1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * Virtual address space layout: 38 * ----------------------------- 39 * 0x0000_0000 - 0xafff_ffff : user process 40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 43 * 0xc100_0000 - 0xfeef_ffff : KVA 44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include <sys/param.h> 55 #include <sys/conf.h> 56 #include <sys/malloc.h> 57 #include <sys/ktr.h> 58 #include <sys/proc.h> 59 #include <sys/user.h> 60 #include <sys/queue.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/kerneldump.h> 64 #include <sys/linker.h> 65 #include <sys/msgbuf.h> 66 #include <sys/lock.h> 67 #include <sys/mutex.h> 68 #include <sys/rwlock.h> 69 #include <sys/sched.h> 70 #include <sys/smp.h> 71 #include <sys/vmmeter.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_param.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_pager.h> 82 #include <vm/uma.h> 83 84 #include <machine/cpu.h> 85 #include <machine/pcb.h> 86 #include <machine/platform.h> 87 88 #include <machine/tlb.h> 89 #include <machine/spr.h> 90 #include <machine/md_var.h> 91 #include <machine/mmuvar.h> 92 #include <machine/pmap.h> 93 #include <machine/pte.h> 94 95 #include "mmu_if.h" 96 97 #ifdef DEBUG 98 #define debugf(fmt, args...) printf(fmt, ##args) 99 #else 100 #define debugf(fmt, args...) 101 #endif 102 103 #define TODO panic("%s: not implemented", __func__); 104 105 extern unsigned char _etext[]; 106 extern unsigned char _end[]; 107 108 extern uint32_t *bootinfo; 109 110 #ifdef SMP 111 extern uint32_t bp_ntlb1s; 112 #endif 113 114 vm_paddr_t kernload; 115 vm_offset_t kernstart; 116 vm_size_t kernsize; 117 118 /* Message buffer and tables. */ 119 static vm_offset_t data_start; 120 static vm_size_t data_end; 121 122 /* Phys/avail memory regions. */ 123 static struct mem_region *availmem_regions; 124 static int availmem_regions_sz; 125 static struct mem_region *physmem_regions; 126 static int physmem_regions_sz; 127 128 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 129 static vm_offset_t zero_page_va; 130 static struct mtx zero_page_mutex; 131 132 static struct mtx tlbivax_mutex; 133 134 /* 135 * Reserved KVA space for mmu_booke_zero_page_idle. This is used 136 * by idle thred only, no lock required. 137 */ 138 static vm_offset_t zero_page_idle_va; 139 140 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 141 static vm_offset_t copy_page_src_va; 142 static vm_offset_t copy_page_dst_va; 143 static struct mtx copy_page_mutex; 144 145 /**************************************************************************/ 146 /* PMAP */ 147 /**************************************************************************/ 148 149 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 150 vm_prot_t, u_int flags, int8_t psind); 151 152 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 153 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 154 155 /* 156 * If user pmap is processed with mmu_booke_remove and the resident count 157 * drops to 0, there are no more pages to remove, so we need not continue. 158 */ 159 #define PMAP_REMOVE_DONE(pmap) \ 160 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 161 162 extern void tid_flush(tlbtid_t tid, int tlb0_ways, int tlb0_entries_per_way); 163 extern int elf32_nxstack; 164 165 /**************************************************************************/ 166 /* TLB and TID handling */ 167 /**************************************************************************/ 168 169 /* Translation ID busy table */ 170 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 171 172 /* 173 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 174 * core revisions and should be read from h/w registers during early config. 175 */ 176 uint32_t tlb0_entries; 177 uint32_t tlb0_ways; 178 uint32_t tlb0_entries_per_way; 179 180 #define TLB0_ENTRIES (tlb0_entries) 181 #define TLB0_WAYS (tlb0_ways) 182 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 183 184 #define TLB1_ENTRIES 16 185 186 /* In-ram copy of the TLB1 */ 187 static tlb_entry_t tlb1[TLB1_ENTRIES]; 188 189 /* Next free entry in the TLB1 */ 190 static unsigned int tlb1_idx; 191 static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS; 192 193 static tlbtid_t tid_alloc(struct pmap *); 194 195 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 196 197 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t); 198 static void tlb1_write_entry(unsigned int); 199 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 200 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); 201 202 static vm_size_t tsize2size(unsigned int); 203 static unsigned int size2tsize(vm_size_t); 204 static unsigned int ilog2(unsigned int); 205 206 static void set_mas4_defaults(void); 207 208 static inline void tlb0_flush_entry(vm_offset_t); 209 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 210 211 /**************************************************************************/ 212 /* Page table management */ 213 /**************************************************************************/ 214 215 static struct rwlock_padalign pvh_global_lock; 216 217 /* Data for the pv entry allocation mechanism */ 218 static uma_zone_t pvzone; 219 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 220 221 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 222 223 #ifndef PMAP_SHPGPERPROC 224 #define PMAP_SHPGPERPROC 200 225 #endif 226 227 static void ptbl_init(void); 228 static struct ptbl_buf *ptbl_buf_alloc(void); 229 static void ptbl_buf_free(struct ptbl_buf *); 230 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 231 232 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); 233 static void ptbl_free(mmu_t, pmap_t, unsigned int); 234 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 235 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 236 237 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 238 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 239 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); 240 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 241 242 static pv_entry_t pv_alloc(void); 243 static void pv_free(pv_entry_t); 244 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 245 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 246 247 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 248 #define PTBL_BUFS (128 * 16) 249 250 struct ptbl_buf { 251 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 252 vm_offset_t kva; /* va of mapping */ 253 }; 254 255 /* ptbl free list and a lock used for access synchronization. */ 256 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 257 static struct mtx ptbl_buf_freelist_lock; 258 259 /* Base address of kva space allocated fot ptbl bufs. */ 260 static vm_offset_t ptbl_buf_pool_vabase; 261 262 /* Pointer to ptbl_buf structures. */ 263 static struct ptbl_buf *ptbl_bufs; 264 265 #ifdef SMP 266 void pmap_bootstrap_ap(volatile uint32_t *); 267 #endif 268 269 /* 270 * Kernel MMU interface 271 */ 272 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 273 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 274 vm_size_t, vm_offset_t); 275 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 276 static void mmu_booke_copy_pages(mmu_t, vm_page_t *, 277 vm_offset_t, vm_page_t *, vm_offset_t, int); 278 static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 279 vm_prot_t, u_int flags, int8_t psind); 280 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 281 vm_page_t, vm_prot_t); 282 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 283 vm_prot_t); 284 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 285 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 286 vm_prot_t); 287 static void mmu_booke_init(mmu_t); 288 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 289 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 290 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 291 static int mmu_booke_ts_referenced(mmu_t, vm_page_t); 292 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, 293 int); 294 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, 295 vm_paddr_t *); 296 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 297 vm_object_t, vm_pindex_t, vm_size_t); 298 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 299 static void mmu_booke_page_init(mmu_t, vm_page_t); 300 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 301 static void mmu_booke_pinit(mmu_t, pmap_t); 302 static void mmu_booke_pinit0(mmu_t, pmap_t); 303 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 304 vm_prot_t); 305 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 306 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 307 static void mmu_booke_release(mmu_t, pmap_t); 308 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 309 static void mmu_booke_remove_all(mmu_t, vm_page_t); 310 static void mmu_booke_remove_write(mmu_t, vm_page_t); 311 static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 312 static void mmu_booke_zero_page(mmu_t, vm_page_t); 313 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 314 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t); 315 static void mmu_booke_activate(mmu_t, struct thread *); 316 static void mmu_booke_deactivate(mmu_t, struct thread *); 317 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 318 static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); 319 static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); 320 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 321 static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); 322 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); 323 static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); 324 static void mmu_booke_kremove(mmu_t, vm_offset_t); 325 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 326 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 327 vm_size_t); 328 static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, 329 void **); 330 static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, 331 void *); 332 static void mmu_booke_scan_init(mmu_t); 333 334 static mmu_method_t mmu_booke_methods[] = { 335 /* pmap dispatcher interface */ 336 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 337 MMUMETHOD(mmu_copy, mmu_booke_copy), 338 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 339 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), 340 MMUMETHOD(mmu_enter, mmu_booke_enter), 341 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 342 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 343 MMUMETHOD(mmu_extract, mmu_booke_extract), 344 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 345 MMUMETHOD(mmu_init, mmu_booke_init), 346 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 347 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 348 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 349 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 350 MMUMETHOD(mmu_map, mmu_booke_map), 351 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 352 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 353 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 354 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 355 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 356 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 357 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 358 MMUMETHOD(mmu_protect, mmu_booke_protect), 359 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 360 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 361 MMUMETHOD(mmu_release, mmu_booke_release), 362 MMUMETHOD(mmu_remove, mmu_booke_remove), 363 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 364 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 365 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 366 MMUMETHOD(mmu_unwire, mmu_booke_unwire), 367 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 368 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 369 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle), 370 MMUMETHOD(mmu_activate, mmu_booke_activate), 371 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 372 373 /* Internal interfaces */ 374 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 375 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 376 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 377 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), 378 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 379 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), 380 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 381 /* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */ 382 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 383 384 /* dumpsys() support */ 385 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 386 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 387 MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), 388 389 { 0, 0 } 390 }; 391 392 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); 393 394 static __inline uint32_t 395 tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma) 396 { 397 uint32_t attrib; 398 int i; 399 400 if (ma != VM_MEMATTR_DEFAULT) { 401 switch (ma) { 402 case VM_MEMATTR_UNCACHEABLE: 403 return (PTE_I | PTE_G); 404 case VM_MEMATTR_WRITE_COMBINING: 405 case VM_MEMATTR_WRITE_BACK: 406 case VM_MEMATTR_PREFETCHABLE: 407 return (PTE_I); 408 case VM_MEMATTR_WRITE_THROUGH: 409 return (PTE_W | PTE_M); 410 } 411 } 412 413 /* 414 * Assume the page is cache inhibited and access is guarded unless 415 * it's in our available memory array. 416 */ 417 attrib = _TLB_ENTRY_IO; 418 for (i = 0; i < physmem_regions_sz; i++) { 419 if ((pa >= physmem_regions[i].mr_start) && 420 (pa < (physmem_regions[i].mr_start + 421 physmem_regions[i].mr_size))) { 422 attrib = _TLB_ENTRY_MEM; 423 break; 424 } 425 } 426 427 return (attrib); 428 } 429 430 static inline void 431 tlb_miss_lock(void) 432 { 433 #ifdef SMP 434 struct pcpu *pc; 435 436 if (!smp_started) 437 return; 438 439 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 440 if (pc != pcpup) { 441 442 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 443 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 444 445 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 446 ("tlb_miss_lock: tried to lock self")); 447 448 tlb_lock(pc->pc_booke_tlb_lock); 449 450 CTR1(KTR_PMAP, "%s: locked", __func__); 451 } 452 } 453 #endif 454 } 455 456 static inline void 457 tlb_miss_unlock(void) 458 { 459 #ifdef SMP 460 struct pcpu *pc; 461 462 if (!smp_started) 463 return; 464 465 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 466 if (pc != pcpup) { 467 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 468 __func__, pc->pc_cpuid); 469 470 tlb_unlock(pc->pc_booke_tlb_lock); 471 472 CTR1(KTR_PMAP, "%s: unlocked", __func__); 473 } 474 } 475 #endif 476 } 477 478 /* Return number of entries in TLB0. */ 479 static __inline void 480 tlb0_get_tlbconf(void) 481 { 482 uint32_t tlb0_cfg; 483 484 tlb0_cfg = mfspr(SPR_TLB0CFG); 485 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 486 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 487 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 488 } 489 490 /* Initialize pool of kva ptbl buffers. */ 491 static void 492 ptbl_init(void) 493 { 494 int i; 495 496 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 497 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 498 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 499 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 500 501 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 502 TAILQ_INIT(&ptbl_buf_freelist); 503 504 for (i = 0; i < PTBL_BUFS; i++) { 505 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 506 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 507 } 508 } 509 510 /* Get a ptbl_buf from the freelist. */ 511 static struct ptbl_buf * 512 ptbl_buf_alloc(void) 513 { 514 struct ptbl_buf *buf; 515 516 mtx_lock(&ptbl_buf_freelist_lock); 517 buf = TAILQ_FIRST(&ptbl_buf_freelist); 518 if (buf != NULL) 519 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 520 mtx_unlock(&ptbl_buf_freelist_lock); 521 522 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 523 524 return (buf); 525 } 526 527 /* Return ptbl buff to free pool. */ 528 static void 529 ptbl_buf_free(struct ptbl_buf *buf) 530 { 531 532 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 533 534 mtx_lock(&ptbl_buf_freelist_lock); 535 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 536 mtx_unlock(&ptbl_buf_freelist_lock); 537 } 538 539 /* 540 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 541 */ 542 static void 543 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 544 { 545 struct ptbl_buf *pbuf; 546 547 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 548 549 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 550 551 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 552 if (pbuf->kva == (vm_offset_t)ptbl) { 553 /* Remove from pmap ptbl buf list. */ 554 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 555 556 /* Free corresponding ptbl buf. */ 557 ptbl_buf_free(pbuf); 558 break; 559 } 560 } 561 562 /* Allocate page table. */ 563 static pte_t * 564 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) 565 { 566 vm_page_t mtbl[PTBL_PAGES]; 567 vm_page_t m; 568 struct ptbl_buf *pbuf; 569 unsigned int pidx; 570 pte_t *ptbl; 571 int i, j; 572 573 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 574 (pmap == kernel_pmap), pdir_idx); 575 576 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 577 ("ptbl_alloc: invalid pdir_idx")); 578 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 579 ("pte_alloc: valid ptbl entry exists!")); 580 581 pbuf = ptbl_buf_alloc(); 582 if (pbuf == NULL) 583 panic("pte_alloc: couldn't alloc kernel virtual memory"); 584 585 ptbl = (pte_t *)pbuf->kva; 586 587 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 588 589 /* Allocate ptbl pages, this will sleep! */ 590 for (i = 0; i < PTBL_PAGES; i++) { 591 pidx = (PTBL_PAGES * pdir_idx) + i; 592 while ((m = vm_page_alloc(NULL, pidx, 593 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 594 PMAP_UNLOCK(pmap); 595 rw_wunlock(&pvh_global_lock); 596 if (nosleep) { 597 ptbl_free_pmap_ptbl(pmap, ptbl); 598 for (j = 0; j < i; j++) 599 vm_page_free(mtbl[j]); 600 atomic_subtract_int(&vm_cnt.v_wire_count, i); 601 return (NULL); 602 } 603 VM_WAIT; 604 rw_wlock(&pvh_global_lock); 605 PMAP_LOCK(pmap); 606 } 607 mtbl[i] = m; 608 } 609 610 /* Map allocated pages into kernel_pmap. */ 611 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 612 613 /* Zero whole ptbl. */ 614 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 615 616 /* Add pbuf to the pmap ptbl bufs list. */ 617 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 618 619 return (ptbl); 620 } 621 622 /* Free ptbl pages and invalidate pdir entry. */ 623 static void 624 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 625 { 626 pte_t *ptbl; 627 vm_paddr_t pa; 628 vm_offset_t va; 629 vm_page_t m; 630 int i; 631 632 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 633 (pmap == kernel_pmap), pdir_idx); 634 635 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 636 ("ptbl_free: invalid pdir_idx")); 637 638 ptbl = pmap->pm_pdir[pdir_idx]; 639 640 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 641 642 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 643 644 /* 645 * Invalidate the pdir entry as soon as possible, so that other CPUs 646 * don't attempt to look up the page tables we are releasing. 647 */ 648 mtx_lock_spin(&tlbivax_mutex); 649 tlb_miss_lock(); 650 651 pmap->pm_pdir[pdir_idx] = NULL; 652 653 tlb_miss_unlock(); 654 mtx_unlock_spin(&tlbivax_mutex); 655 656 for (i = 0; i < PTBL_PAGES; i++) { 657 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 658 pa = pte_vatopa(mmu, kernel_pmap, va); 659 m = PHYS_TO_VM_PAGE(pa); 660 vm_page_free_zero(m); 661 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 662 mmu_booke_kremove(mmu, va); 663 } 664 665 ptbl_free_pmap_ptbl(pmap, ptbl); 666 } 667 668 /* 669 * Decrement ptbl pages hold count and attempt to free ptbl pages. 670 * Called when removing pte entry from ptbl. 671 * 672 * Return 1 if ptbl pages were freed. 673 */ 674 static int 675 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 676 { 677 pte_t *ptbl; 678 vm_paddr_t pa; 679 vm_page_t m; 680 int i; 681 682 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 683 (pmap == kernel_pmap), pdir_idx); 684 685 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 686 ("ptbl_unhold: invalid pdir_idx")); 687 KASSERT((pmap != kernel_pmap), 688 ("ptbl_unhold: unholding kernel ptbl!")); 689 690 ptbl = pmap->pm_pdir[pdir_idx]; 691 692 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 693 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 694 ("ptbl_unhold: non kva ptbl")); 695 696 /* decrement hold count */ 697 for (i = 0; i < PTBL_PAGES; i++) { 698 pa = pte_vatopa(mmu, kernel_pmap, 699 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 700 m = PHYS_TO_VM_PAGE(pa); 701 m->wire_count--; 702 } 703 704 /* 705 * Free ptbl pages if there are no pte etries in this ptbl. 706 * wire_count has the same value for all ptbl pages, so check the last 707 * page. 708 */ 709 if (m->wire_count == 0) { 710 ptbl_free(mmu, pmap, pdir_idx); 711 712 //debugf("ptbl_unhold: e (freed ptbl)\n"); 713 return (1); 714 } 715 716 return (0); 717 } 718 719 /* 720 * Increment hold count for ptbl pages. This routine is used when a new pte 721 * entry is being inserted into the ptbl. 722 */ 723 static void 724 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 725 { 726 vm_paddr_t pa; 727 pte_t *ptbl; 728 vm_page_t m; 729 int i; 730 731 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 732 pdir_idx); 733 734 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 735 ("ptbl_hold: invalid pdir_idx")); 736 KASSERT((pmap != kernel_pmap), 737 ("ptbl_hold: holding kernel ptbl!")); 738 739 ptbl = pmap->pm_pdir[pdir_idx]; 740 741 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 742 743 for (i = 0; i < PTBL_PAGES; i++) { 744 pa = pte_vatopa(mmu, kernel_pmap, 745 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 746 m = PHYS_TO_VM_PAGE(pa); 747 m->wire_count++; 748 } 749 } 750 751 /* Allocate pv_entry structure. */ 752 pv_entry_t 753 pv_alloc(void) 754 { 755 pv_entry_t pv; 756 757 pv_entry_count++; 758 if (pv_entry_count > pv_entry_high_water) 759 pagedaemon_wakeup(); 760 pv = uma_zalloc(pvzone, M_NOWAIT); 761 762 return (pv); 763 } 764 765 /* Free pv_entry structure. */ 766 static __inline void 767 pv_free(pv_entry_t pve) 768 { 769 770 pv_entry_count--; 771 uma_zfree(pvzone, pve); 772 } 773 774 775 /* Allocate and initialize pv_entry structure. */ 776 static void 777 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 778 { 779 pv_entry_t pve; 780 781 //int su = (pmap == kernel_pmap); 782 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 783 // (u_int32_t)pmap, va, (u_int32_t)m); 784 785 pve = pv_alloc(); 786 if (pve == NULL) 787 panic("pv_insert: no pv entries!"); 788 789 pve->pv_pmap = pmap; 790 pve->pv_va = va; 791 792 /* add to pv_list */ 793 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 794 rw_assert(&pvh_global_lock, RA_WLOCKED); 795 796 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 797 798 //debugf("pv_insert: e\n"); 799 } 800 801 /* Destroy pv entry. */ 802 static void 803 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 804 { 805 pv_entry_t pve; 806 807 //int su = (pmap == kernel_pmap); 808 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 809 810 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 811 rw_assert(&pvh_global_lock, RA_WLOCKED); 812 813 /* find pv entry */ 814 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 815 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 816 /* remove from pv_list */ 817 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 818 if (TAILQ_EMPTY(&m->md.pv_list)) 819 vm_page_aflag_clear(m, PGA_WRITEABLE); 820 821 /* free pv entry struct */ 822 pv_free(pve); 823 break; 824 } 825 } 826 827 //debugf("pv_remove: e\n"); 828 } 829 830 /* 831 * Clean pte entry, try to free page table page if requested. 832 * 833 * Return 1 if ptbl pages were freed, otherwise return 0. 834 */ 835 static int 836 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 837 { 838 unsigned int pdir_idx = PDIR_IDX(va); 839 unsigned int ptbl_idx = PTBL_IDX(va); 840 vm_page_t m; 841 pte_t *ptbl; 842 pte_t *pte; 843 844 //int su = (pmap == kernel_pmap); 845 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 846 // su, (u_int32_t)pmap, va, flags); 847 848 ptbl = pmap->pm_pdir[pdir_idx]; 849 KASSERT(ptbl, ("pte_remove: null ptbl")); 850 851 pte = &ptbl[ptbl_idx]; 852 853 if (pte == NULL || !PTE_ISVALID(pte)) 854 return (0); 855 856 if (PTE_ISWIRED(pte)) 857 pmap->pm_stats.wired_count--; 858 859 /* Handle managed entry. */ 860 if (PTE_ISMANAGED(pte)) { 861 /* Get vm_page_t for mapped pte. */ 862 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 863 864 if (PTE_ISMODIFIED(pte)) 865 vm_page_dirty(m); 866 867 if (PTE_ISREFERENCED(pte)) 868 vm_page_aflag_set(m, PGA_REFERENCED); 869 870 pv_remove(pmap, va, m); 871 } 872 873 mtx_lock_spin(&tlbivax_mutex); 874 tlb_miss_lock(); 875 876 tlb0_flush_entry(va); 877 pte->flags = 0; 878 pte->rpn = 0; 879 880 tlb_miss_unlock(); 881 mtx_unlock_spin(&tlbivax_mutex); 882 883 pmap->pm_stats.resident_count--; 884 885 if (flags & PTBL_UNHOLD) { 886 //debugf("pte_remove: e (unhold)\n"); 887 return (ptbl_unhold(mmu, pmap, pdir_idx)); 888 } 889 890 //debugf("pte_remove: e\n"); 891 return (0); 892 } 893 894 /* 895 * Insert PTE for a given page and virtual address. 896 */ 897 static int 898 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 899 boolean_t nosleep) 900 { 901 unsigned int pdir_idx = PDIR_IDX(va); 902 unsigned int ptbl_idx = PTBL_IDX(va); 903 pte_t *ptbl, *pte; 904 905 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 906 pmap == kernel_pmap, pmap, va); 907 908 /* Get the page table pointer. */ 909 ptbl = pmap->pm_pdir[pdir_idx]; 910 911 if (ptbl == NULL) { 912 /* Allocate page table pages. */ 913 ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); 914 if (ptbl == NULL) { 915 KASSERT(nosleep, ("nosleep and NULL ptbl")); 916 return (ENOMEM); 917 } 918 } else { 919 /* 920 * Check if there is valid mapping for requested 921 * va, if there is, remove it. 922 */ 923 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 924 if (PTE_ISVALID(pte)) { 925 pte_remove(mmu, pmap, va, PTBL_HOLD); 926 } else { 927 /* 928 * pte is not used, increment hold count 929 * for ptbl pages. 930 */ 931 if (pmap != kernel_pmap) 932 ptbl_hold(mmu, pmap, pdir_idx); 933 } 934 } 935 936 /* 937 * Insert pv_entry into pv_list for mapped page if part of managed 938 * memory. 939 */ 940 if ((m->oflags & VPO_UNMANAGED) == 0) { 941 flags |= PTE_MANAGED; 942 943 /* Create and insert pv entry. */ 944 pv_insert(pmap, va, m); 945 } 946 947 pmap->pm_stats.resident_count++; 948 949 mtx_lock_spin(&tlbivax_mutex); 950 tlb_miss_lock(); 951 952 tlb0_flush_entry(va); 953 if (pmap->pm_pdir[pdir_idx] == NULL) { 954 /* 955 * If we just allocated a new page table, hook it in 956 * the pdir. 957 */ 958 pmap->pm_pdir[pdir_idx] = ptbl; 959 } 960 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 961 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK; 962 pte->flags |= (PTE_VALID | flags); 963 964 tlb_miss_unlock(); 965 mtx_unlock_spin(&tlbivax_mutex); 966 return (0); 967 } 968 969 /* Return the pa for the given pmap/va. */ 970 static vm_paddr_t 971 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 972 { 973 vm_paddr_t pa = 0; 974 pte_t *pte; 975 976 pte = pte_find(mmu, pmap, va); 977 if ((pte != NULL) && PTE_ISVALID(pte)) 978 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 979 return (pa); 980 } 981 982 /* Get a pointer to a PTE in a page table. */ 983 static pte_t * 984 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 985 { 986 unsigned int pdir_idx = PDIR_IDX(va); 987 unsigned int ptbl_idx = PTBL_IDX(va); 988 989 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 990 991 if (pmap->pm_pdir[pdir_idx]) 992 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 993 994 return (NULL); 995 } 996 997 /**************************************************************************/ 998 /* PMAP related */ 999 /**************************************************************************/ 1000 1001 /* 1002 * This is called during booke_init, before the system is really initialized. 1003 */ 1004 static void 1005 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 1006 { 1007 vm_offset_t phys_kernelend; 1008 struct mem_region *mp, *mp1; 1009 int cnt, i, j; 1010 u_int s, e, sz; 1011 u_int phys_avail_count; 1012 vm_size_t physsz, hwphyssz, kstack0_sz; 1013 vm_offset_t kernel_pdir, kstack0, va; 1014 vm_paddr_t kstack0_phys; 1015 void *dpcpu; 1016 pte_t *pte; 1017 1018 debugf("mmu_booke_bootstrap: entered\n"); 1019 1020 /* Set interesting system properties */ 1021 hw_direct_map = 0; 1022 elf32_nxstack = 1; 1023 1024 /* Initialize invalidation mutex */ 1025 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 1026 1027 /* Read TLB0 size and associativity. */ 1028 tlb0_get_tlbconf(); 1029 1030 /* 1031 * Align kernel start and end address (kernel image). 1032 * Note that kernel end does not necessarily relate to kernsize. 1033 * kernsize is the size of the kernel that is actually mapped. 1034 * Also note that "start - 1" is deliberate. With SMP, the 1035 * entry point is exactly a page from the actual load address. 1036 * As such, trunc_page() has no effect and we're off by a page. 1037 * Since we always have the ELF header between the load address 1038 * and the entry point, we can safely subtract 1 to compensate. 1039 */ 1040 kernstart = trunc_page(start - 1); 1041 data_start = round_page(kernelend); 1042 data_end = data_start; 1043 1044 /* 1045 * Addresses of preloaded modules (like file systems) use 1046 * physical addresses. Make sure we relocate those into 1047 * virtual addresses. 1048 */ 1049 preload_addr_relocate = kernstart - kernload; 1050 1051 /* Allocate the dynamic per-cpu area. */ 1052 dpcpu = (void *)data_end; 1053 data_end += DPCPU_SIZE; 1054 1055 /* Allocate space for the message buffer. */ 1056 msgbufp = (struct msgbuf *)data_end; 1057 data_end += msgbufsize; 1058 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, 1059 data_end); 1060 1061 data_end = round_page(data_end); 1062 1063 /* Allocate space for ptbl_bufs. */ 1064 ptbl_bufs = (struct ptbl_buf *)data_end; 1065 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1066 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, 1067 data_end); 1068 1069 data_end = round_page(data_end); 1070 1071 /* Allocate PTE tables for kernel KVA. */ 1072 kernel_pdir = data_end; 1073 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS + 1074 PDIR_SIZE - 1) / PDIR_SIZE; 1075 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1076 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1077 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); 1078 1079 debugf(" data_end: 0x%08x\n", data_end); 1080 if (data_end - kernstart > kernsize) { 1081 kernsize += tlb1_mapin_region(kernstart + kernsize, 1082 kernload + kernsize, (data_end - kernstart) - kernsize); 1083 } 1084 data_end = kernstart + kernsize; 1085 debugf(" updated data_end: 0x%08x\n", data_end); 1086 1087 /* 1088 * Clear the structures - note we can only do it safely after the 1089 * possible additional TLB1 translations are in place (above) so that 1090 * all range up to the currently calculated 'data_end' is covered. 1091 */ 1092 dpcpu_init(dpcpu, 0); 1093 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1094 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1095 1096 /*******************************************************/ 1097 /* Set the start and end of kva. */ 1098 /*******************************************************/ 1099 virtual_avail = round_page(data_end); 1100 virtual_end = VM_MAX_KERNEL_ADDRESS; 1101 1102 /* Allocate KVA space for page zero/copy operations. */ 1103 zero_page_va = virtual_avail; 1104 virtual_avail += PAGE_SIZE; 1105 zero_page_idle_va = virtual_avail; 1106 virtual_avail += PAGE_SIZE; 1107 copy_page_src_va = virtual_avail; 1108 virtual_avail += PAGE_SIZE; 1109 copy_page_dst_va = virtual_avail; 1110 virtual_avail += PAGE_SIZE; 1111 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1112 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va); 1113 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1114 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1115 1116 /* Initialize page zero/copy mutexes. */ 1117 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1118 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1119 1120 /* Allocate KVA space for ptbl bufs. */ 1121 ptbl_buf_pool_vabase = virtual_avail; 1122 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1123 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1124 ptbl_buf_pool_vabase, virtual_avail); 1125 1126 /* Calculate corresponding physical addresses for the kernel region. */ 1127 phys_kernelend = kernload + kernsize; 1128 debugf("kernel image and allocated data:\n"); 1129 debugf(" kernload = 0x%08x\n", kernload); 1130 debugf(" kernstart = 0x%08x\n", kernstart); 1131 debugf(" kernsize = 0x%08x\n", kernsize); 1132 1133 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1134 panic("mmu_booke_bootstrap: phys_avail too small"); 1135 1136 /* 1137 * Remove kernel physical address range from avail regions list. Page 1138 * align all regions. Non-page aligned memory isn't very interesting 1139 * to us. Also, sort the entries for ascending addresses. 1140 */ 1141 1142 /* Retrieve phys/avail mem regions */ 1143 mem_regions(&physmem_regions, &physmem_regions_sz, 1144 &availmem_regions, &availmem_regions_sz); 1145 sz = 0; 1146 cnt = availmem_regions_sz; 1147 debugf("processing avail regions:\n"); 1148 for (mp = availmem_regions; mp->mr_size; mp++) { 1149 s = mp->mr_start; 1150 e = mp->mr_start + mp->mr_size; 1151 debugf(" %08x-%08x -> ", s, e); 1152 /* Check whether this region holds all of the kernel. */ 1153 if (s < kernload && e > phys_kernelend) { 1154 availmem_regions[cnt].mr_start = phys_kernelend; 1155 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1156 e = kernload; 1157 } 1158 /* Look whether this regions starts within the kernel. */ 1159 if (s >= kernload && s < phys_kernelend) { 1160 if (e <= phys_kernelend) 1161 goto empty; 1162 s = phys_kernelend; 1163 } 1164 /* Now look whether this region ends within the kernel. */ 1165 if (e > kernload && e <= phys_kernelend) { 1166 if (s >= kernload) 1167 goto empty; 1168 e = kernload; 1169 } 1170 /* Now page align the start and size of the region. */ 1171 s = round_page(s); 1172 e = trunc_page(e); 1173 if (e < s) 1174 e = s; 1175 sz = e - s; 1176 debugf("%08x-%08x = %x\n", s, e, sz); 1177 1178 /* Check whether some memory is left here. */ 1179 if (sz == 0) { 1180 empty: 1181 memmove(mp, mp + 1, 1182 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1183 cnt--; 1184 mp--; 1185 continue; 1186 } 1187 1188 /* Do an insertion sort. */ 1189 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1190 if (s < mp1->mr_start) 1191 break; 1192 if (mp1 < mp) { 1193 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1194 mp1->mr_start = s; 1195 mp1->mr_size = sz; 1196 } else { 1197 mp->mr_start = s; 1198 mp->mr_size = sz; 1199 } 1200 } 1201 availmem_regions_sz = cnt; 1202 1203 /*******************************************************/ 1204 /* Steal physical memory for kernel stack from the end */ 1205 /* of the first avail region */ 1206 /*******************************************************/ 1207 kstack0_sz = KSTACK_PAGES * PAGE_SIZE; 1208 kstack0_phys = availmem_regions[0].mr_start + 1209 availmem_regions[0].mr_size; 1210 kstack0_phys -= kstack0_sz; 1211 availmem_regions[0].mr_size -= kstack0_sz; 1212 1213 /*******************************************************/ 1214 /* Fill in phys_avail table, based on availmem_regions */ 1215 /*******************************************************/ 1216 phys_avail_count = 0; 1217 physsz = 0; 1218 hwphyssz = 0; 1219 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1220 1221 debugf("fill in phys_avail:\n"); 1222 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1223 1224 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", 1225 availmem_regions[i].mr_start, 1226 availmem_regions[i].mr_start + 1227 availmem_regions[i].mr_size, 1228 availmem_regions[i].mr_size); 1229 1230 if (hwphyssz != 0 && 1231 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1232 debugf(" hw.physmem adjust\n"); 1233 if (physsz < hwphyssz) { 1234 phys_avail[j] = availmem_regions[i].mr_start; 1235 phys_avail[j + 1] = 1236 availmem_regions[i].mr_start + 1237 hwphyssz - physsz; 1238 physsz = hwphyssz; 1239 phys_avail_count++; 1240 } 1241 break; 1242 } 1243 1244 phys_avail[j] = availmem_regions[i].mr_start; 1245 phys_avail[j + 1] = availmem_regions[i].mr_start + 1246 availmem_regions[i].mr_size; 1247 phys_avail_count++; 1248 physsz += availmem_regions[i].mr_size; 1249 } 1250 physmem = btoc(physsz); 1251 1252 /* Calculate the last available physical address. */ 1253 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1254 ; 1255 Maxmem = powerpc_btop(phys_avail[i + 1]); 1256 1257 debugf("Maxmem = 0x%08lx\n", Maxmem); 1258 debugf("phys_avail_count = %d\n", phys_avail_count); 1259 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem, 1260 physmem); 1261 1262 /*******************************************************/ 1263 /* Initialize (statically allocated) kernel pmap. */ 1264 /*******************************************************/ 1265 PMAP_LOCK_INIT(kernel_pmap); 1266 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1267 1268 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); 1269 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); 1270 debugf("kernel pdir range: 0x%08x - 0x%08x\n", 1271 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); 1272 1273 /* Initialize kernel pdir */ 1274 for (i = 0; i < kernel_ptbls; i++) 1275 kernel_pmap->pm_pdir[kptbl_min + i] = 1276 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1277 1278 for (i = 0; i < MAXCPU; i++) { 1279 kernel_pmap->pm_tid[i] = TID_KERNEL; 1280 1281 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1282 tidbusy[i][0] = kernel_pmap; 1283 } 1284 1285 /* 1286 * Fill in PTEs covering kernel code and data. They are not required 1287 * for address translation, as this area is covered by static TLB1 1288 * entries, but for pte_vatopa() to work correctly with kernel area 1289 * addresses. 1290 */ 1291 for (va = kernstart; va < data_end; va += PAGE_SIZE) { 1292 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1293 pte->rpn = kernload + (va - kernstart); 1294 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1295 PTE_VALID; 1296 } 1297 /* Mark kernel_pmap active on all CPUs */ 1298 CPU_FILL(&kernel_pmap->pm_active); 1299 1300 /* 1301 * Initialize the global pv list lock. 1302 */ 1303 rw_init(&pvh_global_lock, "pmap pv global"); 1304 1305 /*******************************************************/ 1306 /* Final setup */ 1307 /*******************************************************/ 1308 1309 /* Enter kstack0 into kernel map, provide guard page */ 1310 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1311 thread0.td_kstack = kstack0; 1312 thread0.td_kstack_pages = KSTACK_PAGES; 1313 1314 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1315 debugf("kstack0_phys at 0x%08x - 0x%08x\n", 1316 kstack0_phys, kstack0_phys + kstack0_sz); 1317 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); 1318 1319 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 1320 for (i = 0; i < KSTACK_PAGES; i++) { 1321 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 1322 kstack0 += PAGE_SIZE; 1323 kstack0_phys += PAGE_SIZE; 1324 } 1325 1326 pmap_bootstrapped = 1; 1327 1328 debugf("virtual_avail = %08x\n", virtual_avail); 1329 debugf("virtual_end = %08x\n", virtual_end); 1330 1331 debugf("mmu_booke_bootstrap: exit\n"); 1332 } 1333 1334 #ifdef SMP 1335 void 1336 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 1337 { 1338 int i; 1339 1340 /* 1341 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 1342 * have the snapshot of its contents in the s/w tlb1[] table, so use 1343 * these values directly to (re)program AP's TLB1 hardware. 1344 */ 1345 for (i = bp_ntlb1s; i < tlb1_idx; i++) { 1346 /* Skip invalid entries */ 1347 if (!(tlb1[i].mas1 & MAS1_VALID)) 1348 continue; 1349 1350 tlb1_write_entry(i); 1351 } 1352 1353 set_mas4_defaults(); 1354 } 1355 #endif 1356 1357 /* 1358 * Get the physical page address for the given pmap/virtual address. 1359 */ 1360 static vm_paddr_t 1361 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1362 { 1363 vm_paddr_t pa; 1364 1365 PMAP_LOCK(pmap); 1366 pa = pte_vatopa(mmu, pmap, va); 1367 PMAP_UNLOCK(pmap); 1368 1369 return (pa); 1370 } 1371 1372 /* 1373 * Extract the physical page address associated with the given 1374 * kernel virtual address. 1375 */ 1376 static vm_paddr_t 1377 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 1378 { 1379 int i; 1380 1381 /* Check TLB1 mappings */ 1382 for (i = 0; i < tlb1_idx; i++) { 1383 if (!(tlb1[i].mas1 & MAS1_VALID)) 1384 continue; 1385 if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size) 1386 return (tlb1[i].phys + (va - tlb1[i].virt)); 1387 } 1388 1389 return (pte_vatopa(mmu, kernel_pmap, va)); 1390 } 1391 1392 /* 1393 * Initialize the pmap module. 1394 * Called by vm_init, to initialize any structures that the pmap 1395 * system needs to map virtual memory. 1396 */ 1397 static void 1398 mmu_booke_init(mmu_t mmu) 1399 { 1400 int shpgperproc = PMAP_SHPGPERPROC; 1401 1402 /* 1403 * Initialize the address space (zone) for the pv entries. Set a 1404 * high water mark so that the system can recover from excessive 1405 * numbers of pv entries. 1406 */ 1407 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 1408 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 1409 1410 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 1411 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; 1412 1413 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 1414 pv_entry_high_water = 9 * (pv_entry_max / 10); 1415 1416 uma_zone_reserve_kva(pvzone, pv_entry_max); 1417 1418 /* Pre-fill pvzone with initial number of pv entries. */ 1419 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 1420 1421 /* Initialize ptbl allocation. */ 1422 ptbl_init(); 1423 } 1424 1425 /* 1426 * Map a list of wired pages into kernel virtual address space. This is 1427 * intended for temporary mappings which do not need page modification or 1428 * references recorded. Existing mappings in the region are overwritten. 1429 */ 1430 static void 1431 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1432 { 1433 vm_offset_t va; 1434 1435 va = sva; 1436 while (count-- > 0) { 1437 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1438 va += PAGE_SIZE; 1439 m++; 1440 } 1441 } 1442 1443 /* 1444 * Remove page mappings from kernel virtual address space. Intended for 1445 * temporary mappings entered by mmu_booke_qenter. 1446 */ 1447 static void 1448 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 1449 { 1450 vm_offset_t va; 1451 1452 va = sva; 1453 while (count-- > 0) { 1454 mmu_booke_kremove(mmu, va); 1455 va += PAGE_SIZE; 1456 } 1457 } 1458 1459 /* 1460 * Map a wired page into kernel virtual address space. 1461 */ 1462 static void 1463 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1464 { 1465 1466 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1467 } 1468 1469 static void 1470 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 1471 { 1472 unsigned int pdir_idx = PDIR_IDX(va); 1473 unsigned int ptbl_idx = PTBL_IDX(va); 1474 uint32_t flags; 1475 pte_t *pte; 1476 1477 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1478 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 1479 1480 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 1481 flags |= tlb_calc_wimg(pa, ma); 1482 1483 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1484 1485 mtx_lock_spin(&tlbivax_mutex); 1486 tlb_miss_lock(); 1487 1488 if (PTE_ISVALID(pte)) { 1489 1490 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 1491 1492 /* Flush entry from TLB0 */ 1493 tlb0_flush_entry(va); 1494 } 1495 1496 pte->rpn = pa & ~PTE_PA_MASK; 1497 pte->flags = flags; 1498 1499 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 1500 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 1501 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 1502 1503 /* Flush the real memory from the instruction cache. */ 1504 if ((flags & (PTE_I | PTE_G)) == 0) { 1505 __syncicache((void *)va, PAGE_SIZE); 1506 } 1507 1508 tlb_miss_unlock(); 1509 mtx_unlock_spin(&tlbivax_mutex); 1510 } 1511 1512 /* 1513 * Remove a page from kernel page table. 1514 */ 1515 static void 1516 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 1517 { 1518 unsigned int pdir_idx = PDIR_IDX(va); 1519 unsigned int ptbl_idx = PTBL_IDX(va); 1520 pte_t *pte; 1521 1522 // CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va)); 1523 1524 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1525 (va <= VM_MAX_KERNEL_ADDRESS)), 1526 ("mmu_booke_kremove: invalid va")); 1527 1528 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1529 1530 if (!PTE_ISVALID(pte)) { 1531 1532 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 1533 1534 return; 1535 } 1536 1537 mtx_lock_spin(&tlbivax_mutex); 1538 tlb_miss_lock(); 1539 1540 /* Invalidate entry in TLB0, update PTE. */ 1541 tlb0_flush_entry(va); 1542 pte->flags = 0; 1543 pte->rpn = 0; 1544 1545 tlb_miss_unlock(); 1546 mtx_unlock_spin(&tlbivax_mutex); 1547 } 1548 1549 /* 1550 * Initialize pmap associated with process 0. 1551 */ 1552 static void 1553 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 1554 { 1555 1556 PMAP_LOCK_INIT(pmap); 1557 mmu_booke_pinit(mmu, pmap); 1558 PCPU_SET(curpmap, pmap); 1559 } 1560 1561 /* 1562 * Initialize a preallocated and zeroed pmap structure, 1563 * such as one in a vmspace structure. 1564 */ 1565 static void 1566 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 1567 { 1568 int i; 1569 1570 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 1571 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 1572 1573 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 1574 1575 for (i = 0; i < MAXCPU; i++) 1576 pmap->pm_tid[i] = TID_NONE; 1577 CPU_ZERO(&kernel_pmap->pm_active); 1578 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 1579 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 1580 TAILQ_INIT(&pmap->pm_ptbl_list); 1581 } 1582 1583 /* 1584 * Release any resources held by the given physical map. 1585 * Called when a pmap initialized by mmu_booke_pinit is being released. 1586 * Should only be called if the map contains no valid mappings. 1587 */ 1588 static void 1589 mmu_booke_release(mmu_t mmu, pmap_t pmap) 1590 { 1591 1592 KASSERT(pmap->pm_stats.resident_count == 0, 1593 ("pmap_release: pmap resident count %ld != 0", 1594 pmap->pm_stats.resident_count)); 1595 } 1596 1597 /* 1598 * Insert the given physical page at the specified virtual address in the 1599 * target physical map with the protection requested. If specified the page 1600 * will be wired down. 1601 */ 1602 static int 1603 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1604 vm_prot_t prot, u_int flags, int8_t psind) 1605 { 1606 int error; 1607 1608 rw_wlock(&pvh_global_lock); 1609 PMAP_LOCK(pmap); 1610 error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); 1611 rw_wunlock(&pvh_global_lock); 1612 PMAP_UNLOCK(pmap); 1613 return (error); 1614 } 1615 1616 static int 1617 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1618 vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) 1619 { 1620 pte_t *pte; 1621 vm_paddr_t pa; 1622 uint32_t flags; 1623 int error, su, sync; 1624 1625 pa = VM_PAGE_TO_PHYS(m); 1626 su = (pmap == kernel_pmap); 1627 sync = 0; 1628 1629 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 1630 // "pa=0x%08x prot=0x%08x flags=%#x)\n", 1631 // (u_int32_t)pmap, su, pmap->pm_tid, 1632 // (u_int32_t)m, va, pa, prot, flags); 1633 1634 if (su) { 1635 KASSERT(((va >= virtual_avail) && 1636 (va <= VM_MAX_KERNEL_ADDRESS)), 1637 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 1638 } else { 1639 KASSERT((va <= VM_MAXUSER_ADDRESS), 1640 ("mmu_booke_enter_locked: user pmap, non user va")); 1641 } 1642 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 1643 VM_OBJECT_ASSERT_LOCKED(m->object); 1644 1645 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1646 1647 /* 1648 * If there is an existing mapping, and the physical address has not 1649 * changed, must be protection or wiring change. 1650 */ 1651 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 1652 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 1653 1654 /* 1655 * Before actually updating pte->flags we calculate and 1656 * prepare its new value in a helper var. 1657 */ 1658 flags = pte->flags; 1659 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 1660 1661 /* Wiring change, just update stats. */ 1662 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { 1663 if (!PTE_ISWIRED(pte)) { 1664 flags |= PTE_WIRED; 1665 pmap->pm_stats.wired_count++; 1666 } 1667 } else { 1668 if (PTE_ISWIRED(pte)) { 1669 flags &= ~PTE_WIRED; 1670 pmap->pm_stats.wired_count--; 1671 } 1672 } 1673 1674 if (prot & VM_PROT_WRITE) { 1675 /* Add write permissions. */ 1676 flags |= PTE_SW; 1677 if (!su) 1678 flags |= PTE_UW; 1679 1680 if ((flags & PTE_MANAGED) != 0) 1681 vm_page_aflag_set(m, PGA_WRITEABLE); 1682 } else { 1683 /* Handle modified pages, sense modify status. */ 1684 1685 /* 1686 * The PTE_MODIFIED flag could be set by underlying 1687 * TLB misses since we last read it (above), possibly 1688 * other CPUs could update it so we check in the PTE 1689 * directly rather than rely on that saved local flags 1690 * copy. 1691 */ 1692 if (PTE_ISMODIFIED(pte)) 1693 vm_page_dirty(m); 1694 } 1695 1696 if (prot & VM_PROT_EXECUTE) { 1697 flags |= PTE_SX; 1698 if (!su) 1699 flags |= PTE_UX; 1700 1701 /* 1702 * Check existing flags for execute permissions: if we 1703 * are turning execute permissions on, icache should 1704 * be flushed. 1705 */ 1706 if ((pte->flags & (PTE_UX | PTE_SX)) == 0) 1707 sync++; 1708 } 1709 1710 flags &= ~PTE_REFERENCED; 1711 1712 /* 1713 * The new flags value is all calculated -- only now actually 1714 * update the PTE. 1715 */ 1716 mtx_lock_spin(&tlbivax_mutex); 1717 tlb_miss_lock(); 1718 1719 tlb0_flush_entry(va); 1720 pte->flags = flags; 1721 1722 tlb_miss_unlock(); 1723 mtx_unlock_spin(&tlbivax_mutex); 1724 1725 } else { 1726 /* 1727 * If there is an existing mapping, but it's for a different 1728 * physical address, pte_enter() will delete the old mapping. 1729 */ 1730 //if ((pte != NULL) && PTE_ISVALID(pte)) 1731 // debugf("mmu_booke_enter_locked: replace\n"); 1732 //else 1733 // debugf("mmu_booke_enter_locked: new\n"); 1734 1735 /* Now set up the flags and install the new mapping. */ 1736 flags = (PTE_SR | PTE_VALID); 1737 flags |= PTE_M; 1738 1739 if (!su) 1740 flags |= PTE_UR; 1741 1742 if (prot & VM_PROT_WRITE) { 1743 flags |= PTE_SW; 1744 if (!su) 1745 flags |= PTE_UW; 1746 1747 if ((m->oflags & VPO_UNMANAGED) == 0) 1748 vm_page_aflag_set(m, PGA_WRITEABLE); 1749 } 1750 1751 if (prot & VM_PROT_EXECUTE) { 1752 flags |= PTE_SX; 1753 if (!su) 1754 flags |= PTE_UX; 1755 } 1756 1757 /* If its wired update stats. */ 1758 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) 1759 flags |= PTE_WIRED; 1760 1761 error = pte_enter(mmu, pmap, m, va, flags, 1762 (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); 1763 if (error != 0) 1764 return (KERN_RESOURCE_SHORTAGE); 1765 1766 if ((flags & PMAP_ENTER_WIRED) != 0) 1767 pmap->pm_stats.wired_count++; 1768 1769 /* Flush the real memory from the instruction cache. */ 1770 if (prot & VM_PROT_EXECUTE) 1771 sync++; 1772 } 1773 1774 if (sync && (su || pmap == PCPU_GET(curpmap))) { 1775 __syncicache((void *)va, PAGE_SIZE); 1776 sync = 0; 1777 } 1778 1779 return (KERN_SUCCESS); 1780 } 1781 1782 /* 1783 * Maps a sequence of resident pages belonging to the same object. 1784 * The sequence begins with the given page m_start. This page is 1785 * mapped at the given virtual address start. Each subsequent page is 1786 * mapped at a virtual address that is offset from start by the same 1787 * amount as the page is offset from m_start within the object. The 1788 * last page in the sequence is the page with the largest offset from 1789 * m_start that can be mapped at a virtual address less than the given 1790 * virtual address end. Not every virtual page between start and end 1791 * is mapped; only those for which a resident page exists with the 1792 * corresponding offset from m_start are mapped. 1793 */ 1794 static void 1795 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 1796 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 1797 { 1798 vm_page_t m; 1799 vm_pindex_t diff, psize; 1800 1801 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1802 1803 psize = atop(end - start); 1804 m = m_start; 1805 rw_wlock(&pvh_global_lock); 1806 PMAP_LOCK(pmap); 1807 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1808 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 1809 prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1810 PMAP_ENTER_NOSLEEP, 0); 1811 m = TAILQ_NEXT(m, listq); 1812 } 1813 rw_wunlock(&pvh_global_lock); 1814 PMAP_UNLOCK(pmap); 1815 } 1816 1817 static void 1818 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1819 vm_prot_t prot) 1820 { 1821 1822 rw_wlock(&pvh_global_lock); 1823 PMAP_LOCK(pmap); 1824 mmu_booke_enter_locked(mmu, pmap, va, m, 1825 prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 1826 0); 1827 rw_wunlock(&pvh_global_lock); 1828 PMAP_UNLOCK(pmap); 1829 } 1830 1831 /* 1832 * Remove the given range of addresses from the specified map. 1833 * 1834 * It is assumed that the start and end are properly rounded to the page size. 1835 */ 1836 static void 1837 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 1838 { 1839 pte_t *pte; 1840 uint8_t hold_flag; 1841 1842 int su = (pmap == kernel_pmap); 1843 1844 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 1845 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 1846 1847 if (su) { 1848 KASSERT(((va >= virtual_avail) && 1849 (va <= VM_MAX_KERNEL_ADDRESS)), 1850 ("mmu_booke_remove: kernel pmap, non kernel va")); 1851 } else { 1852 KASSERT((va <= VM_MAXUSER_ADDRESS), 1853 ("mmu_booke_remove: user pmap, non user va")); 1854 } 1855 1856 if (PMAP_REMOVE_DONE(pmap)) { 1857 //debugf("mmu_booke_remove: e (empty)\n"); 1858 return; 1859 } 1860 1861 hold_flag = PTBL_HOLD_FLAG(pmap); 1862 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 1863 1864 rw_wlock(&pvh_global_lock); 1865 PMAP_LOCK(pmap); 1866 for (; va < endva; va += PAGE_SIZE) { 1867 pte = pte_find(mmu, pmap, va); 1868 if ((pte != NULL) && PTE_ISVALID(pte)) 1869 pte_remove(mmu, pmap, va, hold_flag); 1870 } 1871 PMAP_UNLOCK(pmap); 1872 rw_wunlock(&pvh_global_lock); 1873 1874 //debugf("mmu_booke_remove: e\n"); 1875 } 1876 1877 /* 1878 * Remove physical page from all pmaps in which it resides. 1879 */ 1880 static void 1881 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 1882 { 1883 pv_entry_t pv, pvn; 1884 uint8_t hold_flag; 1885 1886 rw_wlock(&pvh_global_lock); 1887 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 1888 pvn = TAILQ_NEXT(pv, pv_link); 1889 1890 PMAP_LOCK(pv->pv_pmap); 1891 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 1892 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 1893 PMAP_UNLOCK(pv->pv_pmap); 1894 } 1895 vm_page_aflag_clear(m, PGA_WRITEABLE); 1896 rw_wunlock(&pvh_global_lock); 1897 } 1898 1899 /* 1900 * Map a range of physical addresses into kernel virtual address space. 1901 */ 1902 static vm_offset_t 1903 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1904 vm_paddr_t pa_end, int prot) 1905 { 1906 vm_offset_t sva = *virt; 1907 vm_offset_t va = sva; 1908 1909 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 1910 // sva, pa_start, pa_end); 1911 1912 while (pa_start < pa_end) { 1913 mmu_booke_kenter(mmu, va, pa_start); 1914 va += PAGE_SIZE; 1915 pa_start += PAGE_SIZE; 1916 } 1917 *virt = va; 1918 1919 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 1920 return (sva); 1921 } 1922 1923 /* 1924 * The pmap must be activated before it's address space can be accessed in any 1925 * way. 1926 */ 1927 static void 1928 mmu_booke_activate(mmu_t mmu, struct thread *td) 1929 { 1930 pmap_t pmap; 1931 u_int cpuid; 1932 1933 pmap = &td->td_proc->p_vmspace->vm_pmap; 1934 1935 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 1936 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1937 1938 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 1939 1940 sched_pin(); 1941 1942 cpuid = PCPU_GET(cpuid); 1943 CPU_SET_ATOMIC(cpuid, &pmap->pm_active); 1944 PCPU_SET(curpmap, pmap); 1945 1946 if (pmap->pm_tid[cpuid] == TID_NONE) 1947 tid_alloc(pmap); 1948 1949 /* Load PID0 register with pmap tid value. */ 1950 mtspr(SPR_PID0, pmap->pm_tid[cpuid]); 1951 __asm __volatile("isync"); 1952 1953 mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); 1954 1955 sched_unpin(); 1956 1957 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 1958 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 1959 } 1960 1961 /* 1962 * Deactivate the specified process's address space. 1963 */ 1964 static void 1965 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 1966 { 1967 pmap_t pmap; 1968 1969 pmap = &td->td_proc->p_vmspace->vm_pmap; 1970 1971 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 1972 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1973 1974 td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); 1975 1976 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); 1977 PCPU_SET(curpmap, NULL); 1978 } 1979 1980 /* 1981 * Copy the range specified by src_addr/len 1982 * from the source map to the range dst_addr/len 1983 * in the destination map. 1984 * 1985 * This routine is only advisory and need not do anything. 1986 */ 1987 static void 1988 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 1989 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 1990 { 1991 1992 } 1993 1994 /* 1995 * Set the physical protection on the specified range of this map as requested. 1996 */ 1997 static void 1998 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 1999 vm_prot_t prot) 2000 { 2001 vm_offset_t va; 2002 vm_page_t m; 2003 pte_t *pte; 2004 2005 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2006 mmu_booke_remove(mmu, pmap, sva, eva); 2007 return; 2008 } 2009 2010 if (prot & VM_PROT_WRITE) 2011 return; 2012 2013 PMAP_LOCK(pmap); 2014 for (va = sva; va < eva; va += PAGE_SIZE) { 2015 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2016 if (PTE_ISVALID(pte)) { 2017 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2018 2019 mtx_lock_spin(&tlbivax_mutex); 2020 tlb_miss_lock(); 2021 2022 /* Handle modified pages. */ 2023 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) 2024 vm_page_dirty(m); 2025 2026 tlb0_flush_entry(va); 2027 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2028 2029 tlb_miss_unlock(); 2030 mtx_unlock_spin(&tlbivax_mutex); 2031 } 2032 } 2033 } 2034 PMAP_UNLOCK(pmap); 2035 } 2036 2037 /* 2038 * Clear the write and modified bits in each of the given page's mappings. 2039 */ 2040 static void 2041 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 2042 { 2043 pv_entry_t pv; 2044 pte_t *pte; 2045 2046 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2047 ("mmu_booke_remove_write: page %p is not managed", m)); 2048 2049 /* 2050 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 2051 * set by another thread while the object is locked. Thus, 2052 * if PGA_WRITEABLE is clear, no page table entries need updating. 2053 */ 2054 VM_OBJECT_ASSERT_WLOCKED(m->object); 2055 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 2056 return; 2057 rw_wlock(&pvh_global_lock); 2058 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2059 PMAP_LOCK(pv->pv_pmap); 2060 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2061 if (PTE_ISVALID(pte)) { 2062 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2063 2064 mtx_lock_spin(&tlbivax_mutex); 2065 tlb_miss_lock(); 2066 2067 /* Handle modified pages. */ 2068 if (PTE_ISMODIFIED(pte)) 2069 vm_page_dirty(m); 2070 2071 /* Flush mapping from TLB0. */ 2072 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2073 2074 tlb_miss_unlock(); 2075 mtx_unlock_spin(&tlbivax_mutex); 2076 } 2077 } 2078 PMAP_UNLOCK(pv->pv_pmap); 2079 } 2080 vm_page_aflag_clear(m, PGA_WRITEABLE); 2081 rw_wunlock(&pvh_global_lock); 2082 } 2083 2084 static void 2085 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2086 { 2087 pte_t *pte; 2088 pmap_t pmap; 2089 vm_page_t m; 2090 vm_offset_t addr; 2091 vm_paddr_t pa = 0; 2092 int active, valid; 2093 2094 va = trunc_page(va); 2095 sz = round_page(sz); 2096 2097 rw_wlock(&pvh_global_lock); 2098 pmap = PCPU_GET(curpmap); 2099 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 2100 while (sz > 0) { 2101 PMAP_LOCK(pm); 2102 pte = pte_find(mmu, pm, va); 2103 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2104 if (valid) 2105 pa = PTE_PA(pte); 2106 PMAP_UNLOCK(pm); 2107 if (valid) { 2108 if (!active) { 2109 /* Create a mapping in the active pmap. */ 2110 addr = 0; 2111 m = PHYS_TO_VM_PAGE(pa); 2112 PMAP_LOCK(pmap); 2113 pte_enter(mmu, pmap, m, addr, 2114 PTE_SR | PTE_VALID | PTE_UR, FALSE); 2115 __syncicache((void *)addr, PAGE_SIZE); 2116 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2117 PMAP_UNLOCK(pmap); 2118 } else 2119 __syncicache((void *)va, PAGE_SIZE); 2120 } 2121 va += PAGE_SIZE; 2122 sz -= PAGE_SIZE; 2123 } 2124 rw_wunlock(&pvh_global_lock); 2125 } 2126 2127 /* 2128 * Atomically extract and hold the physical page with the given 2129 * pmap and virtual address pair if that mapping permits the given 2130 * protection. 2131 */ 2132 static vm_page_t 2133 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2134 vm_prot_t prot) 2135 { 2136 pte_t *pte; 2137 vm_page_t m; 2138 uint32_t pte_wbit; 2139 vm_paddr_t pa; 2140 2141 m = NULL; 2142 pa = 0; 2143 PMAP_LOCK(pmap); 2144 retry: 2145 pte = pte_find(mmu, pmap, va); 2146 if ((pte != NULL) && PTE_ISVALID(pte)) { 2147 if (pmap == kernel_pmap) 2148 pte_wbit = PTE_SW; 2149 else 2150 pte_wbit = PTE_UW; 2151 2152 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2153 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) 2154 goto retry; 2155 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2156 vm_page_hold(m); 2157 } 2158 } 2159 2160 PA_UNLOCK_COND(pa); 2161 PMAP_UNLOCK(pmap); 2162 return (m); 2163 } 2164 2165 /* 2166 * Initialize a vm_page's machine-dependent fields. 2167 */ 2168 static void 2169 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2170 { 2171 2172 TAILQ_INIT(&m->md.pv_list); 2173 } 2174 2175 /* 2176 * mmu_booke_zero_page_area zeros the specified hardware page by 2177 * mapping it into virtual memory and using bzero to clear 2178 * its contents. 2179 * 2180 * off and size must reside within a single page. 2181 */ 2182 static void 2183 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2184 { 2185 vm_offset_t va; 2186 2187 /* XXX KASSERT off and size are within a single page? */ 2188 2189 mtx_lock(&zero_page_mutex); 2190 va = zero_page_va; 2191 2192 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2193 bzero((caddr_t)va + off, size); 2194 mmu_booke_kremove(mmu, va); 2195 2196 mtx_unlock(&zero_page_mutex); 2197 } 2198 2199 /* 2200 * mmu_booke_zero_page zeros the specified hardware page. 2201 */ 2202 static void 2203 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2204 { 2205 2206 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE); 2207 } 2208 2209 /* 2210 * mmu_booke_copy_page copies the specified (machine independent) page by 2211 * mapping the page into virtual memory and using memcopy to copy the page, 2212 * one machine dependent page at a time. 2213 */ 2214 static void 2215 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2216 { 2217 vm_offset_t sva, dva; 2218 2219 sva = copy_page_src_va; 2220 dva = copy_page_dst_va; 2221 2222 mtx_lock(©_page_mutex); 2223 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2224 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2225 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2226 mmu_booke_kremove(mmu, dva); 2227 mmu_booke_kremove(mmu, sva); 2228 mtx_unlock(©_page_mutex); 2229 } 2230 2231 static inline void 2232 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 2233 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 2234 { 2235 void *a_cp, *b_cp; 2236 vm_offset_t a_pg_offset, b_pg_offset; 2237 int cnt; 2238 2239 mtx_lock(©_page_mutex); 2240 while (xfersize > 0) { 2241 a_pg_offset = a_offset & PAGE_MASK; 2242 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 2243 mmu_booke_kenter(mmu, copy_page_src_va, 2244 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 2245 a_cp = (char *)copy_page_src_va + a_pg_offset; 2246 b_pg_offset = b_offset & PAGE_MASK; 2247 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 2248 mmu_booke_kenter(mmu, copy_page_dst_va, 2249 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 2250 b_cp = (char *)copy_page_dst_va + b_pg_offset; 2251 bcopy(a_cp, b_cp, cnt); 2252 mmu_booke_kremove(mmu, copy_page_dst_va); 2253 mmu_booke_kremove(mmu, copy_page_src_va); 2254 a_offset += cnt; 2255 b_offset += cnt; 2256 xfersize -= cnt; 2257 } 2258 mtx_unlock(©_page_mutex); 2259 } 2260 2261 /* 2262 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it 2263 * into virtual memory and using bzero to clear its contents. This is intended 2264 * to be called from the vm_pagezero process only and outside of Giant. No 2265 * lock is required. 2266 */ 2267 static void 2268 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m) 2269 { 2270 vm_offset_t va; 2271 2272 va = zero_page_idle_va; 2273 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2274 bzero((caddr_t)va, PAGE_SIZE); 2275 mmu_booke_kremove(mmu, va); 2276 } 2277 2278 /* 2279 * Return whether or not the specified physical page was modified 2280 * in any of physical maps. 2281 */ 2282 static boolean_t 2283 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 2284 { 2285 pte_t *pte; 2286 pv_entry_t pv; 2287 boolean_t rv; 2288 2289 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2290 ("mmu_booke_is_modified: page %p is not managed", m)); 2291 rv = FALSE; 2292 2293 /* 2294 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 2295 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 2296 * is clear, no PTEs can be modified. 2297 */ 2298 VM_OBJECT_ASSERT_WLOCKED(m->object); 2299 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 2300 return (rv); 2301 rw_wlock(&pvh_global_lock); 2302 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2303 PMAP_LOCK(pv->pv_pmap); 2304 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2305 PTE_ISVALID(pte)) { 2306 if (PTE_ISMODIFIED(pte)) 2307 rv = TRUE; 2308 } 2309 PMAP_UNLOCK(pv->pv_pmap); 2310 if (rv) 2311 break; 2312 } 2313 rw_wunlock(&pvh_global_lock); 2314 return (rv); 2315 } 2316 2317 /* 2318 * Return whether or not the specified virtual address is eligible 2319 * for prefault. 2320 */ 2321 static boolean_t 2322 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2323 { 2324 2325 return (FALSE); 2326 } 2327 2328 /* 2329 * Return whether or not the specified physical page was referenced 2330 * in any physical maps. 2331 */ 2332 static boolean_t 2333 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 2334 { 2335 pte_t *pte; 2336 pv_entry_t pv; 2337 boolean_t rv; 2338 2339 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2340 ("mmu_booke_is_referenced: page %p is not managed", m)); 2341 rv = FALSE; 2342 rw_wlock(&pvh_global_lock); 2343 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2344 PMAP_LOCK(pv->pv_pmap); 2345 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2346 PTE_ISVALID(pte)) { 2347 if (PTE_ISREFERENCED(pte)) 2348 rv = TRUE; 2349 } 2350 PMAP_UNLOCK(pv->pv_pmap); 2351 if (rv) 2352 break; 2353 } 2354 rw_wunlock(&pvh_global_lock); 2355 return (rv); 2356 } 2357 2358 /* 2359 * Clear the modify bits on the specified physical page. 2360 */ 2361 static void 2362 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 2363 { 2364 pte_t *pte; 2365 pv_entry_t pv; 2366 2367 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2368 ("mmu_booke_clear_modify: page %p is not managed", m)); 2369 VM_OBJECT_ASSERT_WLOCKED(m->object); 2370 KASSERT(!vm_page_xbusied(m), 2371 ("mmu_booke_clear_modify: page %p is exclusive busied", m)); 2372 2373 /* 2374 * If the page is not PG_AWRITEABLE, then no PTEs can be modified. 2375 * If the object containing the page is locked and the page is not 2376 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set. 2377 */ 2378 if ((m->aflags & PGA_WRITEABLE) == 0) 2379 return; 2380 rw_wlock(&pvh_global_lock); 2381 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2382 PMAP_LOCK(pv->pv_pmap); 2383 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2384 PTE_ISVALID(pte)) { 2385 mtx_lock_spin(&tlbivax_mutex); 2386 tlb_miss_lock(); 2387 2388 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 2389 tlb0_flush_entry(pv->pv_va); 2390 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 2391 PTE_REFERENCED); 2392 } 2393 2394 tlb_miss_unlock(); 2395 mtx_unlock_spin(&tlbivax_mutex); 2396 } 2397 PMAP_UNLOCK(pv->pv_pmap); 2398 } 2399 rw_wunlock(&pvh_global_lock); 2400 } 2401 2402 /* 2403 * Return a count of reference bits for a page, clearing those bits. 2404 * It is not necessary for every reference bit to be cleared, but it 2405 * is necessary that 0 only be returned when there are truly no 2406 * reference bits set. 2407 * 2408 * XXX: The exact number of bits to check and clear is a matter that 2409 * should be tested and standardized at some point in the future for 2410 * optimal aging of shared pages. 2411 */ 2412 static int 2413 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 2414 { 2415 pte_t *pte; 2416 pv_entry_t pv; 2417 int count; 2418 2419 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2420 ("mmu_booke_ts_referenced: page %p is not managed", m)); 2421 count = 0; 2422 rw_wlock(&pvh_global_lock); 2423 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2424 PMAP_LOCK(pv->pv_pmap); 2425 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2426 PTE_ISVALID(pte)) { 2427 if (PTE_ISREFERENCED(pte)) { 2428 mtx_lock_spin(&tlbivax_mutex); 2429 tlb_miss_lock(); 2430 2431 tlb0_flush_entry(pv->pv_va); 2432 pte->flags &= ~PTE_REFERENCED; 2433 2434 tlb_miss_unlock(); 2435 mtx_unlock_spin(&tlbivax_mutex); 2436 2437 if (++count > 4) { 2438 PMAP_UNLOCK(pv->pv_pmap); 2439 break; 2440 } 2441 } 2442 } 2443 PMAP_UNLOCK(pv->pv_pmap); 2444 } 2445 rw_wunlock(&pvh_global_lock); 2446 return (count); 2447 } 2448 2449 /* 2450 * Clear the wired attribute from the mappings for the specified range of 2451 * addresses in the given pmap. Every valid mapping within that range must 2452 * have the wired attribute set. In contrast, invalid mappings cannot have 2453 * the wired attribute set, so they are ignored. 2454 * 2455 * The wired attribute of the page table entry is not a hardware feature, so 2456 * there is no need to invalidate any TLB entries. 2457 */ 2458 static void 2459 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) 2460 { 2461 vm_offset_t va; 2462 pte_t *pte; 2463 2464 PMAP_LOCK(pmap); 2465 for (va = sva; va < eva; va += PAGE_SIZE) { 2466 if ((pte = pte_find(mmu, pmap, va)) != NULL && 2467 PTE_ISVALID(pte)) { 2468 if (!PTE_ISWIRED(pte)) 2469 panic("mmu_booke_unwire: pte %p isn't wired", 2470 pte); 2471 pte->flags &= ~PTE_WIRED; 2472 pmap->pm_stats.wired_count--; 2473 } 2474 } 2475 PMAP_UNLOCK(pmap); 2476 2477 } 2478 2479 /* 2480 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 2481 * page. This count may be changed upwards or downwards in the future; it is 2482 * only necessary that true be returned for a small subset of pmaps for proper 2483 * page aging. 2484 */ 2485 static boolean_t 2486 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 2487 { 2488 pv_entry_t pv; 2489 int loops; 2490 boolean_t rv; 2491 2492 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2493 ("mmu_booke_page_exists_quick: page %p is not managed", m)); 2494 loops = 0; 2495 rv = FALSE; 2496 rw_wlock(&pvh_global_lock); 2497 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2498 if (pv->pv_pmap == pmap) { 2499 rv = TRUE; 2500 break; 2501 } 2502 if (++loops >= 16) 2503 break; 2504 } 2505 rw_wunlock(&pvh_global_lock); 2506 return (rv); 2507 } 2508 2509 /* 2510 * Return the number of managed mappings to the given physical page that are 2511 * wired. 2512 */ 2513 static int 2514 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 2515 { 2516 pv_entry_t pv; 2517 pte_t *pte; 2518 int count = 0; 2519 2520 if ((m->oflags & VPO_UNMANAGED) != 0) 2521 return (count); 2522 rw_wlock(&pvh_global_lock); 2523 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2524 PMAP_LOCK(pv->pv_pmap); 2525 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 2526 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 2527 count++; 2528 PMAP_UNLOCK(pv->pv_pmap); 2529 } 2530 rw_wunlock(&pvh_global_lock); 2531 return (count); 2532 } 2533 2534 static int 2535 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2536 { 2537 int i; 2538 vm_offset_t va; 2539 2540 /* 2541 * This currently does not work for entries that 2542 * overlap TLB1 entries. 2543 */ 2544 for (i = 0; i < tlb1_idx; i ++) { 2545 if (tlb1_iomapped(i, pa, size, &va) == 0) 2546 return (0); 2547 } 2548 2549 return (EFAULT); 2550 } 2551 2552 void 2553 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) 2554 { 2555 vm_paddr_t ppa; 2556 vm_offset_t ofs; 2557 vm_size_t gran; 2558 2559 /* Minidumps are based on virtual memory addresses. */ 2560 if (do_minidump) { 2561 *va = (void *)pa; 2562 return; 2563 } 2564 2565 /* Raw physical memory dumps don't have a virtual address. */ 2566 /* We always map a 256MB page at 256M. */ 2567 gran = 256 * 1024 * 1024; 2568 ppa = pa & ~(gran - 1); 2569 ofs = pa - ppa; 2570 *va = (void *)gran; 2571 tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); 2572 2573 if (sz > (gran - ofs)) 2574 tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, 2575 _TLB_ENTRY_IO); 2576 } 2577 2578 void 2579 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) 2580 { 2581 vm_paddr_t ppa; 2582 vm_offset_t ofs; 2583 vm_size_t gran; 2584 2585 /* Minidumps are based on virtual memory addresses. */ 2586 /* Nothing to do... */ 2587 if (do_minidump) 2588 return; 2589 2590 /* Raw physical memory dumps don't have a virtual address. */ 2591 tlb1_idx--; 2592 tlb1[tlb1_idx].mas1 = 0; 2593 tlb1[tlb1_idx].mas2 = 0; 2594 tlb1[tlb1_idx].mas3 = 0; 2595 tlb1_write_entry(tlb1_idx); 2596 2597 gran = 256 * 1024 * 1024; 2598 ppa = pa & ~(gran - 1); 2599 ofs = pa - ppa; 2600 if (sz > (gran - ofs)) { 2601 tlb1_idx--; 2602 tlb1[tlb1_idx].mas1 = 0; 2603 tlb1[tlb1_idx].mas2 = 0; 2604 tlb1[tlb1_idx].mas3 = 0; 2605 tlb1_write_entry(tlb1_idx); 2606 } 2607 } 2608 2609 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 2610 2611 void 2612 mmu_booke_scan_init(mmu_t mmu) 2613 { 2614 vm_offset_t va; 2615 pte_t *pte; 2616 int i; 2617 2618 if (!do_minidump) { 2619 /* Initialize phys. segments for dumpsys(). */ 2620 memset(&dump_map, 0, sizeof(dump_map)); 2621 mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, 2622 &availmem_regions_sz); 2623 for (i = 0; i < physmem_regions_sz; i++) { 2624 dump_map[i].pa_start = physmem_regions[i].mr_start; 2625 dump_map[i].pa_size = physmem_regions[i].mr_size; 2626 } 2627 return; 2628 } 2629 2630 /* Virtual segments for minidumps: */ 2631 memset(&dump_map, 0, sizeof(dump_map)); 2632 2633 /* 1st: kernel .data and .bss. */ 2634 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 2635 dump_map[0].pa_size = 2636 round_page((uintptr_t)_end) - dump_map[0].pa_start; 2637 2638 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2639 dump_map[1].pa_start = data_start; 2640 dump_map[1].pa_size = data_end - data_start; 2641 2642 /* 3rd: kernel VM. */ 2643 va = dump_map[1].pa_start + dump_map[1].pa_size; 2644 /* Find start of next chunk (from va). */ 2645 while (va < virtual_end) { 2646 /* Don't dump the buffer cache. */ 2647 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 2648 va = kmi.buffer_eva; 2649 continue; 2650 } 2651 pte = pte_find(mmu, kernel_pmap, va); 2652 if (pte != NULL && PTE_ISVALID(pte)) 2653 break; 2654 va += PAGE_SIZE; 2655 } 2656 if (va < virtual_end) { 2657 dump_map[2].pa_start = va; 2658 va += PAGE_SIZE; 2659 /* Find last page in chunk. */ 2660 while (va < virtual_end) { 2661 /* Don't run into the buffer cache. */ 2662 if (va == kmi.buffer_sva) 2663 break; 2664 pte = pte_find(mmu, kernel_pmap, va); 2665 if (pte == NULL || !PTE_ISVALID(pte)) 2666 break; 2667 va += PAGE_SIZE; 2668 } 2669 dump_map[2].pa_size = va - dump_map[2].pa_start; 2670 } 2671 } 2672 2673 /* 2674 * Map a set of physical memory pages into the kernel virtual address space. 2675 * Return a pointer to where it is mapped. This routine is intended to be used 2676 * for mapping device memory, NOT real memory. 2677 */ 2678 static void * 2679 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2680 { 2681 2682 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); 2683 } 2684 2685 static void * 2686 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 2687 { 2688 void *res; 2689 uintptr_t va; 2690 vm_size_t sz; 2691 int i; 2692 2693 /* 2694 * Check if this is premapped in TLB1. Note: this should probably also 2695 * check whether a sequence of TLB1 entries exist that match the 2696 * requirement, but now only checks the easy case. 2697 */ 2698 if (ma == VM_MEMATTR_DEFAULT) { 2699 for (i = 0; i < tlb1_idx; i++) { 2700 if (!(tlb1[i].mas1 & MAS1_VALID)) 2701 continue; 2702 if (pa >= tlb1[i].phys && 2703 (pa + size) <= (tlb1[i].phys + tlb1[i].size)) 2704 return (void *)(tlb1[i].virt + 2705 (pa - tlb1[i].phys)); 2706 } 2707 } 2708 2709 size = roundup(size, PAGE_SIZE); 2710 2711 /* 2712 * We leave a hole for device direct mapping between the maximum user 2713 * address (0x8000000) and the minimum KVA address (0xc0000000). If 2714 * devices are in there, just map them 1:1. If not, map them to the 2715 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped 2716 * addresses should be pulled from an allocator, but since we do not 2717 * ever free TLB1 entries, it is safe just to increment a counter. 2718 * Note that there isn't a lot of address space here (128 MB) and it 2719 * is not at all difficult to imagine running out, since that is a 4:1 2720 * compression from the 0xc0000000 - 0xf0000000 address space that gets 2721 * mapped there. 2722 */ 2723 if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) && 2724 (pa + size - 1) < VM_MIN_KERNEL_ADDRESS) 2725 va = pa; 2726 else 2727 va = atomic_fetchadd_int(&tlb1_map_base, size); 2728 res = (void *)va; 2729 2730 do { 2731 sz = 1 << (ilog2(size) & ~1); 2732 if (bootverbose) 2733 printf("Wiring VA=%x to PA=%x (size=%x), " 2734 "using TLB1[%d]\n", va, pa, sz, tlb1_idx); 2735 tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma)); 2736 size -= sz; 2737 pa += sz; 2738 va += sz; 2739 } while (size > 0); 2740 2741 return (res); 2742 } 2743 2744 /* 2745 * 'Unmap' a range mapped by mmu_booke_mapdev(). 2746 */ 2747 static void 2748 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2749 { 2750 #ifdef SUPPORTS_SHRINKING_TLB1 2751 vm_offset_t base, offset; 2752 2753 /* 2754 * Unmap only if this is inside kernel virtual space. 2755 */ 2756 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 2757 base = trunc_page(va); 2758 offset = va & PAGE_MASK; 2759 size = roundup(offset + size, PAGE_SIZE); 2760 kva_free(base, size); 2761 } 2762 #endif 2763 } 2764 2765 /* 2766 * mmu_booke_object_init_pt preloads the ptes for a given object into the 2767 * specified pmap. This eliminates the blast of soft faults on process startup 2768 * and immediately after an mmap. 2769 */ 2770 static void 2771 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2772 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 2773 { 2774 2775 VM_OBJECT_ASSERT_WLOCKED(object); 2776 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 2777 ("mmu_booke_object_init_pt: non-device object")); 2778 } 2779 2780 /* 2781 * Perform the pmap work for mincore. 2782 */ 2783 static int 2784 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2785 vm_paddr_t *locked_pa) 2786 { 2787 2788 /* XXX: this should be implemented at some point */ 2789 return (0); 2790 } 2791 2792 /**************************************************************************/ 2793 /* TID handling */ 2794 /**************************************************************************/ 2795 2796 /* 2797 * Allocate a TID. If necessary, steal one from someone else. 2798 * The new TID is flushed from the TLB before returning. 2799 */ 2800 static tlbtid_t 2801 tid_alloc(pmap_t pmap) 2802 { 2803 tlbtid_t tid; 2804 int thiscpu; 2805 2806 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 2807 2808 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 2809 2810 thiscpu = PCPU_GET(cpuid); 2811 2812 tid = PCPU_GET(tid_next); 2813 if (tid > TID_MAX) 2814 tid = TID_MIN; 2815 PCPU_SET(tid_next, tid + 1); 2816 2817 /* If we are stealing TID then clear the relevant pmap's field */ 2818 if (tidbusy[thiscpu][tid] != NULL) { 2819 2820 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 2821 2822 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 2823 2824 /* Flush all entries from TLB0 matching this TID. */ 2825 tid_flush(tid, tlb0_ways, tlb0_entries_per_way); 2826 } 2827 2828 tidbusy[thiscpu][tid] = pmap; 2829 pmap->pm_tid[thiscpu] = tid; 2830 __asm __volatile("msync; isync"); 2831 2832 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 2833 PCPU_GET(tid_next)); 2834 2835 return (tid); 2836 } 2837 2838 /**************************************************************************/ 2839 /* TLB0 handling */ 2840 /**************************************************************************/ 2841 2842 static void 2843 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 2844 uint32_t mas7) 2845 { 2846 int as; 2847 char desc[3]; 2848 tlbtid_t tid; 2849 vm_size_t size; 2850 unsigned int tsize; 2851 2852 desc[2] = '\0'; 2853 if (mas1 & MAS1_VALID) 2854 desc[0] = 'V'; 2855 else 2856 desc[0] = ' '; 2857 2858 if (mas1 & MAS1_IPROT) 2859 desc[1] = 'P'; 2860 else 2861 desc[1] = ' '; 2862 2863 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 2864 tid = MAS1_GETTID(mas1); 2865 2866 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 2867 size = 0; 2868 if (tsize) 2869 size = tsize2size(tsize); 2870 2871 debugf("%3d: (%s) [AS=%d] " 2872 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 2873 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", 2874 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 2875 } 2876 2877 /* Convert TLB0 va and way number to tlb0[] table index. */ 2878 static inline unsigned int 2879 tlb0_tableidx(vm_offset_t va, unsigned int way) 2880 { 2881 unsigned int idx; 2882 2883 idx = (way * TLB0_ENTRIES_PER_WAY); 2884 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 2885 return (idx); 2886 } 2887 2888 /* 2889 * Invalidate TLB0 entry. 2890 */ 2891 static inline void 2892 tlb0_flush_entry(vm_offset_t va) 2893 { 2894 2895 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 2896 2897 mtx_assert(&tlbivax_mutex, MA_OWNED); 2898 2899 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 2900 __asm __volatile("isync; msync"); 2901 __asm __volatile("tlbsync; msync"); 2902 2903 CTR1(KTR_PMAP, "%s: e", __func__); 2904 } 2905 2906 /* Print out contents of the MAS registers for each TLB0 entry */ 2907 void 2908 tlb0_print_tlbentries(void) 2909 { 2910 uint32_t mas0, mas1, mas2, mas3, mas7; 2911 int entryidx, way, idx; 2912 2913 debugf("TLB0 entries:\n"); 2914 for (way = 0; way < TLB0_WAYS; way ++) 2915 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 2916 2917 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 2918 mtspr(SPR_MAS0, mas0); 2919 __asm __volatile("isync"); 2920 2921 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 2922 mtspr(SPR_MAS2, mas2); 2923 2924 __asm __volatile("isync; tlbre"); 2925 2926 mas1 = mfspr(SPR_MAS1); 2927 mas2 = mfspr(SPR_MAS2); 2928 mas3 = mfspr(SPR_MAS3); 2929 mas7 = mfspr(SPR_MAS7); 2930 2931 idx = tlb0_tableidx(mas2, way); 2932 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 2933 } 2934 } 2935 2936 /**************************************************************************/ 2937 /* TLB1 handling */ 2938 /**************************************************************************/ 2939 2940 /* 2941 * TLB1 mapping notes: 2942 * 2943 * TLB1[0] Kernel text and data. 2944 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI 2945 * windows, other devices mappings. 2946 */ 2947 2948 /* 2949 * Write given entry to TLB1 hardware. 2950 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 2951 */ 2952 static void 2953 tlb1_write_entry(unsigned int idx) 2954 { 2955 uint32_t mas0, mas7; 2956 2957 //debugf("tlb1_write_entry: s\n"); 2958 2959 /* Clear high order RPN bits */ 2960 mas7 = 0; 2961 2962 /* Select entry */ 2963 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 2964 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 2965 2966 mtspr(SPR_MAS0, mas0); 2967 __asm __volatile("isync"); 2968 mtspr(SPR_MAS1, tlb1[idx].mas1); 2969 __asm __volatile("isync"); 2970 mtspr(SPR_MAS2, tlb1[idx].mas2); 2971 __asm __volatile("isync"); 2972 mtspr(SPR_MAS3, tlb1[idx].mas3); 2973 __asm __volatile("isync"); 2974 mtspr(SPR_MAS7, mas7); 2975 __asm __volatile("isync; tlbwe; isync; msync"); 2976 2977 //debugf("tlb1_write_entry: e\n"); 2978 } 2979 2980 /* 2981 * Return the largest uint value log such that 2^log <= num. 2982 */ 2983 static unsigned int 2984 ilog2(unsigned int num) 2985 { 2986 int lz; 2987 2988 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 2989 return (31 - lz); 2990 } 2991 2992 /* 2993 * Convert TLB TSIZE value to mapped region size. 2994 */ 2995 static vm_size_t 2996 tsize2size(unsigned int tsize) 2997 { 2998 2999 /* 3000 * size = 4^tsize KB 3001 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 3002 */ 3003 3004 return ((1 << (2 * tsize)) * 1024); 3005 } 3006 3007 /* 3008 * Convert region size (must be power of 4) to TLB TSIZE value. 3009 */ 3010 static unsigned int 3011 size2tsize(vm_size_t size) 3012 { 3013 3014 return (ilog2(size) / 2 - 5); 3015 } 3016 3017 /* 3018 * Register permanent kernel mapping in TLB1. 3019 * 3020 * Entries are created starting from index 0 (current free entry is 3021 * kept in tlb1_idx) and are not supposed to be invalidated. 3022 */ 3023 static int 3024 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size, 3025 uint32_t flags) 3026 { 3027 uint32_t ts, tid; 3028 int tsize, index; 3029 3030 index = atomic_fetchadd_int(&tlb1_idx, 1); 3031 if (index >= TLB1_ENTRIES) { 3032 printf("tlb1_set_entry: TLB1 full!\n"); 3033 return (-1); 3034 } 3035 3036 /* Convert size to TSIZE */ 3037 tsize = size2tsize(size); 3038 3039 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 3040 /* XXX TS is hard coded to 0 for now as we only use single address space */ 3041 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 3042 3043 /* 3044 * Atomicity is preserved by the atomic increment above since nothing 3045 * is ever removed from tlb1. 3046 */ 3047 3048 tlb1[index].phys = pa; 3049 tlb1[index].virt = va; 3050 tlb1[index].size = size; 3051 tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 3052 tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 3053 tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags; 3054 3055 /* Set supervisor RWX permission bits */ 3056 tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 3057 3058 tlb1_write_entry(index); 3059 3060 /* 3061 * XXX in general TLB1 updates should be propagated between CPUs, 3062 * since current design assumes to have the same TLB1 set-up on all 3063 * cores. 3064 */ 3065 return (0); 3066 } 3067 3068 /* 3069 * Map in contiguous RAM region into the TLB1 using maximum of 3070 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 3071 * 3072 * If necessary round up last entry size and return total size 3073 * used by all allocated entries. 3074 */ 3075 vm_size_t 3076 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) 3077 { 3078 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; 3079 vm_size_t mapped, pgsz, base, mask; 3080 int idx, nents; 3081 3082 /* Round up to the next 1M */ 3083 size = (size + (1 << 20) - 1) & ~((1 << 20) - 1); 3084 3085 mapped = 0; 3086 idx = 0; 3087 base = va; 3088 pgsz = 64*1024*1024; 3089 while (mapped < size) { 3090 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { 3091 while (pgsz > (size - mapped)) 3092 pgsz >>= 2; 3093 pgs[idx++] = pgsz; 3094 mapped += pgsz; 3095 } 3096 3097 /* We under-map. Correct for this. */ 3098 if (mapped < size) { 3099 while (pgs[idx - 1] == pgsz) { 3100 idx--; 3101 mapped -= pgsz; 3102 } 3103 /* XXX We may increase beyond out starting point. */ 3104 pgsz <<= 2; 3105 pgs[idx++] = pgsz; 3106 mapped += pgsz; 3107 } 3108 } 3109 3110 nents = idx; 3111 mask = pgs[0] - 1; 3112 /* Align address to the boundary */ 3113 if (va & mask) { 3114 va = (va + mask) & ~mask; 3115 pa = (pa + mask) & ~mask; 3116 } 3117 3118 for (idx = 0; idx < nents; idx++) { 3119 pgsz = pgs[idx]; 3120 debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz); 3121 tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM); 3122 pa += pgsz; 3123 va += pgsz; 3124 } 3125 3126 mapped = (va - base); 3127 printf("mapped size 0x%08x (wasted space 0x%08x)\n", 3128 mapped, mapped - size); 3129 return (mapped); 3130 } 3131 3132 /* 3133 * TLB1 initialization routine, to be called after the very first 3134 * assembler level setup done in locore.S. 3135 */ 3136 void 3137 tlb1_init() 3138 { 3139 uint32_t mas0, mas1, mas2, mas3; 3140 uint32_t tsz; 3141 u_int i; 3142 3143 if (bootinfo != NULL && bootinfo[0] != 1) { 3144 tlb1_idx = *((uint16_t *)(bootinfo + 8)); 3145 } else 3146 tlb1_idx = 1; 3147 3148 /* The first entry/entries are used to map the kernel. */ 3149 for (i = 0; i < tlb1_idx; i++) { 3150 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3151 mtspr(SPR_MAS0, mas0); 3152 __asm __volatile("isync; tlbre"); 3153 3154 mas1 = mfspr(SPR_MAS1); 3155 if ((mas1 & MAS1_VALID) == 0) 3156 continue; 3157 3158 mas2 = mfspr(SPR_MAS2); 3159 mas3 = mfspr(SPR_MAS3); 3160 3161 tlb1[i].mas1 = mas1; 3162 tlb1[i].mas2 = mfspr(SPR_MAS2); 3163 tlb1[i].mas3 = mas3; 3164 tlb1[i].virt = mas2 & MAS2_EPN_MASK; 3165 tlb1[i].phys = mas3 & MAS3_RPN; 3166 3167 if (i == 0) 3168 kernload = mas3 & MAS3_RPN; 3169 3170 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3171 tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0; 3172 kernsize += tlb1[i].size; 3173 } 3174 3175 #ifdef SMP 3176 bp_ntlb1s = tlb1_idx; 3177 #endif 3178 3179 /* Purge the remaining entries */ 3180 for (i = tlb1_idx; i < TLB1_ENTRIES; i++) 3181 tlb1_write_entry(i); 3182 3183 /* Setup TLB miss defaults */ 3184 set_mas4_defaults(); 3185 } 3186 3187 vm_offset_t 3188 pmap_early_io_map(vm_paddr_t pa, vm_size_t size) 3189 { 3190 vm_paddr_t pa_base; 3191 vm_offset_t va, sz; 3192 int i; 3193 3194 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); 3195 3196 for (i = 0; i < tlb1_idx; i++) { 3197 if (!(tlb1[i].mas1 & MAS1_VALID)) 3198 continue; 3199 if (pa >= tlb1[i].phys && (pa + size) <= 3200 (tlb1[i].phys + tlb1[i].size)) 3201 return (tlb1[i].virt + (pa - tlb1[i].phys)); 3202 } 3203 3204 pa_base = trunc_page(pa); 3205 size = roundup(size + (pa - pa_base), PAGE_SIZE); 3206 tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); 3207 va = tlb1_map_base + (pa - pa_base); 3208 3209 do { 3210 sz = 1 << (ilog2(size) & ~1); 3211 tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO); 3212 size -= sz; 3213 pa_base += sz; 3214 tlb1_map_base += sz; 3215 } while (size > 0); 3216 3217 #ifdef SMP 3218 bp_ntlb1s = tlb1_idx; 3219 #endif 3220 3221 return (va); 3222 } 3223 3224 /* 3225 * Setup MAS4 defaults. 3226 * These values are loaded to MAS0-2 on a TLB miss. 3227 */ 3228 static void 3229 set_mas4_defaults(void) 3230 { 3231 uint32_t mas4; 3232 3233 /* Defaults: TLB0, PID0, TSIZED=4K */ 3234 mas4 = MAS4_TLBSELD0; 3235 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 3236 #ifdef SMP 3237 mas4 |= MAS4_MD; 3238 #endif 3239 mtspr(SPR_MAS4, mas4); 3240 __asm __volatile("isync"); 3241 } 3242 3243 /* 3244 * Print out contents of the MAS registers for each TLB1 entry 3245 */ 3246 void 3247 tlb1_print_tlbentries(void) 3248 { 3249 uint32_t mas0, mas1, mas2, mas3, mas7; 3250 int i; 3251 3252 debugf("TLB1 entries:\n"); 3253 for (i = 0; i < TLB1_ENTRIES; i++) { 3254 3255 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3256 mtspr(SPR_MAS0, mas0); 3257 3258 __asm __volatile("isync; tlbre"); 3259 3260 mas1 = mfspr(SPR_MAS1); 3261 mas2 = mfspr(SPR_MAS2); 3262 mas3 = mfspr(SPR_MAS3); 3263 mas7 = mfspr(SPR_MAS7); 3264 3265 tlb_print_entry(i, mas1, mas2, mas3, mas7); 3266 } 3267 } 3268 3269 /* 3270 * Print out contents of the in-ram tlb1 table. 3271 */ 3272 void 3273 tlb1_print_entries(void) 3274 { 3275 int i; 3276 3277 debugf("tlb1[] table entries:\n"); 3278 for (i = 0; i < TLB1_ENTRIES; i++) 3279 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0); 3280 } 3281 3282 /* 3283 * Return 0 if the physical IO range is encompassed by one of the 3284 * the TLB1 entries, otherwise return related error code. 3285 */ 3286 static int 3287 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 3288 { 3289 uint32_t prot; 3290 vm_paddr_t pa_start; 3291 vm_paddr_t pa_end; 3292 unsigned int entry_tsize; 3293 vm_size_t entry_size; 3294 3295 *va = (vm_offset_t)NULL; 3296 3297 /* Skip invalid entries */ 3298 if (!(tlb1[i].mas1 & MAS1_VALID)) 3299 return (EINVAL); 3300 3301 /* 3302 * The entry must be cache-inhibited, guarded, and r/w 3303 * so it can function as an i/o page 3304 */ 3305 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G); 3306 if (prot != (MAS2_I | MAS2_G)) 3307 return (EPERM); 3308 3309 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW); 3310 if (prot != (MAS3_SR | MAS3_SW)) 3311 return (EPERM); 3312 3313 /* The address should be within the entry range. */ 3314 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3315 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 3316 3317 entry_size = tsize2size(entry_tsize); 3318 pa_start = tlb1[i].mas3 & MAS3_RPN; 3319 pa_end = pa_start + entry_size - 1; 3320 3321 if ((pa < pa_start) || ((pa + size) > pa_end)) 3322 return (ERANGE); 3323 3324 /* Return virtual address of this mapping. */ 3325 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start); 3326 return (0); 3327 } 3328