1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * Virtual address space layout: 38 * ----------------------------- 39 * 0x0000_0000 - 0xafff_ffff : user process 40 * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 41 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 42 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 43 * 0xc100_0000 - 0xfeef_ffff : KVA 44 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 45 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 46 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 47 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 48 * 0xfef0_0000 - 0xffff_ffff : I/O devices region 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include <sys/types.h> 55 #include <sys/param.h> 56 #include <sys/malloc.h> 57 #include <sys/ktr.h> 58 #include <sys/proc.h> 59 #include <sys/user.h> 60 #include <sys/queue.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/msgbuf.h> 64 #include <sys/lock.h> 65 #include <sys/mutex.h> 66 #include <sys/smp.h> 67 #include <sys/vmmeter.h> 68 69 #include <vm/vm.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_kern.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_extern.h> 74 #include <vm/vm_object.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_pager.h> 78 #include <vm/uma.h> 79 80 #include <machine/bootinfo.h> 81 #include <machine/cpu.h> 82 #include <machine/pcb.h> 83 #include <machine/platform.h> 84 85 #include <machine/tlb.h> 86 #include <machine/spr.h> 87 #include <machine/vmparam.h> 88 #include <machine/md_var.h> 89 #include <machine/mmuvar.h> 90 #include <machine/pmap.h> 91 #include <machine/pte.h> 92 93 #include "mmu_if.h" 94 95 #define DEBUG 96 #undef DEBUG 97 98 #ifdef DEBUG 99 #define debugf(fmt, args...) printf(fmt, ##args) 100 #else 101 #define debugf(fmt, args...) 102 #endif 103 104 #define TODO panic("%s: not implemented", __func__); 105 106 #include "opt_sched.h" 107 #ifndef SCHED_4BSD 108 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock." 109 #endif 110 extern struct mtx sched_lock; 111 112 extern int dumpsys_minidump; 113 114 extern unsigned char _etext[]; 115 extern unsigned char _end[]; 116 117 /* Kernel physical load address. */ 118 extern uint32_t kernload; 119 vm_offset_t kernstart; 120 vm_size_t kernsize; 121 122 /* Message buffer and tables. */ 123 static vm_offset_t data_start; 124 static vm_size_t data_end; 125 126 /* Phys/avail memory regions. */ 127 static struct mem_region *availmem_regions; 128 static int availmem_regions_sz; 129 static struct mem_region *physmem_regions; 130 static int physmem_regions_sz; 131 132 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 133 static vm_offset_t zero_page_va; 134 static struct mtx zero_page_mutex; 135 136 static struct mtx tlbivax_mutex; 137 138 /* 139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used 140 * by idle thred only, no lock required. 141 */ 142 static vm_offset_t zero_page_idle_va; 143 144 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 145 static vm_offset_t copy_page_src_va; 146 static vm_offset_t copy_page_dst_va; 147 static struct mtx copy_page_mutex; 148 149 /**************************************************************************/ 150 /* PMAP */ 151 /**************************************************************************/ 152 153 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 154 vm_prot_t, boolean_t); 155 156 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 157 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 158 159 /* 160 * If user pmap is processed with mmu_booke_remove and the resident count 161 * drops to 0, there are no more pages to remove, so we need not continue. 162 */ 163 #define PMAP_REMOVE_DONE(pmap) \ 164 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 165 166 extern void tlb_lock(uint32_t *); 167 extern void tlb_unlock(uint32_t *); 168 extern void tid_flush(tlbtid_t); 169 170 /**************************************************************************/ 171 /* TLB and TID handling */ 172 /**************************************************************************/ 173 174 /* Translation ID busy table */ 175 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 176 177 /* 178 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 179 * core revisions and should be read from h/w registers during early config. 180 */ 181 uint32_t tlb0_entries; 182 uint32_t tlb0_ways; 183 uint32_t tlb0_entries_per_way; 184 185 #define TLB0_ENTRIES (tlb0_entries) 186 #define TLB0_WAYS (tlb0_ways) 187 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 188 189 #define TLB1_ENTRIES 16 190 191 /* In-ram copy of the TLB1 */ 192 static tlb_entry_t tlb1[TLB1_ENTRIES]; 193 194 /* Next free entry in the TLB1 */ 195 static unsigned int tlb1_idx; 196 197 static tlbtid_t tid_alloc(struct pmap *); 198 199 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 200 201 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t); 202 static void tlb1_write_entry(unsigned int); 203 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 204 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t); 205 206 static vm_size_t tsize2size(unsigned int); 207 static unsigned int size2tsize(vm_size_t); 208 static unsigned int ilog2(unsigned int); 209 210 static void set_mas4_defaults(void); 211 212 static inline void tlb0_flush_entry(vm_offset_t); 213 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 214 215 /**************************************************************************/ 216 /* Page table management */ 217 /**************************************************************************/ 218 219 /* Data for the pv entry allocation mechanism */ 220 static uma_zone_t pvzone; 221 static struct vm_object pvzone_obj; 222 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 223 224 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 225 226 #ifndef PMAP_SHPGPERPROC 227 #define PMAP_SHPGPERPROC 200 228 #endif 229 230 static void ptbl_init(void); 231 static struct ptbl_buf *ptbl_buf_alloc(void); 232 static void ptbl_buf_free(struct ptbl_buf *); 233 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 234 235 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int); 236 static void ptbl_free(mmu_t, pmap_t, unsigned int); 237 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 238 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 239 240 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 241 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 242 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t); 243 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 244 245 static pv_entry_t pv_alloc(void); 246 static void pv_free(pv_entry_t); 247 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 248 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 249 250 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 251 #define PTBL_BUFS (128 * 16) 252 253 struct ptbl_buf { 254 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 255 vm_offset_t kva; /* va of mapping */ 256 }; 257 258 /* ptbl free list and a lock used for access synchronization. */ 259 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 260 static struct mtx ptbl_buf_freelist_lock; 261 262 /* Base address of kva space allocated fot ptbl bufs. */ 263 static vm_offset_t ptbl_buf_pool_vabase; 264 265 /* Pointer to ptbl_buf structures. */ 266 static struct ptbl_buf *ptbl_bufs; 267 268 void pmap_bootstrap_ap(volatile uint32_t *); 269 270 /* 271 * Kernel MMU interface 272 */ 273 static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 274 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 275 static void mmu_booke_clear_reference(mmu_t, vm_page_t); 276 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 277 vm_size_t, vm_offset_t); 278 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 279 static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 280 vm_prot_t, boolean_t); 281 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 282 vm_page_t, vm_prot_t); 283 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 284 vm_prot_t); 285 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 286 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 287 vm_prot_t); 288 static void mmu_booke_init(mmu_t); 289 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 290 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 291 static boolean_t mmu_booke_ts_referenced(mmu_t, vm_page_t); 292 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, 293 int); 294 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t); 295 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 296 vm_object_t, vm_pindex_t, vm_size_t); 297 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 298 static void mmu_booke_page_init(mmu_t, vm_page_t); 299 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 300 static void mmu_booke_pinit(mmu_t, pmap_t); 301 static void mmu_booke_pinit0(mmu_t, pmap_t); 302 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 303 vm_prot_t); 304 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 305 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 306 static void mmu_booke_release(mmu_t, pmap_t); 307 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 308 static void mmu_booke_remove_all(mmu_t, vm_page_t); 309 static void mmu_booke_remove_write(mmu_t, vm_page_t); 310 static void mmu_booke_zero_page(mmu_t, vm_page_t); 311 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 312 static void mmu_booke_zero_page_idle(mmu_t, vm_page_t); 313 static void mmu_booke_activate(mmu_t, struct thread *); 314 static void mmu_booke_deactivate(mmu_t, struct thread *); 315 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 316 static void *mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t); 317 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 318 static vm_offset_t mmu_booke_kextract(mmu_t, vm_offset_t); 319 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t); 320 static void mmu_booke_kremove(mmu_t, vm_offset_t); 321 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t); 322 static boolean_t mmu_booke_page_executable(mmu_t, vm_page_t); 323 static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *, 324 vm_size_t, vm_size_t *); 325 static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *, 326 vm_size_t, vm_offset_t); 327 static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *); 328 329 static mmu_method_t mmu_booke_methods[] = { 330 /* pmap dispatcher interface */ 331 MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring), 332 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 333 MMUMETHOD(mmu_clear_reference, mmu_booke_clear_reference), 334 MMUMETHOD(mmu_copy, mmu_booke_copy), 335 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 336 MMUMETHOD(mmu_enter, mmu_booke_enter), 337 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 338 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 339 MMUMETHOD(mmu_extract, mmu_booke_extract), 340 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 341 MMUMETHOD(mmu_init, mmu_booke_init), 342 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 343 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 344 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 345 MMUMETHOD(mmu_map, mmu_booke_map), 346 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 347 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 348 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 349 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 350 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 351 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 352 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 353 MMUMETHOD(mmu_protect, mmu_booke_protect), 354 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 355 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 356 MMUMETHOD(mmu_release, mmu_booke_release), 357 MMUMETHOD(mmu_remove, mmu_booke_remove), 358 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 359 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 360 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 361 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 362 MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle), 363 MMUMETHOD(mmu_activate, mmu_booke_activate), 364 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 365 366 /* Internal interfaces */ 367 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 368 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 369 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 370 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 371 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 372 /* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */ 373 MMUMETHOD(mmu_page_executable, mmu_booke_page_executable), 374 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 375 376 /* dumpsys() support */ 377 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 378 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 379 MMUMETHOD(mmu_scan_md, mmu_booke_scan_md), 380 381 { 0, 0 } 382 }; 383 384 static mmu_def_t booke_mmu = { 385 MMU_TYPE_BOOKE, 386 mmu_booke_methods, 387 0 388 }; 389 MMU_DEF(booke_mmu); 390 391 static inline void 392 tlb_miss_lock(void) 393 { 394 #ifdef SMP 395 struct pcpu *pc; 396 397 if (!smp_started) 398 return; 399 400 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 401 if (pc != pcpup) { 402 403 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 404 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 405 406 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 407 ("tlb_miss_lock: tried to lock self")); 408 409 tlb_lock(pc->pc_booke_tlb_lock); 410 411 CTR1(KTR_PMAP, "%s: locked", __func__); 412 } 413 } 414 #endif 415 } 416 417 static inline void 418 tlb_miss_unlock(void) 419 { 420 #ifdef SMP 421 struct pcpu *pc; 422 423 if (!smp_started) 424 return; 425 426 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { 427 if (pc != pcpup) { 428 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 429 __func__, pc->pc_cpuid); 430 431 tlb_unlock(pc->pc_booke_tlb_lock); 432 433 CTR1(KTR_PMAP, "%s: unlocked", __func__); 434 } 435 } 436 #endif 437 } 438 439 /* Return number of entries in TLB0. */ 440 static __inline void 441 tlb0_get_tlbconf(void) 442 { 443 uint32_t tlb0_cfg; 444 445 tlb0_cfg = mfspr(SPR_TLB0CFG); 446 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 447 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 448 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 449 } 450 451 /* Initialize pool of kva ptbl buffers. */ 452 static void 453 ptbl_init(void) 454 { 455 int i; 456 457 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 458 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 459 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 460 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 461 462 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 463 TAILQ_INIT(&ptbl_buf_freelist); 464 465 for (i = 0; i < PTBL_BUFS; i++) { 466 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 467 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 468 } 469 } 470 471 /* Get a ptbl_buf from the freelist. */ 472 static struct ptbl_buf * 473 ptbl_buf_alloc(void) 474 { 475 struct ptbl_buf *buf; 476 477 mtx_lock(&ptbl_buf_freelist_lock); 478 buf = TAILQ_FIRST(&ptbl_buf_freelist); 479 if (buf != NULL) 480 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 481 mtx_unlock(&ptbl_buf_freelist_lock); 482 483 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 484 485 return (buf); 486 } 487 488 /* Return ptbl buff to free pool. */ 489 static void 490 ptbl_buf_free(struct ptbl_buf *buf) 491 { 492 493 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 494 495 mtx_lock(&ptbl_buf_freelist_lock); 496 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 497 mtx_unlock(&ptbl_buf_freelist_lock); 498 } 499 500 /* 501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 502 */ 503 static void 504 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 505 { 506 struct ptbl_buf *pbuf; 507 508 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 509 510 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 511 512 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 513 if (pbuf->kva == (vm_offset_t)ptbl) { 514 /* Remove from pmap ptbl buf list. */ 515 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 516 517 /* Free corresponding ptbl buf. */ 518 ptbl_buf_free(pbuf); 519 break; 520 } 521 } 522 523 /* Allocate page table. */ 524 static pte_t * 525 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 526 { 527 vm_page_t mtbl[PTBL_PAGES]; 528 vm_page_t m; 529 struct ptbl_buf *pbuf; 530 unsigned int pidx; 531 pte_t *ptbl; 532 int i; 533 534 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 535 (pmap == kernel_pmap), pdir_idx); 536 537 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 538 ("ptbl_alloc: invalid pdir_idx")); 539 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 540 ("pte_alloc: valid ptbl entry exists!")); 541 542 pbuf = ptbl_buf_alloc(); 543 if (pbuf == NULL) 544 panic("pte_alloc: couldn't alloc kernel virtual memory"); 545 546 ptbl = (pte_t *)pbuf->kva; 547 548 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 549 550 /* Allocate ptbl pages, this will sleep! */ 551 for (i = 0; i < PTBL_PAGES; i++) { 552 pidx = (PTBL_PAGES * pdir_idx) + i; 553 while ((m = vm_page_alloc(NULL, pidx, 554 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 555 556 PMAP_UNLOCK(pmap); 557 vm_page_unlock_queues(); 558 VM_WAIT; 559 vm_page_lock_queues(); 560 PMAP_LOCK(pmap); 561 } 562 mtbl[i] = m; 563 } 564 565 /* Map allocated pages into kernel_pmap. */ 566 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 567 568 /* Zero whole ptbl. */ 569 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 570 571 /* Add pbuf to the pmap ptbl bufs list. */ 572 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 573 574 return (ptbl); 575 } 576 577 /* Free ptbl pages and invalidate pdir entry. */ 578 static void 579 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 580 { 581 pte_t *ptbl; 582 vm_paddr_t pa; 583 vm_offset_t va; 584 vm_page_t m; 585 int i; 586 587 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 588 (pmap == kernel_pmap), pdir_idx); 589 590 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 591 ("ptbl_free: invalid pdir_idx")); 592 593 ptbl = pmap->pm_pdir[pdir_idx]; 594 595 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 596 597 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 598 599 /* 600 * Invalidate the pdir entry as soon as possible, so that other CPUs 601 * don't attempt to look up the page tables we are releasing. 602 */ 603 mtx_lock_spin(&tlbivax_mutex); 604 tlb_miss_lock(); 605 606 pmap->pm_pdir[pdir_idx] = NULL; 607 608 tlb_miss_unlock(); 609 mtx_unlock_spin(&tlbivax_mutex); 610 611 for (i = 0; i < PTBL_PAGES; i++) { 612 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 613 pa = pte_vatopa(mmu, kernel_pmap, va); 614 m = PHYS_TO_VM_PAGE(pa); 615 vm_page_free_zero(m); 616 atomic_subtract_int(&cnt.v_wire_count, 1); 617 mmu_booke_kremove(mmu, va); 618 } 619 620 ptbl_free_pmap_ptbl(pmap, ptbl); 621 } 622 623 /* 624 * Decrement ptbl pages hold count and attempt to free ptbl pages. 625 * Called when removing pte entry from ptbl. 626 * 627 * Return 1 if ptbl pages were freed. 628 */ 629 static int 630 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 631 { 632 pte_t *ptbl; 633 vm_paddr_t pa; 634 vm_page_t m; 635 int i; 636 637 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 638 (pmap == kernel_pmap), pdir_idx); 639 640 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 641 ("ptbl_unhold: invalid pdir_idx")); 642 KASSERT((pmap != kernel_pmap), 643 ("ptbl_unhold: unholding kernel ptbl!")); 644 645 ptbl = pmap->pm_pdir[pdir_idx]; 646 647 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 648 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 649 ("ptbl_unhold: non kva ptbl")); 650 651 /* decrement hold count */ 652 for (i = 0; i < PTBL_PAGES; i++) { 653 pa = pte_vatopa(mmu, kernel_pmap, 654 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 655 m = PHYS_TO_VM_PAGE(pa); 656 m->wire_count--; 657 } 658 659 /* 660 * Free ptbl pages if there are no pte etries in this ptbl. 661 * wire_count has the same value for all ptbl pages, so check the last 662 * page. 663 */ 664 if (m->wire_count == 0) { 665 ptbl_free(mmu, pmap, pdir_idx); 666 667 //debugf("ptbl_unhold: e (freed ptbl)\n"); 668 return (1); 669 } 670 671 return (0); 672 } 673 674 /* 675 * Increment hold count for ptbl pages. This routine is used when a new pte 676 * entry is being inserted into the ptbl. 677 */ 678 static void 679 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 680 { 681 vm_paddr_t pa; 682 pte_t *ptbl; 683 vm_page_t m; 684 int i; 685 686 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 687 pdir_idx); 688 689 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 690 ("ptbl_hold: invalid pdir_idx")); 691 KASSERT((pmap != kernel_pmap), 692 ("ptbl_hold: holding kernel ptbl!")); 693 694 ptbl = pmap->pm_pdir[pdir_idx]; 695 696 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 697 698 for (i = 0; i < PTBL_PAGES; i++) { 699 pa = pte_vatopa(mmu, kernel_pmap, 700 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 701 m = PHYS_TO_VM_PAGE(pa); 702 m->wire_count++; 703 } 704 } 705 706 /* Allocate pv_entry structure. */ 707 pv_entry_t 708 pv_alloc(void) 709 { 710 pv_entry_t pv; 711 712 pv_entry_count++; 713 if (pv_entry_count > pv_entry_high_water) 714 pagedaemon_wakeup(); 715 pv = uma_zalloc(pvzone, M_NOWAIT); 716 717 return (pv); 718 } 719 720 /* Free pv_entry structure. */ 721 static __inline void 722 pv_free(pv_entry_t pve) 723 { 724 725 pv_entry_count--; 726 uma_zfree(pvzone, pve); 727 } 728 729 730 /* Allocate and initialize pv_entry structure. */ 731 static void 732 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 733 { 734 pv_entry_t pve; 735 736 //int su = (pmap == kernel_pmap); 737 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 738 // (u_int32_t)pmap, va, (u_int32_t)m); 739 740 pve = pv_alloc(); 741 if (pve == NULL) 742 panic("pv_insert: no pv entries!"); 743 744 pve->pv_pmap = pmap; 745 pve->pv_va = va; 746 747 /* add to pv_list */ 748 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 749 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 750 751 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 752 753 //debugf("pv_insert: e\n"); 754 } 755 756 /* Destroy pv entry. */ 757 static void 758 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 759 { 760 pv_entry_t pve; 761 762 //int su = (pmap == kernel_pmap); 763 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 764 765 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 766 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 767 768 /* find pv entry */ 769 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 770 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 771 /* remove from pv_list */ 772 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 773 if (TAILQ_EMPTY(&m->md.pv_list)) 774 vm_page_flag_clear(m, PG_WRITEABLE); 775 776 /* free pv entry struct */ 777 pv_free(pve); 778 break; 779 } 780 } 781 782 //debugf("pv_remove: e\n"); 783 } 784 785 /* 786 * Clean pte entry, try to free page table page if requested. 787 * 788 * Return 1 if ptbl pages were freed, otherwise return 0. 789 */ 790 static int 791 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 792 { 793 unsigned int pdir_idx = PDIR_IDX(va); 794 unsigned int ptbl_idx = PTBL_IDX(va); 795 vm_page_t m; 796 pte_t *ptbl; 797 pte_t *pte; 798 799 //int su = (pmap == kernel_pmap); 800 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 801 // su, (u_int32_t)pmap, va, flags); 802 803 ptbl = pmap->pm_pdir[pdir_idx]; 804 KASSERT(ptbl, ("pte_remove: null ptbl")); 805 806 pte = &ptbl[ptbl_idx]; 807 808 if (pte == NULL || !PTE_ISVALID(pte)) 809 return (0); 810 811 if (PTE_ISWIRED(pte)) 812 pmap->pm_stats.wired_count--; 813 814 /* Handle managed entry. */ 815 if (PTE_ISMANAGED(pte)) { 816 /* Get vm_page_t for mapped pte. */ 817 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 818 819 if (PTE_ISMODIFIED(pte)) 820 vm_page_dirty(m); 821 822 if (PTE_ISREFERENCED(pte)) 823 vm_page_flag_set(m, PG_REFERENCED); 824 825 pv_remove(pmap, va, m); 826 } 827 828 mtx_lock_spin(&tlbivax_mutex); 829 tlb_miss_lock(); 830 831 tlb0_flush_entry(va); 832 pte->flags = 0; 833 pte->rpn = 0; 834 835 tlb_miss_unlock(); 836 mtx_unlock_spin(&tlbivax_mutex); 837 838 pmap->pm_stats.resident_count--; 839 840 if (flags & PTBL_UNHOLD) { 841 //debugf("pte_remove: e (unhold)\n"); 842 return (ptbl_unhold(mmu, pmap, pdir_idx)); 843 } 844 845 //debugf("pte_remove: e\n"); 846 return (0); 847 } 848 849 /* 850 * Insert PTE for a given page and virtual address. 851 */ 852 static void 853 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags) 854 { 855 unsigned int pdir_idx = PDIR_IDX(va); 856 unsigned int ptbl_idx = PTBL_IDX(va); 857 pte_t *ptbl, *pte; 858 859 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 860 pmap == kernel_pmap, pmap, va); 861 862 /* Get the page table pointer. */ 863 ptbl = pmap->pm_pdir[pdir_idx]; 864 865 if (ptbl == NULL) { 866 /* Allocate page table pages. */ 867 ptbl = ptbl_alloc(mmu, pmap, pdir_idx); 868 } else { 869 /* 870 * Check if there is valid mapping for requested 871 * va, if there is, remove it. 872 */ 873 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 874 if (PTE_ISVALID(pte)) { 875 pte_remove(mmu, pmap, va, PTBL_HOLD); 876 } else { 877 /* 878 * pte is not used, increment hold count 879 * for ptbl pages. 880 */ 881 if (pmap != kernel_pmap) 882 ptbl_hold(mmu, pmap, pdir_idx); 883 } 884 } 885 886 /* 887 * Insert pv_entry into pv_list for mapped page if part of managed 888 * memory. 889 */ 890 if ((m->flags & PG_FICTITIOUS) == 0) { 891 if ((m->flags & PG_UNMANAGED) == 0) { 892 flags |= PTE_MANAGED; 893 894 /* Create and insert pv entry. */ 895 pv_insert(pmap, va, m); 896 } 897 } 898 899 pmap->pm_stats.resident_count++; 900 901 mtx_lock_spin(&tlbivax_mutex); 902 tlb_miss_lock(); 903 904 tlb0_flush_entry(va); 905 if (pmap->pm_pdir[pdir_idx] == NULL) { 906 /* 907 * If we just allocated a new page table, hook it in 908 * the pdir. 909 */ 910 pmap->pm_pdir[pdir_idx] = ptbl; 911 } 912 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 913 pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK; 914 pte->flags |= (PTE_VALID | flags); 915 916 tlb_miss_unlock(); 917 mtx_unlock_spin(&tlbivax_mutex); 918 } 919 920 /* Return the pa for the given pmap/va. */ 921 static vm_paddr_t 922 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 923 { 924 vm_paddr_t pa = 0; 925 pte_t *pte; 926 927 pte = pte_find(mmu, pmap, va); 928 if ((pte != NULL) && PTE_ISVALID(pte)) 929 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 930 return (pa); 931 } 932 933 /* Get a pointer to a PTE in a page table. */ 934 static pte_t * 935 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 936 { 937 unsigned int pdir_idx = PDIR_IDX(va); 938 unsigned int ptbl_idx = PTBL_IDX(va); 939 940 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 941 942 if (pmap->pm_pdir[pdir_idx]) 943 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 944 945 return (NULL); 946 } 947 948 /**************************************************************************/ 949 /* PMAP related */ 950 /**************************************************************************/ 951 952 /* 953 * This is called during e500_init, before the system is really initialized. 954 */ 955 static void 956 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 957 { 958 vm_offset_t phys_kernelend; 959 struct mem_region *mp, *mp1; 960 int cnt, i, j; 961 u_int s, e, sz; 962 u_int phys_avail_count; 963 vm_size_t physsz, hwphyssz, kstack0_sz; 964 vm_offset_t kernel_pdir, kstack0, va; 965 vm_paddr_t kstack0_phys; 966 void *dpcpu; 967 pte_t *pte; 968 969 debugf("mmu_booke_bootstrap: entered\n"); 970 971 /* Initialize invalidation mutex */ 972 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 973 974 /* Read TLB0 size and associativity. */ 975 tlb0_get_tlbconf(); 976 977 /* Align kernel start and end address (kernel image). */ 978 kernstart = trunc_page(start); 979 data_start = round_page(kernelend); 980 kernsize = data_start - kernstart; 981 982 data_end = data_start; 983 984 /* Allocate space for the message buffer. */ 985 msgbufp = (struct msgbuf *)data_end; 986 data_end += MSGBUF_SIZE; 987 debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, 988 data_end); 989 990 data_end = round_page(data_end); 991 992 /* Allocate the dynamic per-cpu area. */ 993 dpcpu = (void *)data_end; 994 data_end += DPCPU_SIZE; 995 dpcpu_init(dpcpu, 0); 996 997 /* Allocate space for ptbl_bufs. */ 998 ptbl_bufs = (struct ptbl_buf *)data_end; 999 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1000 debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, 1001 data_end); 1002 1003 data_end = round_page(data_end); 1004 1005 /* Allocate PTE tables for kernel KVA. */ 1006 kernel_pdir = data_end; 1007 kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS + 1008 PDIR_SIZE - 1) / PDIR_SIZE; 1009 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1010 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1011 debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); 1012 1013 debugf(" data_end: 0x%08x\n", data_end); 1014 if (data_end - kernstart > 0x1000000) { 1015 data_end = (data_end + 0x3fffff) & ~0x3fffff; 1016 tlb1_mapin_region(kernstart + 0x1000000, 1017 kernload + 0x1000000, data_end - kernstart - 0x1000000); 1018 } else 1019 data_end = (data_end + 0xffffff) & ~0xffffff; 1020 1021 debugf(" updated data_end: 0x%08x\n", data_end); 1022 1023 kernsize += data_end - data_start; 1024 1025 /* 1026 * Clear the structures - note we can only do it safely after the 1027 * possible additional TLB1 translations are in place (above) so that 1028 * all range up to the currently calculated 'data_end' is covered. 1029 */ 1030 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1031 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1032 1033 /*******************************************************/ 1034 /* Set the start and end of kva. */ 1035 /*******************************************************/ 1036 virtual_avail = round_page(data_end); 1037 virtual_end = VM_MAX_KERNEL_ADDRESS; 1038 1039 /* Allocate KVA space for page zero/copy operations. */ 1040 zero_page_va = virtual_avail; 1041 virtual_avail += PAGE_SIZE; 1042 zero_page_idle_va = virtual_avail; 1043 virtual_avail += PAGE_SIZE; 1044 copy_page_src_va = virtual_avail; 1045 virtual_avail += PAGE_SIZE; 1046 copy_page_dst_va = virtual_avail; 1047 virtual_avail += PAGE_SIZE; 1048 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1049 debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va); 1050 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1051 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1052 1053 /* Initialize page zero/copy mutexes. */ 1054 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1055 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1056 1057 /* Allocate KVA space for ptbl bufs. */ 1058 ptbl_buf_pool_vabase = virtual_avail; 1059 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1060 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1061 ptbl_buf_pool_vabase, virtual_avail); 1062 1063 /* Calculate corresponding physical addresses for the kernel region. */ 1064 phys_kernelend = kernload + kernsize; 1065 debugf("kernel image and allocated data:\n"); 1066 debugf(" kernload = 0x%08x\n", kernload); 1067 debugf(" kernstart = 0x%08x\n", kernstart); 1068 debugf(" kernsize = 0x%08x\n", kernsize); 1069 1070 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1071 panic("mmu_booke_bootstrap: phys_avail too small"); 1072 1073 /* 1074 * Remove kernel physical address range from avail regions list. Page 1075 * align all regions. Non-page aligned memory isn't very interesting 1076 * to us. Also, sort the entries for ascending addresses. 1077 */ 1078 1079 /* Retrieve phys/avail mem regions */ 1080 mem_regions(&physmem_regions, &physmem_regions_sz, 1081 &availmem_regions, &availmem_regions_sz); 1082 sz = 0; 1083 cnt = availmem_regions_sz; 1084 debugf("processing avail regions:\n"); 1085 for (mp = availmem_regions; mp->mr_size; mp++) { 1086 s = mp->mr_start; 1087 e = mp->mr_start + mp->mr_size; 1088 debugf(" %08x-%08x -> ", s, e); 1089 /* Check whether this region holds all of the kernel. */ 1090 if (s < kernload && e > phys_kernelend) { 1091 availmem_regions[cnt].mr_start = phys_kernelend; 1092 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1093 e = kernload; 1094 } 1095 /* Look whether this regions starts within the kernel. */ 1096 if (s >= kernload && s < phys_kernelend) { 1097 if (e <= phys_kernelend) 1098 goto empty; 1099 s = phys_kernelend; 1100 } 1101 /* Now look whether this region ends within the kernel. */ 1102 if (e > kernload && e <= phys_kernelend) { 1103 if (s >= kernload) 1104 goto empty; 1105 e = kernload; 1106 } 1107 /* Now page align the start and size of the region. */ 1108 s = round_page(s); 1109 e = trunc_page(e); 1110 if (e < s) 1111 e = s; 1112 sz = e - s; 1113 debugf("%08x-%08x = %x\n", s, e, sz); 1114 1115 /* Check whether some memory is left here. */ 1116 if (sz == 0) { 1117 empty: 1118 memmove(mp, mp + 1, 1119 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1120 cnt--; 1121 mp--; 1122 continue; 1123 } 1124 1125 /* Do an insertion sort. */ 1126 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1127 if (s < mp1->mr_start) 1128 break; 1129 if (mp1 < mp) { 1130 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1131 mp1->mr_start = s; 1132 mp1->mr_size = sz; 1133 } else { 1134 mp->mr_start = s; 1135 mp->mr_size = sz; 1136 } 1137 } 1138 availmem_regions_sz = cnt; 1139 1140 /*******************************************************/ 1141 /* Steal physical memory for kernel stack from the end */ 1142 /* of the first avail region */ 1143 /*******************************************************/ 1144 kstack0_sz = KSTACK_PAGES * PAGE_SIZE; 1145 kstack0_phys = availmem_regions[0].mr_start + 1146 availmem_regions[0].mr_size; 1147 kstack0_phys -= kstack0_sz; 1148 availmem_regions[0].mr_size -= kstack0_sz; 1149 1150 /*******************************************************/ 1151 /* Fill in phys_avail table, based on availmem_regions */ 1152 /*******************************************************/ 1153 phys_avail_count = 0; 1154 physsz = 0; 1155 hwphyssz = 0; 1156 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1157 1158 debugf("fill in phys_avail:\n"); 1159 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1160 1161 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", 1162 availmem_regions[i].mr_start, 1163 availmem_regions[i].mr_start + 1164 availmem_regions[i].mr_size, 1165 availmem_regions[i].mr_size); 1166 1167 if (hwphyssz != 0 && 1168 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1169 debugf(" hw.physmem adjust\n"); 1170 if (physsz < hwphyssz) { 1171 phys_avail[j] = availmem_regions[i].mr_start; 1172 phys_avail[j + 1] = 1173 availmem_regions[i].mr_start + 1174 hwphyssz - physsz; 1175 physsz = hwphyssz; 1176 phys_avail_count++; 1177 } 1178 break; 1179 } 1180 1181 phys_avail[j] = availmem_regions[i].mr_start; 1182 phys_avail[j + 1] = availmem_regions[i].mr_start + 1183 availmem_regions[i].mr_size; 1184 phys_avail_count++; 1185 physsz += availmem_regions[i].mr_size; 1186 } 1187 physmem = btoc(physsz); 1188 1189 /* Calculate the last available physical address. */ 1190 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1191 ; 1192 Maxmem = powerpc_btop(phys_avail[i + 1]); 1193 1194 debugf("Maxmem = 0x%08lx\n", Maxmem); 1195 debugf("phys_avail_count = %d\n", phys_avail_count); 1196 debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem, 1197 physmem); 1198 1199 /*******************************************************/ 1200 /* Initialize (statically allocated) kernel pmap. */ 1201 /*******************************************************/ 1202 PMAP_LOCK_INIT(kernel_pmap); 1203 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1204 1205 debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); 1206 debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); 1207 debugf("kernel pdir range: 0x%08x - 0x%08x\n", 1208 kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); 1209 1210 /* Initialize kernel pdir */ 1211 for (i = 0; i < kernel_ptbls; i++) 1212 kernel_pmap->pm_pdir[kptbl_min + i] = 1213 (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1214 1215 for (i = 0; i < MAXCPU; i++) { 1216 kernel_pmap->pm_tid[i] = TID_KERNEL; 1217 1218 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1219 tidbusy[i][0] = kernel_pmap; 1220 } 1221 1222 /* 1223 * Fill in PTEs covering kernel code and data. They are not required 1224 * for address translation, as this area is covered by static TLB1 1225 * entries, but for pte_vatopa() to work correctly with kernel area 1226 * addresses. 1227 */ 1228 for (va = KERNBASE; va < data_end; va += PAGE_SIZE) { 1229 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1230 pte->rpn = kernload + (va - KERNBASE); 1231 pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1232 PTE_VALID; 1233 } 1234 /* Mark kernel_pmap active on all CPUs */ 1235 kernel_pmap->pm_active = ~0; 1236 1237 /*******************************************************/ 1238 /* Final setup */ 1239 /*******************************************************/ 1240 1241 /* Enter kstack0 into kernel map, provide guard page */ 1242 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1243 thread0.td_kstack = kstack0; 1244 thread0.td_kstack_pages = KSTACK_PAGES; 1245 1246 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1247 debugf("kstack0_phys at 0x%08x - 0x%08x\n", 1248 kstack0_phys, kstack0_phys + kstack0_sz); 1249 debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); 1250 1251 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 1252 for (i = 0; i < KSTACK_PAGES; i++) { 1253 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 1254 kstack0 += PAGE_SIZE; 1255 kstack0_phys += PAGE_SIZE; 1256 } 1257 1258 debugf("virtual_avail = %08x\n", virtual_avail); 1259 debugf("virtual_end = %08x\n", virtual_end); 1260 1261 debugf("mmu_booke_bootstrap: exit\n"); 1262 } 1263 1264 void 1265 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 1266 { 1267 int i; 1268 1269 /* 1270 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 1271 * have the snapshot of its contents in the s/w tlb1[] table, so use 1272 * these values directly to (re)program AP's TLB1 hardware. 1273 */ 1274 for (i = 0; i < tlb1_idx; i ++) { 1275 /* Skip invalid entries */ 1276 if (!(tlb1[i].mas1 & MAS1_VALID)) 1277 continue; 1278 1279 tlb1_write_entry(i); 1280 } 1281 1282 set_mas4_defaults(); 1283 } 1284 1285 /* 1286 * Get the physical page address for the given pmap/virtual address. 1287 */ 1288 static vm_paddr_t 1289 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1290 { 1291 vm_paddr_t pa; 1292 1293 PMAP_LOCK(pmap); 1294 pa = pte_vatopa(mmu, pmap, va); 1295 PMAP_UNLOCK(pmap); 1296 1297 return (pa); 1298 } 1299 1300 /* 1301 * Extract the physical page address associated with the given 1302 * kernel virtual address. 1303 */ 1304 static vm_paddr_t 1305 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 1306 { 1307 1308 return (pte_vatopa(mmu, kernel_pmap, va)); 1309 } 1310 1311 /* 1312 * Initialize the pmap module. 1313 * Called by vm_init, to initialize any structures that the pmap 1314 * system needs to map virtual memory. 1315 */ 1316 static void 1317 mmu_booke_init(mmu_t mmu) 1318 { 1319 int shpgperproc = PMAP_SHPGPERPROC; 1320 1321 /* 1322 * Initialize the address space (zone) for the pv entries. Set a 1323 * high water mark so that the system can recover from excessive 1324 * numbers of pv entries. 1325 */ 1326 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 1327 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 1328 1329 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 1330 pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; 1331 1332 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 1333 pv_entry_high_water = 9 * (pv_entry_max / 10); 1334 1335 uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max); 1336 1337 /* Pre-fill pvzone with initial number of pv entries. */ 1338 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 1339 1340 /* Initialize ptbl allocation. */ 1341 ptbl_init(); 1342 } 1343 1344 /* 1345 * Map a list of wired pages into kernel virtual address space. This is 1346 * intended for temporary mappings which do not need page modification or 1347 * references recorded. Existing mappings in the region are overwritten. 1348 */ 1349 static void 1350 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1351 { 1352 vm_offset_t va; 1353 1354 va = sva; 1355 while (count-- > 0) { 1356 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1357 va += PAGE_SIZE; 1358 m++; 1359 } 1360 } 1361 1362 /* 1363 * Remove page mappings from kernel virtual address space. Intended for 1364 * temporary mappings entered by mmu_booke_qenter. 1365 */ 1366 static void 1367 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 1368 { 1369 vm_offset_t va; 1370 1371 va = sva; 1372 while (count-- > 0) { 1373 mmu_booke_kremove(mmu, va); 1374 va += PAGE_SIZE; 1375 } 1376 } 1377 1378 /* 1379 * Map a wired page into kernel virtual address space. 1380 */ 1381 static void 1382 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa) 1383 { 1384 unsigned int pdir_idx = PDIR_IDX(va); 1385 unsigned int ptbl_idx = PTBL_IDX(va); 1386 uint32_t flags; 1387 pte_t *pte; 1388 1389 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1390 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 1391 1392 flags = 0; 1393 flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID); 1394 flags |= PTE_M; 1395 1396 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1397 1398 mtx_lock_spin(&tlbivax_mutex); 1399 tlb_miss_lock(); 1400 1401 if (PTE_ISVALID(pte)) { 1402 1403 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 1404 1405 /* Flush entry from TLB0 */ 1406 tlb0_flush_entry(va); 1407 } 1408 1409 pte->rpn = pa & ~PTE_PA_MASK; 1410 pte->flags = flags; 1411 1412 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 1413 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 1414 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 1415 1416 /* Flush the real memory from the instruction cache. */ 1417 if ((flags & (PTE_I | PTE_G)) == 0) { 1418 __syncicache((void *)va, PAGE_SIZE); 1419 } 1420 1421 tlb_miss_unlock(); 1422 mtx_unlock_spin(&tlbivax_mutex); 1423 } 1424 1425 /* 1426 * Remove a page from kernel page table. 1427 */ 1428 static void 1429 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 1430 { 1431 unsigned int pdir_idx = PDIR_IDX(va); 1432 unsigned int ptbl_idx = PTBL_IDX(va); 1433 pte_t *pte; 1434 1435 // CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va)); 1436 1437 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 1438 (va <= VM_MAX_KERNEL_ADDRESS)), 1439 ("mmu_booke_kremove: invalid va")); 1440 1441 pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]); 1442 1443 if (!PTE_ISVALID(pte)) { 1444 1445 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 1446 1447 return; 1448 } 1449 1450 mtx_lock_spin(&tlbivax_mutex); 1451 tlb_miss_lock(); 1452 1453 /* Invalidate entry in TLB0, update PTE. */ 1454 tlb0_flush_entry(va); 1455 pte->flags = 0; 1456 pte->rpn = 0; 1457 1458 tlb_miss_unlock(); 1459 mtx_unlock_spin(&tlbivax_mutex); 1460 } 1461 1462 /* 1463 * Initialize pmap associated with process 0. 1464 */ 1465 static void 1466 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 1467 { 1468 1469 mmu_booke_pinit(mmu, pmap); 1470 PCPU_SET(curpmap, pmap); 1471 } 1472 1473 /* 1474 * Initialize a preallocated and zeroed pmap structure, 1475 * such as one in a vmspace structure. 1476 */ 1477 static void 1478 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 1479 { 1480 int i; 1481 1482 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 1483 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 1484 1485 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 1486 1487 PMAP_LOCK_INIT(pmap); 1488 for (i = 0; i < MAXCPU; i++) 1489 pmap->pm_tid[i] = TID_NONE; 1490 pmap->pm_active = 0; 1491 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 1492 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 1493 TAILQ_INIT(&pmap->pm_ptbl_list); 1494 } 1495 1496 /* 1497 * Release any resources held by the given physical map. 1498 * Called when a pmap initialized by mmu_booke_pinit is being released. 1499 * Should only be called if the map contains no valid mappings. 1500 */ 1501 static void 1502 mmu_booke_release(mmu_t mmu, pmap_t pmap) 1503 { 1504 1505 printf("mmu_booke_release: s\n"); 1506 1507 KASSERT(pmap->pm_stats.resident_count == 0, 1508 ("pmap_release: pmap resident count %ld != 0", 1509 pmap->pm_stats.resident_count)); 1510 1511 PMAP_LOCK_DESTROY(pmap); 1512 } 1513 1514 /* 1515 * Insert the given physical page at the specified virtual address in the 1516 * target physical map with the protection requested. If specified the page 1517 * will be wired down. 1518 */ 1519 static void 1520 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1521 vm_prot_t prot, boolean_t wired) 1522 { 1523 1524 vm_page_lock_queues(); 1525 PMAP_LOCK(pmap); 1526 mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired); 1527 vm_page_unlock_queues(); 1528 PMAP_UNLOCK(pmap); 1529 } 1530 1531 static void 1532 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1533 vm_prot_t prot, boolean_t wired) 1534 { 1535 pte_t *pte; 1536 vm_paddr_t pa; 1537 uint32_t flags; 1538 int su, sync; 1539 1540 pa = VM_PAGE_TO_PHYS(m); 1541 su = (pmap == kernel_pmap); 1542 sync = 0; 1543 1544 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 1545 // "pa=0x%08x prot=0x%08x wired=%d)\n", 1546 // (u_int32_t)pmap, su, pmap->pm_tid, 1547 // (u_int32_t)m, va, pa, prot, wired); 1548 1549 if (su) { 1550 KASSERT(((va >= virtual_avail) && 1551 (va <= VM_MAX_KERNEL_ADDRESS)), 1552 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 1553 } else { 1554 KASSERT((va <= VM_MAXUSER_ADDRESS), 1555 ("mmu_booke_enter_locked: user pmap, non user va")); 1556 } 1557 1558 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1559 1560 /* 1561 * If there is an existing mapping, and the physical address has not 1562 * changed, must be protection or wiring change. 1563 */ 1564 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 1565 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 1566 1567 /* 1568 * Before actually updating pte->flags we calculate and 1569 * prepare its new value in a helper var. 1570 */ 1571 flags = pte->flags; 1572 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 1573 1574 /* Wiring change, just update stats. */ 1575 if (wired) { 1576 if (!PTE_ISWIRED(pte)) { 1577 flags |= PTE_WIRED; 1578 pmap->pm_stats.wired_count++; 1579 } 1580 } else { 1581 if (PTE_ISWIRED(pte)) { 1582 flags &= ~PTE_WIRED; 1583 pmap->pm_stats.wired_count--; 1584 } 1585 } 1586 1587 if (prot & VM_PROT_WRITE) { 1588 /* Add write permissions. */ 1589 flags |= PTE_SW; 1590 if (!su) 1591 flags |= PTE_UW; 1592 1593 vm_page_flag_set(m, PG_WRITEABLE); 1594 } else { 1595 /* Handle modified pages, sense modify status. */ 1596 1597 /* 1598 * The PTE_MODIFIED flag could be set by underlying 1599 * TLB misses since we last read it (above), possibly 1600 * other CPUs could update it so we check in the PTE 1601 * directly rather than rely on that saved local flags 1602 * copy. 1603 */ 1604 if (PTE_ISMODIFIED(pte)) 1605 vm_page_dirty(m); 1606 } 1607 1608 if (prot & VM_PROT_EXECUTE) { 1609 flags |= PTE_SX; 1610 if (!su) 1611 flags |= PTE_UX; 1612 1613 /* 1614 * Check existing flags for execute permissions: if we 1615 * are turning execute permissions on, icache should 1616 * be flushed. 1617 */ 1618 if ((flags & (PTE_UX | PTE_SX)) == 0) 1619 sync++; 1620 } 1621 1622 flags &= ~PTE_REFERENCED; 1623 1624 /* 1625 * The new flags value is all calculated -- only now actually 1626 * update the PTE. 1627 */ 1628 mtx_lock_spin(&tlbivax_mutex); 1629 tlb_miss_lock(); 1630 1631 tlb0_flush_entry(va); 1632 pte->flags = flags; 1633 1634 tlb_miss_unlock(); 1635 mtx_unlock_spin(&tlbivax_mutex); 1636 1637 } else { 1638 /* 1639 * If there is an existing mapping, but it's for a different 1640 * physical address, pte_enter() will delete the old mapping. 1641 */ 1642 //if ((pte != NULL) && PTE_ISVALID(pte)) 1643 // debugf("mmu_booke_enter_locked: replace\n"); 1644 //else 1645 // debugf("mmu_booke_enter_locked: new\n"); 1646 1647 /* Now set up the flags and install the new mapping. */ 1648 flags = (PTE_SR | PTE_VALID); 1649 flags |= PTE_M; 1650 1651 if (!su) 1652 flags |= PTE_UR; 1653 1654 if (prot & VM_PROT_WRITE) { 1655 flags |= PTE_SW; 1656 if (!su) 1657 flags |= PTE_UW; 1658 1659 vm_page_flag_set(m, PG_WRITEABLE); 1660 } 1661 1662 if (prot & VM_PROT_EXECUTE) { 1663 flags |= PTE_SX; 1664 if (!su) 1665 flags |= PTE_UX; 1666 } 1667 1668 /* If its wired update stats. */ 1669 if (wired) { 1670 pmap->pm_stats.wired_count++; 1671 flags |= PTE_WIRED; 1672 } 1673 1674 pte_enter(mmu, pmap, m, va, flags); 1675 1676 /* Flush the real memory from the instruction cache. */ 1677 if (prot & VM_PROT_EXECUTE) 1678 sync++; 1679 } 1680 1681 if (sync && (su || pmap == PCPU_GET(curpmap))) { 1682 __syncicache((void *)va, PAGE_SIZE); 1683 sync = 0; 1684 } 1685 1686 if (sync) { 1687 /* Create a temporary mapping. */ 1688 pmap = PCPU_GET(curpmap); 1689 1690 va = 0; 1691 pte = pte_find(mmu, pmap, va); 1692 KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__)); 1693 1694 flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M; 1695 1696 pte_enter(mmu, pmap, m, va, flags); 1697 __syncicache((void *)va, PAGE_SIZE); 1698 pte_remove(mmu, pmap, va, PTBL_UNHOLD); 1699 } 1700 } 1701 1702 /* 1703 * Maps a sequence of resident pages belonging to the same object. 1704 * The sequence begins with the given page m_start. This page is 1705 * mapped at the given virtual address start. Each subsequent page is 1706 * mapped at a virtual address that is offset from start by the same 1707 * amount as the page is offset from m_start within the object. The 1708 * last page in the sequence is the page with the largest offset from 1709 * m_start that can be mapped at a virtual address less than the given 1710 * virtual address end. Not every virtual page between start and end 1711 * is mapped; only those for which a resident page exists with the 1712 * corresponding offset from m_start are mapped. 1713 */ 1714 static void 1715 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 1716 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 1717 { 1718 vm_page_t m; 1719 vm_pindex_t diff, psize; 1720 1721 psize = atop(end - start); 1722 m = m_start; 1723 PMAP_LOCK(pmap); 1724 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1725 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 1726 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1727 m = TAILQ_NEXT(m, listq); 1728 } 1729 PMAP_UNLOCK(pmap); 1730 } 1731 1732 static void 1733 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1734 vm_prot_t prot) 1735 { 1736 1737 PMAP_LOCK(pmap); 1738 mmu_booke_enter_locked(mmu, pmap, va, m, 1739 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1740 PMAP_UNLOCK(pmap); 1741 } 1742 1743 /* 1744 * Remove the given range of addresses from the specified map. 1745 * 1746 * It is assumed that the start and end are properly rounded to the page size. 1747 */ 1748 static void 1749 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 1750 { 1751 pte_t *pte; 1752 uint8_t hold_flag; 1753 1754 int su = (pmap == kernel_pmap); 1755 1756 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 1757 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 1758 1759 if (su) { 1760 KASSERT(((va >= virtual_avail) && 1761 (va <= VM_MAX_KERNEL_ADDRESS)), 1762 ("mmu_booke_remove: kernel pmap, non kernel va")); 1763 } else { 1764 KASSERT((va <= VM_MAXUSER_ADDRESS), 1765 ("mmu_booke_remove: user pmap, non user va")); 1766 } 1767 1768 if (PMAP_REMOVE_DONE(pmap)) { 1769 //debugf("mmu_booke_remove: e (empty)\n"); 1770 return; 1771 } 1772 1773 hold_flag = PTBL_HOLD_FLAG(pmap); 1774 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 1775 1776 vm_page_lock_queues(); 1777 PMAP_LOCK(pmap); 1778 for (; va < endva; va += PAGE_SIZE) { 1779 pte = pte_find(mmu, pmap, va); 1780 if ((pte != NULL) && PTE_ISVALID(pte)) 1781 pte_remove(mmu, pmap, va, hold_flag); 1782 } 1783 PMAP_UNLOCK(pmap); 1784 vm_page_unlock_queues(); 1785 1786 //debugf("mmu_booke_remove: e\n"); 1787 } 1788 1789 /* 1790 * Remove physical page from all pmaps in which it resides. 1791 */ 1792 static void 1793 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 1794 { 1795 pv_entry_t pv, pvn; 1796 uint8_t hold_flag; 1797 1798 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1799 1800 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 1801 pvn = TAILQ_NEXT(pv, pv_link); 1802 1803 PMAP_LOCK(pv->pv_pmap); 1804 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 1805 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 1806 PMAP_UNLOCK(pv->pv_pmap); 1807 } 1808 vm_page_flag_clear(m, PG_WRITEABLE); 1809 } 1810 1811 /* 1812 * Map a range of physical addresses into kernel virtual address space. 1813 */ 1814 static vm_offset_t 1815 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start, 1816 vm_offset_t pa_end, int prot) 1817 { 1818 vm_offset_t sva = *virt; 1819 vm_offset_t va = sva; 1820 1821 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 1822 // sva, pa_start, pa_end); 1823 1824 while (pa_start < pa_end) { 1825 mmu_booke_kenter(mmu, va, pa_start); 1826 va += PAGE_SIZE; 1827 pa_start += PAGE_SIZE; 1828 } 1829 *virt = va; 1830 1831 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 1832 return (sva); 1833 } 1834 1835 /* 1836 * The pmap must be activated before it's address space can be accessed in any 1837 * way. 1838 */ 1839 static void 1840 mmu_booke_activate(mmu_t mmu, struct thread *td) 1841 { 1842 pmap_t pmap; 1843 1844 pmap = &td->td_proc->p_vmspace->vm_pmap; 1845 1846 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 1847 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1848 1849 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 1850 1851 mtx_lock_spin(&sched_lock); 1852 1853 atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask)); 1854 PCPU_SET(curpmap, pmap); 1855 1856 if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE) 1857 tid_alloc(pmap); 1858 1859 /* Load PID0 register with pmap tid value. */ 1860 mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]); 1861 __asm __volatile("isync"); 1862 1863 mtx_unlock_spin(&sched_lock); 1864 1865 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 1866 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 1867 } 1868 1869 /* 1870 * Deactivate the specified process's address space. 1871 */ 1872 static void 1873 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 1874 { 1875 pmap_t pmap; 1876 1877 pmap = &td->td_proc->p_vmspace->vm_pmap; 1878 1879 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 1880 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 1881 1882 atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask)); 1883 PCPU_SET(curpmap, NULL); 1884 } 1885 1886 /* 1887 * Copy the range specified by src_addr/len 1888 * from the source map to the range dst_addr/len 1889 * in the destination map. 1890 * 1891 * This routine is only advisory and need not do anything. 1892 */ 1893 static void 1894 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 1895 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 1896 { 1897 1898 } 1899 1900 /* 1901 * Set the physical protection on the specified range of this map as requested. 1902 */ 1903 static void 1904 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 1905 vm_prot_t prot) 1906 { 1907 vm_offset_t va; 1908 vm_page_t m; 1909 pte_t *pte; 1910 1911 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1912 mmu_booke_remove(mmu, pmap, sva, eva); 1913 return; 1914 } 1915 1916 if (prot & VM_PROT_WRITE) 1917 return; 1918 1919 vm_page_lock_queues(); 1920 PMAP_LOCK(pmap); 1921 for (va = sva; va < eva; va += PAGE_SIZE) { 1922 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 1923 if (PTE_ISVALID(pte)) { 1924 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1925 1926 mtx_lock_spin(&tlbivax_mutex); 1927 tlb_miss_lock(); 1928 1929 /* Handle modified pages. */ 1930 if (PTE_ISMODIFIED(pte)) 1931 vm_page_dirty(m); 1932 1933 /* Referenced pages. */ 1934 if (PTE_ISREFERENCED(pte)) 1935 vm_page_flag_set(m, PG_REFERENCED); 1936 1937 tlb0_flush_entry(va); 1938 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED | 1939 PTE_REFERENCED); 1940 1941 tlb_miss_unlock(); 1942 mtx_unlock_spin(&tlbivax_mutex); 1943 } 1944 } 1945 } 1946 PMAP_UNLOCK(pmap); 1947 vm_page_unlock_queues(); 1948 } 1949 1950 /* 1951 * Clear the write and modified bits in each of the given page's mappings. 1952 */ 1953 static void 1954 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 1955 { 1956 pv_entry_t pv; 1957 pte_t *pte; 1958 1959 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1960 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 || 1961 (m->flags & PG_WRITEABLE) == 0) 1962 return; 1963 1964 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 1965 PMAP_LOCK(pv->pv_pmap); 1966 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 1967 if (PTE_ISVALID(pte)) { 1968 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1969 1970 mtx_lock_spin(&tlbivax_mutex); 1971 tlb_miss_lock(); 1972 1973 /* Handle modified pages. */ 1974 if (PTE_ISMODIFIED(pte)) 1975 vm_page_dirty(m); 1976 1977 /* Referenced pages. */ 1978 if (PTE_ISREFERENCED(pte)) 1979 vm_page_flag_set(m, PG_REFERENCED); 1980 1981 /* Flush mapping from TLB0. */ 1982 pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED | 1983 PTE_REFERENCED); 1984 1985 tlb_miss_unlock(); 1986 mtx_unlock_spin(&tlbivax_mutex); 1987 } 1988 } 1989 PMAP_UNLOCK(pv->pv_pmap); 1990 } 1991 vm_page_flag_clear(m, PG_WRITEABLE); 1992 } 1993 1994 static boolean_t 1995 mmu_booke_page_executable(mmu_t mmu, vm_page_t m) 1996 { 1997 pv_entry_t pv; 1998 pte_t *pte; 1999 boolean_t executable; 2000 2001 executable = FALSE; 2002 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2003 PMAP_LOCK(pv->pv_pmap); 2004 pte = pte_find(mmu, pv->pv_pmap, pv->pv_va); 2005 if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX)) 2006 executable = TRUE; 2007 PMAP_UNLOCK(pv->pv_pmap); 2008 if (executable) 2009 break; 2010 } 2011 2012 return (executable); 2013 } 2014 2015 /* 2016 * Atomically extract and hold the physical page with the given 2017 * pmap and virtual address pair if that mapping permits the given 2018 * protection. 2019 */ 2020 static vm_page_t 2021 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2022 vm_prot_t prot) 2023 { 2024 pte_t *pte; 2025 vm_page_t m; 2026 uint32_t pte_wbit; 2027 2028 m = NULL; 2029 vm_page_lock_queues(); 2030 PMAP_LOCK(pmap); 2031 2032 pte = pte_find(mmu, pmap, va); 2033 if ((pte != NULL) && PTE_ISVALID(pte)) { 2034 if (pmap == kernel_pmap) 2035 pte_wbit = PTE_SW; 2036 else 2037 pte_wbit = PTE_UW; 2038 2039 if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2040 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2041 vm_page_hold(m); 2042 } 2043 } 2044 2045 vm_page_unlock_queues(); 2046 PMAP_UNLOCK(pmap); 2047 return (m); 2048 } 2049 2050 /* 2051 * Initialize a vm_page's machine-dependent fields. 2052 */ 2053 static void 2054 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2055 { 2056 2057 TAILQ_INIT(&m->md.pv_list); 2058 } 2059 2060 /* 2061 * mmu_booke_zero_page_area zeros the specified hardware page by 2062 * mapping it into virtual memory and using bzero to clear 2063 * its contents. 2064 * 2065 * off and size must reside within a single page. 2066 */ 2067 static void 2068 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2069 { 2070 vm_offset_t va; 2071 2072 /* XXX KASSERT off and size are within a single page? */ 2073 2074 mtx_lock(&zero_page_mutex); 2075 va = zero_page_va; 2076 2077 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2078 bzero((caddr_t)va + off, size); 2079 mmu_booke_kremove(mmu, va); 2080 2081 mtx_unlock(&zero_page_mutex); 2082 } 2083 2084 /* 2085 * mmu_booke_zero_page zeros the specified hardware page. 2086 */ 2087 static void 2088 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2089 { 2090 2091 mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE); 2092 } 2093 2094 /* 2095 * mmu_booke_copy_page copies the specified (machine independent) page by 2096 * mapping the page into virtual memory and using memcopy to copy the page, 2097 * one machine dependent page at a time. 2098 */ 2099 static void 2100 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2101 { 2102 vm_offset_t sva, dva; 2103 2104 sva = copy_page_src_va; 2105 dva = copy_page_dst_va; 2106 2107 mtx_lock(©_page_mutex); 2108 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2109 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2110 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2111 mmu_booke_kremove(mmu, dva); 2112 mmu_booke_kremove(mmu, sva); 2113 mtx_unlock(©_page_mutex); 2114 } 2115 2116 /* 2117 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it 2118 * into virtual memory and using bzero to clear its contents. This is intended 2119 * to be called from the vm_pagezero process only and outside of Giant. No 2120 * lock is required. 2121 */ 2122 static void 2123 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m) 2124 { 2125 vm_offset_t va; 2126 2127 va = zero_page_idle_va; 2128 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2129 bzero((caddr_t)va, PAGE_SIZE); 2130 mmu_booke_kremove(mmu, va); 2131 } 2132 2133 /* 2134 * Return whether or not the specified physical page was modified 2135 * in any of physical maps. 2136 */ 2137 static boolean_t 2138 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 2139 { 2140 pte_t *pte; 2141 pv_entry_t pv; 2142 2143 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2144 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2145 return (FALSE); 2146 2147 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2148 PMAP_LOCK(pv->pv_pmap); 2149 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2150 if (!PTE_ISVALID(pte)) 2151 goto make_sure_to_unlock; 2152 2153 if (PTE_ISMODIFIED(pte)) { 2154 PMAP_UNLOCK(pv->pv_pmap); 2155 return (TRUE); 2156 } 2157 } 2158 make_sure_to_unlock: 2159 PMAP_UNLOCK(pv->pv_pmap); 2160 } 2161 return (FALSE); 2162 } 2163 2164 /* 2165 * Return whether or not the specified virtual address is eligible 2166 * for prefault. 2167 */ 2168 static boolean_t 2169 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2170 { 2171 2172 return (FALSE); 2173 } 2174 2175 /* 2176 * Clear the modify bits on the specified physical page. 2177 */ 2178 static void 2179 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 2180 { 2181 pte_t *pte; 2182 pv_entry_t pv; 2183 2184 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2185 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2186 return; 2187 2188 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2189 PMAP_LOCK(pv->pv_pmap); 2190 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2191 if (!PTE_ISVALID(pte)) 2192 goto make_sure_to_unlock; 2193 2194 mtx_lock_spin(&tlbivax_mutex); 2195 tlb_miss_lock(); 2196 2197 if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 2198 tlb0_flush_entry(pv->pv_va); 2199 pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 2200 PTE_REFERENCED); 2201 } 2202 2203 tlb_miss_unlock(); 2204 mtx_unlock_spin(&tlbivax_mutex); 2205 } 2206 make_sure_to_unlock: 2207 PMAP_UNLOCK(pv->pv_pmap); 2208 } 2209 } 2210 2211 /* 2212 * Return a count of reference bits for a page, clearing those bits. 2213 * It is not necessary for every reference bit to be cleared, but it 2214 * is necessary that 0 only be returned when there are truly no 2215 * reference bits set. 2216 * 2217 * XXX: The exact number of bits to check and clear is a matter that 2218 * should be tested and standardized at some point in the future for 2219 * optimal aging of shared pages. 2220 */ 2221 static int 2222 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 2223 { 2224 pte_t *pte; 2225 pv_entry_t pv; 2226 int count; 2227 2228 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2229 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2230 return (0); 2231 2232 count = 0; 2233 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2234 PMAP_LOCK(pv->pv_pmap); 2235 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2236 if (!PTE_ISVALID(pte)) 2237 goto make_sure_to_unlock; 2238 2239 if (PTE_ISREFERENCED(pte)) { 2240 mtx_lock_spin(&tlbivax_mutex); 2241 tlb_miss_lock(); 2242 2243 tlb0_flush_entry(pv->pv_va); 2244 pte->flags &= ~PTE_REFERENCED; 2245 2246 tlb_miss_unlock(); 2247 mtx_unlock_spin(&tlbivax_mutex); 2248 2249 if (++count > 4) { 2250 PMAP_UNLOCK(pv->pv_pmap); 2251 break; 2252 } 2253 } 2254 } 2255 make_sure_to_unlock: 2256 PMAP_UNLOCK(pv->pv_pmap); 2257 } 2258 return (count); 2259 } 2260 2261 /* 2262 * Clear the reference bit on the specified physical page. 2263 */ 2264 static void 2265 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m) 2266 { 2267 pte_t *pte; 2268 pv_entry_t pv; 2269 2270 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2271 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2272 return; 2273 2274 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2275 PMAP_LOCK(pv->pv_pmap); 2276 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2277 if (!PTE_ISVALID(pte)) 2278 goto make_sure_to_unlock; 2279 2280 if (PTE_ISREFERENCED(pte)) { 2281 mtx_lock_spin(&tlbivax_mutex); 2282 tlb_miss_lock(); 2283 2284 tlb0_flush_entry(pv->pv_va); 2285 pte->flags &= ~PTE_REFERENCED; 2286 2287 tlb_miss_unlock(); 2288 mtx_unlock_spin(&tlbivax_mutex); 2289 } 2290 } 2291 make_sure_to_unlock: 2292 PMAP_UNLOCK(pv->pv_pmap); 2293 } 2294 } 2295 2296 /* 2297 * Change wiring attribute for a map/virtual-address pair. 2298 */ 2299 static void 2300 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired) 2301 { 2302 pte_t *pte;; 2303 2304 PMAP_LOCK(pmap); 2305 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2306 if (wired) { 2307 if (!PTE_ISWIRED(pte)) { 2308 pte->flags |= PTE_WIRED; 2309 pmap->pm_stats.wired_count++; 2310 } 2311 } else { 2312 if (PTE_ISWIRED(pte)) { 2313 pte->flags &= ~PTE_WIRED; 2314 pmap->pm_stats.wired_count--; 2315 } 2316 } 2317 } 2318 PMAP_UNLOCK(pmap); 2319 } 2320 2321 /* 2322 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 2323 * page. This count may be changed upwards or downwards in the future; it is 2324 * only necessary that true be returned for a small subset of pmaps for proper 2325 * page aging. 2326 */ 2327 static boolean_t 2328 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 2329 { 2330 pv_entry_t pv; 2331 int loops; 2332 2333 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2334 if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0) 2335 return (FALSE); 2336 2337 loops = 0; 2338 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2339 if (pv->pv_pmap == pmap) 2340 return (TRUE); 2341 2342 if (++loops >= 16) 2343 break; 2344 } 2345 return (FALSE); 2346 } 2347 2348 /* 2349 * Return the number of managed mappings to the given physical page that are 2350 * wired. 2351 */ 2352 static int 2353 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 2354 { 2355 pv_entry_t pv; 2356 pte_t *pte; 2357 int count = 0; 2358 2359 if ((m->flags & PG_FICTITIOUS) != 0) 2360 return (count); 2361 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2362 2363 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2364 PMAP_LOCK(pv->pv_pmap); 2365 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 2366 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 2367 count++; 2368 PMAP_UNLOCK(pv->pv_pmap); 2369 } 2370 2371 return (count); 2372 } 2373 2374 static int 2375 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size) 2376 { 2377 int i; 2378 vm_offset_t va; 2379 2380 /* 2381 * This currently does not work for entries that 2382 * overlap TLB1 entries. 2383 */ 2384 for (i = 0; i < tlb1_idx; i ++) { 2385 if (tlb1_iomapped(i, pa, size, &va) == 0) 2386 return (0); 2387 } 2388 2389 return (EFAULT); 2390 } 2391 2392 vm_offset_t 2393 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2394 vm_size_t *sz) 2395 { 2396 vm_paddr_t pa, ppa; 2397 vm_offset_t va; 2398 vm_size_t gran; 2399 2400 /* Raw physical memory dumps don't have a virtual address. */ 2401 if (md->md_vaddr == ~0UL) { 2402 /* We always map a 256MB page at 256M. */ 2403 gran = 256 * 1024 * 1024; 2404 pa = md->md_paddr + ofs; 2405 ppa = pa & ~(gran - 1); 2406 ofs = pa - ppa; 2407 va = gran; 2408 tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO); 2409 if (*sz > (gran - ofs)) 2410 *sz = gran - ofs; 2411 return (va + ofs); 2412 } 2413 2414 /* Minidumps are based on virtual memory addresses. */ 2415 va = md->md_vaddr + ofs; 2416 if (va >= kernstart + kernsize) { 2417 gran = PAGE_SIZE - (va & PAGE_MASK); 2418 if (*sz > gran) 2419 *sz = gran; 2420 } 2421 return (va); 2422 } 2423 2424 void 2425 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2426 vm_offset_t va) 2427 { 2428 2429 /* Raw physical memory dumps don't have a virtual address. */ 2430 if (md->md_vaddr == ~0UL) { 2431 tlb1_idx--; 2432 tlb1[tlb1_idx].mas1 = 0; 2433 tlb1[tlb1_idx].mas2 = 0; 2434 tlb1[tlb1_idx].mas3 = 0; 2435 tlb1_write_entry(tlb1_idx); 2436 return; 2437 } 2438 2439 /* Minidumps are based on virtual memory addresses. */ 2440 /* Nothing to do... */ 2441 } 2442 2443 struct pmap_md * 2444 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev) 2445 { 2446 static struct pmap_md md; 2447 struct bi_mem_region *mr; 2448 pte_t *pte; 2449 vm_offset_t va; 2450 2451 if (dumpsys_minidump) { 2452 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2453 if (prev == NULL) { 2454 /* 1st: kernel .data and .bss. */ 2455 md.md_index = 1; 2456 md.md_vaddr = trunc_page((uintptr_t)_etext); 2457 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2458 return (&md); 2459 } 2460 switch (prev->md_index) { 2461 case 1: 2462 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2463 md.md_index = 2; 2464 md.md_vaddr = data_start; 2465 md.md_size = data_end - data_start; 2466 break; 2467 case 2: 2468 /* 3rd: kernel VM. */ 2469 va = prev->md_vaddr + prev->md_size; 2470 /* Find start of next chunk (from va). */ 2471 while (va < virtual_end) { 2472 /* Don't dump the buffer cache. */ 2473 if (va >= kmi.buffer_sva && 2474 va < kmi.buffer_eva) { 2475 va = kmi.buffer_eva; 2476 continue; 2477 } 2478 pte = pte_find(mmu, kernel_pmap, va); 2479 if (pte != NULL && PTE_ISVALID(pte)) 2480 break; 2481 va += PAGE_SIZE; 2482 } 2483 if (va < virtual_end) { 2484 md.md_vaddr = va; 2485 va += PAGE_SIZE; 2486 /* Find last page in chunk. */ 2487 while (va < virtual_end) { 2488 /* Don't run into the buffer cache. */ 2489 if (va == kmi.buffer_sva) 2490 break; 2491 pte = pte_find(mmu, kernel_pmap, va); 2492 if (pte == NULL || !PTE_ISVALID(pte)) 2493 break; 2494 va += PAGE_SIZE; 2495 } 2496 md.md_size = va - md.md_vaddr; 2497 break; 2498 } 2499 md.md_index = 3; 2500 /* FALLTHROUGH */ 2501 default: 2502 return (NULL); 2503 } 2504 } else { /* minidumps */ 2505 mr = bootinfo_mr(); 2506 if (prev == NULL) { 2507 /* first physical chunk. */ 2508 md.md_paddr = mr->mem_base; 2509 md.md_size = mr->mem_size; 2510 md.md_vaddr = ~0UL; 2511 md.md_index = 1; 2512 } else if (md.md_index < bootinfo->bi_mem_reg_no) { 2513 md.md_paddr = mr[md.md_index].mem_base; 2514 md.md_size = mr[md.md_index].mem_size; 2515 md.md_vaddr = ~0UL; 2516 md.md_index++; 2517 } else { 2518 /* There's no next physical chunk. */ 2519 return (NULL); 2520 } 2521 } 2522 2523 return (&md); 2524 } 2525 2526 /* 2527 * Map a set of physical memory pages into the kernel virtual address space. 2528 * Return a pointer to where it is mapped. This routine is intended to be used 2529 * for mapping device memory, NOT real memory. 2530 */ 2531 static void * 2532 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size) 2533 { 2534 void *res; 2535 uintptr_t va; 2536 vm_size_t sz; 2537 2538 va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa); 2539 res = (void *)va; 2540 2541 do { 2542 sz = 1 << (ilog2(size) & ~1); 2543 if (bootverbose) 2544 printf("Wiring VA=%x to PA=%x (size=%x), " 2545 "using TLB1[%d]\n", va, pa, sz, tlb1_idx); 2546 tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO); 2547 size -= sz; 2548 pa += sz; 2549 va += sz; 2550 } while (size > 0); 2551 2552 return (res); 2553 } 2554 2555 /* 2556 * 'Unmap' a range mapped by mmu_booke_mapdev(). 2557 */ 2558 static void 2559 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2560 { 2561 vm_offset_t base, offset; 2562 2563 /* 2564 * Unmap only if this is inside kernel virtual space. 2565 */ 2566 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 2567 base = trunc_page(va); 2568 offset = va & PAGE_MASK; 2569 size = roundup(offset + size, PAGE_SIZE); 2570 kmem_free(kernel_map, base, size); 2571 } 2572 } 2573 2574 /* 2575 * mmu_booke_object_init_pt preloads the ptes for a given object into the 2576 * specified pmap. This eliminates the blast of soft faults on process startup 2577 * and immediately after an mmap. 2578 */ 2579 static void 2580 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 2581 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 2582 { 2583 2584 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2585 KASSERT(object->type == OBJT_DEVICE, 2586 ("mmu_booke_object_init_pt: non-device object")); 2587 } 2588 2589 /* 2590 * Perform the pmap work for mincore. 2591 */ 2592 static int 2593 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 2594 { 2595 2596 TODO; 2597 return (0); 2598 } 2599 2600 /**************************************************************************/ 2601 /* TID handling */ 2602 /**************************************************************************/ 2603 2604 /* 2605 * Allocate a TID. If necessary, steal one from someone else. 2606 * The new TID is flushed from the TLB before returning. 2607 */ 2608 static tlbtid_t 2609 tid_alloc(pmap_t pmap) 2610 { 2611 tlbtid_t tid; 2612 int thiscpu; 2613 2614 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 2615 2616 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 2617 2618 thiscpu = PCPU_GET(cpuid); 2619 2620 tid = PCPU_GET(tid_next); 2621 if (tid > TID_MAX) 2622 tid = TID_MIN; 2623 PCPU_SET(tid_next, tid + 1); 2624 2625 /* If we are stealing TID then clear the relevant pmap's field */ 2626 if (tidbusy[thiscpu][tid] != NULL) { 2627 2628 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 2629 2630 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 2631 2632 /* Flush all entries from TLB0 matching this TID. */ 2633 tid_flush(tid); 2634 } 2635 2636 tidbusy[thiscpu][tid] = pmap; 2637 pmap->pm_tid[thiscpu] = tid; 2638 __asm __volatile("msync; isync"); 2639 2640 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 2641 PCPU_GET(tid_next)); 2642 2643 return (tid); 2644 } 2645 2646 /**************************************************************************/ 2647 /* TLB0 handling */ 2648 /**************************************************************************/ 2649 2650 static void 2651 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 2652 uint32_t mas7) 2653 { 2654 int as; 2655 char desc[3]; 2656 tlbtid_t tid; 2657 vm_size_t size; 2658 unsigned int tsize; 2659 2660 desc[2] = '\0'; 2661 if (mas1 & MAS1_VALID) 2662 desc[0] = 'V'; 2663 else 2664 desc[0] = ' '; 2665 2666 if (mas1 & MAS1_IPROT) 2667 desc[1] = 'P'; 2668 else 2669 desc[1] = ' '; 2670 2671 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 2672 tid = MAS1_GETTID(mas1); 2673 2674 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 2675 size = 0; 2676 if (tsize) 2677 size = tsize2size(tsize); 2678 2679 debugf("%3d: (%s) [AS=%d] " 2680 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 2681 "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", 2682 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 2683 } 2684 2685 /* Convert TLB0 va and way number to tlb0[] table index. */ 2686 static inline unsigned int 2687 tlb0_tableidx(vm_offset_t va, unsigned int way) 2688 { 2689 unsigned int idx; 2690 2691 idx = (way * TLB0_ENTRIES_PER_WAY); 2692 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 2693 return (idx); 2694 } 2695 2696 /* 2697 * Invalidate TLB0 entry. 2698 */ 2699 static inline void 2700 tlb0_flush_entry(vm_offset_t va) 2701 { 2702 2703 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 2704 2705 mtx_assert(&tlbivax_mutex, MA_OWNED); 2706 2707 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 2708 __asm __volatile("isync; msync"); 2709 __asm __volatile("tlbsync; msync"); 2710 2711 CTR1(KTR_PMAP, "%s: e", __func__); 2712 } 2713 2714 /* Print out contents of the MAS registers for each TLB0 entry */ 2715 void 2716 tlb0_print_tlbentries(void) 2717 { 2718 uint32_t mas0, mas1, mas2, mas3, mas7; 2719 int entryidx, way, idx; 2720 2721 debugf("TLB0 entries:\n"); 2722 for (way = 0; way < TLB0_WAYS; way ++) 2723 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 2724 2725 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 2726 mtspr(SPR_MAS0, mas0); 2727 __asm __volatile("isync"); 2728 2729 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 2730 mtspr(SPR_MAS2, mas2); 2731 2732 __asm __volatile("isync; tlbre"); 2733 2734 mas1 = mfspr(SPR_MAS1); 2735 mas2 = mfspr(SPR_MAS2); 2736 mas3 = mfspr(SPR_MAS3); 2737 mas7 = mfspr(SPR_MAS7); 2738 2739 idx = tlb0_tableidx(mas2, way); 2740 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 2741 } 2742 } 2743 2744 /**************************************************************************/ 2745 /* TLB1 handling */ 2746 /**************************************************************************/ 2747 2748 /* 2749 * TLB1 mapping notes: 2750 * 2751 * TLB1[0] CCSRBAR 2752 * TLB1[1] Kernel text and data. 2753 * TLB1[2-15] Additional kernel text and data mappings (if required), PCI 2754 * windows, other devices mappings. 2755 */ 2756 2757 /* 2758 * Write given entry to TLB1 hardware. 2759 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 2760 */ 2761 static void 2762 tlb1_write_entry(unsigned int idx) 2763 { 2764 uint32_t mas0, mas7; 2765 2766 //debugf("tlb1_write_entry: s\n"); 2767 2768 /* Clear high order RPN bits */ 2769 mas7 = 0; 2770 2771 /* Select entry */ 2772 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 2773 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 2774 2775 mtspr(SPR_MAS0, mas0); 2776 __asm __volatile("isync"); 2777 mtspr(SPR_MAS1, tlb1[idx].mas1); 2778 __asm __volatile("isync"); 2779 mtspr(SPR_MAS2, tlb1[idx].mas2); 2780 __asm __volatile("isync"); 2781 mtspr(SPR_MAS3, tlb1[idx].mas3); 2782 __asm __volatile("isync"); 2783 mtspr(SPR_MAS7, mas7); 2784 __asm __volatile("isync; tlbwe; isync; msync"); 2785 2786 //debugf("tlb1_write_entry: e\n");; 2787 } 2788 2789 /* 2790 * Return the largest uint value log such that 2^log <= num. 2791 */ 2792 static unsigned int 2793 ilog2(unsigned int num) 2794 { 2795 int lz; 2796 2797 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 2798 return (31 - lz); 2799 } 2800 2801 /* 2802 * Convert TLB TSIZE value to mapped region size. 2803 */ 2804 static vm_size_t 2805 tsize2size(unsigned int tsize) 2806 { 2807 2808 /* 2809 * size = 4^tsize KB 2810 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 2811 */ 2812 2813 return ((1 << (2 * tsize)) * 1024); 2814 } 2815 2816 /* 2817 * Convert region size (must be power of 4) to TLB TSIZE value. 2818 */ 2819 static unsigned int 2820 size2tsize(vm_size_t size) 2821 { 2822 2823 return (ilog2(size) / 2 - 5); 2824 } 2825 2826 /* 2827 * Register permanent kernel mapping in TLB1. 2828 * 2829 * Entries are created starting from index 0 (current free entry is 2830 * kept in tlb1_idx) and are not supposed to be invalidated. 2831 */ 2832 static int 2833 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size, 2834 uint32_t flags) 2835 { 2836 uint32_t ts, tid; 2837 int tsize; 2838 2839 if (tlb1_idx >= TLB1_ENTRIES) { 2840 printf("tlb1_set_entry: TLB1 full!\n"); 2841 return (-1); 2842 } 2843 2844 /* Convert size to TSIZE */ 2845 tsize = size2tsize(size); 2846 2847 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 2848 /* XXX TS is hard coded to 0 for now as we only use single address space */ 2849 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 2850 2851 /* XXX LOCK tlb1[] */ 2852 2853 tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 2854 tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 2855 tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags; 2856 2857 /* Set supervisor RWX permission bits */ 2858 tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 2859 2860 tlb1_write_entry(tlb1_idx++); 2861 2862 /* XXX UNLOCK tlb1[] */ 2863 2864 /* 2865 * XXX in general TLB1 updates should be propagated between CPUs, 2866 * since current design assumes to have the same TLB1 set-up on all 2867 * cores. 2868 */ 2869 return (0); 2870 } 2871 2872 static int 2873 tlb1_entry_size_cmp(const void *a, const void *b) 2874 { 2875 const vm_size_t *sza; 2876 const vm_size_t *szb; 2877 2878 sza = a; 2879 szb = b; 2880 if (*sza > *szb) 2881 return (-1); 2882 else if (*sza < *szb) 2883 return (1); 2884 else 2885 return (0); 2886 } 2887 2888 /* 2889 * Map in contiguous RAM region into the TLB1 using maximum of 2890 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 2891 * 2892 * If necessary round up last entry size and return total size 2893 * used by all allocated entries. 2894 */ 2895 vm_size_t 2896 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size) 2897 { 2898 vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES]; 2899 vm_size_t mapped_size, sz, esz; 2900 unsigned int log; 2901 int i; 2902 2903 CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x", 2904 __func__, size, va, pa); 2905 2906 mapped_size = 0; 2907 sz = size; 2908 memset(entry_size, 0, sizeof(entry_size)); 2909 2910 /* Calculate entry sizes. */ 2911 for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) { 2912 2913 /* Largest region that is power of 4 and fits within size */ 2914 log = ilog2(sz) / 2; 2915 esz = 1 << (2 * log); 2916 2917 /* If this is last entry cover remaining size. */ 2918 if (i == KERNEL_REGION_MAX_TLB_ENTRIES - 1) { 2919 while (esz < sz) 2920 esz = esz << 2; 2921 } 2922 2923 entry_size[i] = esz; 2924 mapped_size += esz; 2925 if (esz < sz) 2926 sz -= esz; 2927 else 2928 sz = 0; 2929 } 2930 2931 /* Sort entry sizes, required to get proper entry address alignment. */ 2932 qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES, 2933 sizeof(vm_size_t), tlb1_entry_size_cmp); 2934 2935 /* Load TLB1 entries. */ 2936 for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) { 2937 esz = entry_size[i]; 2938 if (!esz) 2939 break; 2940 2941 CTR5(KTR_PMAP, "%s: entry %d: sz = 0x%08x (va = 0x%08x " 2942 "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa); 2943 2944 tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM); 2945 2946 va += esz; 2947 pa += esz; 2948 } 2949 2950 CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)", 2951 __func__, mapped_size, mapped_size - size); 2952 2953 return (mapped_size); 2954 } 2955 2956 /* 2957 * TLB1 initialization routine, to be called after the very first 2958 * assembler level setup done in locore.S. 2959 */ 2960 void 2961 tlb1_init(vm_offset_t ccsrbar) 2962 { 2963 uint32_t mas0; 2964 2965 /* TLB1[1] is used to map the kernel. Save that entry. */ 2966 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1); 2967 mtspr(SPR_MAS0, mas0); 2968 __asm __volatile("isync; tlbre"); 2969 2970 tlb1[1].mas1 = mfspr(SPR_MAS1); 2971 tlb1[1].mas2 = mfspr(SPR_MAS2); 2972 tlb1[1].mas3 = mfspr(SPR_MAS3); 2973 2974 /* Map in CCSRBAR in TLB1[0] */ 2975 tlb1_idx = 0; 2976 tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO); 2977 /* 2978 * Set the next available TLB1 entry index. Note TLB[1] is reserved 2979 * for initial mapping of kernel text+data, which was set early in 2980 * locore, we need to skip this [busy] entry. 2981 */ 2982 tlb1_idx = 2; 2983 2984 /* Setup TLB miss defaults */ 2985 set_mas4_defaults(); 2986 } 2987 2988 /* 2989 * Setup MAS4 defaults. 2990 * These values are loaded to MAS0-2 on a TLB miss. 2991 */ 2992 static void 2993 set_mas4_defaults(void) 2994 { 2995 uint32_t mas4; 2996 2997 /* Defaults: TLB0, PID0, TSIZED=4K */ 2998 mas4 = MAS4_TLBSELD0; 2999 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 3000 #ifdef SMP 3001 mas4 |= MAS4_MD; 3002 #endif 3003 mtspr(SPR_MAS4, mas4); 3004 __asm __volatile("isync"); 3005 } 3006 3007 /* 3008 * Print out contents of the MAS registers for each TLB1 entry 3009 */ 3010 void 3011 tlb1_print_tlbentries(void) 3012 { 3013 uint32_t mas0, mas1, mas2, mas3, mas7; 3014 int i; 3015 3016 debugf("TLB1 entries:\n"); 3017 for (i = 0; i < TLB1_ENTRIES; i++) { 3018 3019 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 3020 mtspr(SPR_MAS0, mas0); 3021 3022 __asm __volatile("isync; tlbre"); 3023 3024 mas1 = mfspr(SPR_MAS1); 3025 mas2 = mfspr(SPR_MAS2); 3026 mas3 = mfspr(SPR_MAS3); 3027 mas7 = mfspr(SPR_MAS7); 3028 3029 tlb_print_entry(i, mas1, mas2, mas3, mas7); 3030 } 3031 } 3032 3033 /* 3034 * Print out contents of the in-ram tlb1 table. 3035 */ 3036 void 3037 tlb1_print_entries(void) 3038 { 3039 int i; 3040 3041 debugf("tlb1[] table entries:\n"); 3042 for (i = 0; i < TLB1_ENTRIES; i++) 3043 tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0); 3044 } 3045 3046 /* 3047 * Return 0 if the physical IO range is encompassed by one of the 3048 * the TLB1 entries, otherwise return related error code. 3049 */ 3050 static int 3051 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 3052 { 3053 uint32_t prot; 3054 vm_paddr_t pa_start; 3055 vm_paddr_t pa_end; 3056 unsigned int entry_tsize; 3057 vm_size_t entry_size; 3058 3059 *va = (vm_offset_t)NULL; 3060 3061 /* Skip invalid entries */ 3062 if (!(tlb1[i].mas1 & MAS1_VALID)) 3063 return (EINVAL); 3064 3065 /* 3066 * The entry must be cache-inhibited, guarded, and r/w 3067 * so it can function as an i/o page 3068 */ 3069 prot = tlb1[i].mas2 & (MAS2_I | MAS2_G); 3070 if (prot != (MAS2_I | MAS2_G)) 3071 return (EPERM); 3072 3073 prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW); 3074 if (prot != (MAS3_SR | MAS3_SW)) 3075 return (EPERM); 3076 3077 /* The address should be within the entry range. */ 3078 entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3079 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 3080 3081 entry_size = tsize2size(entry_tsize); 3082 pa_start = tlb1[i].mas3 & MAS3_RPN; 3083 pa_end = pa_start + entry_size - 1; 3084 3085 if ((pa < pa_start) || ((pa + size) > pa_end)) 3086 return (ERANGE); 3087 3088 /* Return virtual address of this mapping. */ 3089 *va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start); 3090 return (0); 3091 } 3092