl) {
510 			/* Remove from pmap ptbl buf list. */
511 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
512 
513 			/* Free corresponding ptbl buf. */
514 			ptbl_buf_free(pbuf);
515 			break;
516 		}
517 }
518 
519 /* Allocate page table. */
520 static pte_t *
521 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
522 {
523 	vm_page_t mtbl[PTBL_PAGES];
524 	vm_page_t m;
525 	struct ptbl_buf *pbuf;
526 	unsigned int pidx;
527 	pte_t *ptbl;
528 	int i;
529 
530 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
531 	    (pmap == kernel_pmap), pdir_idx);
532 
533 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
534 	    ("ptbl_alloc: invalid pdir_idx"));
535 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
536 	    ("pte_alloc: valid ptbl entry exists!"));
537 
538 	pbuf = ptbl_buf_alloc();
539 	if (pbuf == NULL)
540 		panic("pte_alloc: couldn't alloc kernel virtual memory");
541 
542 	ptbl = (pte_t *)pbuf->kva;
543 
544 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
545 
546 	/* Allocate ptbl pages, this will sleep! */
547 	for (i = 0; i < PTBL_PAGES; i++) {
548 		pidx = (PTBL_PAGES * pdir_idx) + i;
549 		while ((m = vm_page_alloc(NULL, pidx,
550 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
551 
552 			PMAP_UNLOCK(pmap);
553 			vm_page_unlock_queues();
554 			VM_WAIT;
555 			vm_page_lock_queues();
556 			PMAP_LOCK(pmap);
557 		}
558 		mtbl[i] = m;
559 	}
560 
561 	/* Map allocated pages into kernel_pmap. */
562 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
563 
564 	/* Zero whole ptbl. */
565 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
566 
567 	/* Add pbuf to the pmap ptbl bufs list. */
568 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
569 
570 	return (ptbl);
571 }
572 
573 /* Free ptbl pages and invalidate pdir entry. */
574 static void
575 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
576 {
577 	pte_t *ptbl;
578 	vm_paddr_t pa;
579 	vm_offset_t va;
580 	vm_page_t m;
581 	int i;
582 
583 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
584 	    (pmap == kernel_pmap), pdir_idx);
585 
586 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
587 	    ("ptbl_free: invalid pdir_idx"));
588 
589 	ptbl = pmap->pm_pdir[pdir_idx];
590 
591 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
592 
593 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
594 
595 	/*
596 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
597 	 * don't attempt to look up the page tables we are releasing.
598 	 */
599 	mtx_lock_spin(&tlbivax_mutex);
600 	tlb_miss_lock();
601 
602 	pmap->pm_pdir[pdir_idx] = NULL;
603 
604 	tlb_miss_unlock();
605 	mtx_unlock_spin(&tlbivax_mutex);
606 
607 	for (i = 0; i < PTBL_PAGES; i++) {
608 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
609 		pa = pte_vatopa(mmu, kernel_pmap, va);
610 		m = PHYS_TO_VM_PAGE(pa);
611 		vm_page_free_zero(m);
612 		atomic_subtract_int(&cnt.v_wire_count, 1);
613 		mmu_booke_kremove(mmu, va);
614 	}
615 
616 	ptbl_free_pmap_ptbl(pmap, ptbl);
617 }
618 
619 /*
620  * Decrement ptbl pages hold count and attempt to free ptbl pages.
621  * Called when removing pte entry from ptbl.
622  *
623  * Return 1 if ptbl pages were freed.
624  */
625 static int
626 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
627 {
628 	pte_t *ptbl;
629 	vm_paddr_t pa;
630 	vm_page_t m;
631 	int i;
632 
633 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
634 	    (pmap == kernel_pmap), pdir_idx);
635 
636 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
637 	    ("ptbl_unhold: invalid pdir_idx"));
638 	KASSERT((pmap != kernel_pmap),
639 	    ("ptbl_unhold: unholding kernel ptbl!"));
640 
641 	ptbl = pmap->pm_pdir[pdir_idx];
642 
643 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
644 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
645 	    ("ptbl_unhold: non kva ptbl"));
646 
647 	/* decrement hold count */
648 	for (i = 0; i < PTBL_PAGES; i++) {
649 		pa = pte_vatopa(mmu, kernel_pmap,
650 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
651 		m = PHYS_TO_VM_PAGE(pa);
652 		m->wire_count--;
653 	}
654 
655 	/*
656 	 * Free ptbl pages if there are no pte etries in this ptbl.
657 	 * wire_count has the same value for all ptbl pages, so check the last
658 	 * page.
659 	 */
660 	if (m->wire_count == 0) {
661 		ptbl_free(mmu, pmap, pdir_idx);
662 
663 		//debugf("ptbl_unhold: e (freed ptbl)\n");
664 		return (1);
665 	}
666 
667 	return (0);
668 }
669 
670 /*
671  * Increment hold count for ptbl pages. This routine is used when a new pte
672  * entry is being inserted into the ptbl.
673  */
674 static void
675 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
676 {
677 	vm_paddr_t pa;
678 	pte_t *ptbl;
679 	vm_page_t m;
680 	int i;
681 
682 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
683 	    pdir_idx);
684 
685 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
686 	    ("ptbl_hold: invalid pdir_idx"));
687 	KASSERT((pmap != kernel_pmap),
688 	    ("ptbl_hold: holding kernel ptbl!"));
689 
690 	ptbl = pmap->pm_pdir[pdir_idx];
691 
692 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
693 
694 	for (i = 0; i < PTBL_PAGES; i++) {
695 		pa = pte_vatopa(mmu, kernel_pmap,
696 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
697 		m = PHYS_TO_VM_PAGE(pa);
698 		m->wire_count++;
699 	}
700 }
701 
702 /* Allocate pv_entry structure. */
703 pv_entry_t
704 pv_alloc(void)
705 {
706 	pv_entry_t pv;
707 
708 	pv_entry_count++;
709 	if (pv_entry_count > pv_entry_high_water)
710 		pagedaemon_wakeup();
711 	pv = uma_zalloc(pvzone, M_NOWAIT);
712 
713 	return (pv);
714 }
715 
716 /* Free pv_entry structure. */
717 static __inline void
718 pv_free(pv_entry_t pve)
719 {
720 
721 	pv_entry_count--;
722 	uma_zfree(pvzone, pve);
723 }
724 
725 
726 /* Allocate and initialize pv_entry structure. */
727 static void
728 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
729 {
730 	pv_entry_t pve;
731 
732 	//int su = (pmap == kernel_pmap);
733 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
734 	//	(u_int32_t)pmap, va, (u_int32_t)m);
735 
736 	pve = pv_alloc();
737 	if (pve == NULL)
738 		panic("pv_insert: no pv entries!");
739 
740 	pve->pv_pmap = pmap;
741 	pve->pv_va = va;
742 
743 	/* add to pv_list */
744 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
745 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
746 
747 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
748 
749 	//debugf("pv_insert: e\n");
750 }
751 
752 /* Destroy pv entry. */
753 static void
754 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
755 {
756 	pv_entry_t pve;
757 
758 	//int su = (pmap == kernel_pmap);
759 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
760 
761 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
762 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
763 
764 	/* find pv entry */
765 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
766 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
767 			/* remove from pv_list */
768 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
769 			if (TAILQ_EMPTY(&m->md.pv_list))
770 				vm_page_aflag_clear(m, PGA_WRITEABLE);
771 
772 			/* free pv entry struct */
773 			pv_free(pve);
774 			break;
775 		}
776 	}
777 
778 	//debugf("pv_remove: e\n");
779 }
780 
781 /*
782  * Clean pte entry, try to free page table page if requested.
783  *
784  * Return 1 if ptbl pages were freed, otherwise return 0.
785  */
786 static int
787 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
788 {
789 	unsigned int pdir_idx = PDIR_IDX(va);
790 	unsigned int ptbl_idx = PTBL_IDX(va);
791 	vm_page_t m;
792 	pte_t *ptbl;
793 	pte_t *pte;
794 
795 	//int su = (pmap == kernel_pmap);
796 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
797 	//		su, (u_int32_t)pmap, va, flags);
798 
799 	ptbl = pmap->pm_pdir[pdir_idx];
800 	KASSERT(ptbl, ("pte_remove: null ptbl"));
801 
802 	pte = &ptbl[ptbl_idx];
803 
804 	if (pte == NULL || !PTE_ISVALID(pte))
805 		return (0);
806 
807 	if (PTE_ISWIRED(pte))
808 		pmap->pm_stats.wired_count--;
809 
810 	/* Handle managed entry. */
811 	if (PTE_ISMANAGED(pte)) {
812 		/* Get vm_page_t for mapped pte. */
813 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
814 
815 		if (PTE_ISMODIFIED(pte))
816 			vm_page_dirty(m);
817 
818 		if (PTE_ISREFERENCED(pte))
819 			vm_page_aflag_set(m, PGA_REFERENCED);
820 
821 		pv_remove(pmap, va, m);
822 	}
823 
824 	mtx_lock_spin(&tlbivax_mutex);
825 	tlb_miss_lock();
826 
827 	tlb0_flush_entry(va);
828 	pte->flags = 0;
829 	pte->rpn = 0;
830 
831 	tlb_miss_unlock();
832 	mtx_unlock_spin(&tlbivax_mutex);
833 
834 	pmap->pm_stats.resident_count--;
835 
836 	if (flags & PTBL_UNHOLD) {
837 		//debugf("pte_remove: e (unhold)\n");
838 		return (ptbl_unhold(mmu, pmap, pdir_idx));
839 	}
840 
841 	//debugf("pte_remove: e\n");
842 	return (0);
843 }
844 
845 /*
846  * Insert PTE for a given page and virtual address.
847  */
848 static void
849 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
850 {
851 	unsigned int pdir_idx = PDIR_IDX(va);
852 	unsigned int ptbl_idx = PTBL_IDX(va);
853 	pte_t *ptbl, *pte;
854 
855 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
856 	    pmap == kernel_pmap, pmap, va);
857 
858 	/* Get the page table pointer. */
859 	ptbl = pmap->pm_pdir[pdir_idx];
860 
861 	if (ptbl == NULL) {
862 		/* Allocate page table pages. */
863 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
864 	} else {
865 		/*
866 		 * Check if there is valid mapping for requested
867 		 * va, if there is, remove it.
868 		 */
869 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
870 		if (PTE_ISVALID(pte)) {
871 			pte_remove(mmu, pmap, va, PTBL_HOLD);
872 		} else {
873 			/*
874 			 * pte is not used, increment hold count
875 			 * for ptbl pages.
876 			 */
877 			if (pmap != kernel_pmap)
878 				ptbl_hold(mmu, pmap, pdir_idx);
879 		}
880 	}
881 
882 	/*
883 	 * Insert pv_entry into pv_list for mapped page if part of managed
884 	 * memory.
885 	 */
886 	if ((m->oflags & VPO_UNMANAGED) == 0) {
887 		flags |= PTE_MANAGED;
888 
889 		/* Create and insert pv entry. */
890 		pv_insert(pmap, va, m);
891 	}
892 
893 	pmap->pm_stats.resident_count++;
894 
895 	mtx_lock_spin(&tlbivax_mutex);
896 	tlb_miss_lock();
897 
898 	tlb0_flush_entry(va);
899 	if (pmap->pm_pdir[pdir_idx] == NULL) {
900 		/*
901 		 * If we just allocated a new page table, hook it in
902 		 * the pdir.
903 		 */
904 		pmap->pm_pdir[pdir_idx] = ptbl;
905 	}
906 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
907 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
908 	pte->flags |= (PTE_VALID | flags);
909 
910 	tlb_miss_unlock();
911 	mtx_unlock_spin(&tlbivax_mutex);
912 }
913 
914 /* Return the pa for the given pmap/va. */
915 static vm_paddr_t
916 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
917 {
918 	vm_paddr_t pa = 0;
919 	pte_t *pte;
920 
921 	pte = pte_find(mmu, pmap, va);
922 	if ((pte != NULL) && PTE_ISVALID(pte))
923 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
924 	return (pa);
925 }
926 
927 /* Get a pointer to a PTE in a page table. */
928 static pte_t *
929 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
930 {
931 	unsigned int pdir_idx = PDIR_IDX(va);
932 	unsigned int ptbl_idx = PTBL_IDX(va);
933 
934 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
935 
936 	if (pmap->pm_pdir[pdir_idx])
937 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
938 
939 	return (NULL);
940 }
941 
942 /**************************************************************************/
943 /* PMAP related */
944 /**************************************************************************/
945 
946 /*
947  * This is called during booke_init, before the system is really initialized.
948  */
949 static void
950 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
951 {
952 	vm_offset_t phys_kernelend;
953 	struct mem_region *mp, *mp1;
954 	int cnt, i, j;
955 	u_int s, e, sz;
956 	u_int phys_avail_count;
957 	vm_size_t physsz, hwphyssz, kstack0_sz;
958 	vm_offset_t kernel_pdir, kstack0, va;
959 	vm_paddr_t kstack0_phys;
960 	void *dpcpu;
961 	pte_t *pte;
962 
963 	debugf("mmu_booke_bootstrap: entered\n");
964 
965 #ifdef SMP
966 	bp_kernload = kernload;
967 #endif
968 
969 	/* Initialize invalidation mutex */
970 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
971 
972 	/* Read TLB0 size and associativity. */
973 	tlb0_get_tlbconf();
974 
975 	/*
976 	 * Align kernel start and end address (kernel image).
977 	 * Note that kernel end does not necessarily relate to kernsize.
978 	 * kernsize is the size of the kernel that is actually mapped.
979 	 * Also note that "start - 1" is deliberate. With SMP, the
980 	 * entry point is exactly a page from the actual load address.
981 	 * As such, trunc_page() has no effect and we're off by a page.
982 	 * Since we always have the ELF header between the load address
983 	 * and the entry point, we can safely subtract 1 to compensate.
984 	 */
985 	kernstart = trunc_page(start - 1);
986 	data_start = round_page(kernelend);
987 	data_end = data_start;
988 
989 	/*
990 	 * Addresses of preloaded modules (like file systems) use
991 	 * physical addresses. Make sure we relocate those into
992 	 * virtual addresses.
993 	 */
994 	preload_addr_relocate = kernstart - kernload;
995 
996 	/* Allocate the dynamic per-cpu area. */
997 	dpcpu = (void *)data_end;
998 	data_end += DPCPU_SIZE;
999 
1000 	/* Allocate space for the message buffer. */
1001 	msgbufp = (struct msgbuf *)data_end;
1002 	data_end += msgbufsize;
1003 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1004 	    data_end);
1005 
1006 	data_end = round_page(data_end);
1007 
1008 	/* Allocate space for ptbl_bufs. */
1009 	ptbl_bufs = (struct ptbl_buf *)data_end;
1010 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1011 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1012 	    data_end);
1013 
1014 	data_end = round_page(data_end);
1015 
1016 	/* Allocate PTE tables for kernel KVA. */
1017 	kernel_pdir = data_end;
1018 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1019 	    PDIR_SIZE - 1) / PDIR_SIZE;
1020 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1021 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1022 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1023 
1024 	debugf(" data_end: 0x%08x\n", data_end);
1025 	if (data_end - kernstart > kernsize) {
1026 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1027 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1028 	}
1029 	data_end = kernstart + kernsize;
1030 	debugf(" updated data_end: 0x%08x\n", data_end);
1031 
1032 	/*
1033 	 * Clear the structures - note we can only do it safely after the
1034 	 * possible additional TLB1 translations are in place (above) so that
1035 	 * all range up to the currently calculated 'data_end' is covered.
1036 	 */
1037 	dpcpu_init(dpcpu, 0);
1038 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1039 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1040 
1041 	/*******************************************************/
1042 	/* Set the start and end of kva. */
1043 	/*******************************************************/
1044 	virtual_avail = round_page(data_end);
1045 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1046 
1047 	/* Allocate KVA space for page zero/copy operations. */
1048 	zero_page_va = virtual_avail;
1049 	virtual_avail += PAGE_SIZE;
1050 	zero_page_idle_va = virtual_avail;
1051 	virtual_avail += PAGE_SIZE;
1052 	copy_page_src_va = virtual_avail;
1053 	virtual_avail += PAGE_SIZE;
1054 	copy_page_dst_va = virtual_avail;
1055 	virtual_avail += PAGE_SIZE;
1056 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1057 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1058 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1059 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1060 
1061 	/* Initialize page zero/copy mutexes. */
1062 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1063 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1064 
1065 	/* Allocate KVA space for ptbl bufs. */
1066 	ptbl_buf_pool_vabase = virtual_avail;
1067 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1068 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1069 	    ptbl_buf_pool_vabase, virtual_avail);
1070 
1071 	/* Calculate corresponding physical addresses for the kernel region. */
1072 	phys_kernelend = kernload + kernsize;
1073 	debugf("kernel image and allocated data:\n");
1074 	debugf(" kernload    = 0x%08x\n", kernload);
1075 	debugf(" kernstart   = 0x%08x\n", kernstart);
1076 	debugf(" kernsize    = 0x%08x\n", kernsize);
1077 
1078 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1079 		panic("mmu_booke_bootstrap: phys_avail too small");
1080 
1081 	/*
1082 	 * Remove kernel physical address range from avail regions list. Page
1083 	 * align all regions.  Non-page aligned memory isn't very interesting
1084 	 * to us.  Also, sort the entries for ascending addresses.
1085 	 */
1086 
1087 	/* Retrieve phys/avail mem regions */
1088 	mem_regions(&physmem_regions, &physmem_regions_sz,
1089 	    &availmem_regions, &availmem_regions_sz);
1090 	sz = 0;
1091 	cnt = availmem_regions_sz;
1092 	debugf("processing avail regions:\n");
1093 	for (mp = availmem_regions; mp->mr_size; mp++) {
1094 		s = mp->mr_start;
1095 		e = mp->mr_start + mp->mr_size;
1096 		debugf(" %08x-%08x -> ", s, e);
1097 		/* Check whether this region holds all of the kernel. */
1098 		if (s < kernload && e > phys_kernelend) {
1099 			availmem_regions[cnt].mr_start = phys_kernelend;
1100 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1101 			e = kernload;
1102 		}
1103 		/* Look whether this regions starts within the kernel. */
1104 		if (s >= kernload && s < phys_kernelend) {
1105 			if (e <= phys_kernelend)
1106 				goto empty;
1107 			s = phys_kernelend;
1108 		}
1109 		/* Now look whether this region ends within the kernel. */
1110 		if (e > kernload && e <= phys_kernelend) {
1111 			if (s >= kernload)
1112 				goto empty;
1113 			e = kernload;
1114 		}
1115 		/* Now page align the start and size of the region. */
1116 		s = round_page(s);
1117 		e = trunc_page(e);
1118 		if (e < s)
1119 			e = s;
1120 		sz = e - s;
1121 		debugf("%08x-%08x = %x\n", s, e, sz);
1122 
1123 		/* Check whether some memory is left here. */
1124 		if (sz == 0) {
1125 		empty:
1126 			memmove(mp, mp + 1,
1127 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1128 			cnt--;
1129 			mp--;
1130 			continue;
1131 		}
1132 
1133 		/* Do an insertion sort. */
1134 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1135 			if (s < mp1->mr_start)
1136 				break;
1137 		if (mp1 < mp) {
1138 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1139 			mp1->mr_start = s;
1140 			mp1->mr_size = sz;
1141 		} else {
1142 			mp->mr_start = s;
1143 			mp->mr_size = sz;
1144 		}
1145 	}
1146 	availmem_regions_sz = cnt;
1147 
1148 	/*******************************************************/
1149 	/* Steal physical memory for kernel stack from the end */
1150 	/* of the first avail region                           */
1151 	/*******************************************************/
1152 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1153 	kstack0_phys = availmem_regions[0].mr_start +
1154 	    availmem_regions[0].mr_size;
1155 	kstack0_phys -= kstack0_sz;
1156 	availmem_regions[0].mr_size -= kstack0_sz;
1157 
1158 	/*******************************************************/
1159 	/* Fill in phys_avail table, based on availmem_regions */
1160 	/*******************************************************/
1161 	phys_avail_count = 0;
1162 	physsz = 0;
1163 	hwphyssz = 0;
1164 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1165 
1166 	debugf("fill in phys_avail:\n");
1167 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1168 
1169 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1170 		    availmem_regions[i].mr_start,
1171 		    availmem_regions[i].mr_start +
1172 		        availmem_regions[i].mr_size,
1173 		    availmem_regions[i].mr_size);
1174 
1175 		if (hwphyssz != 0 &&
1176 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1177 			debugf(" hw.physmem adjust\n");
1178 			if (physsz < hwphyssz) {
1179 				phys_avail[j] = availmem_regions[i].mr_start;
1180 				phys_avail[j + 1] =
1181 				    availmem_regions[i].mr_start +
1182 				    hwphyssz - physsz;
1183 				physsz = hwphyssz;
1184 				phys_avail_count++;
1185 			}
1186 			break;
1187 		}
1188 
1189 		phys_avail[j] = availmem_regions[i].mr_start;
1190 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1191 		    availmem_regions[i].mr_size;
1192 		phys_avail_count++;
1193 		physsz += availmem_regions[i].mr_size;
1194 	}
1195 	physmem = btoc(physsz);
1196 
1197 	/* Calculate the last available physical address. */
1198 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1199 		;
1200 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1201 
1202 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1203 	debugf("phys_avail_count = %d\n", phys_avail_count);
1204 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1205 	    physmem);
1206 
1207 	/*******************************************************/
1208 	/* Initialize (statically allocated) kernel pmap. */
1209 	/*******************************************************/
1210 	PMAP_LOCK_INIT(kernel_pmap);
1211 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1212 
1213 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1214 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1215 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1216 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1217 
1218 	/* Initialize kernel pdir */
1219 	for (i = 0; i < kernel_ptbls; i++)
1220 		kernel_pmap->pm_pdir[kptbl_min + i] =
1221 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1222 
1223 	for (i = 0; i < MAXCPU; i++) {
1224 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1225 
1226 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1227 		tidbusy[i][0] = kernel_pmap;
1228 	}
1229 
1230 	/*
1231 	 * Fill in PTEs covering kernel code and data. They are not required
1232 	 * for address translation, as this area is covered by static TLB1
1233 	 * entries, but for pte_vatopa() to work correctly with kernel area
1234 	 * addresses.
1235 	 */
1236 	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1237 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1238 		pte->rpn = kernload + (va - kernstart);
1239 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1240 		    PTE_VALID;
1241 	}
1242 	/* Mark kernel_pmap active on all CPUs */
1243 	CPU_FILL(&kernel_pmap->pm_active);
1244 
1245 	/*******************************************************/
1246 	/* Final setup */
1247 	/*******************************************************/
1248 
1249 	/* Enter kstack0 into kernel map, provide guard page */
1250 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1251 	thread0.td_kstack = kstack0;
1252 	thread0.td_kstack_pages = KSTACK_PAGES;
1253 
1254 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1255 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1256 	    kstack0_phys, kstack0_phys + kstack0_sz);
1257 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1258 
1259 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1260 	for (i = 0; i < KSTACK_PAGES; i++) {
1261 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1262 		kstack0 += PAGE_SIZE;
1263 		kstack0_phys += PAGE_SIZE;
1264 	}
1265 
1266 	debugf("virtual_avail = %08x\n", virtual_avail);
1267 	debugf("virtual_end   = %08x\n", virtual_end);
1268 
1269 	debugf("mmu_booke_bootstrap: exit\n");
1270 }
1271 
1272 void
1273 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1274 {
1275 	int i;
1276 
1277 	/*
1278 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1279 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1280 	 * these values directly to (re)program AP's TLB1 hardware.
1281 	 */
1282 	for (i = 0; i < tlb1_idx; i ++) {
1283 		/* Skip invalid entries */
1284 		if (!(tlb1[i].mas1 & MAS1_VALID))
1285 			continue;
1286 
1287 		tlb1_write_entry(i);
1288 	}
1289 
1290 	set_mas4_defaults();
1291 }
1292 
1293 /*
1294  * Get the physical page address for the given pmap/virtual address.
1295  */
1296 static vm_paddr_t
1297 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1298 {
1299 	vm_paddr_t pa;
1300 
1301 	PMAP_LOCK(pmap);
1302 	pa = pte_vatopa(mmu, pmap, va);
1303 	PMAP_UNLOCK(pmap);
1304 
1305 	return (pa);
1306 }
1307 
1308 /*
1309  * Extract the physical page address associated with the given
1310  * kernel virtual address.
1311  */
1312 static vm_paddr_t
1313 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1314 {
1315 
1316 	return (pte_vatopa(mmu, kernel_pmap, va));
1317 }
1318 
1319 /*
1320  * Initialize the pmap module.
1321  * Called by vm_init, to initialize any structures that the pmap
1322  * system needs to map virtual memory.
1323  */
1324 static void
1325 mmu_booke_init(mmu_t mmu)
1326 {
1327 	int shpgperproc = PMAP_SHPGPERPROC;
1328 
1329 	/*
1330 	 * Initialize the address space (zone) for the pv entries.  Set a
1331 	 * high water mark so that the system can recover from excessive
1332 	 * numbers of pv entries.
1333 	 */
1334 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1335 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1336 
1337 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1338 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1339 
1340 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1341 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1342 
1343 	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1344 
1345 	/* Pre-fill pvzone with initial number of pv entries. */
1346 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1347 
1348 	/* Initialize ptbl allocation. */
1349 	ptbl_init();
1350 }
1351 
1352 /*
1353  * Map a list of wired pages into kernel virtual address space.  This is
1354  * intended for temporary mappings which do not need page modification or
1355  * references recorded.  Existing mappings in the region are overwritten.
1356  */
1357 static void
1358 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1359 {
1360 	vm_offset_t va;
1361 
1362 	va = sva;
1363 	while (count-- > 0) {
1364 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1365 		va += PAGE_SIZE;
1366 		m++;
1367 	}
1368 }
1369 
1370 /*
1371  * Remove page mappings from kernel virtual address space.  Intended for
1372  * temporary mappings entered by mmu_booke_qenter.
1373  */
1374 static void
1375 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1376 {
1377 	vm_offset_t va;
1378 
1379 	va = sva;
1380 	while (count-- > 0) {
1381 		mmu_booke_kremove(mmu, va);
1382 		va += PAGE_SIZE;
1383 	}
1384 }
1385 
1386 /*
1387  * Map a wired page into kernel virtual address space.
1388  */
1389 static void
1390 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1391 {
1392 	unsigned int pdir_idx = PDIR_IDX(va);
1393 	unsigned int ptbl_idx = PTBL_IDX(va);
1394 	uint32_t flags;
1395 	pte_t *pte;
1396 
1397 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1398 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1399 
1400 	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1401 
1402 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1403 
1404 	mtx_lock_spin(&tlbivax_mutex);
1405 	tlb_miss_lock();
1406 
1407 	if (PTE_ISVALID(pte)) {
1408 
1409 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1410 
1411 		/* Flush entry from TLB0 */
1412 		tlb0_flush_entry(va);
1413 	}
1414 
1415 	pte->rpn = pa & ~PTE_PA_MASK;
1416 	pte->flags = flags;
1417 
1418 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1419 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1420 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1421 
1422 	/* Flush the real memory from the instruction cache. */
1423 	if ((flags & (PTE_I | PTE_G)) == 0) {
1424 		__syncicache((void *)va, PAGE_SIZE);
1425 	}
1426 
1427 	tlb_miss_unlock();
1428 	mtx_unlock_spin(&tlbivax_mutex);
1429 }
1430 
1431 /*
1432  * Remove a page from kernel page table.
1433  */
1434 static void
1435 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1436 {
1437 	unsigned int pdir_idx = PDIR_IDX(va);
1438 	unsigned int ptbl_idx = PTBL_IDX(va);
1439 	pte_t *pte;
1440 
1441 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1442 
1443 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1444 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1445 	    ("mmu_booke_kremove: invalid va"));
1446 
1447 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1448 
1449 	if (!PTE_ISVALID(pte)) {
1450 
1451 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1452 
1453 		return;
1454 	}
1455 
1456 	mtx_lock_spin(&tlbivax_mutex);
1457 	tlb_miss_lock();
1458 
1459 	/* Invalidate entry in TLB0, update PTE. */
1460 	tlb0_flush_entry(va);
1461 	pte->flags = 0;
1462 	pte->rpn = 0;
1463 
1464 	tlb_miss_unlock();
1465 	mtx_unlock_spin(&tlbivax_mutex);
1466 }
1467 
1468 /*
1469  * Initialize pmap associated with process 0.
1470  */
1471 static void
1472 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1473 {
1474 
1475 	mmu_booke_pinit(mmu, pmap);
1476 	PCPU_SET(curpmap, pmap);
1477 }
1478 
1479 /*
1480  * Initialize a preallocated and zeroed pmap structure,
1481  * such as one in a vmspace structure.
1482  */
1483 static void
1484 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1485 {
1486 	int i;
1487 
1488 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1489 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1490 
1491 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1492 
1493 	PMAP_LOCK_INIT(pmap);
1494 	for (i = 0; i < MAXCPU; i++)
1495 		pmap->pm_tid[i] = TID_NONE;
1496 	CPU_ZERO(&kernel_pmap->pm_active);
1497 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1498 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1499 	TAILQ_INIT(&pmap->pm_ptbl_list);
1500 }
1501 
1502 /*
1503  * Release any resources held by the given physical map.
1504  * Called when a pmap initialized by mmu_booke_pinit is being released.
1505  * Should only be called if the map contains no valid mappings.
1506  */
1507 static void
1508 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1509 {
1510 
1511 	KASSERT(pmap->pm_stats.resident_count == 0,
1512 	    ("pmap_release: pmap resident count %ld != 0",
1513 	    pmap->pm_stats.resident_count));
1514 
1515 	PMAP_LOCK_DESTROY(pmap);
1516 }
1517 
1518 /*
1519  * Insert the given physical page at the specified virtual address in the
1520  * target physical map with the protection requested. If specified the page
1521  * will be wired down.
1522  */
1523 static void
1524 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1525     vm_prot_t prot, boolean_t wired)
1526 {
1527 
1528 	vm_page_lock_queues();
1529 	PMAP_LOCK(pmap);
1530 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1531 	vm_page_unlock_queues();
1532 	PMAP_UNLOCK(pmap);
1533 }
1534 
1535 static void
1536 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1537     vm_prot_t prot, boolean_t wired)
1538 {
1539 	pte_t *pte;
1540 	vm_paddr_t pa;
1541 	uint32_t flags;
1542 	int su, sync;
1543 
1544 	pa = VM_PAGE_TO_PHYS(m);
1545 	su = (pmap == kernel_pmap);
1546 	sync = 0;
1547 
1548 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1549 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1550 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1551 	//		(u_int32_t)m, va, pa, prot, wired);
1552 
1553 	if (su) {
1554 		KASSERT(((va >= virtual_avail) &&
1555 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1556 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1557 	} else {
1558 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1559 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1560 	}
1561 	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1562 	    VM_OBJECT_LOCKED(m->object),
1563 	    ("mmu_booke_enter_locked: page %p is not busy", m));
1564 
1565 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1566 
1567 	/*
1568 	 * If there is an existing mapping, and the physical address has not
1569 	 * changed, must be protection or wiring change.
1570 	 */
1571 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1572 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1573 
1574 		/*
1575 		 * Before actually updating pte->flags we calculate and
1576 		 * prepare its new value in a helper var.
1577 		 */
1578 		flags = pte->flags;
1579 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1580 
1581 		/* Wiring change, just update stats. */
1582 		if (wired) {
1583 			if (!PTE_ISWIRED(pte)) {
1584 				flags |= PTE_WIRED;
1585 				pmap->pm_stats.wired_count++;
1586 			}
1587 		} else {
1588 			if (PTE_ISWIRED(pte)) {
1589 				flags &= ~PTE_WIRED;
1590 				pmap->pm_stats.wired_count--;
1591 			}
1592 		}
1593 
1594 		if (prot & VM_PROT_WRITE) {
1595 			/* Add write permissions. */
1596 			flags |= PTE_SW;
1597 			if (!su)
1598 				flags |= PTE_UW;
1599 
1600 			if ((flags & PTE_MANAGED) != 0)
1601 				vm_page_aflag_set(m, PGA_WRITEABLE);
1602 		} else {
1603 			/* Handle modified pages, sense modify status. */
1604 
1605 			/*
1606 			 * The PTE_MODIFIED flag could be set by underlying
1607 			 * TLB misses since we last read it (above), possibly
1608 			 * other CPUs could update it so we check in the PTE
1609 			 * directly rather than rely on that saved local flags
1610 			 * copy.
1611 			 */
1612 			if (PTE_ISMODIFIED(pte))
1613 				vm_page_dirty(m);
1614 		}
1615 
1616 		if (prot & VM_PROT_EXECUTE) {
1617 			flags |= PTE_SX;
1618 			if (!su)
1619 				flags |= PTE_UX;
1620 
1621 			/*
1622 			 * Check existing flags for execute permissions: if we
1623 			 * are turning execute permissions on, icache should
1624 			 * be flushed.
1625 			 */
1626 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1627 				sync++;
1628 		}
1629 
1630 		flags &= ~PTE_REFERENCED;
1631 
1632 		/*
1633 		 * The new flags value is all calculated -- only now actually
1634 		 * update the PTE.
1635 		 */
1636 		mtx_lock_spin(&tlbivax_mutex);
1637 		tlb_miss_lock();
1638 
1639 		tlb0_flush_entry(va);
1640 		pte->flags = flags;
1641 
1642 		tlb_miss_unlock();
1643 		mtx_unlock_spin(&tlbivax_mutex);
1644 
1645 	} else {
1646 		/*
1647 		 * If there is an existing mapping, but it's for a different
1648 		 * physical address, pte_enter() will delete the old mapping.
1649 		 */
1650 		//if ((pte != NULL) && PTE_ISVALID(pte))
1651 		//	debugf("mmu_booke_enter_locked: replace\n");
1652 		//else
1653 		//	debugf("mmu_booke_enter_locked: new\n");
1654 
1655 		/* Now set up the flags and install the new mapping. */
1656 		flags = (PTE_SR | PTE_VALID);
1657 		flags |= PTE_M;
1658 
1659 		if (!su)
1660 			flags |= PTE_UR;
1661 
1662 		if (prot & VM_PROT_WRITE) {
1663 			flags |= PTE_SW;
1664 			if (!su)
1665 				flags |= PTE_UW;
1666 
1667 			if ((m->oflags & VPO_UNMANAGED) == 0)
1668 				vm_page_aflag_set(m, PGA_WRITEABLE);
1669 		}
1670 
1671 		if (prot & VM_PROT_EXECUTE) {
1672 			flags |= PTE_SX;
1673 			if (!su)
1674 				flags |= PTE_UX;
1675 		}
1676 
1677 		/* If its wired update stats. */
1678 		if (wired) {
1679 			pmap->pm_stats.wired_count++;
1680 			flags |= PTE_WIRED;
1681 		}
1682 
1683 		pte_enter(mmu, pmap, m, va, flags);
1684 
1685 		/* Flush the real memory from the instruction cache. */
1686 		if (prot & VM_PROT_EXECUTE)
1687 			sync++;
1688 	}
1689 
1690 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1691 		__syncicache((void *)va, PAGE_SIZE);
1692 		sync = 0;
1693 	}
1694 }
1695 
1696 /*
1697  * Maps a sequence of resident pages belonging to the same object.
1698  * The sequence begins with the given page m_start.  This page is
1699  * mapped at the given virtual address start.  Each subsequent page is
1700  * mapped at a virtual address that is offset from start by the same
1701  * amount as the page is offset from m_start within the object.  The
1702  * last page in the sequence is the page with the largest offset from
1703  * m_start that can be mapped at a virtual address less than the given
1704  * virtual address end.  Not every virtual page between start and end
1705  * is mapped; only those for which a resident page exists with the
1706  * corresponding offset from m_start are mapped.
1707  */
1708 static void
1709 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1710     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1711 {
1712 	vm_page_t m;
1713 	vm_pindex_t diff, psize;
1714 
1715 	psize = atop(end - start);
1716 	m = m_start;
1717 	vm_page_lock_queues();
1718 	PMAP_LOCK(pmap);
1719 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1720 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1721 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1722 		m = TAILQ_NEXT(m, listq);
1723 	}
1724 	vm_page_unlock_queues();
1725 	PMAP_UNLOCK(pmap);
1726 }
1727 
1728 static void
1729 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1730     vm_prot_t prot)
1731 {
1732 
1733 	vm_page_lock_queues();
1734 	PMAP_LOCK(pmap);
1735 	mmu_booke_enter_locked(mmu, pmap, va, m,
1736 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1737 	vm_page_unlock_queues();
1738 	PMAP_UNLOCK(pmap);
1739 }
1740 
1741 /*
1742  * Remove the given range of addresses from the specified map.
1743  *
1744  * It is assumed that the start and end are properly rounded to the page size.
1745  */
1746 static void
1747 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1748 {
1749 	pte_t *pte;
1750 	uint8_t hold_flag;
1751 
1752 	int su = (pmap == kernel_pmap);
1753 
1754 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1755 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1756 
1757 	if (su) {
1758 		KASSERT(((va >= virtual_avail) &&
1759 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1760 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1761 	} else {
1762 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1763 		    ("mmu_booke_remove: user pmap, non user va"));
1764 	}
1765 
1766 	if (PMAP_REMOVE_DONE(pmap)) {
1767 		//debugf("mmu_booke_remove: e (empty)\n");
1768 		return;
1769 	}
1770 
1771 	hold_flag = PTBL_HOLD_FLAG(pmap);
1772 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1773 
1774 	vm_page_lock_queues();
1775 	PMAP_LOCK(pmap);
1776 	for (; va < endva; va += PAGE_SIZE) {
1777 		pte = pte_find(mmu, pmap, va);
1778 		if ((pte != NULL) && PTE_ISVALID(pte))
1779 			pte_remove(mmu, pmap, va, hold_flag);
1780 	}
1781 	PMAP_UNLOCK(pmap);
1782 	vm_page_unlock_queues();
1783 
1784 	//debugf("mmu_booke_remove: e\n");
1785 }
1786 
1787 /*
1788  * Remove physical page from all pmaps in which it resides.
1789  */
1790 static void
1791 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1792 {
1793 	pv_entry_t pv, pvn;
1794 	uint8_t hold_flag;
1795 
1796 	vm_page_lock_queues();
1797 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1798 		pvn = TAILQ_NEXT(pv, pv_link);
1799 
1800 		PMAP_LOCK(pv->pv_pmap);
1801 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1802 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1803 		PMAP_UNLOCK(pv->pv_pmap);
1804 	}
1805 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1806 	vm_page_unlock_queues();
1807 }
1808 
1809 /*
1810  * Map a range of physical addresses into kernel virtual address space.
1811  */
1812 static vm_offset_t
1813 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1814     vm_paddr_t pa_end, int prot)
1815 {
1816 	vm_offset_t sva = *virt;
1817 	vm_offset_t va = sva;
1818 
1819 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1820 	//		sva, pa_start, pa_end);
1821 
1822 	while (pa_start < pa_end) {
1823 		mmu_booke_kenter(mmu, va, pa_start);
1824 		va += PAGE_SIZE;
1825 		pa_start += PAGE_SIZE;
1826 	}
1827 	*virt = va;
1828 
1829 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1830 	return (sva);
1831 }
1832 
1833 /*
1834  * The pmap must be activated before it's address space can be accessed in any
1835  * way.
1836  */
1837 static void
1838 mmu_booke_activate(mmu_t mmu, struct thread *td)
1839 {
1840 	pmap_t pmap;
1841 	u_int cpuid;
1842 
1843 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1844 
1845 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1846 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1847 
1848 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1849 
1850 	mtx_lock_spin(&sched_lock);
1851 
1852 	cpuid = PCPU_GET(cpuid);
1853 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1854 	PCPU_SET(curpmap, pmap);
1855 
1856 	if (pmap->pm_tid[cpuid] == TID_NONE)
1857 		tid_alloc(pmap);
1858 
1859 	/* Load PID0 register with pmap tid value. */
1860 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1861 	__asm __volatile("isync");
1862 
1863 	mtx_unlock_spin(&sched_lock);
1864 
1865 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1866 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1867 }
1868 
1869 /*
1870  * Deactivate the specified process's address space.
1871  */
1872 static void
1873 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1874 {
1875 	pmap_t pmap;
1876 
1877 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1878 
1879 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1880 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1881 
1882 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1883 	PCPU_SET(curpmap, NULL);
1884 }
1885 
1886 /*
1887  * Copy the range specified by src_addr/len
1888  * from the source map to the range dst_addr/len
1889  * in the destination map.
1890  *
1891  * This routine is only advisory and need not do anything.
1892  */
1893 static void
1894 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1895     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1896 {
1897 
1898 }
1899 
1900 /*
1901  * Set the physical protection on the specified range of this map as requested.
1902  */
1903 static void
1904 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1905     vm_prot_t prot)
1906 {
1907 	vm_offset_t va;
1908 	vm_page_t m;
1909 	pte_t *pte;
1910 
1911 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1912 		mmu_booke_remove(mmu, pmap, sva, eva);
1913 		return;
1914 	}
1915 
1916 	if (prot & VM_PROT_WRITE)
1917 		return;
1918 
1919 	PMAP_LOCK(pmap);
1920 	for (va = sva; va < eva; va += PAGE_SIZE) {
1921 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1922 			if (PTE_ISVALID(pte)) {
1923 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1924 
1925 				mtx_lock_spin(&tlbivax_mutex);
1926 				tlb_miss_lock();
1927 
1928 				/* Handle modified pages. */
1929 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1930 					vm_page_dirty(m);
1931 
1932 				tlb0_flush_entry(va);
1933 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1934 
1935 				tlb_miss_unlock();
1936 				mtx_unlock_spin(&tlbivax_mutex);
1937 			}
1938 		}
1939 	}
1940 	PMAP_UNLOCK(pmap);
1941 }
1942 
1943 /*
1944  * Clear the write and modified bits in each of the given page's mappings.
1945  */
1946 static void
1947 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1948 {
1949 	pv_entry_t pv;
1950 	pte_t *pte;
1951 
1952 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1953 	    ("mmu_booke_remove_write: page %p is not managed", m));
1954 
1955 	/*
1956 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1957 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1958 	 * is clear, no page table entries need updating.
1959 	 */
1960 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1961 	if ((m->oflags & VPO_BUSY) == 0 &&
1962 	    (m->aflags & PGA_WRITEABLE) == 0)
1963 		return;
1964 	vm_page_lock_queues();
1965 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1966 		PMAP_LOCK(pv->pv_pmap);
1967 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1968 			if (PTE_ISVALID(pte)) {
1969 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1970 
1971 				mtx_lock_spin(&tlbivax_mutex);
1972 				tlb_miss_lock();
1973 
1974 				/* Handle modified pages. */
1975 				if (PTE_ISMODIFIED(pte))
1976 					vm_page_dirty(m);
1977 
1978 				/* Flush mapping from TLB0. */
1979 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1980 
1981 				tlb_miss_unlock();
1982 				mtx_unlock_spin(&tlbivax_mutex);
1983 			}
1984 		}
1985 		PMAP_UNLOCK(pv->pv_pmap);
1986 	}
1987 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1988 	vm_page_unlock_queues();
1989 }
1990 
1991 static void
1992 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1993 {
1994 	pte_t *pte;
1995 	pmap_t pmap;
1996 	vm_page_t m;
1997 	vm_offset_t addr;
1998 	vm_paddr_t pa;
1999 	int active, valid;
2000 
2001 	va = trunc_page(va);
2002 	sz = round_page(sz);
2003 
2004 	vm_page_lock_queues();
2005 	pmap = PCPU_GET(curpmap);
2006 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2007 	while (sz > 0) {
2008 		PMAP_LOCK(pm);
2009 		pte = pte_find(mmu, pm, va);
2010 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2011 		if (valid)
2012 			pa = PTE_PA(pte);
2013 		PMAP_UNLOCK(pm);
2014 		if (valid) {
2015 			if (!active) {
2016 				/* Create a mapping in the active pmap. */
2017 				addr = 0;
2018 				m = PHYS_TO_VM_PAGE(pa);
2019 				PMAP_LOCK(pmap);
2020 				pte_enter(mmu, pmap, m, addr,
2021 				    PTE_SR | PTE_VALID | PTE_UR);
2022 				__syncicache((void *)addr, PAGE_SIZE);
2023 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2024 				PMAP_UNLOCK(pmap);
2025 			} else
2026 				__syncicache((void *)va, PAGE_SIZE);
2027 		}
2028 		va += PAGE_SIZE;
2029 		sz -= PAGE_SIZE;
2030 	}
2031 	vm_page_unlock_queues();
2032 }
2033 
2034 /*
2035  * Atomically extract and hold the physical page with the given
2036  * pmap and virtual address pair if that mapping permits the given
2037  * protection.
2038  */
2039 static vm_page_t
2040 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2041     vm_prot_t prot)
2042 {
2043 	pte_t *pte;
2044 	vm_page_t m;
2045 	uint32_t pte_wbit;
2046 	vm_paddr_t pa;
2047 
2048 	m = NULL;
2049 	pa = 0;
2050 	PMAP_LOCK(pmap);
2051 retry:
2052 	pte = pte_find(mmu, pmap, va);
2053 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2054 		if (pmap == kernel_pmap)
2055 			pte_wbit = PTE_SW;
2056 		else
2057 			pte_wbit = PTE_UW;
2058 
2059 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2060 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2061 				goto retry;
2062 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2063 			vm_page_hold(m);
2064 		}
2065 	}
2066 
2067 	PA_UNLOCK_COND(pa);
2068 	PMAP_UNLOCK(pmap);
2069 	return (m);
2070 }
2071 
2072 /*
2073  * Initialize a vm_page's machine-dependent fields.
2074  */
2075 static void
2076 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2077 {
2078 
2079 	TAILQ_INIT(&m->md.pv_list);
2080 }
2081 
2082 /*
2083  * mmu_booke_zero_page_area zeros the specified hardware page by
2084  * mapping it into virtual memory and using bzero to clear
2085  * its contents.
2086  *
2087  * off and size must reside within a single page.
2088  */
2089 static void
2090 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2091 {
2092 	vm_offset_t va;
2093 
2094 	/* XXX KASSERT off and size are within a single page? */
2095 
2096 	mtx_lock(&zero_page_mutex);
2097 	va = zero_page_va;
2098 
2099 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2100 	bzero((caddr_t)va + off, size);
2101 	mmu_booke_kremove(mmu, va);
2102 
2103 	mtx_unlock(&zero_page_mutex);
2104 }
2105 
2106 /*
2107  * mmu_booke_zero_page zeros the specified hardware page.
2108  */
2109 static void
2110 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2111 {
2112 
2113 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2114 }
2115 
2116 /*
2117  * mmu_booke_copy_page copies the specified (machine independent) page by
2118  * mapping the page into virtual memory and using memcopy to copy the page,
2119  * one machine dependent page at a time.
2120  */
2121 static void
2122 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2123 {
2124 	vm_offset_t sva, dva;
2125 
2126 	sva = copy_page_src_va;
2127 	dva = copy_page_dst_va;
2128 
2129 	mtx_lock(&copy_page_mutex);
2130 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2131 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2132 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2133 	mmu_booke_kremove(mmu, dva);
2134 	mmu_booke_kremove(mmu, sva);
2135 	mtx_unlock(&copy_page_mutex);
2136 }
2137 
2138 /*
2139  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2140  * into virtual memory and using bzero to clear its contents. This is intended
2141  * to be called from the vm_pagezero process only and outside of Giant. No
2142  * lock is required.
2143  */
2144 static void
2145 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2146 {
2147 	vm_offset_t va;
2148 
2149 	va = zero_page_idle_va;
2150 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2151 	bzero((caddr_t)va, PAGE_SIZE);
2152 	mmu_booke_kremove(mmu, va);
2153 }
2154 
2155 /*
2156  * Return whether or not the specified physical page was modified
2157  * in any of physical maps.
2158  */
2159 static boolean_t
2160 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2161 {
2162 	pte_t *pte;
2163 	pv_entry_t pv;
2164 	boolean_t rv;
2165 
2166 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2167 	    ("mmu_booke_is_modified: page %p is not managed", m));
2168 	rv = FALSE;
2169 
2170 	/*
2171 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2172 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2173 	 * is clear, no PTEs can be modified.
2174 	 */
2175 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2176 	if ((m->oflags & VPO_BUSY) == 0 &&
2177 	    (m->aflags & PGA_WRITEABLE) == 0)
2178 		return (rv);
2179 	vm_page_lock_queues();
2180 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2181 		PMAP_LOCK(pv->pv_pmap);
2182 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2183 		    PTE_ISVALID(pte)) {
2184 			if (PTE_ISMODIFIED(pte))
2185 				rv = TRUE;
2186 		}
2187 		PMAP_UNLOCK(pv->pv_pmap);
2188 		if (rv)
2189 			break;
2190 	}
2191 	vm_page_unlock_queues();
2192 	return (rv);
2193 }
2194 
2195 /*
2196  * Return whether or not the specified virtual address is eligible
2197  * for prefault.
2198  */
2199 static boolean_t
2200 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2201 {
2202 
2203 	return (FALSE);
2204 }
2205 
2206 /*
2207  * Return whether or not the specified physical page was referenced
2208  * in any physical maps.
2209  */
2210 static boolean_t
2211 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2212 {
2213 	pte_t *pte;
2214 	pv_entry_t pv;
2215 	boolean_t rv;
2216 
2217 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2218 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2219 	rv = FALSE;
2220 	vm_page_lock_queues();
2221 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2222 		PMAP_LOCK(pv->pv_pmap);
2223 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2224 		    PTE_ISVALID(pte)) {
2225 			if (PTE_ISREFERENCED(pte))
2226 				rv = TRUE;
2227 		}
2228 		PMAP_UNLOCK(pv->pv_pmap);
2229 		if (rv)
2230 			break;
2231 	}
2232 	vm_page_unlock_queues();
2233 	return (rv);
2234 }
2235 
2236 /*
2237  * Clear the modify bits on the specified physical page.
2238  */
2239 static void
2240 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2241 {
2242 	pte_t *pte;
2243 	pv_entry_t pv;
2244 
2245 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2246 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2247 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2248 	KASSERT((m->oflags & VPO_BUSY) == 0,
2249 	    ("mmu_booke_clear_modify: page %p is busy", m));
2250 
2251 	/*
2252 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2253 	 * If the object containing the page is locked and the page is not
2254 	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2255 	 */
2256 	if ((m->aflags & PGA_WRITEABLE) == 0)
2257 		return;
2258 	vm_page_lock_queues();
2259 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2260 		PMAP_LOCK(pv->pv_pmap);
2261 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2262 		    PTE_ISVALID(pte)) {
2263 			mtx_lock_spin(&tlbivax_mutex);
2264 			tlb_miss_lock();
2265 
2266 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2267 				tlb0_flush_entry(pv->pv_va);
2268 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2269 				    PTE_REFERENCED);
2270 			}
2271 
2272 			tlb_miss_unlock();
2273 			mtx_unlock_spin(&tlbivax_mutex);
2274 		}
2275 		PMAP_UNLOCK(pv->pv_pmap);
2276 	}
2277 	vm_page_unlock_queues();
2278 }
2279 
2280 /*
2281  * Return a count of reference bits for a page, clearing those bits.
2282  * It is not necessary for every reference bit to be cleared, but it
2283  * is necessary that 0 only be returned when there are truly no
2284  * reference bits set.
2285  *
2286  * XXX: The exact number of bits to check and clear is a matter that
2287  * should be tested and standardized at some point in the future for
2288  * optimal aging of shared pages.
2289  */
2290 static int
2291 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2292 {
2293 	pte_t *pte;
2294 	pv_entry_t pv;
2295 	int count;
2296 
2297 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2298 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2299 	count = 0;
2300 	vm_page_lock_queues();
2301 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2302 		PMAP_LOCK(pv->pv_pmap);
2303 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2304 		    PTE_ISVALID(pte)) {
2305 			if (PTE_ISREFERENCED(pte)) {
2306 				mtx_lock_spin(&tlbivax_mutex);
2307 				tlb_miss_lock();
2308 
2309 				tlb0_flush_entry(pv->pv_va);
2310 				pte->flags &= ~PTE_REFERENCED;
2311 
2312 				tlb_miss_unlock();
2313 				mtx_unlock_spin(&tlbivax_mutex);
2314 
2315 				if (++count > 4) {
2316 					PMAP_UNLOCK(pv->pv_pmap);
2317 					break;
2318 				}
2319 			}
2320 		}
2321 		PMAP_UNLOCK(pv->pv_pmap);
2322 	}
2323 	vm_page_unlock_queues();
2324 	return (count);
2325 }
2326 
2327 /*
2328  * Clear the reference bit on the specified physical page.
2329  */
2330 static void
2331 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2332 {
2333 	pte_t *pte;
2334 	pv_entry_t pv;
2335 
2336 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2337 	    ("mmu_booke_clear_reference: page %p is not managed", m));
2338 	vm_page_lock_queues();
2339 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2340 		PMAP_LOCK(pv->pv_pmap);
2341 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2342 		    PTE_ISVALID(pte)) {
2343 			if (PTE_ISREFERENCED(pte)) {
2344 				mtx_lock_spin(&tlbivax_mutex);
2345 				tlb_miss_lock();
2346 
2347 				tlb0_flush_entry(pv->pv_va);
2348 				pte->flags &= ~PTE_REFERENCED;
2349 
2350 				tlb_miss_unlock();
2351 				mtx_unlock_spin(&tlbivax_mutex);
2352 			}
2353 		}
2354 		PMAP_UNLOCK(pv->pv_pmap);
2355 	}
2356 	vm_page_unlock_queues();
2357 }
2358 
2359 /*
2360  * Change wiring attribute for a map/virtual-address pair.
2361  */
2362 static void
2363 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2364 {
2365 	pte_t *pte;
2366 
2367 	PMAP_LOCK(pmap);
2368 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2369 		if (wired) {
2370 			if (!PTE_ISWIRED(pte)) {
2371 				pte->flags |= PTE_WIRED;
2372 				pmap->pm_stats.wired_count++;
2373 			}
2374 		} else {
2375 			if (PTE_ISWIRED(pte)) {
2376 				pte->flags &= ~PTE_WIRED;
2377 				pmap->pm_stats.wired_count--;
2378 			}
2379 		}
2380 	}
2381 	PMAP_UNLOCK(pmap);
2382 }
2383 
2384 /*
2385  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2386  * page.  This count may be changed upwards or downwards in the future; it is
2387  * only necessary that true be returned for a small subset of pmaps for proper
2388  * page aging.
2389  */
2390 static boolean_t
2391 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2392 {
2393 	pv_entry_t pv;
2394 	int loops;
2395 	boolean_t rv;
2396 
2397 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2398 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2399 	loops = 0;
2400 	rv = FALSE;
2401 	vm_page_lock_queues();
2402 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2403 		if (pv->pv_pmap == pmap) {
2404 			rv = TRUE;
2405 			break;
2406 		}
2407 		if (++loops >= 16)
2408 			break;
2409 	}
2410 	vm_page_unlock_queues();
2411 	return (rv);
2412 }
2413 
2414 /*
2415  * Return the number of managed mappings to the given physical page that are
2416  * wired.
2417  */
2418 static int
2419 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2420 {
2421 	pv_entry_t pv;
2422 	pte_t *pte;
2423 	int count = 0;
2424 
2425 	if ((m->oflags & VPO_UNMANAGED) != 0)
2426 		return (count);
2427 	vm_page_lock_queues();
2428 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2429 		PMAP_LOCK(pv->pv_pmap);
2430 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2431 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2432 				count++;
2433 		PMAP_UNLOCK(pv->pv_pmap);
2434 	}
2435 	vm_page_unlock_queues();
2436 	return (count);
2437 }
2438 
2439 static int
2440 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2441 {
2442 	int i;
2443 	vm_offset_t va;
2444 
2445 	/*
2446 	 * This currently does not work for entries that
2447 	 * overlap TLB1 entries.
2448 	 */
2449 	for (i = 0; i < tlb1_idx; i ++) {
2450 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2451 			return (0);
2452 	}
2453 
2454 	return (EFAULT);
2455 }
2456 
2457 vm_offset_t
2458 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2459     vm_size_t *sz)
2460 {
2461 	vm_paddr_t pa, ppa;
2462 	vm_offset_t va;
2463 	vm_size_t gran;
2464 
2465 	/* Raw physical memory dumps don't have a virtual address. */
2466 	if (md->md_vaddr == ~0UL) {
2467 		/* We always map a 256MB page at 256M. */
2468 		gran = 256 * 1024 * 1024;
2469 		pa = md->md_paddr + ofs;
2470 		ppa = pa & ~(gran - 1);
2471 		ofs = pa - ppa;
2472 		va = gran;
2473 		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2474 		if (*sz > (gran - ofs))
2475 			*sz = gran - ofs;
2476 		return (va + ofs);
2477 	}
2478 
2479 	/* Minidumps are based on virtual memory addresses. */
2480 	va = md->md_vaddr + ofs;
2481 	if (va >= kernstart + kernsize) {
2482 		gran = PAGE_SIZE - (va & PAGE_MASK);
2483 		if (*sz > gran)
2484 			*sz = gran;
2485 	}
2486 	return (va);
2487 }
2488 
2489 void
2490 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2491     vm_offset_t va)
2492 {
2493 
2494 	/* Raw physical memory dumps don't have a virtual address. */
2495 	if (md->md_vaddr == ~0UL) {
2496 		tlb1_idx--;
2497 		tlb1[tlb1_idx].mas1 = 0;
2498 		tlb1[tlb1_idx].mas2 = 0;
2499 		tlb1[tlb1_idx].mas3 = 0;
2500 		tlb1_write_entry(tlb1_idx);
2501 		return;
2502 	}
2503 
2504 	/* Minidumps are based on virtual memory addresses. */
2505 	/* Nothing to do... */
2506 }
2507 
2508 struct pmap_md *
2509 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2510 {
2511 	static struct pmap_md md;
2512 	pte_t *pte;
2513 	vm_offset_t va;
2514 
2515 	if (dumpsys_minidump) {
2516 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2517 		if (prev == NULL) {
2518 			/* 1st: kernel .data and .bss. */
2519 			md.md_index = 1;
2520 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2521 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2522 			return (&md);
2523 		}
2524 		switch (prev->md_index) {
2525 		case 1:
2526 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2527 			md.md_index = 2;
2528 			md.md_vaddr = data_start;
2529 			md.md_size = data_end - data_start;
2530 			break;
2531 		case 2:
2532 			/* 3rd: kernel VM. */
2533 			va = prev->md_vaddr + prev->md_size;
2534 			/* Find start of next chunk (from va). */
2535 			while (va < virtual_end) {
2536 				/* Don't dump the buffer cache. */
2537 				if (va >= kmi.buffer_sva &&
2538 				    va < kmi.buffer_eva) {
2539 					va = kmi.buffer_eva;
2540 					continue;
2541 				}
2542 				pte = pte_find(mmu, kernel_pmap, va);
2543 				if (pte != NULL && PTE_ISVALID(pte))
2544 					break;
2545 				va += PAGE_SIZE;
2546 			}
2547 			if (va < virtual_end) {
2548 				md.md_vaddr = va;
2549 				va += PAGE_SIZE;
2550 				/* Find last page in chunk. */
2551 				while (va < virtual_end) {
2552 					/* Don't run into the buffer cache. */
2553 					if (va == kmi.buffer_sva)
2554 						break;
2555 					pte = pte_find(mmu, kernel_pmap, va);
2556 					if (pte == NULL || !PTE_ISVALID(pte))
2557 						break;
2558 					va += PAGE_SIZE;
2559 				}
2560 				md.md_size = va - md.md_vaddr;
2561 				break;
2562 			}
2563 			md.md_index = 3;
2564 			/* FALLTHROUGH */
2565 		default:
2566 			return (NULL);
2567 		}
2568 	} else { /* minidumps */
2569 		mem_regions(&physmem_regions, &physmem_regions_sz,
2570 		    &availmem_regions, &availmem_regions_sz);
2571 
2572 		if (prev == NULL) {
2573 			/* first physical chunk. */
2574 			md.md_paddr = physmem_regions[0].mr_start;
2575 			md.md_size = physmem_regions[0].mr_size;
2576 			md.md_vaddr = ~0UL;
2577 			md.md_index = 1;
2578 		} else if (md.md_index < physmem_regions_sz) {
2579 			md.md_paddr = physmem_regions[md.md_index].mr_start;
2580 			md.md_size = physmem_regions[md.md_index].mr_size;
2581 			md.md_vaddr = ~0UL;
2582 			md.md_index++;
2583 		} else {
2584 			/* There's no next physical chunk. */
2585 			return (NULL);
2586 		}
2587 	}
2588 
2589 	return (&md);
2590 }
2591 
2592 /*
2593  * Map a set of physical memory pages into the kernel virtual address space.
2594  * Return a pointer to where it is mapped. This routine is intended to be used
2595  * for mapping device memory, NOT real memory.
2596  */
2597 static void *
2598 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2599 {
2600 	void *res;
2601 	uintptr_t va;
2602 	vm_size_t sz;
2603 
2604 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2605 	res = (void *)va;
2606 
2607 	do {
2608 		sz = 1 << (ilog2(size) & ~1);
2609 		if (bootverbose)
2610 			printf("Wiring VA=%x to PA=%x (size=%x), "
2611 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2612 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2613 		size -= sz;
2614 		pa += sz;
2615 		va += sz;
2616 	} while (size > 0);
2617 
2618 	return (res);
2619 }
2620 
2621 /*
2622  * 'Unmap' a range mapped by mmu_booke_mapdev().
2623  */
2624 static void
2625 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2626 {
2627 	vm_offset_t base, offset;
2628 
2629 	/*
2630 	 * Unmap only if this is inside kernel virtual space.
2631 	 */
2632 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2633 		base = trunc_page(va);
2634 		offset = va & PAGE_MASK;
2635 		size = roundup(offset + size, PAGE_SIZE);
2636 		kmem_free(kernel_map, base, size);
2637 	}
2638 }
2639 
2640 /*
2641  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2642  * specified pmap. This eliminates the blast of soft faults on process startup
2643  * and immediately after an mmap.
2644  */
2645 static void
2646 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2647     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2648 {
2649 
2650 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2651 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2652 	    ("mmu_booke_object_init_pt: non-device object"));
2653 }
2654 
2655 /*
2656  * Perform the pmap work for mincore.
2657  */
2658 static int
2659 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2660     vm_paddr_t *locked_pa)
2661 {
2662 
2663 	TODO;
2664 	return (0);
2665 }
2666 
2667 /**************************************************************************/
2668 /* TID handling */
2669 /**************************************************************************/
2670 
2671 /*
2672  * Allocate a TID. If necessary, steal one from someone else.
2673  * The new TID is flushed from the TLB before returning.
2674  */
2675 static tlbtid_t
2676 tid_alloc(pmap_t pmap)
2677 {
2678 	tlbtid_t tid;
2679 	int thiscpu;
2680 
2681 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2682 
2683 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2684 
2685 	thiscpu = PCPU_GET(cpuid);
2686 
2687 	tid = PCPU_GET(tid_next);
2688 	if (tid > TID_MAX)
2689 		tid = TID_MIN;
2690 	PCPU_SET(tid_next, tid + 1);
2691 
2692 	/* If we are stealing TID then clear the relevant pmap's field */
2693 	if (tidbusy[thiscpu][tid] != NULL) {
2694 
2695 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2696 
2697 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2698 
2699 		/* Flush all entries from TLB0 matching this TID. */
2700 		tid_flush(tid);
2701 	}
2702 
2703 	tidbusy[thiscpu][tid] = pmap;
2704 	pmap->pm_tid[thiscpu] = tid;
2705 	__asm __volatile("msync; isync");
2706 
2707 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2708 	    PCPU_GET(tid_next));
2709 
2710 	return (tid);
2711 }
2712 
2713 /**************************************************************************/
2714 /* TLB0 handling */
2715 /**************************************************************************/
2716 
2717 static void
2718 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2719     uint32_t mas7)
2720 {
2721 	int as;
2722 	char desc[3];
2723 	tlbtid_t tid;
2724 	vm_size_t size;
2725 	unsigned int tsize;
2726 
2727 	desc[2] = '\0';
2728 	if (mas1 & MAS1_VALID)
2729 		desc[0] = 'V';
2730 	else
2731 		desc[0] = ' ';
2732 
2733 	if (mas1 & MAS1_IPROT)
2734 		desc[1] = 'P';
2735 	else
2736 		desc[1] = ' ';
2737 
2738 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2739 	tid = MAS1_GETTID(mas1);
2740 
2741 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2742 	size = 0;
2743 	if (tsize)
2744 		size = tsize2size(tsize);
2745 
2746 	debugf("%3d: (%s) [AS=%d] "
2747 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2748 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2749 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2750 }
2751 
2752 /* Convert TLB0 va and way number to tlb0[] table index. */
2753 static inline unsigned int
2754 tlb0_tableidx(vm_offset_t va, unsigned int way)
2755 {
2756 	unsigned int idx;
2757 
2758 	idx = (way * TLB0_ENTRIES_PER_WAY);
2759 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2760 	return (idx);
2761 }
2762 
2763 /*
2764  * Invalidate TLB0 entry.
2765  */
2766 static inline void
2767 tlb0_flush_entry(vm_offset_t va)
2768 {
2769 
2770 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2771 
2772 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2773 
2774 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2775 	__asm __volatile("isync; msync");
2776 	__asm __volatile("tlbsync; msync");
2777 
2778 	CTR1(KTR_PMAP, "%s: e", __func__);
2779 }
2780 
2781 /* Print out contents of the MAS registers for each TLB0 entry */
2782 void
2783 tlb0_print_tlbentries(void)
2784 {
2785 	uint32_t mas0, mas1, mas2, mas3, mas7;
2786 	int entryidx, way, idx;
2787 
2788 	debugf("TLB0 entries:\n");
2789 	for (way = 0; way < TLB0_WAYS; way ++)
2790 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2791 
2792 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2793 			mtspr(SPR_MAS0, mas0);
2794 			__asm __volatile("isync");
2795 
2796 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2797 			mtspr(SPR_MAS2, mas2);
2798 
2799 			__asm __volatile("isync; tlbre");
2800 
2801 			mas1 = mfspr(SPR_MAS1);
2802 			mas2 = mfspr(SPR_MAS2);
2803 			mas3 = mfspr(SPR_MAS3);
2804 			mas7 = mfspr(SPR_MAS7);
2805 
2806 			idx = tlb0_tableidx(mas2, way);
2807 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2808 		}
2809 }
2810 
2811 /**************************************************************************/
2812 /* TLB1 handling */
2813 /**************************************************************************/
2814 
2815 /*
2816  * TLB1 mapping notes:
2817  *
2818  * TLB1[0]	CCSRBAR
2819  * TLB1[1]	Kernel text and data.
2820  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2821  *		windows, other devices mappings.
2822  */
2823 
2824 /*
2825  * Write given entry to TLB1 hardware.
2826  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2827  */
2828 static void
2829 tlb1_write_entry(unsigned int idx)
2830 {
2831 	uint32_t mas0, mas7;
2832 
2833 	//debugf("tlb1_write_entry: s\n");
2834 
2835 	/* Clear high order RPN bits */
2836 	mas7 = 0;
2837 
2838 	/* Select entry */
2839 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2840 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2841 
2842 	mtspr(SPR_MAS0, mas0);
2843 	__asm __volatile("isync");
2844 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2845 	__asm __volatile("isync");
2846 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2847 	__asm __volatile("isync");
2848 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2849 	__asm __volatile("isync");
2850 	mtspr(SPR_MAS7, mas7);
2851 	__asm __volatile("isync; tlbwe; isync; msync");
2852 
2853 	//debugf("tlb1_write_entry: e\n");
2854 }
2855 
2856 /*
2857  * Return the largest uint value log such that 2^log <= num.
2858  */
2859 static unsigned int
2860 ilog2(unsigned int num)
2861 {
2862 	int lz;
2863 
2864 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2865 	return (31 - lz);
2866 }
2867 
2868 /*
2869  * Convert TLB TSIZE value to mapped region size.
2870  */
2871 static vm_size_t
2872 tsize2size(unsigned int tsize)
2873 {
2874 
2875 	/*
2876 	 * size = 4^tsize KB
2877 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2878 	 */
2879 
2880 	return ((1 << (2 * tsize)) * 1024);
2881 }
2882 
2883 /*
2884  * Convert region size (must be power of 4) to TLB TSIZE value.
2885  */
2886 static unsigned int
2887 size2tsize(vm_size_t size)
2888 {
2889 
2890 	return (ilog2(size) / 2 - 5);
2891 }
2892 
2893 /*
2894  * Register permanent kernel mapping in TLB1.
2895  *
2896  * Entries are created starting from index 0 (current free entry is
2897  * kept in tlb1_idx) and are not supposed to be invalidated.
2898  */
2899 static int
2900 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2901     uint32_t flags)
2902 {
2903 	uint32_t ts, tid;
2904 	int tsize;
2905 
2906 	if (tlb1_idx >= TLB1_ENTRIES) {
2907 		printf("tlb1_set_entry: TLB1 full!\n");
2908 		return (-1);
2909 	}
2910 
2911 	/* Convert size to TSIZE */
2912 	tsize = size2tsize(size);
2913 
2914 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2915 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2916 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2917 
2918 	/* XXX LOCK tlb1[] */
2919 
2920 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2921 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2922 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2923 
2924 	/* Set supervisor RWX permission bits */
2925 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2926 
2927 	tlb1_write_entry(tlb1_idx++);
2928 
2929 	/* XXX UNLOCK tlb1[] */
2930 
2931 	/*
2932 	 * XXX in general TLB1 updates should be propagated between CPUs,
2933 	 * since current design assumes to have the same TLB1 set-up on all
2934 	 * cores.
2935 	 */
2936 	return (0);
2937 }
2938 
2939 /*
2940  * Map in contiguous RAM region into the TLB1 using maximum of
2941  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2942  *
2943  * If necessary round up last entry size and return total size
2944  * used by all allocated entries.
2945  */
2946 vm_size_t
2947 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2948 {
2949 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2950 	vm_size_t mapped, pgsz, base, mask;
2951 	int idx, nents;
2952 
2953 	/* Round up to the next 1M */
2954 	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
2955 
2956 	mapped = 0;
2957 	idx = 0;
2958 	base = va;
2959 	pgsz = 64*1024*1024;
2960 	while (mapped < size) {
2961 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
2962 			while (pgsz > (size - mapped))
2963 				pgsz >>= 2;
2964 			pgs[idx++] = pgsz;
2965 			mapped += pgsz;
2966 		}
2967 
2968 		/* We under-map. Correct for this. */
2969 		if (mapped < size) {
2970 			while (pgs[idx - 1] == pgsz) {
2971 				idx--;
2972 				mapped -= pgsz;
2973 			}
2974 			/* XXX We may increase beyond out starting point. */
2975 			pgsz <<= 2;
2976 			pgs[idx++] = pgsz;
2977 			mapped += pgsz;
2978 		}
2979 	}
2980 
2981 	nents = idx;
2982 	mask = pgs[0] - 1;
2983 	/* Align address to the boundary */
2984 	if (va & mask) {
2985 		va = (va + mask) & ~mask;
2986 		pa = (pa + mask) & ~mask;
2987 	}
2988 
2989 	for (idx = 0; idx < nents; idx++) {
2990 		pgsz = pgs[idx];
2991 		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
2992 		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
2993 		pa += pgsz;
2994 		va += pgsz;
2995 	}
2996 
2997 	mapped = (va - base);
2998 	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
2999 	    mapped, mapped - size);
3000 	return (mapped);
3001 }
3002 
3003 /*
3004  * TLB1 initialization routine, to be called after the very first
3005  * assembler level setup done in locore.S.
3006  */
3007 void
3008 tlb1_init(vm_offset_t ccsrbar)
3009 {
3010 	uint32_t mas0, mas1, mas3;
3011 	uint32_t tsz;
3012 	u_int i;
3013 
3014 	if (bootinfo != NULL && bootinfo[0] != 1) {
3015 		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3016 	} else
3017 		tlb1_idx = 1;
3018 
3019 	/* The first entry/entries are used to map the kernel. */
3020 	for (i = 0; i < tlb1_idx; i++) {
3021 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3022 		mtspr(SPR_MAS0, mas0);
3023 		__asm __volatile("isync; tlbre");
3024 
3025 		mas1 = mfspr(SPR_MAS1);
3026 		if ((mas1 & MAS1_VALID) == 0)
3027 			continue;
3028 
3029 		mas3 = mfspr(SPR_MAS3);
3030 
3031 		tlb1[i].mas1 = mas1;
3032 		tlb1[i].mas2 = mfspr(SPR_MAS2);
3033 		tlb1[i].mas3 = mas3;
3034 
3035 		if (i == 0)
3036 			kernload = mas3 & MAS3_RPN;
3037 
3038 		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3039 		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3040 	}
3041 
3042 	/* Map in CCSRBAR. */
3043 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3044 
3045 	/* Purge the remaining entries */
3046 	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3047 		tlb1_write_entry(i);
3048 
3049 	/* Setup TLB miss defaults */
3050 	set_mas4_defaults();
3051 }
3052 
3053 /*
3054  * Setup MAS4 defaults.
3055  * These values are loaded to MAS0-2 on a TLB miss.
3056  */
3057 static void
3058 set_mas4_defaults(void)
3059 {
3060 	uint32_t mas4;
3061 
3062 	/* Defaults: TLB0, PID0, TSIZED=4K */
3063 	mas4 = MAS4_TLBSELD0;
3064 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3065 #ifdef SMP
3066 	mas4 |= MAS4_MD;
3067 #endif
3068 	mtspr(SPR_MAS4, mas4);
3069 	__asm __volatile("isync");
3070 }
3071 
3072 /*
3073  * Print out contents of the MAS registers for each TLB1 entry
3074  */
3075 void
3076 tlb1_print_tlbentries(void)
3077 {
3078 	uint32_t mas0, mas1, mas2, mas3, mas7;
3079 	int i;
3080 
3081 	debugf("TLB1 entries:\n");
3082 	for (i = 0; i < TLB1_ENTRIES; i++) {
3083 
3084 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3085 		mtspr(SPR_MAS0, mas0);
3086 
3087 		__asm __volatile("isync; tlbre");
3088 
3089 		mas1 = mfspr(SPR_MAS1);
3090 		mas2 = mfspr(SPR_MAS2);
3091 		mas3 = mfspr(SPR_MAS3);
3092 		mas7 = mfspr(SPR_MAS7);
3093 
3094 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3095 	}
3096 }
3097 
3098 /*
3099  * Print out contents of the in-ram tlb1 table.
3100  */
3101 void
3102 tlb1_print_entries(void)
3103 {
3104 	int i;
3105 
3106 	debugf("tlb1[] table entries:\n");
3107 	for (i = 0; i < TLB1_ENTRIES; i++)
3108 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3109 }
3110 
3111 /*
3112  * Return 0 if the physical IO range is encompassed by one of the
3113  * the TLB1 entries, otherwise return related error code.
3114  */
3115 static int
3116 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3117 {
3118 	uint32_t prot;
3119 	vm_paddr_t pa_start;
3120 	vm_paddr_t pa_end;
3121 	unsigned int entry_tsize;
3122 	vm_size_t entry_size;
3123 
3124 	*va = (vm_offset_t)NULL;
3125 
3126 	/* Skip invalid entries */
3127 	if (!(tlb1[i].mas1 & MAS1_VALID))
3128 		return (EINVAL);
3129 
3130 	/*
3131 	 * The entry must be cache-inhibited, guarded, and r/w
3132 	 * so it can function as an i/o page
3133 	 */
3134 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3135 	if (prot != (MAS2_I | MAS2_G))
3136 		return (EPERM);
3137 
3138 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3139 	if (prot != (MAS3_SR | MAS3_SW))
3140 		return (EPERM);
3141 
3142 	/* The address should be within the entry range. */
3143 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3144 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3145 
3146 	entry_size = tsize2size(entry_tsize);
3147 	pa_start = tlb1[i].mas3 & MAS3_RPN;
3148 	pa_end = pa_start + entry_size - 1;
3149 
3150 	if ((pa < pa_start) || ((pa + size) > pa_end))
3151 		return (ERANGE);
3152 
3153 	/* Return virtual address of this mapping. */
3154 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3155 	return (0);
3156 }
3157