1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * Virtual address space layout: 38 * ----------------------------- 39 * 0x0000_0000 - 0xafff_ffff : user process 40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 43 * 0xc100_0000 - 0xfeef_ffff : KVA 44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include <sys/param.h> 55 #include <sys/malloc.h> 56 #include <sys/ktr.h> 57 #include <sys/proc.h> 58 #include <sys/user.h> 59 #include <sys/queue.h> 60 #include <sys/systm.h> 61 #include <sys/kernel.h> 62 #include <sys/linker.h> 63 #include <sys/msgbuf.h> 64 #include <sys/lock.h> 65 #include <sys/mutex.h> 66 #include <sys/rwlock.h> 67 #include <sys/sched.h> 68 #include <sys/smp.h> 69 #include <sys/vmmeter.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_page.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_extern.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_pager.h> 80 #include <vm/uma.h> 81 82 #include <machine/cpu.h> 83 #include <machine/pcb.h> 84 #include <machine/platform.h> 85 86 #include <machine/tlb.h> 87 #include <machine/spr.h> 88 #include <machine/md_var.h> 89 #include <machine/mmuvar.h> 90 #include <machine/pmap.h> 91 #include <machine/pte.h> 92 93 #include "mmu_if.h" 94 95 #ifdef DEBUG 96 #define debugf(fmt, args...) printf(fmt, ##args) 97 #else 98 #define debugf(fmt, args...) 99 #endif 100 101 #define TODO panic("%s: not implemented", __func__); 102 103 extern struct mtx sched_lock; 104 105 extern int dumpsys_minidump; 106 107 extern unsigned char _etext[]; 108 extern unsigned char _end[]; 109 110 extern uint32_t *bootinfo; 111 112 #ifdef SMP 113 extern uint32_t bp_ntlb1s; 114 #endif 115 116 vm_paddr_t ccsrbar_pa; 117 vm_paddr_t kernload; 118 vm_offset_t kernstart; 119 vm_size_t kernsize; 120 121 /* Message buffer and tables. */ 122 static vm_offset_t data_start; 123 static vm_size_t data_end; 124 125 /* Phys/avail memory regions. */ 126 static struct mem_region *availmem_regions; 127 static int availmem_regions_sz; 128 static struct mem_region *physmem_regions; 129 static int physmem_regions_sz; 130 131 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 132 static vm_offset_t zero_page_va; 133 static struct mtx zero_page_mutex; 134 135 static struct mtx tlbivax_mutex; 136 137 /* 138 * Reserved KVA space for mmu_booke_zero_page_idle. This is used 139 * by idle thred only, no lock required. 140 */ 141 static vm_offset_t zero_page_idle_va; 142 143 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 144 static vm_offset_t copy_page_src_va; 145 static vm_offset_t copy_page_dst_va; 146 static struct mtx copy_page_mutex; 147 148 /**************************************************************************/ 149 /* PMAP */ 150 /**************************************************************************/ 151 152 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 153 vm_prot_t, boolean_t); 154 155 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 156 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 157 158 /* 159 * If user pmap is processed with mmu_booke_remove and the resident count 160 * drops to 0, there are no more pages to remove, so we need not continue. 161 */ 162 #define PMAP_REMOVE_DONE(pmap) \ 163 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 164 165 extern void tid_flush(tlbtid_t); 166 167 /**************************************************************************/ 168 /* TLB and TID handling */ 169 /**************************************************************************/ 170 171 /* Translation ID busy table */ 172 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 173 174 /* 175 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 176 * core revisions and should be read from h/w registers during early config. 177 */ 178 uint32_t tlb0_entries; 179 uint32_t tlb0_ways; 180 uint32_t tlb0_entries_per_way; 181 182 #define TLB0_ENTRIES (tlb0_entries) 183 #define TLB0_WAYS (tlb0_ways) 184 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 185 186 #define TLB1_ENTRIES 16 187 188 /* In-ram copy of the TLB1 */ 189 static tlb_entry_t tlb1[TLB1_ENTRIES]; 190 191 /* Next free entry in the TLB1 */ 192 static unsigned int tlb1_idx; 193 194 static tlbtid_t tid_alloc(struct pmap *); 195 196 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 197 198 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t); 199 static void tlb1_write_entry(unsigned int); 200 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 201 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); 202 203 static vm_size_t tsize2size(unsigned int); 204 static unsigned int size2tsize(vm_size_t); 205 static unsigned int ilog2(unsigned int); 206 207 static void set_mas4_defaults(void); 208 209 static inline void tlb0_flush_entry(vm_offset_t); 210 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 211 212 /**************************************************************************/ 213 /* Page table management */ 214 /**************************************************************************/ 215 216 static struct rwlock_padalign pvh_global_lock; 217 218 /* Data for the pv entry allocation mechanism */ 219 static uma_zone_t pvzone; 220 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 221 222 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 223 224 #ifndef PMAP_SHPGPERPROC 225 #define PMAP_SHPGPERPROC 200 226 #endif 227 228 static void ptbl_init(void); 229 static struct ptbl_buf *ptbl_buf_alloc(void); 230 static void ptbl_buf_free(struct ptbl_buf *); 231 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 232 233 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int); 234 static void ptbl_free(mmu_t, pmap_t, unsigned int); 235 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 236 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 237 238 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 239 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 240 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t); 241 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 242 243 static pv_entry_t pv_alloc(void); 244 static void pv_free(pv_entry_t); 245 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 246 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 247 248 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 249 #define PTBL_BUFS (128 * 16) 250 251 struct ptbl_buf { 252 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 253 vm_offset_t kva; /* va of mapping */ 254 }; 255 256 /* ptbl free list and a lock used for access synchronization. */ 257 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 258 static struct mtx ptbl_buf_freelist_lock; 259 260 /* Base address of kva space allocated fot ptbl bufs. */ 261 static vm_offset_t ptbl_buf_pool_vabase; 262 263 /* Pointer to ptbl_buf structures. */ 264 static struct ptbl_buf *ptbl_bufs; 265 266 void pmap_bootstrap_ap(volatile uint32_t *); 267 268 /* 269 * Kernel MMU interface 270 */ 271 static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 272 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 273 static void mmu_booke_clear_reference(mmu_t, vm_page_t); 274 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 275 vm_size_t, vm_offset_t); 276 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 277 static void mmu_booke_copy_pages(mmu_t, vm_page_t *, 278 vm_offset_t, vm_page_t *, vm_offset_t, int); 279 static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 280 vm_prot_t, boolean_t); 281 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 282 vm_page_t, vm_prot_t); 283 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 284 vm_prot_t); 285 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 286 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 287 vm_prot_t); 288 static void mmu_booke_init(mmu_t); 289 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 290 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 291 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 292 static int mmu_booke_ts_referenced(mmu_t, vm_page_t); 293 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, 294 int); 295 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, 296 vm_paddr_t *); 297 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 298 vm_object_t, vm_pindex_t, vm_size_t); 299 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 300 static void mmu_booke_page_init(mmu_t, vm_page_t); 301 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 302 static void mmu_booke_pinit(mmu_t, pmap_t); 303 static void mmu_booke_pinit0(mmu_t, pmap_t); 304 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 305 vm_prot_t); 306 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 307 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 308 static void mmu_booke_release(mmu_t, pmap_t); 309 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 310 static void mmu_booke_remove_all(mmu_t, vm_page_t); 311 static void mmu_booke_remove_write(mmu_t, vm_page_t); 312 static void mmu_booke_zero_page(mmu_t, vm_page_t); 313 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 314 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t); 315 static void mmu_booke_activate(mmu_t, struct thread *); 316 static void mmu_booke_deactivate(mmu_t, struct thread *); 317 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 318 static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); 319 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 320 static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); 321 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); 322 static void mmu_booke_kremove(mmu_t, vm_offset_t); 323 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 324 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 325 vm_size_t); 326 static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *, 327 vm_size_t, vm_size_t *); 328 static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *, 329 vm_size_t, vm_offset_t); 330 static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *); 331 332 static mmu_method_t mmu_booke_methods[] = { 333 /* pmap dispatcher interface */ 334 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring), 335 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 336 MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference), 337 MMUMETHOD(mmu_copy, mmu_booke_copy), 338 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 339 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), 340 MMUMETHOD(mmu_enter, mmu_booke_enter), 341 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 342 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 343 MMUMETHOD(mmu_extract, mmu_booke_extract), 344 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 345 MMUMETHOD(mmu_init, mmu_booke_init), 346 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 347 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 348 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 349 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 350 MMUMETHOD(mmu_map, mmu_booke_map), 351 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 352 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 353 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 354 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 355 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 356 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 357 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 358 MMUMETHOD(mmu_protect, mmu_booke_protect), 359 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 360 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 361 MMUMETHOD(mmu_release, mmu_booke_release), 362 MMUMETHOD(mmu_remove, mmu_booke_remove), 363 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 364 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 365 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 366 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 367 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 368 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle), 369 MMUMETHOD(mmu_activate, mmu_booke_activate), 370 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 371 372 /* Internal interfaces */ 373 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 374 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 375 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 376 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 377 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 378 /* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */ 379 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 380 381 /* dumpsys() support */ 382 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 383 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 384 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md), 385 386 { 0, 0 } 387 }; 388 389 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); 390 391 static inline void 392 tlb_miss_lock(void) 393 { 394 #ifdef SMP 395 struct pcpu *pc; 396 397 if (!smp_started) 398 return; 399 400 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 401 if (pc != pcpup) { 402 403 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 404 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 405 406 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 407 ("tlb_miss_lock: tried to lock self")); 408 409 tlb_lock(pc->pc_booke_tlb_lock); 410 411 CTR1(KTR_PMAP, "%s: locked", __func__); 412 } 413 } 414 #endif 415 } 416 417 static inline void 418 tlb_miss_unlock(void) 419 { 420 #ifdef SMP 421 struct pcpu *pc; 422 423 if (!smp_started) 424 return; 425 426 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 427 if (pc != pcpup) { 428 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 429 __func__, pc->pc_cpuid); 430 431 tlb_unlock(pc->pc_booke_tlb_lock); 432 433 CTR1(KTR_PMAP, "%s: unlocked", __func__); 434 } 435 } 436 #endif 437 } 438 439 /* Return number of entries in TLB0. */ 440 static __inline void 441 tlb0_get_tlbconf(void) 442 { 443 uint32_t tlb0_cfg; 444 445 tlb0_cfg = mfspr(SPR_TLB0CFG); 446 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 447 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 448 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 449 } 450 451 /* Initialize pool of kva ptbl buffers. */ 452 static void 453 ptbl_init(void) 454 { 455 int i; 456 457 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 458 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 459 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 460 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 461 462 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 463 TAILQ_INIT(&ptbl_buf_freelist); 464 465 for (i = 0; i < PTBL_BUFS; i++) { 466 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 467 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 468 } 469 } 470 471 /* Get a ptbl_buf from the freelist. */ 472 static struct ptbl_buf * 473 ptbl_buf_alloc(void) 474 { 475 struct ptbl_buf *buf; 476 477 mtx_lock(&ptbl_buf_freelist_lock); 478 buf = TAILQ_FIRST(&ptbl_buf_freelist); 479 if (buf != NULL) 480 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 481 mtx_unlock(&ptbl_buf_freelist_lock); 482 483 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 484 485 return (buf); 486 } 487 488 /* Return ptbl buff to free pool. */ 489 static void 490 ptbl_buf_free(struct ptbl_buf *buf) 491 { 492 493 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 494 495 mtx_lock(&ptbl_buf_freelist_lock); 496 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 497 mtx_unlock(&ptbl_buf_freelist_lock); 498 } 499 500 /* 501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 502 */ 503 static void 504 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 505 { 506 struct ptbl_buf *pbuf; 507 508 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 509 510 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 511 512 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 513 if (pbuf->kva == (vm_offset_t)ptbl) { 514 /* Remove from pmap ptbl buf list. */ 515 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 516 517 /* Free corresponding ptbl buf. */ 518 ptbl_buf_free(pbuf); 519 break; 520 } 521 } 522 523 /* Allocate page table. */ 524 static pte_t * 525 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 526 { 527 vm_page_t mtbl[PTBL_PAGES]; 528 vm_page_t m; 529 struct ptbl_buf *pbuf; 530 unsigned int pidx; 531 pte_t *ptbl; 532 int i; 533 534 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 535 (pmap == kernel_pmap), pdir_idx); 536 537 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 538 ("ptbl_alloc: invalid pdir_idx")); 539 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 540 ("pte_alloc: valid ptbl entry exists!")); 541 542 pbuf = ptbl_buf_alloc(); 543 if (pbuf == NULL) 544 panic("pte_alloc: couldn't alloc kernel virtual memory"); 545 546 ptbl = (pte_t *)pbuf->kva; 547 548 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 549 550 /* Allocate ptbl pages, this will sleep! */ 551 for (i = 0; i < PTBL_PAGES; i++) { 552 pidx = (PTBL_PAGES * pdir_idx) + i; 553 while ((m = vm_page_alloc(NULL, pidx, 554 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 555 556 PMAP_UNLOCK(pmap); 557 rw_wunlock(&pvh_global_lock); 558 VM_WAIT; 559 rw_wlock(&pvh_global_lock); 560 PMAP_LOCK(pmap); 561 } 562 mtbl[i] = m; 563 } 564 565 /* Map allocated pages into kernel_pmap. */ 566 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 567 568 /* Zero whole ptbl. */ 569 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 570 571 /* Add pbuf to the pmap ptbl bufs list. */ 572 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 573 574 return (ptbl); 575 } 576 577 /* Free ptbl pages and invalidate pdir entry. */ 578 static void 579 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 580 { 581 pte_t *ptbl; 582 vm_paddr_t pa; 583 vm_offset_t va; 584 vm_page_t m; 585 int i; 586 587 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 588 (pmap == kernel_pmap), pdir_idx); 589 590 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 591 ("ptbl_free: invalid pdir_idx")); 592 593 ptbl = pmap->pm_pdir[pdir_idx]; 594 595 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 596 597 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 598 599 /* 600 * Invalidate the pdir entry as soon as possible, so that other CPUs 601 * don't attempt to look up the page tables we are releasing. 602 */ 603 mtx_lock_spin(&tlbivax_mutex); 604 tlb_miss_lock(); 605 606 pmap->pm_pdir[pdir_idx] = NULL; 607 608 tlb_miss_unlock(); 609 mtx_unlock_spin(&tlbivax_mutex); 610 611 for (i = 0; i < PTBL_PAGES; i++) { 612 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 613 pa = pte_vatopa(mmu, kernel_pmap, va); 614 m = PHYS_TO_VM_PAGE(pa); 615 vm_page_free_zero(m); 616 atomic_subtract_int(&cnt.v_wire_count, 1); 617 mmu_booke_kremove(mmu, va); 618 } 619 620 ptbl_free_pmap_ptbl(pmap, ptbl); 621 } 622 623 /* 624 * Decrement ptbl pages hold count and attempt to free ptbl pages. 625 * Called when removing pte entry from ptbl. 626 * 627 * Return 1 if ptbl pages were freed. 628 */ 629 static int 630 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 631 { 632 pte_t *ptbl; 633 vm_paddr_t pa; 634 vm_page_t m; 635 int i; 636 637 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 638 (pmap == kernel_pmap), pdir_idx); 639 640 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 641 ("ptbl_unhold: invalid pdir_idx")); 642 KASSERT((pmap != kernel_pmap), 643 ("ptbl_unhold: unholding kernel ptbl!")); 644 645 ptbl = pmap->pm_pdir[pdir_idx]; 646 647 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 648 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 649 ("ptbl_unhold: non kva ptbl")); 650 651 /* decrement hold count */ 652 for (i = 0; i < PTBL_PAGES; i++) { 653 pa = pte_vatopa(mmu, kernel_pmap, 654 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 655 m = PHYS_TO_VM_PAGE(pa); 656 m->wire_count--; 657 } 658 659 /* 660 * Free ptbl pages if there are no pte etries in this ptbl. 661 * wire_count has the same value for all ptbl pages, so check the last 662 * page. 663 */ 664 if (m->wire_count == 0) { 665 ptbl_free(mmu, pmap, pdir_idx); 666 667 //debugf("ptbl_unhold: e (freed ptbl)\n"); 668 return (1); 669 } 670 671 return (0); 672 } 673 674 /* 675 * Increment hold count for ptbl pages. This routine is used when a new pte 676 * entry is being inserted into the ptbl. 677 */ 678 static void 679 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 680 { 681 vm_paddr_t pa; 682 pte_t *ptbl; 683 vm_page_t m; 684 int i; 685 686 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 687 pdir_idx); 688 689 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 690 ("ptbl_hold: invalid pdir_idx")); 691 KASSERT((pmap != kernel_pmap), 692 ("ptbl_hold: holding kernel ptbl!")); 693 694 ptbl = pmap->pm_pdir[pdir_idx]; 695 696 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 697 698 for (i = 0; i < PTBL_PAGES; i++) { 699 pa = pte_vatopa(mmu, kernel_pmap, 700 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 701 m = PHYS_TO_VM_PAGE(pa); 702 m->wire_count++; 703 } 704 } 705 706 /* Allocate pv_entry structure. */ 707 pv_entry_t 708 pv_alloc(void) 709 { 710 pv_entry_t pv; 711 712 pv_entry_count++; 713 if (pv_entry_count > pv_entry_high_water) 714 pagedaemon_wakeup(); 715 pv = uma_zalloc(pvzone, M_NOWAIT); 716 717 return (pv); 718 } 719 720 /* Free pv_entry structure. */ 721 static __inline void 722 pv_free(pv_entry_t pve) 723 { 724 725 pv_entry_count--; 726 uma_zfree(pvzone, pve); 727 } 728 729 730 /* Allocate and initialize pv_entry structure. */ 731 static void 732 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 733 { 734 pv_entry_t pve; 735 736 //int su = (pmap == kernel_pmap); 737 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 738 // (u_int32_t)pmap, va, (u_int32_t)m); 739 740 pve = pv_alloc(); 741 if (pve == NULL) 742 panic("pv_insert: no pv entries!"); 743 744 pve->pv_pmap = pmap; 745 pve->pv_va = va; 746 747 /* add to pv_list */ 748 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 749 rw_assert(&pvh_global_lock, RA_WLOCKED); 750 751 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 752 753 //debugf("pv_insert: e\n"); 754 } 755 756 /* Destroy pv entry. */ 757 static void 758 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 759 { 760 pv_entry_t pve; 761 762 //int su = (pmap == kernel_pmap); 763 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 764 765 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 766 rw_assert(&pvh_global_lock, RA_WLOCKED); 767 768 /* find pv entry */ 769 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 770 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 771 /* remove from pv_list */ 772 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 773 if (TAILQ_EMPTY(&m->md.pv_list)) 774 vm_page_aflag_clear(m, PGA_WRITEABLE); 775 776 /* free pv entry struct */ 777 pv_free(pve); 778 break; 779 } 780 } 781 782 //debugf("pv_remove: e\n"); 783 } 784 785 /* 786 * Clean pte entry, try to free page table page if requested. 787 * 788 * Return 1 if ptbl pages were freed, otherwise return 0. 789 */ 790 static int 791 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 792 { 793 unsigned int pdir_idx = PDIR_IDX(va); 794 unsigned int ptbl_idx = PTBL_IDX(va); 795 vm_page_t m; 796 pte_t *ptbl; 797 pte_t *pte; 798 799 //int su = (pmap == kernel_pmap); 800 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 801 // su, (u_int32_t)pmap, va, flags); 802 803 ptbl = pmap->pm_pdir[pdir_idx]; 804 KASSERT(ptbl, ("pte_remove: null ptbl")); 805 806 pte = &ptbl[ptbl_idx]; 807 808 if (pte == NULL || !PTE_ISVALID(pte)) 809 return (0); 810 811 if (PTE_ISWIRED(pte)) 812 pmap->pm_stats.wired_count--; 813 814 /* Handle managed entry. */ 815 if (PTE_ISMANAGED(pte)) { 816 /* Get vm_page_t for mapped pte. */ 817 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 818 819 if (PTE_ISMODIFIED(pte)) 820 vm_page_dirty(m); 821 822 if (PTE_ISREFERENCED(pte)) 823 vm_page_aflag_set(m, PGA_REFERENCED); 824 825 pv_remove(pmap, va, m); 826 } 827 828 mtx_lock_spin(&tlbivax_mutex); 829 tlb_miss_lock(); 830 831 tlb0_flush_entry(va); 832 pte->flags = 0; 833 pte->rpn = 0; 834 835 tlb_miss_unlock(); 836 mtx_unlock_spin(&tlbivax_mutex); 837 838 pmap->pm_stats.resident_count--; 839 840 if (flags & PTBL_UNHOLD) { 841 //debugf("pte_remove: e (unhold)\n"); 842 return (ptbl_unhold(mmu, pmap, pdir_idx)); 843 } 844 845 //debugf("pte_remove: e\n"); 846 return (0); 847 } 848 849 /* 850 * Insert PTE for a given page and virtual address. 851 */ 852 static void 853 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags) 854 { 855 unsigned int pdir_idx = PDIR_IDX(va); 856 unsigned int ptbl_idx = PTBL_IDX(va); 857 pte_t *ptbl, *pte; 858 859 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 860 pmap == kernel_pmap, pmap, va); 861 862 /* Get the page table pointer. */ 863 ptbl = pmap->pm_pdir[pdir_idx]; 864 865 if (ptbl == NULL) { 866 /* Allocate page table pages. */ 867 ptbl = ptbl_alloc(mmu, pmap, pdir_idx); 868 } else { 869 /* 870 * Check if there is valid mapping for requested 871 * va, if there is, remove it. 872 */ 873 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 874 if (PTE_ISVALID(pte)) { 875 pte_remove(mmu, pmap, va, PTBL_HOLD); 876 } else { 877 /* 878 * pte is not used, increment hold count 879 * for ptbl pages. 880 */ 881 if (pmap != kernel_pmap) 882 ptbl_hold(mmu, pmap, pdir_idx); 883 } 884 } 885 886 /* 887 * Insert pv_entry into pv_list for mapped page if part of managed 888 * memory. 889 */ 890 if ((m->oflags & VPO_UNMANAGED) == 0) { 891 flags |= PTE_MANAGED; 892 893 /* Create and insert pv entry. */ 894 pv_insert(pmap, va, m); 895 } 896 897 pmap->pm_stats.resident_count++; 898 899 mtx_lock_spin(&tlbivax_mutex); 900 tlb_miss_lock(); 901 902 tlb0_flush_entry(va); 903 if (pmap->pm_pdir[pdir_idx] == NULL) { 904 /* 905 * If we just allocated a new page table, hook it in 906 * the pdir. 907 */ 908 pmap->pm_pdir[pdir_idx] = ptbl; 909 } 910 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 911 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK; 912 pte->flags |= (PTE_VALID | flags); 913 914 tlb_miss_unlock(); 915 mtx_unlock_spin(&tlbivax_mutex); 916 } 917 918 /* Return the pa for the given pmap/va. */ 919 static vm_paddr_t 920 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 921 { 922 vm_paddr_t pa = 0; 923 pte_t *pte; 924 925 pte = pte_find(mmu, pmap, va); 926 if ((pte != NULL) && PTE_ISVALID(pte)) 927 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 928 return (pa); 929 } 930 931 /* Get a pointer to a PTE in a page table. */ 932 static pte_t * 933 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 934 { 935 unsigned int pdir_idx = PDIR_IDX(va); 936 unsigned int ptbl_idx = PTBL_IDX(va); 937 938 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 939 940 if (pmap->pm_pdir[pdir_idx]) 941 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 942 943 return (NULL); 944 } 945 946 /**************************************************************************/ 947 /* PMAP related */ 948 /**************************************************************************/ 949 950 /* 951 * This is called during booke_init, before the system is really initialized. 952 */ 953 static void 954 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 955 { 956 vm_offset_t phys_kernelend; 957 struct mem_region *mp, *mp1; 958 int cnt, i, j; 959 u_int s, e, sz; 960 u_int phys_avail_count; 961 vm_size_t physsz, hwphyssz, kstack0_sz; 962 vm_offset_t kernel_pdir, kstack0, va; 963 vm_paddr_t kstack0_phys; 964 void *dpcpu; 965 pte_t *pte; 966 967 debugf("mmu_booke_bootstrap: entered\n"); 968 969 /* Initialize invalidation mutex */ 970 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 971 972 /* Read TLB0 size and associativity. */ 973 tlb0_get_tlbconf(); 974 975 /* 976 * Align kernel start and end address (kernel image). 977 * Note that kernel end does not necessarily relate to kernsize. 978 * kernsize is the size of the kernel that is actually mapped. 979 * Also note that "start - 1" is deliberate. With SMP, the 980 * entry point is exactly a page from the actual load address. 981 * As such, trunc_page() has no effect and we're off by a page. 982 * Since we always have the ELF header between the load address 983 * and the entry point, we can safely subtract 1 to compensate. 984 */ 985 kernstart = trunc_page(start - 1); 986 data_start = round_page(kernelend); 987 data_end = data_start; 988 989 /* 990 * Addresses of preloaded modules (like file systems) use 991 * physical addresses. Make sure we relocate those into 992 * virtual addresses. 993 */ 994 preload_addr_relocate = kernstart - kernload; 995 996 /* Allocate the dynamic per-cpu area. */ 997 dpcpu = (void *)data_end; 998 data_end += DPCPU_SIZE; 999 1000 /* Allocate space for the message buffer. */ 1001 msgbufp = (struct msgbuf *)data_end; 1002 data_end += msgbufsize; 1003 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, 1004 data_end); 1005 1006 data_end = round_page(data_end); 1007 1008 /* Allocate space for ptbl_bufs. */ 1009 ptbl_bufs = (struct ptbl_buf *)data_end; 1010 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1011 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, 1012 data_end); 1013 1014 data_end = round_page(data_end); 1015 1016 /* Allocate PTE tables for kernel KVA. */ 1017 kernel_pdir = data_end; 1018 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS + 1019 PDIR_SIZE - 1) / PDIR_SIZE; 1020 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1021 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1022 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); 1023 1024 debugf(" data_end: 0x%08x\n", data_end); 1025 if (data_end - kernstart > kernsize) { 1026 kernsize += tlb1_mapin_region(kernstart + kernsize, 1027 kernload + kernsize, (data_end - kernstart) - kernsize); 1028 } 1029 data_end = kernstart + kernsize; 1030 debugf(" updated data_end: 0x%08x\n", data_end); 1031 1032 /* 1033 * Clear the structures - note we can only do it safely after the 1034 * possible additional TLB1 translations are in place (above) so that 1035 * all range up to the currently calculated 'data_end' is covered. 1036 */ 1037 dpcpu_init(dpcpu, 0); 1038 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1039 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1040 1041 /*******************************************************/ 1042 /* Set the start and end of kva. */ 1043 /*******************************************************/ 1044 virtual_avail = round_page(data_end); 1045 virtual_end = VM_MAX_KERNEL_ADDRESS; 1046 1047 /* Allocate KVA space for page zero/copy operations. */ 1048 zero_page_va = virtual_avail; 1049 virtual_avail += PAGE_SIZE; 1050 zero_page_idle_va = virtual_avail; 1051 virtual_avail += PAGE_SIZE; 1052 copy_page_src_va = virtual_avail; 1053 virtual_avail += PAGE_SIZE; 1054 copy_page_dst_va = virtual_avail; 1055 virtual_avail += PAGE_SIZE; 1056 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1057 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va); 1058 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1059 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1060 1061 /* Initialize page zero/copy mutexes. */ 1062 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1063 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1064 1065 /* Allocate KVA space for ptbl bufs. */ 1066 ptbl_buf_pool_vabase = virtual_avail; 1067 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1068 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1069 ptbl_buf_pool_vabase, virtual_avail); 1070 1071 /* Calculate corresponding physical addresses for the kernel region. */ 1072 phys_kernelend = kernload + kernsize; 1073 debugf("kernel image and allocated data:\n"); 1074 debugf(" kernload = 0x%08x\n", kernload); 1075 debugf(" kernstart = 0x%08x\n", kernstart); 1076 debugf(" kernsize = 0x%08x\n", kernsize); 1077 1078 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1079 panic("mmu_booke_bootstrap: phys_avail too small"); 1080 1081 /* 1082 * Remove kernel physical address range from avail regions list. Page 1083 * align all regions. Non-page aligned memory isn't very interesting 1084 * to us. Also, sort the entries for ascending addresses. 1085 */ 1086 1087 /* Retrieve phys/avail mem regions */ 1088 mem_regions(&physmem_regions, &physmem_regions_sz, 1089 &availmem_regions, &availmem_regions_sz); 1090 sz = 0; 1091 cnt = availmem_regions_sz; 1092 debugf("processing avail regions:\n"); 1093 for (mp = availmem_regions; mp->mr_size; mp++) { 1094 s = mp->mr_start; 1095 e = mp->mr_start + mp->mr_size; 1096 debugf(" %08x-%08x -> ", s, e); 1097 /* Check whether this region holds all of the kernel. */ 1098 if (s < kernload && e > phys_kernelend) { 1099 availmem_regions[cnt].mr_start = phys_kernelend; 1100 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1101 e = kernload; 1102 } 1103 /* Look whether this regions starts within the kernel. */ 1104 if (s >= kernload && s < phys_kernelend) { 1105 if (e <= phys_kernelend) 1106 goto empty; 1107 s = phys_kernelend; 1108 } 1109 /* Now look whether this region ends within the kernel. */ 1110 if (e > kernload && e <= phys_kernelend) { 1111 if (s >= kernload) 1112 goto empty; 1113 e = kernload; 1114 } 1115 /* Now page align the start and size of the region. */ 1116 s = round_page(s); 1117 e = trunc_page(e); 1118 if (e < s) 1119 e = s; 1120 sz = e - s; 1121 debugf("%08x-%08x = %x\n", s, e, sz); 1122 1123 /* Check whether some memory is left here. */ 1124 if (sz == 0) { 1125 empty: 1126 memmove(mp, mp + 1, 1127 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1128 cnt--; 1129 mp--; 1130 continue; 1131 } 1132 1133 /* Do an insertion sort. */ 1134 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1135 if (s < mp1->mr_start) 1136 break; 1137 if (mp1 < mp) { 1138 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1139 mp1->mr_start = s; 1140 mp1->mr_size = sz; 1141 } else { 1142 mp->mr_start = s; 1143 mp->mr_size = sz; 1144 } 1145 } 1146 availmem_regions_sz = cnt; 1147 1148 /*******************************************************/ 1149 /* Steal physical memory for kernel stack from the end */ 1150 /* of the first avail region */ 1151 /*******************************************************/ 1152 kstack0_sz = KSTACK_PAGES * PAGE_SIZE; 1153 kstack0_phys = availmem_regions[0].mr_start + 1154 availmem_regions[0].mr_size; 1155 kstack0_phys -= kstack0_sz; 1156 availmem_regions[0].mr_size -= kstack0_sz; 1157 1158 /*******************************************************/ 1159 /* Fill in phys_avail table, based on availmem_regions */ 1160 /*******************************************************/ 1161 phys_avail_count = 0; 1162 physsz = 0; 1163 hwphyssz = 0; 1164 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1165 1166 debugf("fill in phys_avail:\n"); 1167 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1168 1169 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", 1170 availmem_regions[i].mr_start, 1171 availmem_regions[i].mr_start + 1172 availmem_regions[i].mr_size, 1173 availmem_regions[i].mr_size); 1174 1175 if (hwphyssz != 0 && 1176 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1177 debugf(" hw.physmem adjust\n"); 1178 if (physsz < hwphyssz) { 1179 phys_avail[j] = availmem_regions[i].mr_start; 1180 phys_avail[j + 1] = 1181 availmem_regions[i].mr_start + 1182 hwphyssz - physsz; 1183 physsz = hwphyssz; 1184 phys_avail_count++; 1185 } 1186 break; 1187 } 1188 1189 phys_avail[j] = availmem_regions[i].mr_start; 1190 phys_avail[j + 1] = availmem_regions[i].mr_start + 1191 availmem_regions[i].mr_size; 1192 phys_avail_count++; 1193 physsz += availmem_regions[i].mr_size; 1194 } 1195 physmem = btoc(physsz); 1196 1197 /* Calculate the last available physical address. */ 1198 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1199 ; 1200 Maxmem = powerpc_btop(phys_avail[i + 1]); 1201 1202 debugf("Maxmem = 0x%08lx\n", Maxmem); 1203 debugf("phys_avail_count = %d\n", phys_avail_count); 1204 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem, 1205 physmem); 1206 1207 /*******************************************************/ 1208 /* Initialize (statically allocated) kernel pmap. */ 1209 /*******************************************************/ 1210 PMAP_LOCK_INIT(kernel_pmap); 1211 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1212 1213 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); 1214 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); 1215 debugf("kernel pdir range: 0x%08x - 0x%08x\n", 1216 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); 1217 1218 /* Initialize kernel pdir */ 1219 for (i = 0; i < kernel_ptbls; i++) 1220 kernel_pmap->pm_pdir[kptbl_min + i] = 1221 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1222 1223 for (i = 0; i < MAXCPU; i++) { 1224 kernel_pmap->pm_tid[i] = TID_KERNEL; 1225 1226 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1227 tidbusy[i][0] = kernel_pmap; 1228 } 1229 1230 /* 1231 * Fill in PTEs covering kernel code and data. They are not required 1232 * for address translation, as this area is covered by static TLB1 1233 * entries, but for pte_vatopa() to work correctly with kernel area 1234 * addresses. 1235 */ 1236 for (va = kernstart; va < data_end; va += PAGE_SIZE) { 1237 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1238 pte->rpn = kernload + (va - kernstart); 1239 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1240 PTE_VALID; 1241 } 1242 /* Mark kernel_pmap active on all CPUs */ 1243 CPU_FILL(&kernel_pmap->pm_active); 1244 1245 /* 1246 * Initialize the global pv list lock. 1247 */ 1248 rw_init(&pvh_global_lock, "pmap pv global"); 1249 1250 /*******************************************************/ 1251 /* Final setup */ 1252 /*******************************************************/ 1253 1254 /* Enter kstack0 into kernel map, provide guard page */ 1255 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1256 thread0.td_kstack = kstack0; 1257 thread0.td_kstack_pages = KSTACK_PAGES; 1258 1259 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1260 debugf("kstack0_phys at 0x%08x - 0x%08x\n", 1261 kstack0_phys, kstack0_phys + kstack0_sz); 1262 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); 1263 1264 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 1265 for (i = 0; i < KSTACK_PAGES; i++) { 1266 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 1267 kstack0 += PAGE_SIZE; 1268 kstack0_phys += PAGE_SIZE; 1269 } 1270 1271 debugf("virtual_avail = %08x\n", virtual_avail); 1272 debugf("virtual_end = %08x\n", virtual_end); 1273 1274 debugf("mmu_booke_bootstrap: exit\n"); 1275 } 1276 1277 void 1278 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 1279 { 1280 int i; 1281 1282 /* 1283 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 1284 * have the snapshot of its contents in the s/w tlb1[] table, so use 1285 * these values directly to (re)program AP's TLB1 hardware. 1286 */ 1287 for (i = bp_ntlb1s; i < tlb1_idx; i++) { 1288 /* Skip invalid entries */ 1289 if (!(tlb1[i].mas1 & MAS1_VALID)) 1290 continue; 1291 1292 tlb1_write_entry(i); 1293 } 1294 1295 set_mas4_defaults(); 1296 } 1297 1298 /* 1299 * Get the physical page address for the given pmap/virtual address. 1300 */ 1301 static vm_paddr_t 1302 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1303 { 1304 vm_paddr_t pa; 1305 1306 PMAP_LOCK(pmap); 1307 pa = pte_vatopa(mmu, pmap, va); 1308 PMAP_UNLOCK(pmap); 1309 1310 return (pa); 1311 } 1312 1313 /* 1314 * Extract the physical page address associated with the given 1315 * kernel virtual address. 1316 */ 1317 static vm_paddr_t 1318 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 1319 { 1320 1321 return (pte_vatopa(mmu, kernel_pmap, va)); 1322 } 1323 1324 /* 1325 * Initialize the pmap module. 1326 * Called by vm_init, to initialize any structures that the pmap 1327 * system needs to map virtual memory. 1328 */ 1329 static void 1330 mmu_booke_init(mmu_t mmu) 1331 { 1332 int shpgperproc = PMAP_SHPGPERPROC; 1333 1334 /* 1335 * Initialize the address space (zone) for the pv entries. Set a 1336 * high water mark so that the system can recover from excessive 1337 * numbers of pv entries. 1338 */ 1339 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 1340 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 1341 1342 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 1343 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; 1344 1345 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 1346 pv_entry_high_water = 9 * (pv_entry_max / 10); 1347 1348 uma_zone_reserve_kva(pvzone, pv_entry_max); 1349 1350 /* Pre-fill pvzone with initial number of pv entries. */ 1351 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 1352 1353 /* Initialize ptbl allocation. */ 1354 ptbl_init(); 1355 } 1356 1357 /* 1358 * Map a list of wired pages into kernel virtual address space. This is 1359 * intended for temporary mappings which do not need page modification or 1360 * references recorded. Existing mappings in the region are overwritten. 1361 */ 1362 static void 1363 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1364 { 1365 vm_offset_t va; 1366 1367 va = sva; 1368 while (count-- > 0) { 1369 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1370 va += PAGE_SIZE; 1371 m++; 1372 } 1373 } 1374 1375 /* 1376 * Remove page mappings from kernel virtual address space. Intended for 1377 * temporary mappings entered by mmu_booke_qenter. 1378 */ 1379 static void 1380 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 1381 { 1382 vm_offset_t va; 1383 1384 va = sva; 1385 while (count-- > 0) { 1386 mmu_booke_kremove(mmu, va); 1387 va += PAGE_SIZE; 1388 } 1389 } 1390 1391 /* 1392 * Map a wired page into kernel virtual address space. 1393 */ 1394 static void 1395 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1396 { 1397 unsigned int pdir_idx = PDIR_IDX(va); 1398 unsigned int ptbl_idx = PTBL_IDX(va); 1399 uint32_t flags; 1400 pte_t *pte; 1401 1402 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1403 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 1404 1405 flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 1406 1407 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1408 1409 mtx_lock_spin(&tlbivax_mutex); 1410 tlb_miss_lock(); 1411 1412 if (PTE_ISVALID(pte)) { 1413 1414 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 1415 1416 /* Flush entry from TLB0 */ 1417 tlb0_flush_entry(va); 1418 } 1419 1420 pte->rpn = pa & ~PTE_PA_MASK; 1421 pte->flags = flags; 1422 1423 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 1424 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 1425 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 1426 1427 /* Flush the real memory from the instruction cache. */ 1428 if ((flags & (PTE_I | PTE_G)) == 0) { 1429 __syncicache((void *)va, PAGE_SIZE); 1430 } 1431 1432 tlb_miss_unlock(); 1433 mtx_unlock_spin(&tlbivax_mutex); 1434 } 1435 1436 /* 1437 * Remove a page from kernel page table. 1438 */ 1439 static void 1440 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 1441 { 1442 unsigned int pdir_idx = PDIR_IDX(va); 1443 unsigned int ptbl_idx = PTBL_IDX(va); 1444 pte_t *pte; 1445 1446 // CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va)); 1447 1448 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1449 (va <= VM_MAX_KERNEL_ADDRESS)), 1450 ("mmu_booke_kremove: invalid va")); 1451 1452 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1453 1454 if (!PTE_ISVALID(pte)) { 1455 1456 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 1457 1458 return; 1459 } 1460 1461 mtx_lock_spin(&tlbivax_mutex); 1462 tlb_miss_lock(); 1463 1464 /* Invalidate entry in TLB0, update PTE. */ 1465 tlb0_flush_entry(va); 1466 pte->flags = 0; 1467 pte->rpn = 0; 1468 1469 tlb_miss_unlock(); 1470 mtx_unlock_spin(&tlbivax_mutex); 1471 } 1472 1473 /* 1474 * Initialize pmap associated with process 0. 1475 */ 1476 static void 1477 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 1478 { 1479 1480 mmu_booke_pinit(mmu, pmap); 1481 PCPU_SET(curpmap, pmap); 1482 } 1483 1484 /* 1485 * Initialize a preallocated and zeroed pmap structure, 1486 * such as one in a vmspace structure. 1487 */ 1488 static void 1489 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 1490 { 1491 int i; 1492 1493 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 1494 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 1495 1496 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 1497 1498 PMAP_LOCK_INIT(pmap); 1499 for (i = 0; i < MAXCPU; i++) 1500 pmap->pm_tid[i] = TID_NONE; 1501 CPU_ZERO(&kernel_pmap->pm_active); 1502 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 1503 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 1504 TAILQ_INIT(&pmap->pm_ptbl_list); 1505 } 1506 1507 /* 1508 * Release any resources held by the given physical map. 1509 * Called when a pmap initialized by mmu_booke_pinit is being released. 1510 * Should only be called if the map contains no valid mappings. 1511 */ 1512 static void 1513 mmu_booke_release(mmu_t mmu, pmap_t pmap) 1514 { 1515 1516 KASSERT(pmap->pm_stats.resident_count == 0, 1517 ("pmap_release: pmap resident count %ld != 0", 1518 pmap->pm_stats.resident_count)); 1519 1520 PMAP_LOCK_DESTROY(pmap); 1521 } 1522 1523 /* 1524 * Insert the given physical page at the specified virtual address in the 1525 * target physical map with the protection requested. If specified the page 1526 * will be wired down. 1527 */ 1528 static void 1529 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1530 vm_prot_t prot, boolean_t wired) 1531 { 1532 1533 rw_wlock(&pvh_global_lock); 1534 PMAP_LOCK(pmap); 1535 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired); 1536 rw_wunlock(&pvh_global_lock); 1537 PMAP_UNLOCK(pmap); 1538 } 1539 1540 static void 1541 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1542 vm_prot_t prot, boolean_t wired) 1543 { 1544 pte_t *pte; 1545 vm_paddr_t pa; 1546 uint32_t flags; 1547 int su, sync; 1548 1549 pa = VM_PAGE_TO_PHYS(m); 1550 su = (pmap == kernel_pmap); 1551 sync = 0; 1552 1553 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 1554 // "pa=0x%08x prot=0x%08x wired=%d)\n", 1555 // (u_int32_t)pmap, su, pmap->pm_tid, 1556 // (u_int32_t)m, va, pa, prot, wired); 1557 1558 if (su) { 1559 KASSERT(((va >= virtual_avail) && 1560 (va <= VM_MAX_KERNEL_ADDRESS)), 1561 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 1562 } else { 1563 KASSERT((va <= VM_MAXUSER_ADDRESS), 1564 ("mmu_booke_enter_locked: user pmap, non user va")); 1565 } 1566 if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0) 1567 VM_OBJECT_ASSERT_LOCKED(m->object); 1568 1569 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1570 1571 /* 1572 * If there is an existing mapping, and the physical address has not 1573 * changed, must be protection or wiring change. 1574 */ 1575 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 1576 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 1577 1578 /* 1579 * Before actually updating pte->flags we calculate and 1580 * prepare its new value in a helper var. 1581 */ 1582 flags = pte->flags; 1583 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 1584 1585 /* Wiring change, just update stats. */ 1586 if (wired) { 1587 if (!PTE_ISWIRED(pte)) { 1588 flags |= PTE_WIRED; 1589 pmap->pm_stats.wired_count++; 1590 } 1591 } else { 1592 if (PTE_ISWIRED(pte)) { 1593 flags &= ~PTE_WIRED; 1594 pmap->pm_stats.wired_count--; 1595 } 1596 } 1597 1598 if (prot & VM_PROT_WRITE) { 1599 /* Add write permissions. */ 1600 flags |= PTE_SW; 1601 if (!su) 1602 flags |= PTE_UW; 1603 1604 if ((flags & PTE_MANAGED) != 0) 1605 vm_page_aflag_set(m, PGA_WRITEABLE); 1606 } else { 1607 /* Handle modified pages, sense modify status. */ 1608 1609 /* 1610 * The PTE_MODIFIED flag could be set by underlying 1611 * TLB misses since we last read it (above), possibly 1612 * other CPUs could update it so we check in the PTE 1613 * directly rather than rely on that saved local flags 1614 * copy. 1615 */ 1616 if (PTE_ISMODIFIED(pte)) 1617 vm_page_dirty(m); 1618 } 1619 1620 if (prot & VM_PROT_EXECUTE) { 1621 flags |= PTE_SX; 1622 if (!su) 1623 flags |= PTE_UX; 1624 1625 /* 1626 * Check existing flags for execute permissions: if we 1627 * are turning execute permissions on, icache should 1628 * be flushed. 1629 */ 1630 if ((pte->flags & (PTE_UX | PTE_SX)) == 0) 1631 sync++; 1632 } 1633 1634 flags &= ~PTE_REFERENCED; 1635 1636 /* 1637 * The new flags value is all calculated -- only now actually 1638 * update the PTE. 1639 */ 1640 mtx_lock_spin(&tlbivax_mutex); 1641 tlb_miss_lock(); 1642 1643 tlb0_flush_entry(va); 1644 pte->flags = flags; 1645 1646 tlb_miss_unlock(); 1647 mtx_unlock_spin(&tlbivax_mutex); 1648 1649 } else { 1650 /* 1651 * If there is an existing mapping, but it's for a different 1652 * physical address, pte_enter() will delete the old mapping. 1653 */ 1654 //if ((pte != NULL) && PTE_ISVALID(pte)) 1655 // debugf("mmu_booke_enter_locked: replace\n"); 1656 //else 1657 // debugf("mmu_booke_enter_locked: new\n"); 1658 1659 /* Now set up the flags and install the new mapping. */ 1660 flags = (PTE_SR | PTE_VALID); 1661 flags |= PTE_M; 1662 1663 if (!su) 1664 flags |= PTE_UR; 1665 1666 if (prot & VM_PROT_WRITE) { 1667 flags |= PTE_SW; 1668 if (!su) 1669 flags |= PTE_UW; 1670 1671 if ((m->oflags & VPO_UNMANAGED) == 0) 1672 vm_page_aflag_set(m, PGA_WRITEABLE); 1673 } 1674 1675 if (prot & VM_PROT_EXECUTE) { 1676 flags |= PTE_SX; 1677 if (!su) 1678 flags |= PTE_UX; 1679 } 1680 1681 /* If its wired update stats. */ 1682 if (wired) { 1683 pmap->pm_stats.wired_count++; 1684 flags |= PTE_WIRED; 1685 } 1686 1687 pte_enter(mmu, pmap, m, va, flags); 1688 1689 /* Flush the real memory from the instruction cache. */ 1690 if (prot & VM_PROT_EXECUTE) 1691 sync++; 1692 } 1693 1694 if (sync && (su || pmap == PCPU_GET(curpmap))) { 1695 __syncicache((void *)va, PAGE_SIZE); 1696 sync = 0; 1697 } 1698 } 1699 1700 /* 1701 * Maps a sequence of resident pages belonging to the same object. 1702 * The sequence begins with the given page m_start. This page is 1703 * mapped at the given virtual address start. Each subsequent page is 1704 * mapped at a virtual address that is offset from start by the same 1705 * amount as the page is offset from m_start within the object. The 1706 * last page in the sequence is the page with the largest offset from 1707 * m_start that can be mapped at a virtual address less than the given 1708 * virtual address end. Not every virtual page between start and end 1709 * is mapped; only those for which a resident page exists with the 1710 * corresponding offset from m_start are mapped. 1711 */ 1712 static void 1713 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 1714 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 1715 { 1716 vm_page_t m; 1717 vm_pindex_t diff, psize; 1718 1719 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1720 1721 psize = atop(end - start); 1722 m = m_start; 1723 rw_wlock(&pvh_global_lock); 1724 PMAP_LOCK(pmap); 1725 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1726 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 1727 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1728 m = TAILQ_NEXT(m, listq); 1729 } 1730 rw_wunlock(&pvh_global_lock); 1731 PMAP_UNLOCK(pmap); 1732 } 1733 1734 static void 1735 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1736 vm_prot_t prot) 1737 { 1738 1739 rw_wlock(&pvh_global_lock); 1740 PMAP_LOCK(pmap); 1741 mmu_booke_enter_locked(mmu, pmap, va, m, 1742 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1743 rw_wunlock(&pvh_global_lock); 1744 PMAP_UNLOCK(pmap); 1745 } 1746 1747 /* 1748 * Remove the given range of addresses from the specified map. 1749 * 1750 * It is assumed that the start and end are properly rounded to the page size. 1751 */ 1752 static void 1753 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 1754 { 1755 pte_t *pte; 1756 uint8_t hold_flag; 1757 1758 int su = (pmap == kernel_pmap); 1759 1760 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 1761 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 1762 1763 if (su) { 1764 KASSERT(((va >= virtual_avail) && 1765 (va <= VM_MAX_KERNEL_ADDRESS)), 1766 ("mmu_booke_remove: kernel pmap, non kernel va")); 1767 } else { 1768 KASSERT((va <= VM_MAXUSER_ADDRESS), 1769 ("mmu_booke_remove: user pmap, non user va")); 1770 } 1771 1772 if (PMAP_REMOVE_DONE(pmap)) { 1773 //debugf("mmu_booke_remove: e (empty)\n"); 1774 return; 1775 } 1776 1777 hold_flag = PTBL_HOLD_FLAG(pmap); 1778 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 1779 1780 rw_wlock(&pvh_global_lock); 1781 PMAP_LOCK(pmap); 1782 for (; va < endva; va += PAGE_SIZE) { 1783 pte = pte_find(mmu, pmap, va); 1784 if ((pte != NULL) && PTE_ISVALID(pte)) 1785 pte_remove(mmu, pmap, va, hold_flag); 1786 } 1787 PMAP_UNLOCK(pmap); 1788 rw_wunlock(&pvh_global_lock); 1789 1790 //debugf("mmu_booke_remove: e\n"); 1791 } 1792 1793 /* 1794 * Remove physical page from all pmaps in which it resides. 1795 */ 1796 static void 1797 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 1798 { 1799 pv_entry_t pv, pvn; 1800 uint8_t hold_flag; 1801 1802 rw_wlock(&pvh_global_lock); 1803 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 1804 pvn = TAILQ_NEXT(pv, pv_link); 1805 1806 PMAP_LOCK(pv->pv_pmap); 1807 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 1808 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 1809 PMAP_UNLOCK(pv->pv_pmap); 1810 } 1811 vm_page_aflag_clear(m, PGA_WRITEABLE); 1812 rw_wunlock(&pvh_global_lock); 1813 } 1814 1815 /* 1816 * Map a range of physical addresses into kernel virtual address space. 1817 */ 1818 static vm_offset_t 1819 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1820 vm_paddr_t pa_end, int prot) 1821 { 1822 vm_offset_t sva = *virt; 1823 vm_offset_t va = sva; 1824 1825 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 1826 // sva, pa_start, pa_end); 1827 1828 while (pa_start < pa_end) { 1829 mmu_booke_kenter(mmu, va, pa_start); 1830 va += PAGE_SIZE; 1831 pa_start += PAGE_SIZE; 1832 } 1833 *virt = va; 1834 1835 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 1836 return (sva); 1837 } 1838 1839 /* 1840 * The pmap must be activated before it's address space can be accessed in any 1841 * way. 1842 */ 1843 static void 1844 mmu_booke_activate(mmu_t mmu, struct thread *td) 1845 { 1846 pmap_t pmap; 1847 u_int cpuid; 1848 1849 pmap = &td->td_proc->p_vmspace->vm_pmap; 1850 1851 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 1852 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1853 1854 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 1855 1856 mtx_lock_spin(&sched_lock); 1857 1858 cpuid = PCPU_GET(cpuid); 1859 CPU_SET_ATOMIC(cpuid, &pmap->pm_active); 1860 PCPU_SET(curpmap, pmap); 1861 1862 if (pmap->pm_tid[cpuid] == TID_NONE) 1863 tid_alloc(pmap); 1864 1865 /* Load PID0 register with pmap tid value. */ 1866 mtspr(SPR_PID0, pmap->pm_tid[cpuid]); 1867 __asm __volatile("isync"); 1868 1869 mtx_unlock_spin(&sched_lock); 1870 1871 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 1872 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 1873 } 1874 1875 /* 1876 * Deactivate the specified process's address space. 1877 */ 1878 static void 1879 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 1880 { 1881 pmap_t pmap; 1882 1883 pmap = &td->td_proc->p_vmspace->vm_pmap; 1884 1885 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 1886 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1887 1888 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); 1889 PCPU_SET(curpmap, NULL); 1890 } 1891 1892 /* 1893 * Copy the range specified by src_addr/len 1894 * from the source map to the range dst_addr/len 1895 * in the destination map. 1896 * 1897 * This routine is only advisory and need not do anything. 1898 */ 1899 static void 1900 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 1901 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 1902 { 1903 1904 } 1905 1906 /* 1907 * Set the physical protection on the specified range of this map as requested. 1908 */ 1909 static void 1910 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 1911 vm_prot_t prot) 1912 { 1913 vm_offset_t va; 1914 vm_page_t m; 1915 pte_t *pte; 1916 1917 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1918 mmu_booke_remove(mmu, pmap, sva, eva); 1919 return; 1920 } 1921 1922 if (prot & VM_PROT_WRITE) 1923 return; 1924 1925 PMAP_LOCK(pmap); 1926 for (va = sva; va < eva; va += PAGE_SIZE) { 1927 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 1928 if (PTE_ISVALID(pte)) { 1929 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1930 1931 mtx_lock_spin(&tlbivax_mutex); 1932 tlb_miss_lock(); 1933 1934 /* Handle modified pages. */ 1935 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) 1936 vm_page_dirty(m); 1937 1938 tlb0_flush_entry(va); 1939 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 1940 1941 tlb_miss_unlock(); 1942 mtx_unlock_spin(&tlbivax_mutex); 1943 } 1944 } 1945 } 1946 PMAP_UNLOCK(pmap); 1947 } 1948 1949 /* 1950 * Clear the write and modified bits in each of the given page's mappings. 1951 */ 1952 static void 1953 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 1954 { 1955 pv_entry_t pv; 1956 pte_t *pte; 1957 1958 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1959 ("mmu_booke_remove_write: page %p is not managed", m)); 1960 1961 /* 1962 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by 1963 * another thread while the object is locked. Thus, if PGA_WRITEABLE 1964 * is clear, no page table entries need updating. 1965 */ 1966 VM_OBJECT_ASSERT_WLOCKED(m->object); 1967 if ((m->oflags & VPO_BUSY) == 0 && 1968 (m->aflags & PGA_WRITEABLE) == 0) 1969 return; 1970 rw_wlock(&pvh_global_lock); 1971 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 1972 PMAP_LOCK(pv->pv_pmap); 1973 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 1974 if (PTE_ISVALID(pte)) { 1975 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1976 1977 mtx_lock_spin(&tlbivax_mutex); 1978 tlb_miss_lock(); 1979 1980 /* Handle modified pages. */ 1981 if (PTE_ISMODIFIED(pte)) 1982 vm_page_dirty(m); 1983 1984 /* Flush mapping from TLB0. */ 1985 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 1986 1987 tlb_miss_unlock(); 1988 mtx_unlock_spin(&tlbivax_mutex); 1989 } 1990 } 1991 PMAP_UNLOCK(pv->pv_pmap); 1992 } 1993 vm_page_aflag_clear(m, PGA_WRITEABLE); 1994 rw_wunlock(&pvh_global_lock); 1995 } 1996 1997 static void 1998 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 1999 { 2000 pte_t *pte; 2001 pmap_t pmap; 2002 vm_page_t m; 2003 vm_offset_t addr; 2004 vm_paddr_t pa; 2005 int active, valid; 2006 2007 va = trunc_page(va); 2008 sz = round_page(sz); 2009 2010 rw_wlock(&pvh_global_lock); 2011 pmap = PCPU_GET(curpmap); 2012 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 2013 while (sz > 0) { 2014 PMAP_LOCK(pm); 2015 pte = pte_find(mmu, pm, va); 2016 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2017 if (valid) 2018 pa = PTE_PA(pte); 2019 PMAP_UNLOCK(pm); 2020 if (valid) { 2021 if (!active) { 2022 /* Create a mapping in the active pmap. */ 2023 addr = 0; 2024 m = PHYS_TO_VM_PAGE(pa); 2025 PMAP_LOCK(pmap); 2026 pte_enter(mmu, pmap, m, addr, 2027 PTE_SR | PTE_VALID | PTE_UR); 2028 __syncicache((void *)addr, PAGE_SIZE); 2029 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2030 PMAP_UNLOCK(pmap); 2031 } else 2032 __syncicache((void *)va, PAGE_SIZE); 2033 } 2034 va += PAGE_SIZE; 2035 sz -= PAGE_SIZE; 2036 } 2037 rw_wunlock(&pvh_global_lock); 2038 } 2039 2040 /* 2041 * Atomically extract and hold the physical page with the given 2042 * pmap and virtual address pair if that mapping permits the given 2043 * protection. 2044 */ 2045 static vm_page_t 2046 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2047 vm_prot_t prot) 2048 { 2049 pte_t *pte; 2050 vm_page_t m; 2051 uint32_t pte_wbit; 2052 vm_paddr_t pa; 2053 2054 m = NULL; 2055 pa = 0; 2056 PMAP_LOCK(pmap); 2057 retry: 2058 pte = pte_find(mmu, pmap, va); 2059 if ((pte != NULL) && PTE_ISVALID(pte)) { 2060 if (pmap == kernel_pmap) 2061 pte_wbit = PTE_SW; 2062 else 2063 pte_wbit = PTE_UW; 2064 2065 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2066 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) 2067 goto retry; 2068 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2069 vm_page_hold(m); 2070 } 2071 } 2072 2073 PA_UNLOCK_COND(pa); 2074 PMAP_UNLOCK(pmap); 2075 return (m); 2076 } 2077 2078 /* 2079 * Initialize a vm_page's machine-dependent fields. 2080 */ 2081 static void 2082 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2083 { 2084 2085 TAILQ_INIT(&m->md.pv_list); 2086 } 2087 2088 /* 2089 * mmu_booke_zero_page_area zeros the specified hardware page by 2090 * mapping it into virtual memory and using bzero to clear 2091 * its contents. 2092 * 2093 * off and size must reside within a single page. 2094 */ 2095 static void 2096 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2097 { 2098 vm_offset_t va; 2099 2100 /* XXX KASSERT off and size are within a single page? */ 2101 2102 mtx_lock(&zero_page_mutex); 2103 va = zero_page_va; 2104 2105 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2106 bzero((caddr_t)va + off, size); 2107 mmu_booke_kremove(mmu, va); 2108 2109 mtx_unlock(&zero_page_mutex); 2110 } 2111 2112 /* 2113 * mmu_booke_zero_page zeros the specified hardware page. 2114 */ 2115 static void 2116 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2117 { 2118 2119 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE); 2120 } 2121 2122 /* 2123 * mmu_booke_copy_page copies the specified (machine independent) page by 2124 * mapping the page into virtual memory and using memcopy to copy the page, 2125 * one machine dependent page at a time. 2126 */ 2127 static void 2128 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2129 { 2130 vm_offset_t sva, dva; 2131 2132 sva = copy_page_src_va; 2133 dva = copy_page_dst_va; 2134 2135 mtx_lock(©_page_mutex); 2136 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2137 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2138 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2139 mmu_booke_kremove(mmu, dva); 2140 mmu_booke_kremove(mmu, sva); 2141 mtx_unlock(©_page_mutex); 2142 } 2143 2144 static inline void 2145 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 2146 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 2147 { 2148 void *a_cp, *b_cp; 2149 vm_offset_t a_pg_offset, b_pg_offset; 2150 int cnt; 2151 2152 mtx_lock(©_page_mutex); 2153 while (xfersize > 0) { 2154 a_pg_offset = a_offset & PAGE_MASK; 2155 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 2156 mmu_booke_kenter(mmu, copy_page_src_va, 2157 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 2158 a_cp = (char *)copy_page_src_va + a_pg_offset; 2159 b_pg_offset = b_offset & PAGE_MASK; 2160 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 2161 mmu_booke_kenter(mmu, copy_page_dst_va, 2162 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 2163 b_cp = (char *)copy_page_dst_va + b_pg_offset; 2164 bcopy(a_cp, b_cp, cnt); 2165 mmu_booke_kremove(mmu, copy_page_dst_va); 2166 mmu_booke_kremove(mmu, copy_page_src_va); 2167 a_offset += cnt; 2168 b_offset += cnt; 2169 xfersize -= cnt; 2170 } 2171 mtx_unlock(©_page_mutex); 2172 } 2173 2174 /* 2175 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it 2176 * into virtual memory and using bzero to clear its contents. This is intended 2177 * to be called from the vm_pagezero process only and outside of Giant. No 2178 * lock is required. 2179 */ 2180 static void 2181 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m) 2182 { 2183 vm_offset_t va; 2184 2185 va = zero_page_idle_va; 2186 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2187 bzero((caddr_t)va, PAGE_SIZE); 2188 mmu_booke_kremove(mmu, va); 2189 } 2190 2191 /* 2192 * Return whether or not the specified physical page was modified 2193 * in any of physical maps. 2194 */ 2195 static boolean_t 2196 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 2197 { 2198 pte_t *pte; 2199 pv_entry_t pv; 2200 boolean_t rv; 2201 2202 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2203 ("mmu_booke_is_modified: page %p is not managed", m)); 2204 rv = FALSE; 2205 2206 /* 2207 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be 2208 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 2209 * is clear, no PTEs can be modified. 2210 */ 2211 VM_OBJECT_ASSERT_WLOCKED(m->object); 2212 if ((m->oflags & VPO_BUSY) == 0 && 2213 (m->aflags & PGA_WRITEABLE) == 0) 2214 return (rv); 2215 rw_wlock(&pvh_global_lock); 2216 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2217 PMAP_LOCK(pv->pv_pmap); 2218 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2219 PTE_ISVALID(pte)) { 2220 if (PTE_ISMODIFIED(pte)) 2221 rv = TRUE; 2222 } 2223 PMAP_UNLOCK(pv->pv_pmap); 2224 if (rv) 2225 break; 2226 } 2227 rw_wunlock(&pvh_global_lock); 2228 return (rv); 2229 } 2230 2231 /* 2232 * Return whether or not the specified virtual address is eligible 2233 * for prefault. 2234 */ 2235 static boolean_t 2236 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2237 { 2238 2239 return (FALSE); 2240 } 2241 2242 /* 2243 * Return whether or not the specified physical page was referenced 2244 * in any physical maps. 2245 */ 2246 static boolean_t 2247 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 2248 { 2249 pte_t *pte; 2250 pv_entry_t pv; 2251 boolean_t rv; 2252 2253 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2254 ("mmu_booke_is_referenced: page %p is not managed", m)); 2255 rv = FALSE; 2256 rw_wlock(&pvh_global_lock); 2257 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2258 PMAP_LOCK(pv->pv_pmap); 2259 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2260 PTE_ISVALID(pte)) { 2261 if (PTE_ISREFERENCED(pte)) 2262 rv = TRUE; 2263 } 2264 PMAP_UNLOCK(pv->pv_pmap); 2265 if (rv) 2266 break; 2267 } 2268 rw_wunlock(&pvh_global_lock); 2269 return (rv); 2270 } 2271 2272 /* 2273 * Clear the modify bits on the specified physical page. 2274 */ 2275 static void 2276 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 2277 { 2278 pte_t *pte; 2279 pv_entry_t pv; 2280 2281 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2282 ("mmu_booke_clear_modify: page %p is not managed", m)); 2283 VM_OBJECT_ASSERT_WLOCKED(m->object); 2284 KASSERT((m->oflags & VPO_BUSY) == 0, 2285 ("mmu_booke_clear_modify: page %p is busy", m)); 2286 2287 /* 2288 * If the page is not PG_AWRITEABLE, then no PTEs can be modified. 2289 * If the object containing the page is locked and the page is not 2290 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set. 2291 */ 2292 if ((m->aflags & PGA_WRITEABLE) == 0) 2293 return; 2294 rw_wlock(&pvh_global_lock); 2295 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2296 PMAP_LOCK(pv->pv_pmap); 2297 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2298 PTE_ISVALID(pte)) { 2299 mtx_lock_spin(&tlbivax_mutex); 2300 tlb_miss_lock(); 2301 2302 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 2303 tlb0_flush_entry(pv->pv_va); 2304 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 2305 PTE_REFERENCED); 2306 } 2307 2308 tlb_miss_unlock(); 2309 mtx_unlock_spin(&tlbivax_mutex); 2310 } 2311 PMAP_UNLOCK(pv->pv_pmap); 2312 } 2313 rw_wunlock(&pvh_global_lock); 2314 } 2315 2316 /* 2317 * Return a count of reference bits for a page, clearing those bits. 2318 * It is not necessary for every reference bit to be cleared, but it 2319 * is necessary that 0 only be returned when there are truly no 2320 * reference bits set. 2321 * 2322 * XXX: The exact number of bits to check and clear is a matter that 2323 * should be tested and standardized at some point in the future for 2324 * optimal aging of shared pages. 2325 */ 2326 static int 2327 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 2328 { 2329 pte_t *pte; 2330 pv_entry_t pv; 2331 int count; 2332 2333 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2334 ("mmu_booke_ts_referenced: page %p is not managed", m)); 2335 count = 0; 2336 rw_wlock(&pvh_global_lock); 2337 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2338 PMAP_LOCK(pv->pv_pmap); 2339 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2340 PTE_ISVALID(pte)) { 2341 if (PTE_ISREFERENCED(pte)) { 2342 mtx_lock_spin(&tlbivax_mutex); 2343 tlb_miss_lock(); 2344 2345 tlb0_flush_entry(pv->pv_va); 2346 pte->flags &= ~PTE_REFERENCED; 2347 2348 tlb_miss_unlock(); 2349 mtx_unlock_spin(&tlbivax_mutex); 2350 2351 if (++count > 4) { 2352 PMAP_UNLOCK(pv->pv_pmap); 2353 break; 2354 } 2355 } 2356 } 2357 PMAP_UNLOCK(pv->pv_pmap); 2358 } 2359 rw_wunlock(&pvh_global_lock); 2360 return (count); 2361 } 2362 2363 /* 2364 * Clear the reference bit on the specified physical page. 2365 */ 2366 static void 2367 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m) 2368 { 2369 pte_t *pte; 2370 pv_entry_t pv; 2371 2372 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2373 ("mmu_booke_clear_reference: page %p is not managed", m)); 2374 rw_wlock(&pvh_global_lock); 2375 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2376 PMAP_LOCK(pv->pv_pmap); 2377 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 2378 PTE_ISVALID(pte)) { 2379 if (PTE_ISREFERENCED(pte)) { 2380 mtx_lock_spin(&tlbivax_mutex); 2381 tlb_miss_lock(); 2382 2383 tlb0_flush_entry(pv->pv_va); 2384 pte->flags &= ~PTE_REFERENCED; 2385 2386 tlb_miss_unlock(); 2387 mtx_unlock_spin(&tlbivax_mutex); 2388 } 2389 } 2390 PMAP_UNLOCK(pv->pv_pmap); 2391 } 2392 rw_wunlock(&pvh_global_lock); 2393 } 2394 2395 /* 2396 * Change wiring attribute for a map/virtual-address pair. 2397 */ 2398 static void 2399 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired) 2400 { 2401 pte_t *pte; 2402 2403 PMAP_LOCK(pmap); 2404 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2405 if (wired) { 2406 if (!PTE_ISWIRED(pte)) { 2407 pte->flags |= PTE_WIRED; 2408 pmap->pm_stats.wired_count++; 2409 } 2410 } else { 2411 if (PTE_ISWIRED(pte)) { 2412 pte->flags &= ~PTE_WIRED; 2413 pmap->pm_stats.wired_count--; 2414 } 2415 } 2416 } 2417 PMAP_UNLOCK(pmap); 2418 } 2419 2420 /* 2421 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 2422 * page. This count may be changed upwards or downwards in the future; it is 2423 * only necessary that true be returned for a small subset of pmaps for proper 2424 * page aging. 2425 */ 2426 static boolean_t 2427 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 2428 { 2429 pv_entry_t pv; 2430 int loops; 2431 boolean_t rv; 2432 2433 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2434 ("mmu_booke_page_exists_quick: page %p is not managed", m)); 2435 loops = 0; 2436 rv = FALSE; 2437 rw_wlock(&pvh_global_lock); 2438 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2439 if (pv->pv_pmap == pmap) { 2440 rv = TRUE; 2441 break; 2442 } 2443 if (++loops >= 16) 2444 break; 2445 } 2446 rw_wunlock(&pvh_global_lock); 2447 return (rv); 2448 } 2449 2450 /* 2451 * Return the number of managed mappings to the given physical page that are 2452 * wired. 2453 */ 2454 static int 2455 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 2456 { 2457 pv_entry_t pv; 2458 pte_t *pte; 2459 int count = 0; 2460 2461 if ((m->oflags & VPO_UNMANAGED) != 0) 2462 return (count); 2463 rw_wlock(&pvh_global_lock); 2464 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2465 PMAP_LOCK(pv->pv_pmap); 2466 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 2467 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 2468 count++; 2469 PMAP_UNLOCK(pv->pv_pmap); 2470 } 2471 rw_wunlock(&pvh_global_lock); 2472 return (count); 2473 } 2474 2475 static int 2476 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2477 { 2478 int i; 2479 vm_offset_t va; 2480 2481 /* 2482 * This currently does not work for entries that 2483 * overlap TLB1 entries. 2484 */ 2485 for (i = 0; i < tlb1_idx; i ++) { 2486 if (tlb1_iomapped(i, pa, size, &va) == 0) 2487 return (0); 2488 } 2489 2490 return (EFAULT); 2491 } 2492 2493 vm_offset_t 2494 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2495 vm_size_t *sz) 2496 { 2497 vm_paddr_t pa, ppa; 2498 vm_offset_t va; 2499 vm_size_t gran; 2500 2501 /* Raw physical memory dumps don't have a virtual address. */ 2502 if (md->md_vaddr == ~0UL) { 2503 /* We always map a 256MB page at 256M. */ 2504 gran = 256 * 1024 * 1024; 2505 pa = md->md_paddr + ofs; 2506 ppa = pa & ~(gran - 1); 2507 ofs = pa - ppa; 2508 va = gran; 2509 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO); 2510 if (*sz > (gran - ofs)) 2511 *sz = gran - ofs; 2512 return (va + ofs); 2513 } 2514 2515 /* Minidumps are based on virtual memory addresses. */ 2516 va = md->md_vaddr + ofs; 2517 if (va >= kernstart + kernsize) { 2518 gran = PAGE_SIZE - (va & PAGE_MASK); 2519 if (*sz > gran) 2520 *sz = gran; 2521 } 2522 return (va); 2523 } 2524 2525 void 2526 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2527 vm_offset_t va) 2528 { 2529 2530 /* Raw physical memory dumps don't have a virtual address. */ 2531 if (md->md_vaddr == ~0UL) { 2532 tlb1_idx--; 2533 tlb1[tlb1_idx].mas1 = 0; 2534 tlb1[tlb1_idx].mas2 = 0; 2535 tlb1[tlb1_idx].mas3 = 0; 2536 tlb1_write_entry(tlb1_idx); 2537 return; 2538 } 2539 2540 /* Minidumps are based on virtual memory addresses. */ 2541 /* Nothing to do... */ 2542 } 2543 2544 struct pmap_md * 2545 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev) 2546 { 2547 static struct pmap_md md; 2548 pte_t *pte; 2549 vm_offset_t va; 2550 2551 if (dumpsys_minidump) { 2552 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2553 if (prev == NULL) { 2554 /* 1st: kernel .data and .bss. */ 2555 md.md_index = 1; 2556 md.md_vaddr = trunc_page((uintptr_t)_etext); 2557 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2558 return (&md); 2559 } 2560 switch (prev->md_index) { 2561 case 1: 2562 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2563 md.md_index = 2; 2564 md.md_vaddr = data_start; 2565 md.md_size = data_end - data_start; 2566 break; 2567 case 2: 2568 /* 3rd: kernel VM. */ 2569 va = prev->md_vaddr + prev->md_size; 2570 /* Find start of next chunk (from va). */ 2571 while (va < virtual_end) { 2572 /* Don't dump the buffer cache. */ 2573 if (va >= kmi.buffer_sva && 2574 va < kmi.buffer_eva) { 2575 va = kmi.buffer_eva; 2576 continue; 2577 } 2578 pte = pte_find(mmu, kernel_pmap, va); 2579 if (pte != NULL && PTE_ISVALID(pte)) 2580 break; 2581 va += PAGE_SIZE; 2582 } 2583 if (va < virtual_end) { 2584 md.md_vaddr = va; 2585 va += PAGE_SIZE; 2586 /* Find last page in chunk. */ 2587 while (va < virtual_end) { 2588 /* Don't run into the buffer cache. */ 2589 if (va == kmi.buffer_sva) 2590 break; 2591 pte = pte_find(mmu, kernel_pmap, va); 2592 if (pte == NULL || !PTE_ISVALID(pte)) 2593 break; 2594 va += PAGE_SIZE; 2595 } 2596 md.md_size = va - md.md_vaddr; 2597 break; 2598 } 2599 md.md_index = 3; 2600 /* FALLTHROUGH */ 2601 default: 2602 return (NULL); 2603 } 2604 } else { /* minidumps */ 2605 mem_regions(&physmem_regions, &physmem_regions_sz, 2606 &availmem_regions, &availmem_regions_sz); 2607 2608 if (prev == NULL) { 2609 /* first physical chunk. */ 2610 md.md_paddr = physmem_regions[0].mr_start; 2611 md.md_size = physmem_regions[0].mr_size; 2612 md.md_vaddr = ~0UL; 2613 md.md_index = 1; 2614 } else if (md.md_index < physmem_regions_sz) { 2615 md.md_paddr = physmem_regions[md.md_index].mr_start; 2616 md.md_size = physmem_regions[md.md_index].mr_size; 2617 md.md_vaddr = ~0UL; 2618 md.md_index++; 2619 } else { 2620 /* There's no next physical chunk. */ 2621 return (NULL); 2622 } 2623 } 2624 2625 return (&md); 2626 } 2627 2628 /* 2629 * Map a set of physical memory pages into the kernel virtual address space. 2630 * Return a pointer to where it is mapped. This routine is intended to be used 2631 * for mapping device memory, NOT real memory. 2632 */ 2633 static void * 2634 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2635 { 2636 void *res; 2637 uintptr_t va; 2638 vm_size_t sz; 2639 2640 /* 2641 * CCSR is premapped. Note that (pa + size - 1) is there to make sure 2642 * we don't wrap around. Devices on the local bus typically extend all 2643 * the way up to and including 0xffffffff. In that case (pa + size) 2644 * would be 0. This creates a false positive (i.e. we think it's 2645 * within the CCSR) and not create a mapping. 2646 */ 2647 if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) { 2648 va = CCSRBAR_VA + (pa - ccsrbar_pa); 2649 return ((void *)va); 2650 } 2651 2652 va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa); 2653 res = (void *)va; 2654 2655 do { 2656 sz = 1 << (ilog2(size) & ~1); 2657 if (bootverbose) 2658 printf("Wiring VA=%x to PA=%x (size=%x), " 2659 "using TLB1[%d]\n", va, pa, sz, tlb1_idx); 2660 tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO); 2661 size -= sz; 2662 pa += sz; 2663 va += sz; 2664 } while (size > 0); 2665 2666 return (res); 2667 } 2668 2669 /* 2670 * 'Unmap' a range mapped by mmu_booke_mapdev(). 2671 */ 2672 static void 2673 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2674 { 2675 vm_offset_t base, offset; 2676 2677 /* 2678 * Unmap only if this is inside kernel virtual space. 2679 */ 2680 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 2681 base = trunc_page(va); 2682 offset = va & PAGE_MASK; 2683 size = roundup(offset + size, PAGE_SIZE); 2684 kmem_free(kernel_map, base, size); 2685 } 2686 } 2687 2688 /* 2689 * mmu_booke_object_init_pt preloads the ptes for a given object into the 2690 * specified pmap. This eliminates the blast of soft faults on process startup 2691 * and immediately after an mmap. 2692 */ 2693 static void 2694 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2695 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 2696 { 2697 2698 VM_OBJECT_ASSERT_WLOCKED(object); 2699 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 2700 ("mmu_booke_object_init_pt: non-device object")); 2701 } 2702 2703 /* 2704 * Perform the pmap work for mincore. 2705 */ 2706 static int 2707 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2708 vm_paddr_t *locked_pa) 2709 { 2710 2711 TODO; 2712 return (0); 2713 } 2714 2715 /**************************************************************************/ 2716 /* TID handling */ 2717 /**************************************************************************/ 2718 2719 /* 2720 * Allocate a TID. If necessary, steal one from someone else. 2721 * The new TID is flushed from the TLB before returning. 2722 */ 2723 static tlbtid_t 2724 tid_alloc(pmap_t pmap) 2725 { 2726 tlbtid_t tid; 2727 int thiscpu; 2728 2729 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 2730 2731 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 2732 2733 thiscpu = PCPU_GET(cpuid); 2734 2735 tid = PCPU_GET(tid_next); 2736 if (tid > TID_MAX) 2737 tid = TID_MIN; 2738 PCPU_SET(tid_next, tid + 1); 2739 2740 /* If we are stealing TID then clear the relevant pmap's field */ 2741 if (tidbusy[thiscpu][tid] != NULL) { 2742 2743 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 2744 2745 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 2746 2747 /* Flush all entries from TLB0 matching this TID. */ 2748 tid_flush(tid); 2749 } 2750 2751 tidbusy[thiscpu][tid] = pmap; 2752 pmap->pm_tid[thiscpu] = tid; 2753 __asm __volatile("msync; isync"); 2754 2755 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 2756 PCPU_GET(tid_next)); 2757 2758 return (tid); 2759 } 2760 2761 /**************************************************************************/ 2762 /* TLB0 handling */ 2763 /**************************************************************************/ 2764 2765 static void 2766 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 2767 uint32_t mas7) 2768 { 2769 int as; 2770 char desc[3]; 2771 tlbtid_t tid; 2772 vm_size_t size; 2773 unsigned int tsize; 2774 2775 desc[2] = '\0'; 2776 if (mas1 & MAS1_VALID) 2777 desc[0] = 'V'; 2778 else 2779 desc[0] = ' '; 2780 2781 if (mas1 & MAS1_IPROT) 2782 desc[1] = 'P'; 2783 else 2784 desc[1] = ' '; 2785 2786 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 2787 tid = MAS1_GETTID(mas1); 2788 2789 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 2790 size = 0; 2791 if (tsize) 2792 size = tsize2size(tsize); 2793 2794 debugf("%3d: (%s) [AS=%d] " 2795 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 2796 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", 2797 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 2798 } 2799 2800 /* Convert TLB0 va and way number to tlb0[] table index. */ 2801 static inline unsigned int 2802 tlb0_tableidx(vm_offset_t va, unsigned int way) 2803 { 2804 unsigned int idx; 2805 2806 idx = (way * TLB0_ENTRIES_PER_WAY); 2807 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 2808 return (idx); 2809 } 2810 2811 /* 2812 * Invalidate TLB0 entry. 2813 */ 2814 static inline void 2815 tlb0_flush_entry(vm_offset_t va) 2816 { 2817 2818 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 2819 2820 mtx_assert(&tlbivax_mutex, MA_OWNED); 2821 2822 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 2823 __asm __volatile("isync; msync"); 2824 __asm __volatile("tlbsync; msync"); 2825 2826 CTR1(KTR_PMAP, "%s: e", __func__); 2827 } 2828 2829 /* Print out contents of the MAS registers for each TLB0 entry */ 2830 void 2831 tlb0_print_tlbentries(void) 2832 { 2833 uint32_t mas0, mas1, mas2, mas3, mas7; 2834 int entryidx, way, idx; 2835 2836 debugf("TLB0 entries:\n"); 2837 for (way = 0; way < TLB0_WAYS; way ++) 2838 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 2839 2840 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 2841 mtspr(SPR_MAS0, mas0); 2842 __asm __volatile("isync"); 2843 2844 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 2845 mtspr(SPR_MAS2, mas2); 2846 2847 __asm __volatile("isync; tlbre"); 2848 2849 mas1 = mfspr(SPR_MAS1); 2850 mas2 = mfspr(SPR_MAS2); 2851 mas3 = mfspr(SPR_MAS3); 2852 mas7 = mfspr(SPR_MAS7); 2853 2854 idx = tlb0_tableidx(mas2, way); 2855 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 2856 } 2857 } 2858 2859 /**************************************************************************/ 2860 /* TLB1 handling */ 2861 /**************************************************************************/ 2862 2863 /* 2864 * TLB1 mapping notes: 2865 * 2866 * TLB1[0] CCSRBAR 2867 * TLB1[1] Kernel text and data. 2868 * TLB1[2-15] Additional kernel text and data mappings (if required), PCI 2869 * windows, other devices mappings. 2870 */ 2871 2872 /* 2873 * Write given entry to TLB1 hardware. 2874 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 2875 */ 2876 static void 2877 tlb1_write_entry(unsigned int idx) 2878 { 2879 uint32_t mas0, mas7; 2880 2881 //debugf("tlb1_write_entry: s\n"); 2882 2883 /* Clear high order RPN bits */ 2884 mas7 = 0; 2885 2886 /* Select entry */ 2887 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 2888 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 2889 2890 mtspr(SPR_MAS0, mas0); 2891 __asm __volatile("isync"); 2892 mtspr(SPR_MAS1, tlb1[idx].mas1); 2893 __asm __volatile("isync"); 2894 mtspr(SPR_MAS2, tlb1[idx].mas2); 2895 __asm __volatile("isync"); 2896 mtspr(SPR_MAS3, tlb1[idx].mas3); 2897 __asm __volatile("isync"); 2898 mtspr(SPR_MAS7, mas7); 2899 __asm __volatile("isync; tlbwe; isync; msync"); 2900 2901 //debugf("tlb1_write_entry: e\n"); 2902 } 2903 2904 /* 2905 * Return the largest uint value log such that 2^log <= num. 2906 */ 2907 static unsigned int 2908 ilog2(unsigned int num) 2909 { 2910 int lz; 2911 2912 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 2913 return (31 - lz); 2914 } 2915 2916 /* 2917 * Convert TLB TSIZE value to mapped region size. 2918 */ 2919 static vm_size_t 2920 tsize2size(unsigned int tsize) 2921 { 2922 2923 /* 2924 * size = 4^tsize KB 2925 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 2926 */ 2927 2928 return ((1 << (2 * tsize)) * 1024); 2929 } 2930 2931 /* 2932 * Convert region size (must be power of 4) to TLB TSIZE value. 2933 */ 2934 static unsigned int 2935 size2tsize(vm_size_t size) 2936 { 2937 2938 return (ilog2(size) / 2 - 5); 2939 } 2940 2941 /* 2942 * Register permanent kernel mapping in TLB1. 2943 * 2944 * Entries are created starting from index 0 (current free entry is 2945 * kept in tlb1_idx) and are not supposed to be invalidated. 2946 */ 2947 static int 2948 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size, 2949 uint32_t flags) 2950 { 2951 uint32_t ts, tid; 2952 int tsize; 2953 2954 if (tlb1_idx >= TLB1_ENTRIES) { 2955 printf("tlb1_set_entry: TLB1 full!\n"); 2956 return (-1); 2957 } 2958 2959 /* Convert size to TSIZE */ 2960 tsize = size2tsize(size); 2961 2962 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 2963 /* XXX TS is hard coded to 0 for now as we only use single address space */ 2964 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 2965 2966 /* XXX LOCK tlb1[] */ 2967 2968 tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 2969 tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 2970 tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags; 2971 2972 /* Set supervisor RWX permission bits */ 2973 tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 2974 2975 tlb1_write_entry(tlb1_idx++); 2976 2977 /* XXX UNLOCK tlb1[] */ 2978 2979 /* 2980 * XXX in general TLB1 updates should be propagated between CPUs, 2981 * since current design assumes to have the same TLB1 set-up on all 2982 * cores. 2983 */ 2984 return (0); 2985 } 2986 2987 /* 2988 * Map in contiguous RAM region into the TLB1 using maximum of 2989 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 2990 * 2991 * If necessary round up last entry size and return total size 2992 * used by all allocated entries. 2993 */ 2994 vm_size_t 2995 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) 2996 { 2997 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; 2998 vm_size_t mapped, pgsz, base, mask; 2999 int idx, nents; 3000 3001 /* Round up to the next 1M */ 3002 size = (size + (1 << 20) - 1) & ~((1 << 20) - 1); 3003 3004 mapped = 0; 3005 idx = 0; 3006 base = va; 3007 pgsz = 64*1024*1024; 3008 while (mapped < size) { 3009 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { 3010 while (pgsz > (size - mapped)) 3011 pgsz >>= 2; 3012 pgs[idx++] = pgsz; 3013 mapped += pgsz; 3014 } 3015 3016 /* We under-map. Correct for this. */ 3017 if (mapped < size) { 3018 while (pgs[idx - 1] == pgsz) { 3019 idx--; 3020 mapped -= pgsz; 3021 } 3022 /* XXX We may increase beyond out starting point. */ 3023 pgsz <<= 2; 3024 pgs[idx++] = pgsz; 3025 mapped += pgsz; 3026 } 3027 } 3028 3029 nents = idx; 3030 mask = pgs[0] - 1; 3031 /* Align address to the boundary */ 3032 if (va & mask) { 3033 va = (va + mask) & ~mask; 3034 pa = (pa + mask) & ~mask; 3035 } 3036 3037 for (idx = 0; idx < nents; idx++) { 3038 pgsz = pgs[idx]; 3039 debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz); 3040 tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM); 3041 pa += pgsz; 3042 va += pgsz; 3043 } 3044 3045 mapped = (va - base); 3046 debugf("mapped size 0x%08x (wasted space 0x%08x)\n", 3047 mapped, mapped - size); 3048 return (mapped); 3049 } 3050 3051 /* 3052 * TLB1 initialization routine, to be called after the very first 3053 * assembler level setup done in locore.S. 3054 */ 3055 void 3056 tlb1_init(vm_offset_t ccsrbar) 3057 { 3058 uint32_t mas0, mas1, mas3; 3059 uint32_t tsz; 3060 u_int i; 3061 3062 ccsrbar_pa = ccsrbar; 3063 3064 if (bootinfo != NULL && bootinfo[0] != 1) { 3065 tlb1_idx = *((uint16_t *)(bootinfo + 8)); 3066 } else 3067 tlb1_idx = 1; 3068 3069 /* The first entry/entries are used to map the kernel. */ 3070 for (i = 0; i < tlb1_idx; i++) { 3071 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3072 mtspr(SPR_MAS0, mas0); 3073 __asm __volatile("isync; tlbre"); 3074 3075 mas1 = mfspr(SPR_MAS1); 3076 if ((mas1 & MAS1_VALID) == 0) 3077 continue; 3078 3079 mas3 = mfspr(SPR_MAS3); 3080 3081 tlb1[i].mas1 = mas1; 3082 tlb1[i].mas2 = mfspr(SPR_MAS2); 3083 tlb1[i].mas3 = mas3; 3084 3085 if (i == 0) 3086 kernload = mas3 & MAS3_RPN; 3087 3088 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3089 kernsize += (tsz > 0) ? tsize2size(tsz) : 0; 3090 } 3091 3092 /* Map in CCSRBAR. */ 3093 tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO); 3094 3095 #ifdef SMP 3096 bp_ntlb1s = tlb1_idx; 3097 #endif 3098 3099 /* Purge the remaining entries */ 3100 for (i = tlb1_idx; i < TLB1_ENTRIES; i++) 3101 tlb1_write_entry(i); 3102 3103 /* Setup TLB miss defaults */ 3104 set_mas4_defaults(); 3105 } 3106 3107 /* 3108 * Setup MAS4 defaults. 3109 * These values are loaded to MAS0-2 on a TLB miss. 3110 */ 3111 static void 3112 set_mas4_defaults(void) 3113 { 3114 uint32_t mas4; 3115 3116 /* Defaults: TLB0, PID0, TSIZED=4K */ 3117 mas4 = MAS4_TLBSELD0; 3118 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 3119 #ifdef SMP 3120 mas4 |= MAS4_MD; 3121 #endif 3122 mtspr(SPR_MAS4, mas4); 3123 __asm __volatile("isync"); 3124 } 3125 3126 /* 3127 * Print out contents of the MAS registers for each TLB1 entry 3128 */ 3129 void 3130 tlb1_print_tlbentries(void) 3131 { 3132 uint32_t mas0, mas1, mas2, mas3, mas7; 3133 int i; 3134 3135 debugf("TLB1 entries:\n"); 3136 for (i = 0; i < TLB1_ENTRIES; i++) { 3137 3138 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3139 mtspr(SPR_MAS0, mas0); 3140 3141 __asm __volatile("isync; tlbre"); 3142 3143 mas1 = mfspr(SPR_MAS1); 3144 mas2 = mfspr(SPR_MAS2); 3145 mas3 = mfspr(SPR_MAS3); 3146 mas7 = mfspr(SPR_MAS7); 3147 3148 tlb_print_entry(i, mas1, mas2, mas3, mas7); 3149 } 3150 } 3151 3152 /* 3153 * Print out contents of the in-ram tlb1 table. 3154 */ 3155 void 3156 tlb1_print_entries(void) 3157 { 3158 int i; 3159 3160 debugf("tlb1[] table entries:\n"); 3161 for (i = 0; i < TLB1_ENTRIES; i++) 3162 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0); 3163 } 3164 3165 /* 3166 * Return 0 if the physical IO range is encompassed by one of the 3167 * the TLB1 entries, otherwise return related error code. 3168 */ 3169 static int 3170 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 3171 { 3172 uint32_t prot; 3173 vm_paddr_t pa_start; 3174 vm_paddr_t pa_end; 3175 unsigned int entry_tsize; 3176 vm_size_t entry_size; 3177 3178 *va = (vm_offset_t)NULL; 3179 3180 /* Skip invalid entries */ 3181 if (!(tlb1[i].mas1 & MAS1_VALID)) 3182 return (EINVAL); 3183 3184 /* 3185 * The entry must be cache-inhibited, guarded, and r/w 3186 * so it can function as an i/o page 3187 */ 3188 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G); 3189 if (prot != (MAS2_I | MAS2_G)) 3190 return (EPERM); 3191 3192 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW); 3193 if (prot != (MAS3_SR | MAS3_SW)) 3194 return (EPERM); 3195 3196 /* The address should be within the entry range. */ 3197 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3198 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 3199 3200 entry_size = tsize2size(entry_tsize); 3201 pa_start = tlb1[i].mas3 & MAS3_RPN; 3202 pa_end = pa_start + entry_size - 1; 3203 3204 if ((pa < pa_start) || ((pa + size) > pa_end)) 3205 return (ERANGE); 3206 3207 /* Return virtual address of this mapping. */ 3208 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start); 3209 return (0); 3210 } 3211