xref: /freebsd/sys/powerpc/booke/pmap.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/param.h>
55 #include <sys/conf.h>
56 #include <sys/malloc.h>
57 #include <sys/ktr.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/queue.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/kerneldump.h>
64 #include <sys/linker.h>
65 #include <sys/msgbuf.h>
66 #include <sys/lock.h>
67 #include <sys/mutex.h>
68 #include <sys/rwlock.h>
69 #include <sys/sched.h>
70 #include <sys/smp.h>
71 #include <sys/vmmeter.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_param.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_pager.h>
82 #include <vm/uma.h>
83 
84 #include <machine/cpu.h>
85 #include <machine/pcb.h>
86 #include <machine/platform.h>
87 
88 #include <machine/tlb.h>
89 #include <machine/spr.h>
90 #include <machine/md_var.h>
91 #include <machine/mmuvar.h>
92 #include <machine/pmap.h>
93 #include <machine/pte.h>
94 
95 #include "mmu_if.h"
96 
97 #ifdef  DEBUG
98 #define debugf(fmt, args...) printf(fmt, ##args)
99 #else
100 #define debugf(fmt, args...)
101 #endif
102 
103 #define TODO			panic("%s: not implemented", __func__);
104 
105 extern unsigned char _etext[];
106 extern unsigned char _end[];
107 
108 extern uint32_t *bootinfo;
109 
110 #ifdef SMP
111 extern uint32_t bp_ntlb1s;
112 #endif
113 
114 vm_paddr_t kernload;
115 vm_offset_t kernstart;
116 vm_size_t kernsize;
117 
118 /* Message buffer and tables. */
119 static vm_offset_t data_start;
120 static vm_size_t data_end;
121 
122 /* Phys/avail memory regions. */
123 static struct mem_region *availmem_regions;
124 static int availmem_regions_sz;
125 static struct mem_region *physmem_regions;
126 static int physmem_regions_sz;
127 
128 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
129 static vm_offset_t zero_page_va;
130 static struct mtx zero_page_mutex;
131 
132 static struct mtx tlbivax_mutex;
133 
134 /*
135  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
136  * by idle thred only, no lock required.
137  */
138 static vm_offset_t zero_page_idle_va;
139 
140 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
141 static vm_offset_t copy_page_src_va;
142 static vm_offset_t copy_page_dst_va;
143 static struct mtx copy_page_mutex;
144 
145 /**************************************************************************/
146 /* PMAP */
147 /**************************************************************************/
148 
149 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
150     vm_prot_t, u_int flags, int8_t psind);
151 
152 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
153 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
154 
155 /*
156  * If user pmap is processed with mmu_booke_remove and the resident count
157  * drops to 0, there are no more pages to remove, so we need not continue.
158  */
159 #define PMAP_REMOVE_DONE(pmap) \
160 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
161 
162 extern void tid_flush(tlbtid_t tid, int tlb0_ways, int tlb0_entries_per_way);
163 extern int elf32_nxstack;
164 
165 /**************************************************************************/
166 /* TLB and TID handling */
167 /**************************************************************************/
168 
169 /* Translation ID busy table */
170 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
171 
172 /*
173  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
174  * core revisions and should be read from h/w registers during early config.
175  */
176 uint32_t tlb0_entries;
177 uint32_t tlb0_ways;
178 uint32_t tlb0_entries_per_way;
179 
180 #define TLB0_ENTRIES		(tlb0_entries)
181 #define TLB0_WAYS		(tlb0_ways)
182 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
183 
184 #define TLB1_ENTRIES 16
185 
186 /* In-ram copy of the TLB1 */
187 static tlb_entry_t tlb1[TLB1_ENTRIES];
188 
189 /* Next free entry in the TLB1 */
190 static unsigned int tlb1_idx;
191 static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
192 
193 static tlbtid_t tid_alloc(struct pmap *);
194 
195 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
196 
197 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
198 static void tlb1_write_entry(unsigned int);
199 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
200 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
201 
202 static vm_size_t tsize2size(unsigned int);
203 static unsigned int size2tsize(vm_size_t);
204 static unsigned int ilog2(unsigned int);
205 
206 static void set_mas4_defaults(void);
207 
208 static inline void tlb0_flush_entry(vm_offset_t);
209 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
210 
211 /**************************************************************************/
212 /* Page table management */
213 /**************************************************************************/
214 
215 static struct rwlock_padalign pvh_global_lock;
216 
217 /* Data for the pv entry allocation mechanism */
218 static uma_zone_t pvzone;
219 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
220 
221 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
222 
223 #ifndef PMAP_SHPGPERPROC
224 #define PMAP_SHPGPERPROC	200
225 #endif
226 
227 static void ptbl_init(void);
228 static struct ptbl_buf *ptbl_buf_alloc(void);
229 static void ptbl_buf_free(struct ptbl_buf *);
230 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
231 
232 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
233 static void ptbl_free(mmu_t, pmap_t, unsigned int);
234 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
235 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
236 
237 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
238 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
239 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
240 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
241 
242 static pv_entry_t pv_alloc(void);
243 static void pv_free(pv_entry_t);
244 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
245 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
246 
247 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248 #define PTBL_BUFS		(128 * 16)
249 
250 struct ptbl_buf {
251 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
252 	vm_offset_t kva;		/* va of mapping */
253 };
254 
255 /* ptbl free list and a lock used for access synchronization. */
256 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257 static struct mtx ptbl_buf_freelist_lock;
258 
259 /* Base address of kva space allocated fot ptbl bufs. */
260 static vm_offset_t ptbl_buf_pool_vabase;
261 
262 /* Pointer to ptbl_buf structures. */
263 static struct ptbl_buf *ptbl_bufs;
264 
265 #ifdef SMP
266 void pmap_bootstrap_ap(volatile uint32_t *);
267 #endif
268 
269 /*
270  * Kernel MMU interface
271  */
272 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
274     vm_size_t, vm_offset_t);
275 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
276 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
277     vm_offset_t, vm_page_t *, vm_offset_t, int);
278 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
279     vm_prot_t, u_int flags, int8_t psind);
280 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
281     vm_page_t, vm_prot_t);
282 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283     vm_prot_t);
284 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
285 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
286     vm_prot_t);
287 static void		mmu_booke_init(mmu_t);
288 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
289 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
291 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
292 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
293     int);
294 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
295     vm_paddr_t *);
296 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
297     vm_object_t, vm_pindex_t, vm_size_t);
298 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
299 static void		mmu_booke_page_init(mmu_t, vm_page_t);
300 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
301 static void		mmu_booke_pinit(mmu_t, pmap_t);
302 static void		mmu_booke_pinit0(mmu_t, pmap_t);
303 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
304     vm_prot_t);
305 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
307 static void		mmu_booke_release(mmu_t, pmap_t);
308 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
310 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
311 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
312 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
313 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
314 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
315 static void		mmu_booke_activate(mmu_t, struct thread *);
316 static void		mmu_booke_deactivate(mmu_t, struct thread *);
317 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
318 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
319 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
320 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
321 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
322 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
323 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
324 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
325 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
326 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
327     vm_size_t);
328 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
329     void **);
330 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
331     void *);
332 static void		mmu_booke_scan_init(mmu_t);
333 
334 static mmu_method_t mmu_booke_methods[] = {
335 	/* pmap dispatcher interface */
336 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
337 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
338 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
339 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
340 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
341 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
342 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
343 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
344 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
345 	MMUMETHOD(mmu_init,		mmu_booke_init),
346 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
347 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
348 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
349 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
350 	MMUMETHOD(mmu_map,		mmu_booke_map),
351 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
352 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
353 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
355 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
357 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
358 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
359 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
360 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
361 	MMUMETHOD(mmu_release,		mmu_booke_release),
362 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
363 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
364 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
365 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
366 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
367 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
368 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
369 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
370 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
371 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
372 
373 	/* Internal interfaces */
374 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
375 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
376 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
377 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
378 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
379 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
380 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
381 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
382 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
383 
384 	/* dumpsys() support */
385 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
386 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
387 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
388 
389 	{ 0, 0 }
390 };
391 
392 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
393 
394 static __inline uint32_t
395 tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
396 {
397 	uint32_t attrib;
398 	int i;
399 
400 	if (ma != VM_MEMATTR_DEFAULT) {
401 		switch (ma) {
402 		case VM_MEMATTR_UNCACHEABLE:
403 			return (PTE_I | PTE_G);
404 		case VM_MEMATTR_WRITE_COMBINING:
405 		case VM_MEMATTR_WRITE_BACK:
406 		case VM_MEMATTR_PREFETCHABLE:
407 			return (PTE_I);
408 		case VM_MEMATTR_WRITE_THROUGH:
409 			return (PTE_W | PTE_M);
410 		}
411 	}
412 
413 	/*
414 	 * Assume the page is cache inhibited and access is guarded unless
415 	 * it's in our available memory array.
416 	 */
417 	attrib = _TLB_ENTRY_IO;
418 	for (i = 0; i < physmem_regions_sz; i++) {
419 		if ((pa >= physmem_regions[i].mr_start) &&
420 		    (pa < (physmem_regions[i].mr_start +
421 		     physmem_regions[i].mr_size))) {
422 			attrib = _TLB_ENTRY_MEM;
423 			break;
424 		}
425 	}
426 
427 	return (attrib);
428 }
429 
430 static inline void
431 tlb_miss_lock(void)
432 {
433 #ifdef SMP
434 	struct pcpu *pc;
435 
436 	if (!smp_started)
437 		return;
438 
439 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
440 		if (pc != pcpup) {
441 
442 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
443 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
444 
445 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
446 			    ("tlb_miss_lock: tried to lock self"));
447 
448 			tlb_lock(pc->pc_booke_tlb_lock);
449 
450 			CTR1(KTR_PMAP, "%s: locked", __func__);
451 		}
452 	}
453 #endif
454 }
455 
456 static inline void
457 tlb_miss_unlock(void)
458 {
459 #ifdef SMP
460 	struct pcpu *pc;
461 
462 	if (!smp_started)
463 		return;
464 
465 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
466 		if (pc != pcpup) {
467 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
468 			    __func__, pc->pc_cpuid);
469 
470 			tlb_unlock(pc->pc_booke_tlb_lock);
471 
472 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
473 		}
474 	}
475 #endif
476 }
477 
478 /* Return number of entries in TLB0. */
479 static __inline void
480 tlb0_get_tlbconf(void)
481 {
482 	uint32_t tlb0_cfg;
483 
484 	tlb0_cfg = mfspr(SPR_TLB0CFG);
485 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
486 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
487 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
488 }
489 
490 /* Initialize pool of kva ptbl buffers. */
491 static void
492 ptbl_init(void)
493 {
494 	int i;
495 
496 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
497 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
498 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
499 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
500 
501 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
502 	TAILQ_INIT(&ptbl_buf_freelist);
503 
504 	for (i = 0; i < PTBL_BUFS; i++) {
505 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
506 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
507 	}
508 }
509 
510 /* Get a ptbl_buf from the freelist. */
511 static struct ptbl_buf *
512 ptbl_buf_alloc(void)
513 {
514 	struct ptbl_buf *buf;
515 
516 	mtx_lock(&ptbl_buf_freelist_lock);
517 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
518 	if (buf != NULL)
519 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
520 	mtx_unlock(&ptbl_buf_freelist_lock);
521 
522 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
523 
524 	return (buf);
525 }
526 
527 /* Return ptbl buff to free pool. */
528 static void
529 ptbl_buf_free(struct ptbl_buf *buf)
530 {
531 
532 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
533 
534 	mtx_lock(&ptbl_buf_freelist_lock);
535 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
536 	mtx_unlock(&ptbl_buf_freelist_lock);
537 }
538 
539 /*
540  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
541  */
542 static void
543 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
544 {
545 	struct ptbl_buf *pbuf;
546 
547 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
548 
549 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
550 
551 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
552 		if (pbuf->kva == (vm_offset_t)ptbl) {
553 			/* Remove from pmap ptbl buf list. */
554 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
555 
556 			/* Free corresponding ptbl buf. */
557 			ptbl_buf_free(pbuf);
558 			break;
559 		}
560 }
561 
562 /* Allocate page table. */
563 static pte_t *
564 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
565 {
566 	vm_page_t mtbl[PTBL_PAGES];
567 	vm_page_t m;
568 	struct ptbl_buf *pbuf;
569 	unsigned int pidx;
570 	pte_t *ptbl;
571 	int i, j;
572 
573 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
574 	    (pmap == kernel_pmap), pdir_idx);
575 
576 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
577 	    ("ptbl_alloc: invalid pdir_idx"));
578 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
579 	    ("pte_alloc: valid ptbl entry exists!"));
580 
581 	pbuf = ptbl_buf_alloc();
582 	if (pbuf == NULL)
583 		panic("pte_alloc: couldn't alloc kernel virtual memory");
584 
585 	ptbl = (pte_t *)pbuf->kva;
586 
587 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
588 
589 	/* Allocate ptbl pages, this will sleep! */
590 	for (i = 0; i < PTBL_PAGES; i++) {
591 		pidx = (PTBL_PAGES * pdir_idx) + i;
592 		while ((m = vm_page_alloc(NULL, pidx,
593 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
594 			PMAP_UNLOCK(pmap);
595 			rw_wunlock(&pvh_global_lock);
596 			if (nosleep) {
597 				ptbl_free_pmap_ptbl(pmap, ptbl);
598 				for (j = 0; j < i; j++)
599 					vm_page_free(mtbl[j]);
600 				atomic_subtract_int(&vm_cnt.v_wire_count, i);
601 				return (NULL);
602 			}
603 			VM_WAIT;
604 			rw_wlock(&pvh_global_lock);
605 			PMAP_LOCK(pmap);
606 		}
607 		mtbl[i] = m;
608 	}
609 
610 	/* Map allocated pages into kernel_pmap. */
611 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
612 
613 	/* Zero whole ptbl. */
614 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
615 
616 	/* Add pbuf to the pmap ptbl bufs list. */
617 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
618 
619 	return (ptbl);
620 }
621 
622 /* Free ptbl pages and invalidate pdir entry. */
623 static void
624 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
625 {
626 	pte_t *ptbl;
627 	vm_paddr_t pa;
628 	vm_offset_t va;
629 	vm_page_t m;
630 	int i;
631 
632 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
633 	    (pmap == kernel_pmap), pdir_idx);
634 
635 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
636 	    ("ptbl_free: invalid pdir_idx"));
637 
638 	ptbl = pmap->pm_pdir[pdir_idx];
639 
640 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
641 
642 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
643 
644 	/*
645 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
646 	 * don't attempt to look up the page tables we are releasing.
647 	 */
648 	mtx_lock_spin(&tlbivax_mutex);
649 	tlb_miss_lock();
650 
651 	pmap->pm_pdir[pdir_idx] = NULL;
652 
653 	tlb_miss_unlock();
654 	mtx_unlock_spin(&tlbivax_mutex);
655 
656 	for (i = 0; i < PTBL_PAGES; i++) {
657 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
658 		pa = pte_vatopa(mmu, kernel_pmap, va);
659 		m = PHYS_TO_VM_PAGE(pa);
660 		vm_page_free_zero(m);
661 		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
662 		mmu_booke_kremove(mmu, va);
663 	}
664 
665 	ptbl_free_pmap_ptbl(pmap, ptbl);
666 }
667 
668 /*
669  * Decrement ptbl pages hold count and attempt to free ptbl pages.
670  * Called when removing pte entry from ptbl.
671  *
672  * Return 1 if ptbl pages were freed.
673  */
674 static int
675 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
676 {
677 	pte_t *ptbl;
678 	vm_paddr_t pa;
679 	vm_page_t m;
680 	int i;
681 
682 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
683 	    (pmap == kernel_pmap), pdir_idx);
684 
685 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
686 	    ("ptbl_unhold: invalid pdir_idx"));
687 	KASSERT((pmap != kernel_pmap),
688 	    ("ptbl_unhold: unholding kernel ptbl!"));
689 
690 	ptbl = pmap->pm_pdir[pdir_idx];
691 
692 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
693 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
694 	    ("ptbl_unhold: non kva ptbl"));
695 
696 	/* decrement hold count */
697 	for (i = 0; i < PTBL_PAGES; i++) {
698 		pa = pte_vatopa(mmu, kernel_pmap,
699 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
700 		m = PHYS_TO_VM_PAGE(pa);
701 		m->wire_count--;
702 	}
703 
704 	/*
705 	 * Free ptbl pages if there are no pte etries in this ptbl.
706 	 * wire_count has the same value for all ptbl pages, so check the last
707 	 * page.
708 	 */
709 	if (m->wire_count == 0) {
710 		ptbl_free(mmu, pmap, pdir_idx);
711 
712 		//debugf("ptbl_unhold: e (freed ptbl)\n");
713 		return (1);
714 	}
715 
716 	return (0);
717 }
718 
719 /*
720  * Increment hold count for ptbl pages. This routine is used when a new pte
721  * entry is being inserted into the ptbl.
722  */
723 static void
724 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
725 {
726 	vm_paddr_t pa;
727 	pte_t *ptbl;
728 	vm_page_t m;
729 	int i;
730 
731 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
732 	    pdir_idx);
733 
734 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
735 	    ("ptbl_hold: invalid pdir_idx"));
736 	KASSERT((pmap != kernel_pmap),
737 	    ("ptbl_hold: holding kernel ptbl!"));
738 
739 	ptbl = pmap->pm_pdir[pdir_idx];
740 
741 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
742 
743 	for (i = 0; i < PTBL_PAGES; i++) {
744 		pa = pte_vatopa(mmu, kernel_pmap,
745 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
746 		m = PHYS_TO_VM_PAGE(pa);
747 		m->wire_count++;
748 	}
749 }
750 
751 /* Allocate pv_entry structure. */
752 pv_entry_t
753 pv_alloc(void)
754 {
755 	pv_entry_t pv;
756 
757 	pv_entry_count++;
758 	if (pv_entry_count > pv_entry_high_water)
759 		pagedaemon_wakeup();
760 	pv = uma_zalloc(pvzone, M_NOWAIT);
761 
762 	return (pv);
763 }
764 
765 /* Free pv_entry structure. */
766 static __inline void
767 pv_free(pv_entry_t pve)
768 {
769 
770 	pv_entry_count--;
771 	uma_zfree(pvzone, pve);
772 }
773 
774 
775 /* Allocate and initialize pv_entry structure. */
776 static void
777 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
778 {
779 	pv_entry_t pve;
780 
781 	//int su = (pmap == kernel_pmap);
782 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
783 	//	(u_int32_t)pmap, va, (u_int32_t)m);
784 
785 	pve = pv_alloc();
786 	if (pve == NULL)
787 		panic("pv_insert: no pv entries!");
788 
789 	pve->pv_pmap = pmap;
790 	pve->pv_va = va;
791 
792 	/* add to pv_list */
793 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
794 	rw_assert(&pvh_global_lock, RA_WLOCKED);
795 
796 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
797 
798 	//debugf("pv_insert: e\n");
799 }
800 
801 /* Destroy pv entry. */
802 static void
803 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
804 {
805 	pv_entry_t pve;
806 
807 	//int su = (pmap == kernel_pmap);
808 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
809 
810 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
811 	rw_assert(&pvh_global_lock, RA_WLOCKED);
812 
813 	/* find pv entry */
814 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
815 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
816 			/* remove from pv_list */
817 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
818 			if (TAILQ_EMPTY(&m->md.pv_list))
819 				vm_page_aflag_clear(m, PGA_WRITEABLE);
820 
821 			/* free pv entry struct */
822 			pv_free(pve);
823 			break;
824 		}
825 	}
826 
827 	//debugf("pv_remove: e\n");
828 }
829 
830 /*
831  * Clean pte entry, try to free page table page if requested.
832  *
833  * Return 1 if ptbl pages were freed, otherwise return 0.
834  */
835 static int
836 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
837 {
838 	unsigned int pdir_idx = PDIR_IDX(va);
839 	unsigned int ptbl_idx = PTBL_IDX(va);
840 	vm_page_t m;
841 	pte_t *ptbl;
842 	pte_t *pte;
843 
844 	//int su = (pmap == kernel_pmap);
845 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
846 	//		su, (u_int32_t)pmap, va, flags);
847 
848 	ptbl = pmap->pm_pdir[pdir_idx];
849 	KASSERT(ptbl, ("pte_remove: null ptbl"));
850 
851 	pte = &ptbl[ptbl_idx];
852 
853 	if (pte == NULL || !PTE_ISVALID(pte))
854 		return (0);
855 
856 	if (PTE_ISWIRED(pte))
857 		pmap->pm_stats.wired_count--;
858 
859 	/* Handle managed entry. */
860 	if (PTE_ISMANAGED(pte)) {
861 		/* Get vm_page_t for mapped pte. */
862 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
863 
864 		if (PTE_ISMODIFIED(pte))
865 			vm_page_dirty(m);
866 
867 		if (PTE_ISREFERENCED(pte))
868 			vm_page_aflag_set(m, PGA_REFERENCED);
869 
870 		pv_remove(pmap, va, m);
871 	}
872 
873 	mtx_lock_spin(&tlbivax_mutex);
874 	tlb_miss_lock();
875 
876 	tlb0_flush_entry(va);
877 	pte->flags = 0;
878 	pte->rpn = 0;
879 
880 	tlb_miss_unlock();
881 	mtx_unlock_spin(&tlbivax_mutex);
882 
883 	pmap->pm_stats.resident_count--;
884 
885 	if (flags & PTBL_UNHOLD) {
886 		//debugf("pte_remove: e (unhold)\n");
887 		return (ptbl_unhold(mmu, pmap, pdir_idx));
888 	}
889 
890 	//debugf("pte_remove: e\n");
891 	return (0);
892 }
893 
894 /*
895  * Insert PTE for a given page and virtual address.
896  */
897 static int
898 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
899     boolean_t nosleep)
900 {
901 	unsigned int pdir_idx = PDIR_IDX(va);
902 	unsigned int ptbl_idx = PTBL_IDX(va);
903 	pte_t *ptbl, *pte;
904 
905 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
906 	    pmap == kernel_pmap, pmap, va);
907 
908 	/* Get the page table pointer. */
909 	ptbl = pmap->pm_pdir[pdir_idx];
910 
911 	if (ptbl == NULL) {
912 		/* Allocate page table pages. */
913 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
914 		if (ptbl == NULL) {
915 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
916 			return (ENOMEM);
917 		}
918 	} else {
919 		/*
920 		 * Check if there is valid mapping for requested
921 		 * va, if there is, remove it.
922 		 */
923 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
924 		if (PTE_ISVALID(pte)) {
925 			pte_remove(mmu, pmap, va, PTBL_HOLD);
926 		} else {
927 			/*
928 			 * pte is not used, increment hold count
929 			 * for ptbl pages.
930 			 */
931 			if (pmap != kernel_pmap)
932 				ptbl_hold(mmu, pmap, pdir_idx);
933 		}
934 	}
935 
936 	/*
937 	 * Insert pv_entry into pv_list for mapped page if part of managed
938 	 * memory.
939 	 */
940 	if ((m->oflags & VPO_UNMANAGED) == 0) {
941 		flags |= PTE_MANAGED;
942 
943 		/* Create and insert pv entry. */
944 		pv_insert(pmap, va, m);
945 	}
946 
947 	pmap->pm_stats.resident_count++;
948 
949 	mtx_lock_spin(&tlbivax_mutex);
950 	tlb_miss_lock();
951 
952 	tlb0_flush_entry(va);
953 	if (pmap->pm_pdir[pdir_idx] == NULL) {
954 		/*
955 		 * If we just allocated a new page table, hook it in
956 		 * the pdir.
957 		 */
958 		pmap->pm_pdir[pdir_idx] = ptbl;
959 	}
960 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
961 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
962 	pte->flags |= (PTE_VALID | flags);
963 
964 	tlb_miss_unlock();
965 	mtx_unlock_spin(&tlbivax_mutex);
966 	return (0);
967 }
968 
969 /* Return the pa for the given pmap/va. */
970 static vm_paddr_t
971 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
972 {
973 	vm_paddr_t pa = 0;
974 	pte_t *pte;
975 
976 	pte = pte_find(mmu, pmap, va);
977 	if ((pte != NULL) && PTE_ISVALID(pte))
978 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
979 	return (pa);
980 }
981 
982 /* Get a pointer to a PTE in a page table. */
983 static pte_t *
984 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
985 {
986 	unsigned int pdir_idx = PDIR_IDX(va);
987 	unsigned int ptbl_idx = PTBL_IDX(va);
988 
989 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
990 
991 	if (pmap->pm_pdir[pdir_idx])
992 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
993 
994 	return (NULL);
995 }
996 
997 /**************************************************************************/
998 /* PMAP related */
999 /**************************************************************************/
1000 
1001 /*
1002  * This is called during booke_init, before the system is really initialized.
1003  */
1004 static void
1005 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1006 {
1007 	vm_offset_t phys_kernelend;
1008 	struct mem_region *mp, *mp1;
1009 	int cnt, i, j;
1010 	u_int s, e, sz;
1011 	u_int phys_avail_count;
1012 	vm_size_t physsz, hwphyssz, kstack0_sz;
1013 	vm_offset_t kernel_pdir, kstack0, va;
1014 	vm_paddr_t kstack0_phys;
1015 	void *dpcpu;
1016 	pte_t *pte;
1017 
1018 	debugf("mmu_booke_bootstrap: entered\n");
1019 
1020 	/* Set interesting system properties */
1021 	hw_direct_map = 0;
1022 	elf32_nxstack = 1;
1023 
1024 	/* Initialize invalidation mutex */
1025 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1026 
1027 	/* Read TLB0 size and associativity. */
1028 	tlb0_get_tlbconf();
1029 
1030 	/*
1031 	 * Align kernel start and end address (kernel image).
1032 	 * Note that kernel end does not necessarily relate to kernsize.
1033 	 * kernsize is the size of the kernel that is actually mapped.
1034 	 * Also note that "start - 1" is deliberate. With SMP, the
1035 	 * entry point is exactly a page from the actual load address.
1036 	 * As such, trunc_page() has no effect and we're off by a page.
1037 	 * Since we always have the ELF header between the load address
1038 	 * and the entry point, we can safely subtract 1 to compensate.
1039 	 */
1040 	kernstart = trunc_page(start - 1);
1041 	data_start = round_page(kernelend);
1042 	data_end = data_start;
1043 
1044 	/*
1045 	 * Addresses of preloaded modules (like file systems) use
1046 	 * physical addresses. Make sure we relocate those into
1047 	 * virtual addresses.
1048 	 */
1049 	preload_addr_relocate = kernstart - kernload;
1050 
1051 	/* Allocate the dynamic per-cpu area. */
1052 	dpcpu = (void *)data_end;
1053 	data_end += DPCPU_SIZE;
1054 
1055 	/* Allocate space for the message buffer. */
1056 	msgbufp = (struct msgbuf *)data_end;
1057 	data_end += msgbufsize;
1058 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1059 	    data_end);
1060 
1061 	data_end = round_page(data_end);
1062 
1063 	/* Allocate space for ptbl_bufs. */
1064 	ptbl_bufs = (struct ptbl_buf *)data_end;
1065 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1066 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1067 	    data_end);
1068 
1069 	data_end = round_page(data_end);
1070 
1071 	/* Allocate PTE tables for kernel KVA. */
1072 	kernel_pdir = data_end;
1073 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1074 	    PDIR_SIZE - 1) / PDIR_SIZE;
1075 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1076 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1077 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1078 
1079 	debugf(" data_end: 0x%08x\n", data_end);
1080 	if (data_end - kernstart > kernsize) {
1081 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1082 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1083 	}
1084 	data_end = kernstart + kernsize;
1085 	debugf(" updated data_end: 0x%08x\n", data_end);
1086 
1087 	/*
1088 	 * Clear the structures - note we can only do it safely after the
1089 	 * possible additional TLB1 translations are in place (above) so that
1090 	 * all range up to the currently calculated 'data_end' is covered.
1091 	 */
1092 	dpcpu_init(dpcpu, 0);
1093 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1094 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1095 
1096 	/*******************************************************/
1097 	/* Set the start and end of kva. */
1098 	/*******************************************************/
1099 	virtual_avail = round_page(data_end);
1100 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1101 
1102 	/* Allocate KVA space for page zero/copy operations. */
1103 	zero_page_va = virtual_avail;
1104 	virtual_avail += PAGE_SIZE;
1105 	zero_page_idle_va = virtual_avail;
1106 	virtual_avail += PAGE_SIZE;
1107 	copy_page_src_va = virtual_avail;
1108 	virtual_avail += PAGE_SIZE;
1109 	copy_page_dst_va = virtual_avail;
1110 	virtual_avail += PAGE_SIZE;
1111 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1112 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1113 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1114 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1115 
1116 	/* Initialize page zero/copy mutexes. */
1117 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1118 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1119 
1120 	/* Allocate KVA space for ptbl bufs. */
1121 	ptbl_buf_pool_vabase = virtual_avail;
1122 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1123 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1124 	    ptbl_buf_pool_vabase, virtual_avail);
1125 
1126 	/* Calculate corresponding physical addresses for the kernel region. */
1127 	phys_kernelend = kernload + kernsize;
1128 	debugf("kernel image and allocated data:\n");
1129 	debugf(" kernload    = 0x%08x\n", kernload);
1130 	debugf(" kernstart   = 0x%08x\n", kernstart);
1131 	debugf(" kernsize    = 0x%08x\n", kernsize);
1132 
1133 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1134 		panic("mmu_booke_bootstrap: phys_avail too small");
1135 
1136 	/*
1137 	 * Remove kernel physical address range from avail regions list. Page
1138 	 * align all regions.  Non-page aligned memory isn't very interesting
1139 	 * to us.  Also, sort the entries for ascending addresses.
1140 	 */
1141 
1142 	/* Retrieve phys/avail mem regions */
1143 	mem_regions(&physmem_regions, &physmem_regions_sz,
1144 	    &availmem_regions, &availmem_regions_sz);
1145 	sz = 0;
1146 	cnt = availmem_regions_sz;
1147 	debugf("processing avail regions:\n");
1148 	for (mp = availmem_regions; mp->mr_size; mp++) {
1149 		s = mp->mr_start;
1150 		e = mp->mr_start + mp->mr_size;
1151 		debugf(" %08x-%08x -> ", s, e);
1152 		/* Check whether this region holds all of the kernel. */
1153 		if (s < kernload && e > phys_kernelend) {
1154 			availmem_regions[cnt].mr_start = phys_kernelend;
1155 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1156 			e = kernload;
1157 		}
1158 		/* Look whether this regions starts within the kernel. */
1159 		if (s >= kernload && s < phys_kernelend) {
1160 			if (e <= phys_kernelend)
1161 				goto empty;
1162 			s = phys_kernelend;
1163 		}
1164 		/* Now look whether this region ends within the kernel. */
1165 		if (e > kernload && e <= phys_kernelend) {
1166 			if (s >= kernload)
1167 				goto empty;
1168 			e = kernload;
1169 		}
1170 		/* Now page align the start and size of the region. */
1171 		s = round_page(s);
1172 		e = trunc_page(e);
1173 		if (e < s)
1174 			e = s;
1175 		sz = e - s;
1176 		debugf("%08x-%08x = %x\n", s, e, sz);
1177 
1178 		/* Check whether some memory is left here. */
1179 		if (sz == 0) {
1180 		empty:
1181 			memmove(mp, mp + 1,
1182 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1183 			cnt--;
1184 			mp--;
1185 			continue;
1186 		}
1187 
1188 		/* Do an insertion sort. */
1189 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1190 			if (s < mp1->mr_start)
1191 				break;
1192 		if (mp1 < mp) {
1193 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1194 			mp1->mr_start = s;
1195 			mp1->mr_size = sz;
1196 		} else {
1197 			mp->mr_start = s;
1198 			mp->mr_size = sz;
1199 		}
1200 	}
1201 	availmem_regions_sz = cnt;
1202 
1203 	/*******************************************************/
1204 	/* Steal physical memory for kernel stack from the end */
1205 	/* of the first avail region                           */
1206 	/*******************************************************/
1207 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1208 	kstack0_phys = availmem_regions[0].mr_start +
1209 	    availmem_regions[0].mr_size;
1210 	kstack0_phys -= kstack0_sz;
1211 	availmem_regions[0].mr_size -= kstack0_sz;
1212 
1213 	/*******************************************************/
1214 	/* Fill in phys_avail table, based on availmem_regions */
1215 	/*******************************************************/
1216 	phys_avail_count = 0;
1217 	physsz = 0;
1218 	hwphyssz = 0;
1219 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1220 
1221 	debugf("fill in phys_avail:\n");
1222 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1223 
1224 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1225 		    availmem_regions[i].mr_start,
1226 		    availmem_regions[i].mr_start +
1227 		        availmem_regions[i].mr_size,
1228 		    availmem_regions[i].mr_size);
1229 
1230 		if (hwphyssz != 0 &&
1231 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1232 			debugf(" hw.physmem adjust\n");
1233 			if (physsz < hwphyssz) {
1234 				phys_avail[j] = availmem_regions[i].mr_start;
1235 				phys_avail[j + 1] =
1236 				    availmem_regions[i].mr_start +
1237 				    hwphyssz - physsz;
1238 				physsz = hwphyssz;
1239 				phys_avail_count++;
1240 			}
1241 			break;
1242 		}
1243 
1244 		phys_avail[j] = availmem_regions[i].mr_start;
1245 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1246 		    availmem_regions[i].mr_size;
1247 		phys_avail_count++;
1248 		physsz += availmem_regions[i].mr_size;
1249 	}
1250 	physmem = btoc(physsz);
1251 
1252 	/* Calculate the last available physical address. */
1253 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1254 		;
1255 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1256 
1257 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1258 	debugf("phys_avail_count = %d\n", phys_avail_count);
1259 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1260 	    physmem);
1261 
1262 	/*******************************************************/
1263 	/* Initialize (statically allocated) kernel pmap. */
1264 	/*******************************************************/
1265 	PMAP_LOCK_INIT(kernel_pmap);
1266 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1267 
1268 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1269 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1270 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1271 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1272 
1273 	/* Initialize kernel pdir */
1274 	for (i = 0; i < kernel_ptbls; i++)
1275 		kernel_pmap->pm_pdir[kptbl_min + i] =
1276 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1277 
1278 	for (i = 0; i < MAXCPU; i++) {
1279 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1280 
1281 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1282 		tidbusy[i][0] = kernel_pmap;
1283 	}
1284 
1285 	/*
1286 	 * Fill in PTEs covering kernel code and data. They are not required
1287 	 * for address translation, as this area is covered by static TLB1
1288 	 * entries, but for pte_vatopa() to work correctly with kernel area
1289 	 * addresses.
1290 	 */
1291 	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1292 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1293 		pte->rpn = kernload + (va - kernstart);
1294 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1295 		    PTE_VALID;
1296 	}
1297 	/* Mark kernel_pmap active on all CPUs */
1298 	CPU_FILL(&kernel_pmap->pm_active);
1299 
1300  	/*
1301 	 * Initialize the global pv list lock.
1302 	 */
1303 	rw_init(&pvh_global_lock, "pmap pv global");
1304 
1305 	/*******************************************************/
1306 	/* Final setup */
1307 	/*******************************************************/
1308 
1309 	/* Enter kstack0 into kernel map, provide guard page */
1310 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1311 	thread0.td_kstack = kstack0;
1312 	thread0.td_kstack_pages = KSTACK_PAGES;
1313 
1314 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1315 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1316 	    kstack0_phys, kstack0_phys + kstack0_sz);
1317 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1318 
1319 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1320 	for (i = 0; i < KSTACK_PAGES; i++) {
1321 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1322 		kstack0 += PAGE_SIZE;
1323 		kstack0_phys += PAGE_SIZE;
1324 	}
1325 
1326 	pmap_bootstrapped = 1;
1327 
1328 	debugf("virtual_avail = %08x\n", virtual_avail);
1329 	debugf("virtual_end   = %08x\n", virtual_end);
1330 
1331 	debugf("mmu_booke_bootstrap: exit\n");
1332 }
1333 
1334 #ifdef SMP
1335 void
1336 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1337 {
1338 	int i;
1339 
1340 	/*
1341 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1342 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1343 	 * these values directly to (re)program AP's TLB1 hardware.
1344 	 */
1345 	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1346 		/* Skip invalid entries */
1347 		if (!(tlb1[i].mas1 & MAS1_VALID))
1348 			continue;
1349 
1350 		tlb1_write_entry(i);
1351 	}
1352 
1353 	set_mas4_defaults();
1354 }
1355 #endif
1356 
1357 /*
1358  * Get the physical page address for the given pmap/virtual address.
1359  */
1360 static vm_paddr_t
1361 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1362 {
1363 	vm_paddr_t pa;
1364 
1365 	PMAP_LOCK(pmap);
1366 	pa = pte_vatopa(mmu, pmap, va);
1367 	PMAP_UNLOCK(pmap);
1368 
1369 	return (pa);
1370 }
1371 
1372 /*
1373  * Extract the physical page address associated with the given
1374  * kernel virtual address.
1375  */
1376 static vm_paddr_t
1377 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1378 {
1379 	int i;
1380 
1381 	/* Check TLB1 mappings */
1382 	for (i = 0; i < tlb1_idx; i++) {
1383 		if (!(tlb1[i].mas1 & MAS1_VALID))
1384 			continue;
1385 		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1386 			return (tlb1[i].phys + (va - tlb1[i].virt));
1387 	}
1388 
1389 	return (pte_vatopa(mmu, kernel_pmap, va));
1390 }
1391 
1392 /*
1393  * Initialize the pmap module.
1394  * Called by vm_init, to initialize any structures that the pmap
1395  * system needs to map virtual memory.
1396  */
1397 static void
1398 mmu_booke_init(mmu_t mmu)
1399 {
1400 	int shpgperproc = PMAP_SHPGPERPROC;
1401 
1402 	/*
1403 	 * Initialize the address space (zone) for the pv entries.  Set a
1404 	 * high water mark so that the system can recover from excessive
1405 	 * numbers of pv entries.
1406 	 */
1407 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1408 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1409 
1410 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1411 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1412 
1413 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1414 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1415 
1416 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1417 
1418 	/* Pre-fill pvzone with initial number of pv entries. */
1419 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1420 
1421 	/* Initialize ptbl allocation. */
1422 	ptbl_init();
1423 }
1424 
1425 /*
1426  * Map a list of wired pages into kernel virtual address space.  This is
1427  * intended for temporary mappings which do not need page modification or
1428  * references recorded.  Existing mappings in the region are overwritten.
1429  */
1430 static void
1431 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1432 {
1433 	vm_offset_t va;
1434 
1435 	va = sva;
1436 	while (count-- > 0) {
1437 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1438 		va += PAGE_SIZE;
1439 		m++;
1440 	}
1441 }
1442 
1443 /*
1444  * Remove page mappings from kernel virtual address space.  Intended for
1445  * temporary mappings entered by mmu_booke_qenter.
1446  */
1447 static void
1448 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1449 {
1450 	vm_offset_t va;
1451 
1452 	va = sva;
1453 	while (count-- > 0) {
1454 		mmu_booke_kremove(mmu, va);
1455 		va += PAGE_SIZE;
1456 	}
1457 }
1458 
1459 /*
1460  * Map a wired page into kernel virtual address space.
1461  */
1462 static void
1463 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1464 {
1465 
1466 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1467 }
1468 
1469 static void
1470 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1471 {
1472 	unsigned int pdir_idx = PDIR_IDX(va);
1473 	unsigned int ptbl_idx = PTBL_IDX(va);
1474 	uint32_t flags;
1475 	pte_t *pte;
1476 
1477 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1478 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1479 
1480 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1481 	flags |= tlb_calc_wimg(pa, ma);
1482 
1483 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1484 
1485 	mtx_lock_spin(&tlbivax_mutex);
1486 	tlb_miss_lock();
1487 
1488 	if (PTE_ISVALID(pte)) {
1489 
1490 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1491 
1492 		/* Flush entry from TLB0 */
1493 		tlb0_flush_entry(va);
1494 	}
1495 
1496 	pte->rpn = pa & ~PTE_PA_MASK;
1497 	pte->flags = flags;
1498 
1499 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1500 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1501 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1502 
1503 	/* Flush the real memory from the instruction cache. */
1504 	if ((flags & (PTE_I | PTE_G)) == 0) {
1505 		__syncicache((void *)va, PAGE_SIZE);
1506 	}
1507 
1508 	tlb_miss_unlock();
1509 	mtx_unlock_spin(&tlbivax_mutex);
1510 }
1511 
1512 /*
1513  * Remove a page from kernel page table.
1514  */
1515 static void
1516 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1517 {
1518 	unsigned int pdir_idx = PDIR_IDX(va);
1519 	unsigned int ptbl_idx = PTBL_IDX(va);
1520 	pte_t *pte;
1521 
1522 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1523 
1524 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1525 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1526 	    ("mmu_booke_kremove: invalid va"));
1527 
1528 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1529 
1530 	if (!PTE_ISVALID(pte)) {
1531 
1532 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1533 
1534 		return;
1535 	}
1536 
1537 	mtx_lock_spin(&tlbivax_mutex);
1538 	tlb_miss_lock();
1539 
1540 	/* Invalidate entry in TLB0, update PTE. */
1541 	tlb0_flush_entry(va);
1542 	pte->flags = 0;
1543 	pte->rpn = 0;
1544 
1545 	tlb_miss_unlock();
1546 	mtx_unlock_spin(&tlbivax_mutex);
1547 }
1548 
1549 /*
1550  * Initialize pmap associated with process 0.
1551  */
1552 static void
1553 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1554 {
1555 
1556 	PMAP_LOCK_INIT(pmap);
1557 	mmu_booke_pinit(mmu, pmap);
1558 	PCPU_SET(curpmap, pmap);
1559 }
1560 
1561 /*
1562  * Initialize a preallocated and zeroed pmap structure,
1563  * such as one in a vmspace structure.
1564  */
1565 static void
1566 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1567 {
1568 	int i;
1569 
1570 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1571 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1572 
1573 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1574 
1575 	for (i = 0; i < MAXCPU; i++)
1576 		pmap->pm_tid[i] = TID_NONE;
1577 	CPU_ZERO(&kernel_pmap->pm_active);
1578 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1579 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1580 	TAILQ_INIT(&pmap->pm_ptbl_list);
1581 }
1582 
1583 /*
1584  * Release any resources held by the given physical map.
1585  * Called when a pmap initialized by mmu_booke_pinit is being released.
1586  * Should only be called if the map contains no valid mappings.
1587  */
1588 static void
1589 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1590 {
1591 
1592 	KASSERT(pmap->pm_stats.resident_count == 0,
1593 	    ("pmap_release: pmap resident count %ld != 0",
1594 	    pmap->pm_stats.resident_count));
1595 }
1596 
1597 /*
1598  * Insert the given physical page at the specified virtual address in the
1599  * target physical map with the protection requested. If specified the page
1600  * will be wired down.
1601  */
1602 static int
1603 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1604     vm_prot_t prot, u_int flags, int8_t psind)
1605 {
1606 	int error;
1607 
1608 	rw_wlock(&pvh_global_lock);
1609 	PMAP_LOCK(pmap);
1610 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1611 	rw_wunlock(&pvh_global_lock);
1612 	PMAP_UNLOCK(pmap);
1613 	return (error);
1614 }
1615 
1616 static int
1617 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1618     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1619 {
1620 	pte_t *pte;
1621 	vm_paddr_t pa;
1622 	uint32_t flags;
1623 	int error, su, sync;
1624 
1625 	pa = VM_PAGE_TO_PHYS(m);
1626 	su = (pmap == kernel_pmap);
1627 	sync = 0;
1628 
1629 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1630 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1631 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1632 	//		(u_int32_t)m, va, pa, prot, flags);
1633 
1634 	if (su) {
1635 		KASSERT(((va >= virtual_avail) &&
1636 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1637 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1638 	} else {
1639 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1640 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1641 	}
1642 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1643 		VM_OBJECT_ASSERT_LOCKED(m->object);
1644 
1645 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1646 
1647 	/*
1648 	 * If there is an existing mapping, and the physical address has not
1649 	 * changed, must be protection or wiring change.
1650 	 */
1651 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1652 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1653 
1654 		/*
1655 		 * Before actually updating pte->flags we calculate and
1656 		 * prepare its new value in a helper var.
1657 		 */
1658 		flags = pte->flags;
1659 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1660 
1661 		/* Wiring change, just update stats. */
1662 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1663 			if (!PTE_ISWIRED(pte)) {
1664 				flags |= PTE_WIRED;
1665 				pmap->pm_stats.wired_count++;
1666 			}
1667 		} else {
1668 			if (PTE_ISWIRED(pte)) {
1669 				flags &= ~PTE_WIRED;
1670 				pmap->pm_stats.wired_count--;
1671 			}
1672 		}
1673 
1674 		if (prot & VM_PROT_WRITE) {
1675 			/* Add write permissions. */
1676 			flags |= PTE_SW;
1677 			if (!su)
1678 				flags |= PTE_UW;
1679 
1680 			if ((flags & PTE_MANAGED) != 0)
1681 				vm_page_aflag_set(m, PGA_WRITEABLE);
1682 		} else {
1683 			/* Handle modified pages, sense modify status. */
1684 
1685 			/*
1686 			 * The PTE_MODIFIED flag could be set by underlying
1687 			 * TLB misses since we last read it (above), possibly
1688 			 * other CPUs could update it so we check in the PTE
1689 			 * directly rather than rely on that saved local flags
1690 			 * copy.
1691 			 */
1692 			if (PTE_ISMODIFIED(pte))
1693 				vm_page_dirty(m);
1694 		}
1695 
1696 		if (prot & VM_PROT_EXECUTE) {
1697 			flags |= PTE_SX;
1698 			if (!su)
1699 				flags |= PTE_UX;
1700 
1701 			/*
1702 			 * Check existing flags for execute permissions: if we
1703 			 * are turning execute permissions on, icache should
1704 			 * be flushed.
1705 			 */
1706 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1707 				sync++;
1708 		}
1709 
1710 		flags &= ~PTE_REFERENCED;
1711 
1712 		/*
1713 		 * The new flags value is all calculated -- only now actually
1714 		 * update the PTE.
1715 		 */
1716 		mtx_lock_spin(&tlbivax_mutex);
1717 		tlb_miss_lock();
1718 
1719 		tlb0_flush_entry(va);
1720 		pte->flags = flags;
1721 
1722 		tlb_miss_unlock();
1723 		mtx_unlock_spin(&tlbivax_mutex);
1724 
1725 	} else {
1726 		/*
1727 		 * If there is an existing mapping, but it's for a different
1728 		 * physical address, pte_enter() will delete the old mapping.
1729 		 */
1730 		//if ((pte != NULL) && PTE_ISVALID(pte))
1731 		//	debugf("mmu_booke_enter_locked: replace\n");
1732 		//else
1733 		//	debugf("mmu_booke_enter_locked: new\n");
1734 
1735 		/* Now set up the flags and install the new mapping. */
1736 		flags = (PTE_SR | PTE_VALID);
1737 		flags |= PTE_M;
1738 
1739 		if (!su)
1740 			flags |= PTE_UR;
1741 
1742 		if (prot & VM_PROT_WRITE) {
1743 			flags |= PTE_SW;
1744 			if (!su)
1745 				flags |= PTE_UW;
1746 
1747 			if ((m->oflags & VPO_UNMANAGED) == 0)
1748 				vm_page_aflag_set(m, PGA_WRITEABLE);
1749 		}
1750 
1751 		if (prot & VM_PROT_EXECUTE) {
1752 			flags |= PTE_SX;
1753 			if (!su)
1754 				flags |= PTE_UX;
1755 		}
1756 
1757 		/* If its wired update stats. */
1758 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1759 			flags |= PTE_WIRED;
1760 
1761 		error = pte_enter(mmu, pmap, m, va, flags,
1762 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1763 		if (error != 0)
1764 			return (KERN_RESOURCE_SHORTAGE);
1765 
1766 		if ((flags & PMAP_ENTER_WIRED) != 0)
1767 			pmap->pm_stats.wired_count++;
1768 
1769 		/* Flush the real memory from the instruction cache. */
1770 		if (prot & VM_PROT_EXECUTE)
1771 			sync++;
1772 	}
1773 
1774 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1775 		__syncicache((void *)va, PAGE_SIZE);
1776 		sync = 0;
1777 	}
1778 
1779 	return (KERN_SUCCESS);
1780 }
1781 
1782 /*
1783  * Maps a sequence of resident pages belonging to the same object.
1784  * The sequence begins with the given page m_start.  This page is
1785  * mapped at the given virtual address start.  Each subsequent page is
1786  * mapped at a virtual address that is offset from start by the same
1787  * amount as the page is offset from m_start within the object.  The
1788  * last page in the sequence is the page with the largest offset from
1789  * m_start that can be mapped at a virtual address less than the given
1790  * virtual address end.  Not every virtual page between start and end
1791  * is mapped; only those for which a resident page exists with the
1792  * corresponding offset from m_start are mapped.
1793  */
1794 static void
1795 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1796     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1797 {
1798 	vm_page_t m;
1799 	vm_pindex_t diff, psize;
1800 
1801 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1802 
1803 	psize = atop(end - start);
1804 	m = m_start;
1805 	rw_wlock(&pvh_global_lock);
1806 	PMAP_LOCK(pmap);
1807 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1808 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1809 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1810 		    PMAP_ENTER_NOSLEEP, 0);
1811 		m = TAILQ_NEXT(m, listq);
1812 	}
1813 	rw_wunlock(&pvh_global_lock);
1814 	PMAP_UNLOCK(pmap);
1815 }
1816 
1817 static void
1818 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1819     vm_prot_t prot)
1820 {
1821 
1822 	rw_wlock(&pvh_global_lock);
1823 	PMAP_LOCK(pmap);
1824 	mmu_booke_enter_locked(mmu, pmap, va, m,
1825 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1826 	    0);
1827 	rw_wunlock(&pvh_global_lock);
1828 	PMAP_UNLOCK(pmap);
1829 }
1830 
1831 /*
1832  * Remove the given range of addresses from the specified map.
1833  *
1834  * It is assumed that the start and end are properly rounded to the page size.
1835  */
1836 static void
1837 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1838 {
1839 	pte_t *pte;
1840 	uint8_t hold_flag;
1841 
1842 	int su = (pmap == kernel_pmap);
1843 
1844 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1845 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1846 
1847 	if (su) {
1848 		KASSERT(((va >= virtual_avail) &&
1849 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1850 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1851 	} else {
1852 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1853 		    ("mmu_booke_remove: user pmap, non user va"));
1854 	}
1855 
1856 	if (PMAP_REMOVE_DONE(pmap)) {
1857 		//debugf("mmu_booke_remove: e (empty)\n");
1858 		return;
1859 	}
1860 
1861 	hold_flag = PTBL_HOLD_FLAG(pmap);
1862 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1863 
1864 	rw_wlock(&pvh_global_lock);
1865 	PMAP_LOCK(pmap);
1866 	for (; va < endva; va += PAGE_SIZE) {
1867 		pte = pte_find(mmu, pmap, va);
1868 		if ((pte != NULL) && PTE_ISVALID(pte))
1869 			pte_remove(mmu, pmap, va, hold_flag);
1870 	}
1871 	PMAP_UNLOCK(pmap);
1872 	rw_wunlock(&pvh_global_lock);
1873 
1874 	//debugf("mmu_booke_remove: e\n");
1875 }
1876 
1877 /*
1878  * Remove physical page from all pmaps in which it resides.
1879  */
1880 static void
1881 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1882 {
1883 	pv_entry_t pv, pvn;
1884 	uint8_t hold_flag;
1885 
1886 	rw_wlock(&pvh_global_lock);
1887 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1888 		pvn = TAILQ_NEXT(pv, pv_link);
1889 
1890 		PMAP_LOCK(pv->pv_pmap);
1891 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1892 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1893 		PMAP_UNLOCK(pv->pv_pmap);
1894 	}
1895 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1896 	rw_wunlock(&pvh_global_lock);
1897 }
1898 
1899 /*
1900  * Map a range of physical addresses into kernel virtual address space.
1901  */
1902 static vm_offset_t
1903 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1904     vm_paddr_t pa_end, int prot)
1905 {
1906 	vm_offset_t sva = *virt;
1907 	vm_offset_t va = sva;
1908 
1909 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1910 	//		sva, pa_start, pa_end);
1911 
1912 	while (pa_start < pa_end) {
1913 		mmu_booke_kenter(mmu, va, pa_start);
1914 		va += PAGE_SIZE;
1915 		pa_start += PAGE_SIZE;
1916 	}
1917 	*virt = va;
1918 
1919 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1920 	return (sva);
1921 }
1922 
1923 /*
1924  * The pmap must be activated before it's address space can be accessed in any
1925  * way.
1926  */
1927 static void
1928 mmu_booke_activate(mmu_t mmu, struct thread *td)
1929 {
1930 	pmap_t pmap;
1931 	u_int cpuid;
1932 
1933 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1934 
1935 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1936 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1937 
1938 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1939 
1940 	sched_pin();
1941 
1942 	cpuid = PCPU_GET(cpuid);
1943 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1944 	PCPU_SET(curpmap, pmap);
1945 
1946 	if (pmap->pm_tid[cpuid] == TID_NONE)
1947 		tid_alloc(pmap);
1948 
1949 	/* Load PID0 register with pmap tid value. */
1950 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1951 	__asm __volatile("isync");
1952 
1953 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1954 
1955 	sched_unpin();
1956 
1957 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1958 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1959 }
1960 
1961 /*
1962  * Deactivate the specified process's address space.
1963  */
1964 static void
1965 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1966 {
1967 	pmap_t pmap;
1968 
1969 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1970 
1971 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1972 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1973 
1974 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1975 
1976 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1977 	PCPU_SET(curpmap, NULL);
1978 }
1979 
1980 /*
1981  * Copy the range specified by src_addr/len
1982  * from the source map to the range dst_addr/len
1983  * in the destination map.
1984  *
1985  * This routine is only advisory and need not do anything.
1986  */
1987 static void
1988 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1989     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1990 {
1991 
1992 }
1993 
1994 /*
1995  * Set the physical protection on the specified range of this map as requested.
1996  */
1997 static void
1998 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1999     vm_prot_t prot)
2000 {
2001 	vm_offset_t va;
2002 	vm_page_t m;
2003 	pte_t *pte;
2004 
2005 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2006 		mmu_booke_remove(mmu, pmap, sva, eva);
2007 		return;
2008 	}
2009 
2010 	if (prot & VM_PROT_WRITE)
2011 		return;
2012 
2013 	PMAP_LOCK(pmap);
2014 	for (va = sva; va < eva; va += PAGE_SIZE) {
2015 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2016 			if (PTE_ISVALID(pte)) {
2017 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2018 
2019 				mtx_lock_spin(&tlbivax_mutex);
2020 				tlb_miss_lock();
2021 
2022 				/* Handle modified pages. */
2023 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2024 					vm_page_dirty(m);
2025 
2026 				tlb0_flush_entry(va);
2027 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2028 
2029 				tlb_miss_unlock();
2030 				mtx_unlock_spin(&tlbivax_mutex);
2031 			}
2032 		}
2033 	}
2034 	PMAP_UNLOCK(pmap);
2035 }
2036 
2037 /*
2038  * Clear the write and modified bits in each of the given page's mappings.
2039  */
2040 static void
2041 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2042 {
2043 	pv_entry_t pv;
2044 	pte_t *pte;
2045 
2046 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2047 	    ("mmu_booke_remove_write: page %p is not managed", m));
2048 
2049 	/*
2050 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2051 	 * set by another thread while the object is locked.  Thus,
2052 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2053 	 */
2054 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2055 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2056 		return;
2057 	rw_wlock(&pvh_global_lock);
2058 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2059 		PMAP_LOCK(pv->pv_pmap);
2060 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2061 			if (PTE_ISVALID(pte)) {
2062 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2063 
2064 				mtx_lock_spin(&tlbivax_mutex);
2065 				tlb_miss_lock();
2066 
2067 				/* Handle modified pages. */
2068 				if (PTE_ISMODIFIED(pte))
2069 					vm_page_dirty(m);
2070 
2071 				/* Flush mapping from TLB0. */
2072 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2073 
2074 				tlb_miss_unlock();
2075 				mtx_unlock_spin(&tlbivax_mutex);
2076 			}
2077 		}
2078 		PMAP_UNLOCK(pv->pv_pmap);
2079 	}
2080 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2081 	rw_wunlock(&pvh_global_lock);
2082 }
2083 
2084 static void
2085 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2086 {
2087 	pte_t *pte;
2088 	pmap_t pmap;
2089 	vm_page_t m;
2090 	vm_offset_t addr;
2091 	vm_paddr_t pa = 0;
2092 	int active, valid;
2093 
2094 	va = trunc_page(va);
2095 	sz = round_page(sz);
2096 
2097 	rw_wlock(&pvh_global_lock);
2098 	pmap = PCPU_GET(curpmap);
2099 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2100 	while (sz > 0) {
2101 		PMAP_LOCK(pm);
2102 		pte = pte_find(mmu, pm, va);
2103 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2104 		if (valid)
2105 			pa = PTE_PA(pte);
2106 		PMAP_UNLOCK(pm);
2107 		if (valid) {
2108 			if (!active) {
2109 				/* Create a mapping in the active pmap. */
2110 				addr = 0;
2111 				m = PHYS_TO_VM_PAGE(pa);
2112 				PMAP_LOCK(pmap);
2113 				pte_enter(mmu, pmap, m, addr,
2114 				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2115 				__syncicache((void *)addr, PAGE_SIZE);
2116 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2117 				PMAP_UNLOCK(pmap);
2118 			} else
2119 				__syncicache((void *)va, PAGE_SIZE);
2120 		}
2121 		va += PAGE_SIZE;
2122 		sz -= PAGE_SIZE;
2123 	}
2124 	rw_wunlock(&pvh_global_lock);
2125 }
2126 
2127 /*
2128  * Atomically extract and hold the physical page with the given
2129  * pmap and virtual address pair if that mapping permits the given
2130  * protection.
2131  */
2132 static vm_page_t
2133 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2134     vm_prot_t prot)
2135 {
2136 	pte_t *pte;
2137 	vm_page_t m;
2138 	uint32_t pte_wbit;
2139 	vm_paddr_t pa;
2140 
2141 	m = NULL;
2142 	pa = 0;
2143 	PMAP_LOCK(pmap);
2144 retry:
2145 	pte = pte_find(mmu, pmap, va);
2146 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2147 		if (pmap == kernel_pmap)
2148 			pte_wbit = PTE_SW;
2149 		else
2150 			pte_wbit = PTE_UW;
2151 
2152 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2153 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2154 				goto retry;
2155 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2156 			vm_page_hold(m);
2157 		}
2158 	}
2159 
2160 	PA_UNLOCK_COND(pa);
2161 	PMAP_UNLOCK(pmap);
2162 	return (m);
2163 }
2164 
2165 /*
2166  * Initialize a vm_page's machine-dependent fields.
2167  */
2168 static void
2169 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2170 {
2171 
2172 	TAILQ_INIT(&m->md.pv_list);
2173 }
2174 
2175 /*
2176  * mmu_booke_zero_page_area zeros the specified hardware page by
2177  * mapping it into virtual memory and using bzero to clear
2178  * its contents.
2179  *
2180  * off and size must reside within a single page.
2181  */
2182 static void
2183 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2184 {
2185 	vm_offset_t va;
2186 
2187 	/* XXX KASSERT off and size are within a single page? */
2188 
2189 	mtx_lock(&zero_page_mutex);
2190 	va = zero_page_va;
2191 
2192 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2193 	bzero((caddr_t)va + off, size);
2194 	mmu_booke_kremove(mmu, va);
2195 
2196 	mtx_unlock(&zero_page_mutex);
2197 }
2198 
2199 /*
2200  * mmu_booke_zero_page zeros the specified hardware page.
2201  */
2202 static void
2203 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2204 {
2205 
2206 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2207 }
2208 
2209 /*
2210  * mmu_booke_copy_page copies the specified (machine independent) page by
2211  * mapping the page into virtual memory and using memcopy to copy the page,
2212  * one machine dependent page at a time.
2213  */
2214 static void
2215 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2216 {
2217 	vm_offset_t sva, dva;
2218 
2219 	sva = copy_page_src_va;
2220 	dva = copy_page_dst_va;
2221 
2222 	mtx_lock(&copy_page_mutex);
2223 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2224 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2225 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2226 	mmu_booke_kremove(mmu, dva);
2227 	mmu_booke_kremove(mmu, sva);
2228 	mtx_unlock(&copy_page_mutex);
2229 }
2230 
2231 static inline void
2232 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2233     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2234 {
2235 	void *a_cp, *b_cp;
2236 	vm_offset_t a_pg_offset, b_pg_offset;
2237 	int cnt;
2238 
2239 	mtx_lock(&copy_page_mutex);
2240 	while (xfersize > 0) {
2241 		a_pg_offset = a_offset & PAGE_MASK;
2242 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2243 		mmu_booke_kenter(mmu, copy_page_src_va,
2244 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2245 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2246 		b_pg_offset = b_offset & PAGE_MASK;
2247 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2248 		mmu_booke_kenter(mmu, copy_page_dst_va,
2249 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2250 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2251 		bcopy(a_cp, b_cp, cnt);
2252 		mmu_booke_kremove(mmu, copy_page_dst_va);
2253 		mmu_booke_kremove(mmu, copy_page_src_va);
2254 		a_offset += cnt;
2255 		b_offset += cnt;
2256 		xfersize -= cnt;
2257 	}
2258 	mtx_unlock(&copy_page_mutex);
2259 }
2260 
2261 /*
2262  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2263  * into virtual memory and using bzero to clear its contents. This is intended
2264  * to be called from the vm_pagezero process only and outside of Giant. No
2265  * lock is required.
2266  */
2267 static void
2268 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2269 {
2270 	vm_offset_t va;
2271 
2272 	va = zero_page_idle_va;
2273 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2274 	bzero((caddr_t)va, PAGE_SIZE);
2275 	mmu_booke_kremove(mmu, va);
2276 }
2277 
2278 /*
2279  * Return whether or not the specified physical page was modified
2280  * in any of physical maps.
2281  */
2282 static boolean_t
2283 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2284 {
2285 	pte_t *pte;
2286 	pv_entry_t pv;
2287 	boolean_t rv;
2288 
2289 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2290 	    ("mmu_booke_is_modified: page %p is not managed", m));
2291 	rv = FALSE;
2292 
2293 	/*
2294 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2295 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2296 	 * is clear, no PTEs can be modified.
2297 	 */
2298 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2299 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2300 		return (rv);
2301 	rw_wlock(&pvh_global_lock);
2302 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2303 		PMAP_LOCK(pv->pv_pmap);
2304 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2305 		    PTE_ISVALID(pte)) {
2306 			if (PTE_ISMODIFIED(pte))
2307 				rv = TRUE;
2308 		}
2309 		PMAP_UNLOCK(pv->pv_pmap);
2310 		if (rv)
2311 			break;
2312 	}
2313 	rw_wunlock(&pvh_global_lock);
2314 	return (rv);
2315 }
2316 
2317 /*
2318  * Return whether or not the specified virtual address is eligible
2319  * for prefault.
2320  */
2321 static boolean_t
2322 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2323 {
2324 
2325 	return (FALSE);
2326 }
2327 
2328 /*
2329  * Return whether or not the specified physical page was referenced
2330  * in any physical maps.
2331  */
2332 static boolean_t
2333 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2334 {
2335 	pte_t *pte;
2336 	pv_entry_t pv;
2337 	boolean_t rv;
2338 
2339 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2340 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2341 	rv = FALSE;
2342 	rw_wlock(&pvh_global_lock);
2343 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2344 		PMAP_LOCK(pv->pv_pmap);
2345 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2346 		    PTE_ISVALID(pte)) {
2347 			if (PTE_ISREFERENCED(pte))
2348 				rv = TRUE;
2349 		}
2350 		PMAP_UNLOCK(pv->pv_pmap);
2351 		if (rv)
2352 			break;
2353 	}
2354 	rw_wunlock(&pvh_global_lock);
2355 	return (rv);
2356 }
2357 
2358 /*
2359  * Clear the modify bits on the specified physical page.
2360  */
2361 static void
2362 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2363 {
2364 	pte_t *pte;
2365 	pv_entry_t pv;
2366 
2367 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2368 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2369 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2370 	KASSERT(!vm_page_xbusied(m),
2371 	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2372 
2373 	/*
2374 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2375 	 * If the object containing the page is locked and the page is not
2376 	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2377 	 */
2378 	if ((m->aflags & PGA_WRITEABLE) == 0)
2379 		return;
2380 	rw_wlock(&pvh_global_lock);
2381 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2382 		PMAP_LOCK(pv->pv_pmap);
2383 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2384 		    PTE_ISVALID(pte)) {
2385 			mtx_lock_spin(&tlbivax_mutex);
2386 			tlb_miss_lock();
2387 
2388 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2389 				tlb0_flush_entry(pv->pv_va);
2390 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2391 				    PTE_REFERENCED);
2392 			}
2393 
2394 			tlb_miss_unlock();
2395 			mtx_unlock_spin(&tlbivax_mutex);
2396 		}
2397 		PMAP_UNLOCK(pv->pv_pmap);
2398 	}
2399 	rw_wunlock(&pvh_global_lock);
2400 }
2401 
2402 /*
2403  * Return a count of reference bits for a page, clearing those bits.
2404  * It is not necessary for every reference bit to be cleared, but it
2405  * is necessary that 0 only be returned when there are truly no
2406  * reference bits set.
2407  *
2408  * XXX: The exact number of bits to check and clear is a matter that
2409  * should be tested and standardized at some point in the future for
2410  * optimal aging of shared pages.
2411  */
2412 static int
2413 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2414 {
2415 	pte_t *pte;
2416 	pv_entry_t pv;
2417 	int count;
2418 
2419 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2420 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2421 	count = 0;
2422 	rw_wlock(&pvh_global_lock);
2423 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2424 		PMAP_LOCK(pv->pv_pmap);
2425 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2426 		    PTE_ISVALID(pte)) {
2427 			if (PTE_ISREFERENCED(pte)) {
2428 				mtx_lock_spin(&tlbivax_mutex);
2429 				tlb_miss_lock();
2430 
2431 				tlb0_flush_entry(pv->pv_va);
2432 				pte->flags &= ~PTE_REFERENCED;
2433 
2434 				tlb_miss_unlock();
2435 				mtx_unlock_spin(&tlbivax_mutex);
2436 
2437 				if (++count > 4) {
2438 					PMAP_UNLOCK(pv->pv_pmap);
2439 					break;
2440 				}
2441 			}
2442 		}
2443 		PMAP_UNLOCK(pv->pv_pmap);
2444 	}
2445 	rw_wunlock(&pvh_global_lock);
2446 	return (count);
2447 }
2448 
2449 /*
2450  * Clear the wired attribute from the mappings for the specified range of
2451  * addresses in the given pmap.  Every valid mapping within that range must
2452  * have the wired attribute set.  In contrast, invalid mappings cannot have
2453  * the wired attribute set, so they are ignored.
2454  *
2455  * The wired attribute of the page table entry is not a hardware feature, so
2456  * there is no need to invalidate any TLB entries.
2457  */
2458 static void
2459 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2460 {
2461 	vm_offset_t va;
2462 	pte_t *pte;
2463 
2464 	PMAP_LOCK(pmap);
2465 	for (va = sva; va < eva; va += PAGE_SIZE) {
2466 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2467 		    PTE_ISVALID(pte)) {
2468 			if (!PTE_ISWIRED(pte))
2469 				panic("mmu_booke_unwire: pte %p isn't wired",
2470 				    pte);
2471 			pte->flags &= ~PTE_WIRED;
2472 			pmap->pm_stats.wired_count--;
2473 		}
2474 	}
2475 	PMAP_UNLOCK(pmap);
2476 
2477 }
2478 
2479 /*
2480  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2481  * page.  This count may be changed upwards or downwards in the future; it is
2482  * only necessary that true be returned for a small subset of pmaps for proper
2483  * page aging.
2484  */
2485 static boolean_t
2486 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2487 {
2488 	pv_entry_t pv;
2489 	int loops;
2490 	boolean_t rv;
2491 
2492 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2493 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2494 	loops = 0;
2495 	rv = FALSE;
2496 	rw_wlock(&pvh_global_lock);
2497 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2498 		if (pv->pv_pmap == pmap) {
2499 			rv = TRUE;
2500 			break;
2501 		}
2502 		if (++loops >= 16)
2503 			break;
2504 	}
2505 	rw_wunlock(&pvh_global_lock);
2506 	return (rv);
2507 }
2508 
2509 /*
2510  * Return the number of managed mappings to the given physical page that are
2511  * wired.
2512  */
2513 static int
2514 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2515 {
2516 	pv_entry_t pv;
2517 	pte_t *pte;
2518 	int count = 0;
2519 
2520 	if ((m->oflags & VPO_UNMANAGED) != 0)
2521 		return (count);
2522 	rw_wlock(&pvh_global_lock);
2523 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2524 		PMAP_LOCK(pv->pv_pmap);
2525 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2526 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2527 				count++;
2528 		PMAP_UNLOCK(pv->pv_pmap);
2529 	}
2530 	rw_wunlock(&pvh_global_lock);
2531 	return (count);
2532 }
2533 
2534 static int
2535 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2536 {
2537 	int i;
2538 	vm_offset_t va;
2539 
2540 	/*
2541 	 * This currently does not work for entries that
2542 	 * overlap TLB1 entries.
2543 	 */
2544 	for (i = 0; i < tlb1_idx; i ++) {
2545 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2546 			return (0);
2547 	}
2548 
2549 	return (EFAULT);
2550 }
2551 
2552 void
2553 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2554 {
2555 	vm_paddr_t ppa;
2556 	vm_offset_t ofs;
2557 	vm_size_t gran;
2558 
2559 	/* Minidumps are based on virtual memory addresses. */
2560 	if (do_minidump) {
2561 		*va = (void *)pa;
2562 		return;
2563 	}
2564 
2565 	/* Raw physical memory dumps don't have a virtual address. */
2566 	/* We always map a 256MB page at 256M. */
2567 	gran = 256 * 1024 * 1024;
2568 	ppa = pa & ~(gran - 1);
2569 	ofs = pa - ppa;
2570 	*va = (void *)gran;
2571 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2572 
2573 	if (sz > (gran - ofs))
2574 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2575 		    _TLB_ENTRY_IO);
2576 }
2577 
2578 void
2579 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
2580 {
2581 	vm_paddr_t ppa;
2582 	vm_offset_t ofs;
2583 	vm_size_t gran;
2584 
2585 	/* Minidumps are based on virtual memory addresses. */
2586 	/* Nothing to do... */
2587 	if (do_minidump)
2588 		return;
2589 
2590 	/* Raw physical memory dumps don't have a virtual address. */
2591 	tlb1_idx--;
2592 	tlb1[tlb1_idx].mas1 = 0;
2593 	tlb1[tlb1_idx].mas2 = 0;
2594 	tlb1[tlb1_idx].mas3 = 0;
2595 	tlb1_write_entry(tlb1_idx);
2596 
2597 	gran = 256 * 1024 * 1024;
2598 	ppa = pa & ~(gran - 1);
2599 	ofs = pa - ppa;
2600 	if (sz > (gran - ofs)) {
2601 		tlb1_idx--;
2602 		tlb1[tlb1_idx].mas1 = 0;
2603 		tlb1[tlb1_idx].mas2 = 0;
2604 		tlb1[tlb1_idx].mas3 = 0;
2605 		tlb1_write_entry(tlb1_idx);
2606 	}
2607 }
2608 
2609 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2610 
2611 void
2612 mmu_booke_scan_init(mmu_t mmu)
2613 {
2614 	vm_offset_t va;
2615 	pte_t *pte;
2616 	int i;
2617 
2618 	if (!do_minidump) {
2619 		/* Initialize phys. segments for dumpsys(). */
2620 		memset(&dump_map, 0, sizeof(dump_map));
2621 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2622 		    &availmem_regions_sz);
2623 		for (i = 0; i < physmem_regions_sz; i++) {
2624 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2625 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2626 		}
2627 		return;
2628 	}
2629 
2630 	/* Virtual segments for minidumps: */
2631 	memset(&dump_map, 0, sizeof(dump_map));
2632 
2633 	/* 1st: kernel .data and .bss. */
2634 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2635 	dump_map[0].pa_size =
2636 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2637 
2638 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2639 	dump_map[1].pa_start = data_start;
2640 	dump_map[1].pa_size = data_end - data_start;
2641 
2642 	/* 3rd: kernel VM. */
2643 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2644 	/* Find start of next chunk (from va). */
2645 	while (va < virtual_end) {
2646 		/* Don't dump the buffer cache. */
2647 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2648 			va = kmi.buffer_eva;
2649 			continue;
2650 		}
2651 		pte = pte_find(mmu, kernel_pmap, va);
2652 		if (pte != NULL && PTE_ISVALID(pte))
2653 			break;
2654 		va += PAGE_SIZE;
2655 	}
2656 	if (va < virtual_end) {
2657 		dump_map[2].pa_start = va;
2658 		va += PAGE_SIZE;
2659 		/* Find last page in chunk. */
2660 		while (va < virtual_end) {
2661 			/* Don't run into the buffer cache. */
2662 			if (va == kmi.buffer_sva)
2663 				break;
2664 			pte = pte_find(mmu, kernel_pmap, va);
2665 			if (pte == NULL || !PTE_ISVALID(pte))
2666 				break;
2667 			va += PAGE_SIZE;
2668 		}
2669 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2670 	}
2671 }
2672 
2673 /*
2674  * Map a set of physical memory pages into the kernel virtual address space.
2675  * Return a pointer to where it is mapped. This routine is intended to be used
2676  * for mapping device memory, NOT real memory.
2677  */
2678 static void *
2679 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2680 {
2681 
2682 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2683 }
2684 
2685 static void *
2686 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2687 {
2688 	void *res;
2689 	uintptr_t va;
2690 	vm_size_t sz;
2691 	int i;
2692 
2693 	/*
2694 	 * Check if this is premapped in TLB1. Note: this should probably also
2695 	 * check whether a sequence of TLB1 entries exist that match the
2696 	 * requirement, but now only checks the easy case.
2697 	 */
2698 	if (ma == VM_MEMATTR_DEFAULT) {
2699 		for (i = 0; i < tlb1_idx; i++) {
2700 			if (!(tlb1[i].mas1 & MAS1_VALID))
2701 				continue;
2702 			if (pa >= tlb1[i].phys &&
2703 			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2704 				return (void *)(tlb1[i].virt +
2705 				    (pa - tlb1[i].phys));
2706 		}
2707 	}
2708 
2709 	size = roundup(size, PAGE_SIZE);
2710 
2711 	/*
2712 	 * We leave a hole for device direct mapping between the maximum user
2713 	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2714 	 * devices are in there, just map them 1:1. If not, map them to the
2715 	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2716 	 * addresses should be pulled from an allocator, but since we do not
2717 	 * ever free TLB1 entries, it is safe just to increment a counter.
2718 	 * Note that there isn't a lot of address space here (128 MB) and it
2719 	 * is not at all difficult to imagine running out, since that is a 4:1
2720 	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2721 	 * mapped there.
2722 	 */
2723 	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2724 	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2725 		va = pa;
2726 	else
2727 		va = atomic_fetchadd_int(&tlb1_map_base, size);
2728 	res = (void *)va;
2729 
2730 	do {
2731 		sz = 1 << (ilog2(size) & ~1);
2732 		if (bootverbose)
2733 			printf("Wiring VA=%x to PA=%x (size=%x), "
2734 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2735 		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2736 		size -= sz;
2737 		pa += sz;
2738 		va += sz;
2739 	} while (size > 0);
2740 
2741 	return (res);
2742 }
2743 
2744 /*
2745  * 'Unmap' a range mapped by mmu_booke_mapdev().
2746  */
2747 static void
2748 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2749 {
2750 #ifdef SUPPORTS_SHRINKING_TLB1
2751 	vm_offset_t base, offset;
2752 
2753 	/*
2754 	 * Unmap only if this is inside kernel virtual space.
2755 	 */
2756 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2757 		base = trunc_page(va);
2758 		offset = va & PAGE_MASK;
2759 		size = roundup(offset + size, PAGE_SIZE);
2760 		kva_free(base, size);
2761 	}
2762 #endif
2763 }
2764 
2765 /*
2766  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2767  * specified pmap. This eliminates the blast of soft faults on process startup
2768  * and immediately after an mmap.
2769  */
2770 static void
2771 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2772     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2773 {
2774 
2775 	VM_OBJECT_ASSERT_WLOCKED(object);
2776 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2777 	    ("mmu_booke_object_init_pt: non-device object"));
2778 }
2779 
2780 /*
2781  * Perform the pmap work for mincore.
2782  */
2783 static int
2784 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2785     vm_paddr_t *locked_pa)
2786 {
2787 
2788 	/* XXX: this should be implemented at some point */
2789 	return (0);
2790 }
2791 
2792 /**************************************************************************/
2793 /* TID handling */
2794 /**************************************************************************/
2795 
2796 /*
2797  * Allocate a TID. If necessary, steal one from someone else.
2798  * The new TID is flushed from the TLB before returning.
2799  */
2800 static tlbtid_t
2801 tid_alloc(pmap_t pmap)
2802 {
2803 	tlbtid_t tid;
2804 	int thiscpu;
2805 
2806 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2807 
2808 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2809 
2810 	thiscpu = PCPU_GET(cpuid);
2811 
2812 	tid = PCPU_GET(tid_next);
2813 	if (tid > TID_MAX)
2814 		tid = TID_MIN;
2815 	PCPU_SET(tid_next, tid + 1);
2816 
2817 	/* If we are stealing TID then clear the relevant pmap's field */
2818 	if (tidbusy[thiscpu][tid] != NULL) {
2819 
2820 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2821 
2822 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2823 
2824 		/* Flush all entries from TLB0 matching this TID. */
2825 		tid_flush(tid, tlb0_ways, tlb0_entries_per_way);
2826 	}
2827 
2828 	tidbusy[thiscpu][tid] = pmap;
2829 	pmap->pm_tid[thiscpu] = tid;
2830 	__asm __volatile("msync; isync");
2831 
2832 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2833 	    PCPU_GET(tid_next));
2834 
2835 	return (tid);
2836 }
2837 
2838 /**************************************************************************/
2839 /* TLB0 handling */
2840 /**************************************************************************/
2841 
2842 static void
2843 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2844     uint32_t mas7)
2845 {
2846 	int as;
2847 	char desc[3];
2848 	tlbtid_t tid;
2849 	vm_size_t size;
2850 	unsigned int tsize;
2851 
2852 	desc[2] = '\0';
2853 	if (mas1 & MAS1_VALID)
2854 		desc[0] = 'V';
2855 	else
2856 		desc[0] = ' ';
2857 
2858 	if (mas1 & MAS1_IPROT)
2859 		desc[1] = 'P';
2860 	else
2861 		desc[1] = ' ';
2862 
2863 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2864 	tid = MAS1_GETTID(mas1);
2865 
2866 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2867 	size = 0;
2868 	if (tsize)
2869 		size = tsize2size(tsize);
2870 
2871 	debugf("%3d: (%s) [AS=%d] "
2872 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2873 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2874 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2875 }
2876 
2877 /* Convert TLB0 va and way number to tlb0[] table index. */
2878 static inline unsigned int
2879 tlb0_tableidx(vm_offset_t va, unsigned int way)
2880 {
2881 	unsigned int idx;
2882 
2883 	idx = (way * TLB0_ENTRIES_PER_WAY);
2884 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2885 	return (idx);
2886 }
2887 
2888 /*
2889  * Invalidate TLB0 entry.
2890  */
2891 static inline void
2892 tlb0_flush_entry(vm_offset_t va)
2893 {
2894 
2895 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2896 
2897 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2898 
2899 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2900 	__asm __volatile("isync; msync");
2901 	__asm __volatile("tlbsync; msync");
2902 
2903 	CTR1(KTR_PMAP, "%s: e", __func__);
2904 }
2905 
2906 /* Print out contents of the MAS registers for each TLB0 entry */
2907 void
2908 tlb0_print_tlbentries(void)
2909 {
2910 	uint32_t mas0, mas1, mas2, mas3, mas7;
2911 	int entryidx, way, idx;
2912 
2913 	debugf("TLB0 entries:\n");
2914 	for (way = 0; way < TLB0_WAYS; way ++)
2915 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2916 
2917 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2918 			mtspr(SPR_MAS0, mas0);
2919 			__asm __volatile("isync");
2920 
2921 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2922 			mtspr(SPR_MAS2, mas2);
2923 
2924 			__asm __volatile("isync; tlbre");
2925 
2926 			mas1 = mfspr(SPR_MAS1);
2927 			mas2 = mfspr(SPR_MAS2);
2928 			mas3 = mfspr(SPR_MAS3);
2929 			mas7 = mfspr(SPR_MAS7);
2930 
2931 			idx = tlb0_tableidx(mas2, way);
2932 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2933 		}
2934 }
2935 
2936 /**************************************************************************/
2937 /* TLB1 handling */
2938 /**************************************************************************/
2939 
2940 /*
2941  * TLB1 mapping notes:
2942  *
2943  * TLB1[0]	Kernel text and data.
2944  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2945  *		windows, other devices mappings.
2946  */
2947 
2948 /*
2949  * Write given entry to TLB1 hardware.
2950  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2951  */
2952 static void
2953 tlb1_write_entry(unsigned int idx)
2954 {
2955 	uint32_t mas0, mas7;
2956 
2957 	//debugf("tlb1_write_entry: s\n");
2958 
2959 	/* Clear high order RPN bits */
2960 	mas7 = 0;
2961 
2962 	/* Select entry */
2963 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2964 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2965 
2966 	mtspr(SPR_MAS0, mas0);
2967 	__asm __volatile("isync");
2968 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2969 	__asm __volatile("isync");
2970 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2971 	__asm __volatile("isync");
2972 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2973 	__asm __volatile("isync");
2974 	mtspr(SPR_MAS7, mas7);
2975 	__asm __volatile("isync; tlbwe; isync; msync");
2976 
2977 	//debugf("tlb1_write_entry: e\n");
2978 }
2979 
2980 /*
2981  * Return the largest uint value log such that 2^log <= num.
2982  */
2983 static unsigned int
2984 ilog2(unsigned int num)
2985 {
2986 	int lz;
2987 
2988 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2989 	return (31 - lz);
2990 }
2991 
2992 /*
2993  * Convert TLB TSIZE value to mapped region size.
2994  */
2995 static vm_size_t
2996 tsize2size(unsigned int tsize)
2997 {
2998 
2999 	/*
3000 	 * size = 4^tsize KB
3001 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3002 	 */
3003 
3004 	return ((1 << (2 * tsize)) * 1024);
3005 }
3006 
3007 /*
3008  * Convert region size (must be power of 4) to TLB TSIZE value.
3009  */
3010 static unsigned int
3011 size2tsize(vm_size_t size)
3012 {
3013 
3014 	return (ilog2(size) / 2 - 5);
3015 }
3016 
3017 /*
3018  * Register permanent kernel mapping in TLB1.
3019  *
3020  * Entries are created starting from index 0 (current free entry is
3021  * kept in tlb1_idx) and are not supposed to be invalidated.
3022  */
3023 static int
3024 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
3025     uint32_t flags)
3026 {
3027 	uint32_t ts, tid;
3028 	int tsize, index;
3029 
3030 	index = atomic_fetchadd_int(&tlb1_idx, 1);
3031 	if (index >= TLB1_ENTRIES) {
3032 		printf("tlb1_set_entry: TLB1 full!\n");
3033 		return (-1);
3034 	}
3035 
3036 	/* Convert size to TSIZE */
3037 	tsize = size2tsize(size);
3038 
3039 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3040 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3041 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3042 
3043 	/*
3044 	 * Atomicity is preserved by the atomic increment above since nothing
3045 	 * is ever removed from tlb1.
3046 	 */
3047 
3048 	tlb1[index].phys = pa;
3049 	tlb1[index].virt = va;
3050 	tlb1[index].size = size;
3051 	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3052 	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3053 	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3054 
3055 	/* Set supervisor RWX permission bits */
3056 	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3057 
3058 	tlb1_write_entry(index);
3059 
3060 	/*
3061 	 * XXX in general TLB1 updates should be propagated between CPUs,
3062 	 * since current design assumes to have the same TLB1 set-up on all
3063 	 * cores.
3064 	 */
3065 	return (0);
3066 }
3067 
3068 /*
3069  * Map in contiguous RAM region into the TLB1 using maximum of
3070  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3071  *
3072  * If necessary round up last entry size and return total size
3073  * used by all allocated entries.
3074  */
3075 vm_size_t
3076 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3077 {
3078 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3079 	vm_size_t mapped, pgsz, base, mask;
3080 	int idx, nents;
3081 
3082 	/* Round up to the next 1M */
3083 	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3084 
3085 	mapped = 0;
3086 	idx = 0;
3087 	base = va;
3088 	pgsz = 64*1024*1024;
3089 	while (mapped < size) {
3090 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3091 			while (pgsz > (size - mapped))
3092 				pgsz >>= 2;
3093 			pgs[idx++] = pgsz;
3094 			mapped += pgsz;
3095 		}
3096 
3097 		/* We under-map. Correct for this. */
3098 		if (mapped < size) {
3099 			while (pgs[idx - 1] == pgsz) {
3100 				idx--;
3101 				mapped -= pgsz;
3102 			}
3103 			/* XXX We may increase beyond out starting point. */
3104 			pgsz <<= 2;
3105 			pgs[idx++] = pgsz;
3106 			mapped += pgsz;
3107 		}
3108 	}
3109 
3110 	nents = idx;
3111 	mask = pgs[0] - 1;
3112 	/* Align address to the boundary */
3113 	if (va & mask) {
3114 		va = (va + mask) & ~mask;
3115 		pa = (pa + mask) & ~mask;
3116 	}
3117 
3118 	for (idx = 0; idx < nents; idx++) {
3119 		pgsz = pgs[idx];
3120 		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3121 		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3122 		pa += pgsz;
3123 		va += pgsz;
3124 	}
3125 
3126 	mapped = (va - base);
3127 	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3128 	    mapped, mapped - size);
3129 	return (mapped);
3130 }
3131 
3132 /*
3133  * TLB1 initialization routine, to be called after the very first
3134  * assembler level setup done in locore.S.
3135  */
3136 void
3137 tlb1_init()
3138 {
3139 	uint32_t mas0, mas1, mas2, mas3;
3140 	uint32_t tsz;
3141 	u_int i;
3142 
3143 	if (bootinfo != NULL && bootinfo[0] != 1) {
3144 		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3145 	} else
3146 		tlb1_idx = 1;
3147 
3148 	/* The first entry/entries are used to map the kernel. */
3149 	for (i = 0; i < tlb1_idx; i++) {
3150 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3151 		mtspr(SPR_MAS0, mas0);
3152 		__asm __volatile("isync; tlbre");
3153 
3154 		mas1 = mfspr(SPR_MAS1);
3155 		if ((mas1 & MAS1_VALID) == 0)
3156 			continue;
3157 
3158 		mas2 = mfspr(SPR_MAS2);
3159 		mas3 = mfspr(SPR_MAS3);
3160 
3161 		tlb1[i].mas1 = mas1;
3162 		tlb1[i].mas2 = mfspr(SPR_MAS2);
3163 		tlb1[i].mas3 = mas3;
3164 		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3165 		tlb1[i].phys = mas3 & MAS3_RPN;
3166 
3167 		if (i == 0)
3168 			kernload = mas3 & MAS3_RPN;
3169 
3170 		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3171 		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3172 		kernsize += tlb1[i].size;
3173 	}
3174 
3175 #ifdef SMP
3176 	bp_ntlb1s = tlb1_idx;
3177 #endif
3178 
3179 	/* Purge the remaining entries */
3180 	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3181 		tlb1_write_entry(i);
3182 
3183 	/* Setup TLB miss defaults */
3184 	set_mas4_defaults();
3185 }
3186 
3187 vm_offset_t
3188 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3189 {
3190 	vm_paddr_t pa_base;
3191 	vm_offset_t va, sz;
3192 	int i;
3193 
3194 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3195 
3196 	for (i = 0; i < tlb1_idx; i++) {
3197 		if (!(tlb1[i].mas1 & MAS1_VALID))
3198 			continue;
3199 		if (pa >= tlb1[i].phys && (pa + size) <=
3200 		    (tlb1[i].phys + tlb1[i].size))
3201 			return (tlb1[i].virt + (pa - tlb1[i].phys));
3202 	}
3203 
3204 	pa_base = trunc_page(pa);
3205 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3206 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3207 	va = tlb1_map_base + (pa - pa_base);
3208 
3209 	do {
3210 		sz = 1 << (ilog2(size) & ~1);
3211 		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3212 		size -= sz;
3213 		pa_base += sz;
3214 		tlb1_map_base += sz;
3215 	} while (size > 0);
3216 
3217 #ifdef SMP
3218 	bp_ntlb1s = tlb1_idx;
3219 #endif
3220 
3221 	return (va);
3222 }
3223 
3224 /*
3225  * Setup MAS4 defaults.
3226  * These values are loaded to MAS0-2 on a TLB miss.
3227  */
3228 static void
3229 set_mas4_defaults(void)
3230 {
3231 	uint32_t mas4;
3232 
3233 	/* Defaults: TLB0, PID0, TSIZED=4K */
3234 	mas4 = MAS4_TLBSELD0;
3235 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3236 #ifdef SMP
3237 	mas4 |= MAS4_MD;
3238 #endif
3239 	mtspr(SPR_MAS4, mas4);
3240 	__asm __volatile("isync");
3241 }
3242 
3243 /*
3244  * Print out contents of the MAS registers for each TLB1 entry
3245  */
3246 void
3247 tlb1_print_tlbentries(void)
3248 {
3249 	uint32_t mas0, mas1, mas2, mas3, mas7;
3250 	int i;
3251 
3252 	debugf("TLB1 entries:\n");
3253 	for (i = 0; i < TLB1_ENTRIES; i++) {
3254 
3255 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3256 		mtspr(SPR_MAS0, mas0);
3257 
3258 		__asm __volatile("isync; tlbre");
3259 
3260 		mas1 = mfspr(SPR_MAS1);
3261 		mas2 = mfspr(SPR_MAS2);
3262 		mas3 = mfspr(SPR_MAS3);
3263 		mas7 = mfspr(SPR_MAS7);
3264 
3265 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3266 	}
3267 }
3268 
3269 /*
3270  * Print out contents of the in-ram tlb1 table.
3271  */
3272 void
3273 tlb1_print_entries(void)
3274 {
3275 	int i;
3276 
3277 	debugf("tlb1[] table entries:\n");
3278 	for (i = 0; i < TLB1_ENTRIES; i++)
3279 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3280 }
3281 
3282 /*
3283  * Return 0 if the physical IO range is encompassed by one of the
3284  * the TLB1 entries, otherwise return related error code.
3285  */
3286 static int
3287 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3288 {
3289 	uint32_t prot;
3290 	vm_paddr_t pa_start;
3291 	vm_paddr_t pa_end;
3292 	unsigned int entry_tsize;
3293 	vm_size_t entry_size;
3294 
3295 	*va = (vm_offset_t)NULL;
3296 
3297 	/* Skip invalid entries */
3298 	if (!(tlb1[i].mas1 & MAS1_VALID))
3299 		return (EINVAL);
3300 
3301 	/*
3302 	 * The entry must be cache-inhibited, guarded, and r/w
3303 	 * so it can function as an i/o page
3304 	 */
3305 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3306 	if (prot != (MAS2_I | MAS2_G))
3307 		return (EPERM);
3308 
3309 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3310 	if (prot != (MAS3_SR | MAS3_SW))
3311 		return (EPERM);
3312 
3313 	/* The address should be within the entry range. */
3314 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3315 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3316 
3317 	entry_size = tsize2size(entry_tsize);
3318 	pa_start = tlb1[i].mas3 & MAS3_RPN;
3319 	pa_end = pa_start + entry_size - 1;
3320 
3321 	if ((pa < pa_start) || ((pa + size) > pa_end))
3322 		return (ERANGE);
3323 
3324 	/* Return virtual address of this mapping. */
3325 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3326 	return (0);
3327 }
3328