xref: /freebsd/sys/powerpc/booke/pmap.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 #include "opt_ddb.h"
78 #include "opt_kstack_pages.h"
79 
80 #include <sys/param.h>
81 #include <sys/conf.h>
82 #include <sys/malloc.h>
83 #include <sys/ktr.h>
84 #include <sys/proc.h>
85 #include <sys/user.h>
86 #include <sys/queue.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kerneldump.h>
90 #include <sys/linker.h>
91 #include <sys/msgbuf.h>
92 #include <sys/lock.h>
93 #include <sys/mutex.h>
94 #include <sys/rwlock.h>
95 #include <sys/sched.h>
96 #include <sys/smp.h>
97 #include <sys/vmmeter.h>
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_phys.h>
109 #include <vm/vm_pagequeue.h>
110 #include <vm/vm_dumpset.h>
111 #include <vm/uma.h>
112 
113 #include <machine/_inttypes.h>
114 #include <machine/cpu.h>
115 #include <machine/pcb.h>
116 #include <machine/platform.h>
117 
118 #include <machine/tlb.h>
119 #include <machine/spr.h>
120 #include <machine/md_var.h>
121 #include <machine/mmuvar.h>
122 #include <machine/pmap.h>
123 #include <machine/pte.h>
124 
125 #include <ddb/ddb.h>
126 
127 #define	SPARSE_MAPDEV
128 
129 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
130 #define	POW2_MAPPINGS
131 
132 #ifdef  DEBUG
133 #define debugf(fmt, args...) printf(fmt, ##args)
134 #define	__debug_used
135 #else
136 #define debugf(fmt, args...)
137 #define	__debug_used	__unused
138 #endif
139 
140 #ifdef __powerpc64__
141 #define	PRI0ptrX	"016lx"
142 #else
143 #define	PRI0ptrX	"08x"
144 #endif
145 
146 #define TODO			panic("%s: not implemented", __func__);
147 
148 extern unsigned char _etext[];
149 extern unsigned char _end[];
150 
151 extern uint32_t *bootinfo;
152 
153 vm_paddr_t kernload;
154 vm_offset_t kernstart;
155 vm_size_t kernsize;
156 
157 /* Message buffer and tables. */
158 static vm_offset_t data_start;
159 static vm_size_t data_end;
160 
161 /* Phys/avail memory regions. */
162 static struct mem_region *availmem_regions;
163 static int availmem_regions_sz;
164 static struct mem_region *physmem_regions;
165 static int physmem_regions_sz;
166 
167 #ifndef __powerpc64__
168 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
169 static vm_offset_t zero_page_va;
170 static struct mtx zero_page_mutex;
171 
172 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
173 static vm_offset_t copy_page_src_va;
174 static vm_offset_t copy_page_dst_va;
175 static struct mtx copy_page_mutex;
176 #endif
177 
178 static struct mtx tlbivax_mutex;
179 
180 /**************************************************************************/
181 /* PMAP */
182 /**************************************************************************/
183 
184 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
185     vm_prot_t, u_int flags, int8_t psind);
186 
187 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
188 static uma_zone_t ptbl_root_zone;
189 
190 /*
191  * If user pmap is processed with mmu_booke_remove and the resident count
192  * drops to 0, there are no more pages to remove, so we need not continue.
193  */
194 #define PMAP_REMOVE_DONE(pmap) \
195 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
196 
197 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
198 extern int elf32_nxstack;
199 #endif
200 
201 /**************************************************************************/
202 /* TLB and TID handling */
203 /**************************************************************************/
204 
205 /* Translation ID busy table */
206 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
207 
208 /*
209  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
210  * core revisions and should be read from h/w registers during early config.
211  */
212 uint32_t tlb0_entries;
213 uint32_t tlb0_ways;
214 uint32_t tlb0_entries_per_way;
215 uint32_t tlb1_entries;
216 
217 #define TLB0_ENTRIES		(tlb0_entries)
218 #define TLB0_WAYS		(tlb0_ways)
219 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
220 
221 #define TLB1_ENTRIES (tlb1_entries)
222 
223 static tlbtid_t tid_alloc(struct pmap *);
224 
225 #ifdef DDB
226 #ifdef __powerpc64__
227 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
228 #else
229 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
230 #endif
231 #endif
232 
233 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
234 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
235 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
236 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
237 
238 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
239 
240 static vm_size_t tsize2size(unsigned int);
241 static unsigned int size2tsize(vm_size_t);
242 
243 static void set_mas4_defaults(void);
244 
245 static inline void tlb0_flush_entry(vm_offset_t);
246 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
247 
248 /**************************************************************************/
249 /* Page table management */
250 /**************************************************************************/
251 
252 static struct rwlock_padalign pvh_global_lock;
253 
254 /* Data for the pv entry allocation mechanism */
255 static uma_zone_t pvzone;
256 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
257 
258 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
259 
260 #ifndef PMAP_SHPGPERPROC
261 #define PMAP_SHPGPERPROC	200
262 #endif
263 
264 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
265 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, bool);
266 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
267 static pte_t *pte_find(pmap_t, vm_offset_t);
268 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
269 
270 static pv_entry_t pv_alloc(void);
271 static void pv_free(pv_entry_t);
272 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
273 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
274 
275 static void booke_pmap_init_qpages(void);
276 
277 static inline void tlb_miss_lock(void);
278 static inline void tlb_miss_unlock(void);
279 
280 #ifdef SMP
281 extern tlb_entry_t __boot_tlb1[];
282 void pmap_bootstrap_ap(volatile uint32_t *);
283 #endif
284 
285 /*
286  * Kernel MMU interface
287  */
288 static void		mmu_booke_clear_modify(vm_page_t);
289 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
290     vm_size_t, vm_offset_t);
291 static void		mmu_booke_copy_page(vm_page_t, vm_page_t);
292 static void		mmu_booke_copy_pages(vm_page_t *,
293     vm_offset_t, vm_page_t *, vm_offset_t, int);
294 static int		mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
295     vm_prot_t, u_int flags, int8_t psind);
296 static void		mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
297     vm_page_t, vm_prot_t);
298 static void		mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
299     vm_prot_t);
300 static vm_paddr_t	mmu_booke_extract(pmap_t, vm_offset_t);
301 static vm_page_t	mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
302     vm_prot_t);
303 static void		mmu_booke_init(void);
304 static bool		mmu_booke_is_modified(vm_page_t);
305 static bool		mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
306 static bool		mmu_booke_is_referenced(vm_page_t);
307 static int		mmu_booke_ts_referenced(vm_page_t);
308 static vm_offset_t	mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
309     int);
310 static int		mmu_booke_mincore(pmap_t, vm_offset_t,
311     vm_paddr_t *);
312 static void		mmu_booke_object_init_pt(pmap_t, vm_offset_t,
313     vm_object_t, vm_pindex_t, vm_size_t);
314 static bool		mmu_booke_page_exists_quick(pmap_t, vm_page_t);
315 static void		mmu_booke_page_init(vm_page_t);
316 static int		mmu_booke_page_wired_mappings(vm_page_t);
317 static int		mmu_booke_pinit(pmap_t);
318 static void		mmu_booke_pinit0(pmap_t);
319 static void		mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
320     vm_prot_t);
321 static void		mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
322 static void		mmu_booke_qremove(vm_offset_t, int);
323 static void		mmu_booke_release(pmap_t);
324 static void		mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
325 static void		mmu_booke_remove_all(vm_page_t);
326 static void		mmu_booke_remove_write(vm_page_t);
327 static void		mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
328 static void		mmu_booke_zero_page(vm_page_t);
329 static void		mmu_booke_zero_page_area(vm_page_t, int, int);
330 static void		mmu_booke_activate(struct thread *);
331 static void		mmu_booke_deactivate(struct thread *);
332 static void		mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
333 static void		*mmu_booke_mapdev(vm_paddr_t, vm_size_t);
334 static void		*mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
335 static void		mmu_booke_unmapdev(void *, vm_size_t);
336 static vm_paddr_t	mmu_booke_kextract(vm_offset_t);
337 static void		mmu_booke_kenter(vm_offset_t, vm_paddr_t);
338 static void		mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
339 static void		mmu_booke_kremove(vm_offset_t);
340 static int		mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
341 static void		mmu_booke_sync_icache(pmap_t, vm_offset_t,
342     vm_size_t);
343 static void		mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
344     void **);
345 static void		mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
346     void *);
347 static void		mmu_booke_scan_init(void);
348 static vm_offset_t	mmu_booke_quick_enter_page(vm_page_t m);
349 static void		mmu_booke_quick_remove_page(vm_offset_t addr);
350 static int		mmu_booke_change_attr(vm_offset_t addr,
351     vm_size_t sz, vm_memattr_t mode);
352 static int		mmu_booke_decode_kernel_ptr(vm_offset_t addr,
353     int *is_user, vm_offset_t *decoded_addr);
354 static void		mmu_booke_page_array_startup(long);
355 static bool mmu_booke_page_is_mapped(vm_page_t m);
356 static bool mmu_booke_ps_enabled(pmap_t pmap);
357 
358 static struct pmap_funcs mmu_booke_methods = {
359 	/* pmap dispatcher interface */
360 	.clear_modify = mmu_booke_clear_modify,
361 	.copy = mmu_booke_copy,
362 	.copy_page = mmu_booke_copy_page,
363 	.copy_pages = mmu_booke_copy_pages,
364 	.enter = mmu_booke_enter,
365 	.enter_object = mmu_booke_enter_object,
366 	.enter_quick = mmu_booke_enter_quick,
367 	.extract = mmu_booke_extract,
368 	.extract_and_hold = mmu_booke_extract_and_hold,
369 	.init = mmu_booke_init,
370 	.is_modified = mmu_booke_is_modified,
371 	.is_prefaultable = mmu_booke_is_prefaultable,
372 	.is_referenced = mmu_booke_is_referenced,
373 	.ts_referenced = mmu_booke_ts_referenced,
374 	.map = mmu_booke_map,
375 	.mincore = mmu_booke_mincore,
376 	.object_init_pt = mmu_booke_object_init_pt,
377 	.page_exists_quick = mmu_booke_page_exists_quick,
378 	.page_init = mmu_booke_page_init,
379 	.page_wired_mappings =  mmu_booke_page_wired_mappings,
380 	.pinit = mmu_booke_pinit,
381 	.pinit0 = mmu_booke_pinit0,
382 	.protect = mmu_booke_protect,
383 	.qenter = mmu_booke_qenter,
384 	.qremove = mmu_booke_qremove,
385 	.release = mmu_booke_release,
386 	.remove = mmu_booke_remove,
387 	.remove_all = mmu_booke_remove_all,
388 	.remove_write = mmu_booke_remove_write,
389 	.sync_icache = mmu_booke_sync_icache,
390 	.unwire = mmu_booke_unwire,
391 	.zero_page = mmu_booke_zero_page,
392 	.zero_page_area = mmu_booke_zero_page_area,
393 	.activate = mmu_booke_activate,
394 	.deactivate = mmu_booke_deactivate,
395 	.quick_enter_page =  mmu_booke_quick_enter_page,
396 	.quick_remove_page =  mmu_booke_quick_remove_page,
397 	.page_array_startup = mmu_booke_page_array_startup,
398 	.page_is_mapped = mmu_booke_page_is_mapped,
399 	.ps_enabled = mmu_booke_ps_enabled,
400 
401 	/* Internal interfaces */
402 	.bootstrap = mmu_booke_bootstrap,
403 	.dev_direct_mapped = mmu_booke_dev_direct_mapped,
404 	.mapdev = mmu_booke_mapdev,
405 	.mapdev_attr = mmu_booke_mapdev_attr,
406 	.kenter = mmu_booke_kenter,
407 	.kenter_attr = mmu_booke_kenter_attr,
408 	.kextract = mmu_booke_kextract,
409 	.kremove = mmu_booke_kremove,
410 	.unmapdev = mmu_booke_unmapdev,
411 	.change_attr = mmu_booke_change_attr,
412 	.decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
413 
414 	/* dumpsys() support */
415 	.dumpsys_map_chunk = mmu_booke_dumpsys_map,
416 	.dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
417 	.dumpsys_pa_init = mmu_booke_scan_init,
418 };
419 
420 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
421 
422 #ifdef __powerpc64__
423 #include "pmap_64.c"
424 #else
425 #include "pmap_32.c"
426 #endif
427 
428 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
429 
430 static __inline uint32_t
431 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
432 {
433 	uint32_t attrib;
434 	int i;
435 
436 	if (ma != VM_MEMATTR_DEFAULT) {
437 		switch (ma) {
438 		case VM_MEMATTR_UNCACHEABLE:
439 			return (MAS2_I | MAS2_G);
440 		case VM_MEMATTR_WRITE_COMBINING:
441 		case VM_MEMATTR_WRITE_BACK:
442 		case VM_MEMATTR_PREFETCHABLE:
443 			return (MAS2_I);
444 		case VM_MEMATTR_WRITE_THROUGH:
445 			return (MAS2_W | MAS2_M);
446 		case VM_MEMATTR_CACHEABLE:
447 			return (MAS2_M);
448 		}
449 	}
450 
451 	/*
452 	 * Assume the page is cache inhibited and access is guarded unless
453 	 * it's in our available memory array.
454 	 */
455 	attrib = _TLB_ENTRY_IO;
456 	for (i = 0; i < physmem_regions_sz; i++) {
457 		if ((pa >= physmem_regions[i].mr_start) &&
458 		    (pa < (physmem_regions[i].mr_start +
459 		     physmem_regions[i].mr_size))) {
460 			attrib = _TLB_ENTRY_MEM;
461 			break;
462 		}
463 	}
464 
465 	return (attrib);
466 }
467 
468 static inline void
469 tlb_miss_lock(void)
470 {
471 #ifdef SMP
472 	struct pcpu *pc;
473 
474 	if (!smp_started)
475 		return;
476 
477 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
478 		if (pc != pcpup) {
479 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
480 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
481 
482 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
483 			    ("tlb_miss_lock: tried to lock self"));
484 
485 			tlb_lock(pc->pc_booke.tlb_lock);
486 
487 			CTR1(KTR_PMAP, "%s: locked", __func__);
488 		}
489 	}
490 #endif
491 }
492 
493 static inline void
494 tlb_miss_unlock(void)
495 {
496 #ifdef SMP
497 	struct pcpu *pc;
498 
499 	if (!smp_started)
500 		return;
501 
502 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
503 		if (pc != pcpup) {
504 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
505 			    __func__, pc->pc_cpuid);
506 
507 			tlb_unlock(pc->pc_booke.tlb_lock);
508 
509 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
510 		}
511 	}
512 #endif
513 }
514 
515 /* Return number of entries in TLB0. */
516 static __inline void
517 tlb0_get_tlbconf(void)
518 {
519 	uint32_t tlb0_cfg;
520 
521 	tlb0_cfg = mfspr(SPR_TLB0CFG);
522 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
523 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
524 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
525 }
526 
527 /* Return number of entries in TLB1. */
528 static __inline void
529 tlb1_get_tlbconf(void)
530 {
531 	uint32_t tlb1_cfg;
532 
533 	tlb1_cfg = mfspr(SPR_TLB1CFG);
534 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
535 }
536 
537 /**************************************************************************/
538 /* Page table related */
539 /**************************************************************************/
540 
541 /* Allocate pv_entry structure. */
542 pv_entry_t
543 pv_alloc(void)
544 {
545 	pv_entry_t pv;
546 
547 	pv_entry_count++;
548 	if (pv_entry_count > pv_entry_high_water)
549 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
550 	pv = uma_zalloc(pvzone, M_NOWAIT);
551 
552 	return (pv);
553 }
554 
555 /* Free pv_entry structure. */
556 static __inline void
557 pv_free(pv_entry_t pve)
558 {
559 
560 	pv_entry_count--;
561 	uma_zfree(pvzone, pve);
562 }
563 
564 /* Allocate and initialize pv_entry structure. */
565 static void
566 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
567 {
568 	pv_entry_t pve;
569 
570 	//int su = (pmap == kernel_pmap);
571 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
572 	//	(u_int32_t)pmap, va, (u_int32_t)m);
573 
574 	pve = pv_alloc();
575 	if (pve == NULL)
576 		panic("pv_insert: no pv entries!");
577 
578 	pve->pv_pmap = pmap;
579 	pve->pv_va = va;
580 
581 	/* add to pv_list */
582 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
583 	rw_assert(&pvh_global_lock, RA_WLOCKED);
584 
585 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
586 
587 	//debugf("pv_insert: e\n");
588 }
589 
590 /* Destroy pv entry. */
591 static void
592 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
593 {
594 	pv_entry_t pve;
595 
596 	//int su = (pmap == kernel_pmap);
597 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
598 
599 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
600 	rw_assert(&pvh_global_lock, RA_WLOCKED);
601 
602 	/* find pv entry */
603 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
604 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
605 			/* remove from pv_list */
606 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
607 			if (TAILQ_EMPTY(&m->md.pv_list))
608 				vm_page_aflag_clear(m, PGA_WRITEABLE);
609 
610 			/* free pv entry struct */
611 			pv_free(pve);
612 			break;
613 		}
614 	}
615 
616 	//debugf("pv_remove: e\n");
617 }
618 
619 /**************************************************************************/
620 /* PMAP related */
621 /**************************************************************************/
622 
623 /*
624  * This is called during booke_init, before the system is really initialized.
625  */
626 static void
627 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
628 {
629 	vm_paddr_t phys_kernelend;
630 	struct mem_region *mp, *mp1;
631 	int cnt, i, j;
632 	vm_paddr_t s, e, sz;
633 	vm_paddr_t physsz, hwphyssz;
634 	u_int phys_avail_count __debug_used;
635 	vm_size_t kstack0_sz;
636 	vm_paddr_t kstack0_phys;
637 	vm_offset_t kstack0;
638 	void *dpcpu;
639 
640 	debugf("mmu_booke_bootstrap: entered\n");
641 
642 	/* Set interesting system properties */
643 #ifdef __powerpc64__
644 	hw_direct_map = 1;
645 #else
646 	hw_direct_map = 0;
647 #endif
648 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
649 	elf32_nxstack = 1;
650 #endif
651 
652 	/* Initialize invalidation mutex */
653 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
654 
655 	/* Read TLB0 size and associativity. */
656 	tlb0_get_tlbconf();
657 
658 	/*
659 	 * Align kernel start and end address (kernel image).
660 	 * Note that kernel end does not necessarily relate to kernsize.
661 	 * kernsize is the size of the kernel that is actually mapped.
662 	 */
663 	data_start = round_page(kernelend);
664 	data_end = data_start;
665 
666 	/* Allocate the dynamic per-cpu area. */
667 	dpcpu = (void *)data_end;
668 	data_end += DPCPU_SIZE;
669 
670 	/* Allocate space for the message buffer. */
671 	msgbufp = (struct msgbuf *)data_end;
672 	data_end += msgbufsize;
673 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
674 	    (uintptr_t)msgbufp, data_end);
675 
676 	data_end = round_page(data_end);
677 	data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
678 
679 	/* Retrieve phys/avail mem regions */
680 	mem_regions(&physmem_regions, &physmem_regions_sz,
681 	    &availmem_regions, &availmem_regions_sz);
682 
683 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
684 		panic("mmu_booke_bootstrap: phys_avail too small");
685 
686 	data_end = round_page(data_end);
687 	vm_page_array = (vm_page_t)data_end;
688 	/*
689 	 * Get a rough idea (upper bound) on the size of the page array.  The
690 	 * vm_page_array will not handle any more pages than we have in the
691 	 * avail_regions array, and most likely much less.
692 	 */
693 	sz = 0;
694 	for (mp = availmem_regions; mp->mr_size; mp++) {
695 		sz += mp->mr_size;
696 	}
697 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
698 	data_end += round_page(sz * sizeof(struct vm_page));
699 
700 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
701 	data_end = roundup2(data_end, 1 << 20);
702 
703 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
704 	debugf(" kernstart: %#zx\n", kernstart);
705 	debugf(" kernsize: %#zx\n", kernsize);
706 
707 	if (data_end - kernstart > kernsize) {
708 		kernsize += tlb1_mapin_region(kernstart + kernsize,
709 		    kernload + kernsize, (data_end - kernstart) - kernsize,
710 		    _TLB_ENTRY_MEM);
711 	}
712 	data_end = kernstart + kernsize;
713 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
714 
715 	/*
716 	 * Clear the structures - note we can only do it safely after the
717 	 * possible additional TLB1 translations are in place (above) so that
718 	 * all range up to the currently calculated 'data_end' is covered.
719 	 */
720 	bzero((void *)data_start, data_end - data_start);
721 	dpcpu_init(dpcpu, 0);
722 
723 	/*******************************************************/
724 	/* Set the start and end of kva. */
725 	/*******************************************************/
726 	virtual_avail = round_page(data_end);
727 	virtual_end = VM_MAX_KERNEL_ADDRESS;
728 
729 #ifndef __powerpc64__
730 	/* Allocate KVA space for page zero/copy operations. */
731 	zero_page_va = virtual_avail;
732 	virtual_avail += PAGE_SIZE;
733 	copy_page_src_va = virtual_avail;
734 	virtual_avail += PAGE_SIZE;
735 	copy_page_dst_va = virtual_avail;
736 	virtual_avail += PAGE_SIZE;
737 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
738 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
739 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
740 
741 	/* Initialize page zero/copy mutexes. */
742 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
743 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
744 
745 	/* Allocate KVA space for ptbl bufs. */
746 	ptbl_buf_pool_vabase = virtual_avail;
747 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
748 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
749 	    ptbl_buf_pool_vabase, virtual_avail);
750 #endif
751 #ifdef	__powerpc64__
752 	/* Allocate KVA space for crashdumpmap. */
753 	crashdumpmap = (caddr_t)virtual_avail;
754 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
755 #endif
756 
757 	/* Calculate corresponding physical addresses for the kernel region. */
758 	phys_kernelend = kernload + kernsize;
759 	debugf("kernel image and allocated data:\n");
760 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
761 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
762 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
763 
764 	/*
765 	 * Remove kernel physical address range from avail regions list. Page
766 	 * align all regions.  Non-page aligned memory isn't very interesting
767 	 * to us.  Also, sort the entries for ascending addresses.
768 	 */
769 
770 	sz = 0;
771 	cnt = availmem_regions_sz;
772 	debugf("processing avail regions:\n");
773 	for (mp = availmem_regions; mp->mr_size; mp++) {
774 		s = mp->mr_start;
775 		e = mp->mr_start + mp->mr_size;
776 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
777 		/* Check whether this region holds all of the kernel. */
778 		if (s < kernload && e > phys_kernelend) {
779 			availmem_regions[cnt].mr_start = phys_kernelend;
780 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
781 			e = kernload;
782 		}
783 		/* Look whether this regions starts within the kernel. */
784 		if (s >= kernload && s < phys_kernelend) {
785 			if (e <= phys_kernelend)
786 				goto empty;
787 			s = phys_kernelend;
788 		}
789 		/* Now look whether this region ends within the kernel. */
790 		if (e > kernload && e <= phys_kernelend) {
791 			if (s >= kernload)
792 				goto empty;
793 			e = kernload;
794 		}
795 		/* Now page align the start and size of the region. */
796 		s = round_page(s);
797 		e = trunc_page(e);
798 		if (e < s)
799 			e = s;
800 		sz = e - s;
801 		debugf("%09jx-%09jx = %jx\n",
802 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
803 
804 		/* Check whether some memory is left here. */
805 		if (sz == 0) {
806 		empty:
807 			memmove(mp, mp + 1,
808 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
809 			cnt--;
810 			mp--;
811 			continue;
812 		}
813 
814 		/* Do an insertion sort. */
815 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
816 			if (s < mp1->mr_start)
817 				break;
818 		if (mp1 < mp) {
819 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
820 			mp1->mr_start = s;
821 			mp1->mr_size = sz;
822 		} else {
823 			mp->mr_start = s;
824 			mp->mr_size = sz;
825 		}
826 	}
827 	availmem_regions_sz = cnt;
828 
829 	/*******************************************************/
830 	/* Steal physical memory for kernel stack from the end */
831 	/* of the first avail region                           */
832 	/*******************************************************/
833 	kstack0_sz = kstack_pages * PAGE_SIZE;
834 	kstack0_phys = availmem_regions[0].mr_start +
835 	    availmem_regions[0].mr_size;
836 	kstack0_phys -= kstack0_sz;
837 	availmem_regions[0].mr_size -= kstack0_sz;
838 
839 	/*******************************************************/
840 	/* Fill in phys_avail table, based on availmem_regions */
841 	/*******************************************************/
842 	phys_avail_count = 0;
843 	physsz = 0;
844 	hwphyssz = 0;
845 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
846 
847 	debugf("fill in phys_avail:\n");
848 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
849 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
850 		    (uintmax_t)availmem_regions[i].mr_start,
851 		    (uintmax_t)availmem_regions[i].mr_start +
852 		        availmem_regions[i].mr_size,
853 		    (uintmax_t)availmem_regions[i].mr_size);
854 
855 		if (hwphyssz != 0 &&
856 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
857 			debugf(" hw.physmem adjust\n");
858 			if (physsz < hwphyssz) {
859 				phys_avail[j] = availmem_regions[i].mr_start;
860 				phys_avail[j + 1] =
861 				    availmem_regions[i].mr_start +
862 				    hwphyssz - physsz;
863 				physsz = hwphyssz;
864 				phys_avail_count++;
865 				dump_avail[j] = phys_avail[j];
866 				dump_avail[j + 1] = phys_avail[j + 1];
867 			}
868 			break;
869 		}
870 
871 		phys_avail[j] = availmem_regions[i].mr_start;
872 		phys_avail[j + 1] = availmem_regions[i].mr_start +
873 		    availmem_regions[i].mr_size;
874 		phys_avail_count++;
875 		physsz += availmem_regions[i].mr_size;
876 		dump_avail[j] = phys_avail[j];
877 		dump_avail[j + 1] = phys_avail[j + 1];
878 	}
879 	physmem = btoc(physsz);
880 
881 	/* Calculate the last available physical address. */
882 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
883 		;
884 	Maxmem = powerpc_btop(phys_avail[i + 1]);
885 
886 	debugf("Maxmem = 0x%08lx\n", Maxmem);
887 	debugf("phys_avail_count = %d\n", phys_avail_count);
888 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
889 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
890 
891 #ifdef __powerpc64__
892 	/*
893 	 * Map the physical memory contiguously in TLB1.
894 	 * Round so it fits into a single mapping.
895 	 */
896 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
897 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
898 #endif
899 
900 	/*******************************************************/
901 	/* Initialize (statically allocated) kernel pmap. */
902 	/*******************************************************/
903 	PMAP_LOCK_INIT(kernel_pmap);
904 
905 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
906 	kernel_pte_alloc(virtual_avail, kernstart);
907 	for (i = 0; i < MAXCPU; i++) {
908 		kernel_pmap->pm_tid[i] = TID_KERNEL;
909 
910 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
911 		tidbusy[i][TID_KERNEL] = kernel_pmap;
912 	}
913 
914 	/* Mark kernel_pmap active on all CPUs */
915 	CPU_FILL(&kernel_pmap->pm_active);
916 
917  	/*
918 	 * Initialize the global pv list lock.
919 	 */
920 	rw_init(&pvh_global_lock, "pmap pv global");
921 
922 	/*******************************************************/
923 	/* Final setup */
924 	/*******************************************************/
925 
926 	/* Enter kstack0 into kernel map, provide guard page */
927 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
928 	thread0.td_kstack = kstack0;
929 	thread0.td_kstack_pages = kstack_pages;
930 
931 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
932 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
933 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
934 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
935 	    kstack0, kstack0 + kstack0_sz);
936 
937 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
938 	for (i = 0; i < kstack_pages; i++) {
939 		mmu_booke_kenter(kstack0, kstack0_phys);
940 		kstack0 += PAGE_SIZE;
941 		kstack0_phys += PAGE_SIZE;
942 	}
943 
944 	pmap_bootstrapped = 1;
945 
946 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
947 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
948 
949 	debugf("mmu_booke_bootstrap: exit\n");
950 }
951 
952 #ifdef SMP
953 void
954 tlb1_ap_prep(void)
955 {
956 	tlb_entry_t *e, tmp;
957 	unsigned int i;
958 
959 	/* Prepare TLB1 image for AP processors */
960 	e = __boot_tlb1;
961 	for (i = 0; i < TLB1_ENTRIES; i++) {
962 		tlb1_read_entry(&tmp, i);
963 
964 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
965 			memcpy(e++, &tmp, sizeof(tmp));
966 	}
967 }
968 
969 void
970 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
971 {
972 	int i;
973 
974 	/*
975 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
976 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
977 	 * created by tlb1_ap_prep(), so use these values directly to
978 	 * (re)program AP's TLB1 hardware.
979 	 *
980 	 * Start at index 1 because index 0 has the kernel map.
981 	 */
982 	for (i = 1; i < TLB1_ENTRIES; i++) {
983 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
984 			tlb1_write_entry(&__boot_tlb1[i], i);
985 	}
986 
987 	set_mas4_defaults();
988 }
989 #endif
990 
991 static void
992 booke_pmap_init_qpages(void)
993 {
994 	struct pcpu *pc;
995 	int i;
996 
997 	CPU_FOREACH(i) {
998 		pc = pcpu_find(i);
999 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1000 		if (pc->pc_qmap_addr == 0)
1001 			panic("pmap_init_qpages: unable to allocate KVA");
1002 	}
1003 }
1004 
1005 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1006 
1007 /*
1008  * Get the physical page address for the given pmap/virtual address.
1009  */
1010 static vm_paddr_t
1011 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
1012 {
1013 	vm_paddr_t pa;
1014 
1015 	PMAP_LOCK(pmap);
1016 	pa = pte_vatopa(pmap, va);
1017 	PMAP_UNLOCK(pmap);
1018 
1019 	return (pa);
1020 }
1021 
1022 /*
1023  * Extract the physical page address associated with the given
1024  * kernel virtual address.
1025  */
1026 static vm_paddr_t
1027 mmu_booke_kextract(vm_offset_t va)
1028 {
1029 	tlb_entry_t e;
1030 	vm_paddr_t p = 0;
1031 	int i;
1032 
1033 #ifdef __powerpc64__
1034 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1035 		return (DMAP_TO_PHYS(va));
1036 #endif
1037 
1038 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1039 		p = pte_vatopa(kernel_pmap, va);
1040 
1041 	if (p == 0) {
1042 		/* Check TLB1 mappings */
1043 		for (i = 0; i < TLB1_ENTRIES; i++) {
1044 			tlb1_read_entry(&e, i);
1045 			if (!(e.mas1 & MAS1_VALID))
1046 				continue;
1047 			if (va >= e.virt && va < e.virt + e.size)
1048 				return (e.phys + (va - e.virt));
1049 		}
1050 	}
1051 
1052 	return (p);
1053 }
1054 
1055 /*
1056  * Initialize the pmap module.
1057  *
1058  * Called by vm_mem_init(), to initialize any structures that the pmap system
1059  * needs to map virtual memory.
1060  */
1061 static void
1062 mmu_booke_init(void)
1063 {
1064 	int shpgperproc = PMAP_SHPGPERPROC;
1065 
1066 	/*
1067 	 * Initialize the address space (zone) for the pv entries.  Set a
1068 	 * high water mark so that the system can recover from excessive
1069 	 * numbers of pv entries.
1070 	 */
1071 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1072 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1073 
1074 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1075 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1076 
1077 	TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
1078 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1079 
1080 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1081 
1082 	/* Pre-fill pvzone with initial number of pv entries. */
1083 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1084 
1085 	/* Create a UMA zone for page table roots. */
1086 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
1087 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
1088 
1089 	/* Initialize ptbl allocation. */
1090 	ptbl_init();
1091 }
1092 
1093 /*
1094  * Map a list of wired pages into kernel virtual address space.  This is
1095  * intended for temporary mappings which do not need page modification or
1096  * references recorded.  Existing mappings in the region are overwritten.
1097  */
1098 static void
1099 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
1100 {
1101 	vm_offset_t va;
1102 
1103 	va = sva;
1104 	while (count-- > 0) {
1105 		mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
1106 		va += PAGE_SIZE;
1107 		m++;
1108 	}
1109 }
1110 
1111 /*
1112  * Remove page mappings from kernel virtual address space.  Intended for
1113  * temporary mappings entered by mmu_booke_qenter.
1114  */
1115 static void
1116 mmu_booke_qremove(vm_offset_t sva, int count)
1117 {
1118 	vm_offset_t va;
1119 
1120 	va = sva;
1121 	while (count-- > 0) {
1122 		mmu_booke_kremove(va);
1123 		va += PAGE_SIZE;
1124 	}
1125 }
1126 
1127 /*
1128  * Map a wired page into kernel virtual address space.
1129  */
1130 static void
1131 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
1132 {
1133 
1134 	mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1135 }
1136 
1137 static void
1138 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1139 {
1140 	uint32_t flags;
1141 	pte_t *pte;
1142 
1143 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1144 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1145 
1146 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1147 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1148 	flags |= PTE_PS_4KB;
1149 
1150 	pte = pte_find(kernel_pmap, va);
1151 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
1152 
1153 	mtx_lock_spin(&tlbivax_mutex);
1154 	tlb_miss_lock();
1155 
1156 	if (PTE_ISVALID(pte)) {
1157 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1158 
1159 		/* Flush entry from TLB0 */
1160 		tlb0_flush_entry(va);
1161 	}
1162 
1163 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1164 
1165 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1166 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1167 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1168 
1169 	/* Flush the real memory from the instruction cache. */
1170 	if ((flags & (PTE_I | PTE_G)) == 0)
1171 		__syncicache((void *)va, PAGE_SIZE);
1172 
1173 	tlb_miss_unlock();
1174 	mtx_unlock_spin(&tlbivax_mutex);
1175 }
1176 
1177 /*
1178  * Remove a page from kernel page table.
1179  */
1180 static void
1181 mmu_booke_kremove(vm_offset_t va)
1182 {
1183 	pte_t *pte;
1184 
1185 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
1186 
1187 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1188 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1189 	    ("mmu_booke_kremove: invalid va"));
1190 
1191 	pte = pte_find(kernel_pmap, va);
1192 
1193 	if (!PTE_ISVALID(pte)) {
1194 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1195 
1196 		return;
1197 	}
1198 
1199 	mtx_lock_spin(&tlbivax_mutex);
1200 	tlb_miss_lock();
1201 
1202 	/* Invalidate entry in TLB0, update PTE. */
1203 	tlb0_flush_entry(va);
1204 	*pte = 0;
1205 
1206 	tlb_miss_unlock();
1207 	mtx_unlock_spin(&tlbivax_mutex);
1208 }
1209 
1210 /*
1211  * Figure out where a given kernel pointer (usually in a fault) points
1212  * to from the VM's perspective, potentially remapping into userland's
1213  * address space.
1214  */
1215 static int
1216 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1217     vm_offset_t *decoded_addr)
1218 {
1219 
1220 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
1221 		*is_user = 1;
1222 	else
1223 		*is_user = 0;
1224 
1225 	*decoded_addr = addr;
1226 	return (0);
1227 }
1228 
1229 static bool
1230 mmu_booke_page_is_mapped(vm_page_t m)
1231 {
1232 
1233 	return (!TAILQ_EMPTY(&(m)->md.pv_list));
1234 }
1235 
1236 static bool
1237 mmu_booke_ps_enabled(pmap_t pmap __unused)
1238 {
1239 	return (false);
1240 }
1241 
1242 /*
1243  * Initialize pmap associated with process 0.
1244  */
1245 static void
1246 mmu_booke_pinit0(pmap_t pmap)
1247 {
1248 
1249 	PMAP_LOCK_INIT(pmap);
1250 	mmu_booke_pinit(pmap);
1251 	PCPU_SET(curpmap, pmap);
1252 }
1253 
1254 /*
1255  * Insert the given physical page at the specified virtual address in the
1256  * target physical map with the protection requested. If specified the page
1257  * will be wired down.
1258  */
1259 static int
1260 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1261     vm_prot_t prot, u_int flags, int8_t psind)
1262 {
1263 	int error;
1264 
1265 	rw_wlock(&pvh_global_lock);
1266 	PMAP_LOCK(pmap);
1267 	error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
1268 	PMAP_UNLOCK(pmap);
1269 	rw_wunlock(&pvh_global_lock);
1270 	return (error);
1271 }
1272 
1273 static int
1274 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1275     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1276 {
1277 	pte_t *pte;
1278 	vm_paddr_t pa;
1279 	pte_t flags;
1280 	int error, su, sync;
1281 
1282 	pa = VM_PAGE_TO_PHYS(m);
1283 	su = (pmap == kernel_pmap);
1284 	sync = 0;
1285 
1286 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1287 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1288 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1289 	//		(u_int32_t)m, va, pa, prot, flags);
1290 
1291 	if (su) {
1292 		KASSERT(((va >= virtual_avail) &&
1293 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1294 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1295 	} else {
1296 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1297 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1298 	}
1299 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1300 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1301 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1302 		else
1303 			VM_OBJECT_ASSERT_LOCKED(m->object);
1304 	}
1305 
1306 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1307 
1308 	/*
1309 	 * If there is an existing mapping, and the physical address has not
1310 	 * changed, must be protection or wiring change.
1311 	 */
1312 	if (((pte = pte_find(pmap, va)) != NULL) &&
1313 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1314 
1315 		/*
1316 		 * Before actually updating pte->flags we calculate and
1317 		 * prepare its new value in a helper var.
1318 		 */
1319 		flags = *pte;
1320 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1321 
1322 		/* Wiring change, just update stats. */
1323 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1324 			if (!PTE_ISWIRED(pte)) {
1325 				flags |= PTE_WIRED;
1326 				pmap->pm_stats.wired_count++;
1327 			}
1328 		} else {
1329 			if (PTE_ISWIRED(pte)) {
1330 				flags &= ~PTE_WIRED;
1331 				pmap->pm_stats.wired_count--;
1332 			}
1333 		}
1334 
1335 		if (prot & VM_PROT_WRITE) {
1336 			/* Add write permissions. */
1337 			flags |= PTE_SW;
1338 			if (!su)
1339 				flags |= PTE_UW;
1340 
1341 			if ((flags & PTE_MANAGED) != 0)
1342 				vm_page_aflag_set(m, PGA_WRITEABLE);
1343 		} else {
1344 			/* Handle modified pages, sense modify status. */
1345 
1346 			/*
1347 			 * The PTE_MODIFIED flag could be set by underlying
1348 			 * TLB misses since we last read it (above), possibly
1349 			 * other CPUs could update it so we check in the PTE
1350 			 * directly rather than rely on that saved local flags
1351 			 * copy.
1352 			 */
1353 			if (PTE_ISMODIFIED(pte))
1354 				vm_page_dirty(m);
1355 		}
1356 
1357 		if (prot & VM_PROT_EXECUTE) {
1358 			flags |= PTE_SX;
1359 			if (!su)
1360 				flags |= PTE_UX;
1361 
1362 			/*
1363 			 * Check existing flags for execute permissions: if we
1364 			 * are turning execute permissions on, icache should
1365 			 * be flushed.
1366 			 */
1367 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1368 				sync++;
1369 		}
1370 
1371 		flags &= ~PTE_REFERENCED;
1372 
1373 		/*
1374 		 * The new flags value is all calculated -- only now actually
1375 		 * update the PTE.
1376 		 */
1377 		mtx_lock_spin(&tlbivax_mutex);
1378 		tlb_miss_lock();
1379 
1380 		tlb0_flush_entry(va);
1381 		*pte &= ~PTE_FLAGS_MASK;
1382 		*pte |= flags;
1383 
1384 		tlb_miss_unlock();
1385 		mtx_unlock_spin(&tlbivax_mutex);
1386 
1387 	} else {
1388 		/*
1389 		 * If there is an existing mapping, but it's for a different
1390 		 * physical address, pte_enter() will delete the old mapping.
1391 		 */
1392 		//if ((pte != NULL) && PTE_ISVALID(pte))
1393 		//	debugf("mmu_booke_enter_locked: replace\n");
1394 		//else
1395 		//	debugf("mmu_booke_enter_locked: new\n");
1396 
1397 		/* Now set up the flags and install the new mapping. */
1398 		flags = (PTE_SR | PTE_VALID);
1399 		flags |= PTE_M;
1400 
1401 		if (!su)
1402 			flags |= PTE_UR;
1403 
1404 		if (prot & VM_PROT_WRITE) {
1405 			flags |= PTE_SW;
1406 			if (!su)
1407 				flags |= PTE_UW;
1408 
1409 			if ((m->oflags & VPO_UNMANAGED) == 0)
1410 				vm_page_aflag_set(m, PGA_WRITEABLE);
1411 		}
1412 
1413 		if (prot & VM_PROT_EXECUTE) {
1414 			flags |= PTE_SX;
1415 			if (!su)
1416 				flags |= PTE_UX;
1417 		}
1418 
1419 		/* If its wired update stats. */
1420 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1421 			flags |= PTE_WIRED;
1422 
1423 		error = pte_enter(pmap, m, va, flags,
1424 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1425 		if (error != 0)
1426 			return (KERN_RESOURCE_SHORTAGE);
1427 
1428 		if ((flags & PMAP_ENTER_WIRED) != 0)
1429 			pmap->pm_stats.wired_count++;
1430 
1431 		/* Flush the real memory from the instruction cache. */
1432 		if (prot & VM_PROT_EXECUTE)
1433 			sync++;
1434 	}
1435 
1436 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1437 		__syncicache((void *)va, PAGE_SIZE);
1438 		sync = 0;
1439 	}
1440 
1441 	return (KERN_SUCCESS);
1442 }
1443 
1444 /*
1445  * Maps a sequence of resident pages belonging to the same object.
1446  * The sequence begins with the given page m_start.  This page is
1447  * mapped at the given virtual address start.  Each subsequent page is
1448  * mapped at a virtual address that is offset from start by the same
1449  * amount as the page is offset from m_start within the object.  The
1450  * last page in the sequence is the page with the largest offset from
1451  * m_start that can be mapped at a virtual address less than the given
1452  * virtual address end.  Not every virtual page between start and end
1453  * is mapped; only those for which a resident page exists with the
1454  * corresponding offset from m_start are mapped.
1455  */
1456 static void
1457 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
1458     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1459 {
1460 	vm_page_t m;
1461 	vm_pindex_t diff, psize;
1462 
1463 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1464 
1465 	psize = atop(end - start);
1466 	m = m_start;
1467 	rw_wlock(&pvh_global_lock);
1468 	PMAP_LOCK(pmap);
1469 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1470 		mmu_booke_enter_locked(pmap, start + ptoa(diff), m,
1471 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1472 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1473 		m = TAILQ_NEXT(m, listq);
1474 	}
1475 	PMAP_UNLOCK(pmap);
1476 	rw_wunlock(&pvh_global_lock);
1477 }
1478 
1479 static void
1480 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
1481     vm_prot_t prot)
1482 {
1483 
1484 	rw_wlock(&pvh_global_lock);
1485 	PMAP_LOCK(pmap);
1486 	mmu_booke_enter_locked(pmap, va, m,
1487 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1488 	    PMAP_ENTER_QUICK_LOCKED, 0);
1489 	PMAP_UNLOCK(pmap);
1490 	rw_wunlock(&pvh_global_lock);
1491 }
1492 
1493 /*
1494  * Remove the given range of addresses from the specified map.
1495  *
1496  * It is assumed that the start and end are properly rounded to the page size.
1497  */
1498 static void
1499 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1500 {
1501 	pte_t *pte;
1502 	uint8_t hold_flag;
1503 
1504 	int su = (pmap == kernel_pmap);
1505 
1506 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1507 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1508 
1509 	if (su) {
1510 		KASSERT(((va >= virtual_avail) &&
1511 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1512 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1513 	} else {
1514 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1515 		    ("mmu_booke_remove: user pmap, non user va"));
1516 	}
1517 
1518 	if (PMAP_REMOVE_DONE(pmap)) {
1519 		//debugf("mmu_booke_remove: e (empty)\n");
1520 		return;
1521 	}
1522 
1523 	hold_flag = PTBL_HOLD_FLAG(pmap);
1524 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1525 
1526 	rw_wlock(&pvh_global_lock);
1527 	PMAP_LOCK(pmap);
1528 	for (; va < endva; va += PAGE_SIZE) {
1529 		pte = pte_find_next(pmap, &va);
1530 		if ((pte == NULL) || !PTE_ISVALID(pte))
1531 			break;
1532 		if (va >= endva)
1533 			break;
1534 		pte_remove(pmap, va, hold_flag);
1535 	}
1536 	PMAP_UNLOCK(pmap);
1537 	rw_wunlock(&pvh_global_lock);
1538 
1539 	//debugf("mmu_booke_remove: e\n");
1540 }
1541 
1542 /*
1543  * Remove physical page from all pmaps in which it resides.
1544  */
1545 static void
1546 mmu_booke_remove_all(vm_page_t m)
1547 {
1548 	pv_entry_t pv, pvn;
1549 	uint8_t hold_flag;
1550 
1551 	rw_wlock(&pvh_global_lock);
1552 	TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
1553 		PMAP_LOCK(pv->pv_pmap);
1554 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1555 		pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
1556 		PMAP_UNLOCK(pv->pv_pmap);
1557 	}
1558 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1559 	rw_wunlock(&pvh_global_lock);
1560 }
1561 
1562 /*
1563  * Map a range of physical addresses into kernel virtual address space.
1564  */
1565 static vm_offset_t
1566 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
1567     vm_paddr_t pa_end, int prot)
1568 {
1569 	vm_offset_t sva = *virt;
1570 	vm_offset_t va = sva;
1571 
1572 #ifdef __powerpc64__
1573 	/* XXX: Handle memory not starting at 0x0. */
1574 	if (pa_end < ctob(Maxmem))
1575 		return (PHYS_TO_DMAP(pa_start));
1576 #endif
1577 
1578 	while (pa_start < pa_end) {
1579 		mmu_booke_kenter(va, pa_start);
1580 		va += PAGE_SIZE;
1581 		pa_start += PAGE_SIZE;
1582 	}
1583 	*virt = va;
1584 
1585 	return (sva);
1586 }
1587 
1588 /*
1589  * The pmap must be activated before it's address space can be accessed in any
1590  * way.
1591  */
1592 static void
1593 mmu_booke_activate(struct thread *td)
1594 {
1595 	pmap_t pmap;
1596 	u_int cpuid;
1597 
1598 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1599 
1600 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
1601 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1602 
1603 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1604 
1605 	sched_pin();
1606 
1607 	cpuid = PCPU_GET(cpuid);
1608 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1609 	PCPU_SET(curpmap, pmap);
1610 
1611 	if (pmap->pm_tid[cpuid] == TID_NONE)
1612 		tid_alloc(pmap);
1613 
1614 	/* Load PID0 register with pmap tid value. */
1615 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1616 	__asm __volatile("isync");
1617 
1618 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1619 
1620 	sched_unpin();
1621 
1622 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1623 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1624 }
1625 
1626 /*
1627  * Deactivate the specified process's address space.
1628  */
1629 static void
1630 mmu_booke_deactivate(struct thread *td)
1631 {
1632 	pmap_t pmap;
1633 
1634 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1635 
1636 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
1637 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1638 
1639 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1640 
1641 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1642 	PCPU_SET(curpmap, NULL);
1643 }
1644 
1645 /*
1646  * Copy the range specified by src_addr/len
1647  * from the source map to the range dst_addr/len
1648  * in the destination map.
1649  *
1650  * This routine is only advisory and need not do anything.
1651  */
1652 static void
1653 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
1654     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1655 {
1656 
1657 }
1658 
1659 /*
1660  * Set the physical protection on the specified range of this map as requested.
1661  */
1662 static void
1663 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1664     vm_prot_t prot)
1665 {
1666 	vm_offset_t va;
1667 	vm_page_t m;
1668 	pte_t *pte;
1669 
1670 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1671 		mmu_booke_remove(pmap, sva, eva);
1672 		return;
1673 	}
1674 
1675 	if (prot & VM_PROT_WRITE)
1676 		return;
1677 
1678 	PMAP_LOCK(pmap);
1679 	for (va = sva; va < eva; va += PAGE_SIZE) {
1680 		if ((pte = pte_find(pmap, va)) != NULL) {
1681 			if (PTE_ISVALID(pte)) {
1682 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1683 
1684 				mtx_lock_spin(&tlbivax_mutex);
1685 				tlb_miss_lock();
1686 
1687 				/* Handle modified pages. */
1688 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1689 					vm_page_dirty(m);
1690 
1691 				tlb0_flush_entry(va);
1692 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1693 
1694 				tlb_miss_unlock();
1695 				mtx_unlock_spin(&tlbivax_mutex);
1696 			}
1697 		}
1698 	}
1699 	PMAP_UNLOCK(pmap);
1700 }
1701 
1702 /*
1703  * Clear the write and modified bits in each of the given page's mappings.
1704  */
1705 static void
1706 mmu_booke_remove_write(vm_page_t m)
1707 {
1708 	pv_entry_t pv;
1709 	pte_t *pte;
1710 
1711 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1712 	    ("mmu_booke_remove_write: page %p is not managed", m));
1713 	vm_page_assert_busied(m);
1714 
1715 	if (!pmap_page_is_write_mapped(m))
1716 	        return;
1717 	rw_wlock(&pvh_global_lock);
1718 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1719 		PMAP_LOCK(pv->pv_pmap);
1720 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
1721 			if (PTE_ISVALID(pte)) {
1722 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1723 
1724 				mtx_lock_spin(&tlbivax_mutex);
1725 				tlb_miss_lock();
1726 
1727 				/* Handle modified pages. */
1728 				if (PTE_ISMODIFIED(pte))
1729 					vm_page_dirty(m);
1730 
1731 				/* Flush mapping from TLB0. */
1732 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1733 
1734 				tlb_miss_unlock();
1735 				mtx_unlock_spin(&tlbivax_mutex);
1736 			}
1737 		}
1738 		PMAP_UNLOCK(pv->pv_pmap);
1739 	}
1740 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1741 	rw_wunlock(&pvh_global_lock);
1742 }
1743 
1744 /*
1745  * Atomically extract and hold the physical page with the given
1746  * pmap and virtual address pair if that mapping permits the given
1747  * protection.
1748  */
1749 static vm_page_t
1750 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
1751     vm_prot_t prot)
1752 {
1753 	pte_t *pte;
1754 	vm_page_t m;
1755 	uint32_t pte_wbit;
1756 
1757 	m = NULL;
1758 	PMAP_LOCK(pmap);
1759 	pte = pte_find(pmap, va);
1760 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1761 		if (pmap == kernel_pmap)
1762 			pte_wbit = PTE_SW;
1763 		else
1764 			pte_wbit = PTE_UW;
1765 
1766 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
1767 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1768 			if (!vm_page_wire_mapped(m))
1769 				m = NULL;
1770 		}
1771 	}
1772 	PMAP_UNLOCK(pmap);
1773 	return (m);
1774 }
1775 
1776 /*
1777  * Initialize a vm_page's machine-dependent fields.
1778  */
1779 static void
1780 mmu_booke_page_init(vm_page_t m)
1781 {
1782 
1783 	m->md.pv_tracked = 0;
1784 	TAILQ_INIT(&m->md.pv_list);
1785 }
1786 
1787 /*
1788  * Return whether or not the specified physical page was modified
1789  * in any of physical maps.
1790  */
1791 static bool
1792 mmu_booke_is_modified(vm_page_t m)
1793 {
1794 	pte_t *pte;
1795 	pv_entry_t pv;
1796 	bool rv;
1797 
1798 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1799 	    ("mmu_booke_is_modified: page %p is not managed", m));
1800 	rv = false;
1801 
1802 	/*
1803 	 * If the page is not busied then this check is racy.
1804 	 */
1805 	if (!pmap_page_is_write_mapped(m))
1806 		return (false);
1807 
1808 	rw_wlock(&pvh_global_lock);
1809 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1810 		PMAP_LOCK(pv->pv_pmap);
1811 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1812 		    PTE_ISVALID(pte)) {
1813 			if (PTE_ISMODIFIED(pte))
1814 				rv = true;
1815 		}
1816 		PMAP_UNLOCK(pv->pv_pmap);
1817 		if (rv)
1818 			break;
1819 	}
1820 	rw_wunlock(&pvh_global_lock);
1821 	return (rv);
1822 }
1823 
1824 /*
1825  * Return whether or not the specified virtual address is eligible
1826  * for prefault.
1827  */
1828 static bool
1829 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1830 {
1831 
1832 	return (false);
1833 }
1834 
1835 /*
1836  * Return whether or not the specified physical page was referenced
1837  * in any physical maps.
1838  */
1839 static bool
1840 mmu_booke_is_referenced(vm_page_t m)
1841 {
1842 	pte_t *pte;
1843 	pv_entry_t pv;
1844 	bool rv;
1845 
1846 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1847 	    ("mmu_booke_is_referenced: page %p is not managed", m));
1848 	rv = false;
1849 	rw_wlock(&pvh_global_lock);
1850 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1851 		PMAP_LOCK(pv->pv_pmap);
1852 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1853 		    PTE_ISVALID(pte)) {
1854 			if (PTE_ISREFERENCED(pte))
1855 				rv = true;
1856 		}
1857 		PMAP_UNLOCK(pv->pv_pmap);
1858 		if (rv)
1859 			break;
1860 	}
1861 	rw_wunlock(&pvh_global_lock);
1862 	return (rv);
1863 }
1864 
1865 /*
1866  * Clear the modify bits on the specified physical page.
1867  */
1868 static void
1869 mmu_booke_clear_modify(vm_page_t m)
1870 {
1871 	pte_t *pte;
1872 	pv_entry_t pv;
1873 
1874 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1875 	    ("mmu_booke_clear_modify: page %p is not managed", m));
1876 	vm_page_assert_busied(m);
1877 
1878 	if (!pmap_page_is_write_mapped(m))
1879 	        return;
1880 
1881 	rw_wlock(&pvh_global_lock);
1882 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1883 		PMAP_LOCK(pv->pv_pmap);
1884 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1885 		    PTE_ISVALID(pte)) {
1886 			mtx_lock_spin(&tlbivax_mutex);
1887 			tlb_miss_lock();
1888 
1889 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
1890 				tlb0_flush_entry(pv->pv_va);
1891 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
1892 				    PTE_REFERENCED);
1893 			}
1894 
1895 			tlb_miss_unlock();
1896 			mtx_unlock_spin(&tlbivax_mutex);
1897 		}
1898 		PMAP_UNLOCK(pv->pv_pmap);
1899 	}
1900 	rw_wunlock(&pvh_global_lock);
1901 }
1902 
1903 /*
1904  * Return a count of reference bits for a page, clearing those bits.
1905  * It is not necessary for every reference bit to be cleared, but it
1906  * is necessary that 0 only be returned when there are truly no
1907  * reference bits set.
1908  *
1909  * As an optimization, update the page's dirty field if a modified bit is
1910  * found while counting reference bits.  This opportunistic update can be
1911  * performed at low cost and can eliminate the need for some future calls
1912  * to pmap_is_modified().  However, since this function stops after
1913  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
1914  * dirty pages.  Those dirty pages will only be detected by a future call
1915  * to pmap_is_modified().
1916  */
1917 static int
1918 mmu_booke_ts_referenced(vm_page_t m)
1919 {
1920 	pte_t *pte;
1921 	pv_entry_t pv;
1922 	int count;
1923 
1924 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1925 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
1926 	count = 0;
1927 	rw_wlock(&pvh_global_lock);
1928 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1929 		PMAP_LOCK(pv->pv_pmap);
1930 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1931 		    PTE_ISVALID(pte)) {
1932 			if (PTE_ISMODIFIED(pte))
1933 				vm_page_dirty(m);
1934 			if (PTE_ISREFERENCED(pte)) {
1935 				mtx_lock_spin(&tlbivax_mutex);
1936 				tlb_miss_lock();
1937 
1938 				tlb0_flush_entry(pv->pv_va);
1939 				*pte &= ~PTE_REFERENCED;
1940 
1941 				tlb_miss_unlock();
1942 				mtx_unlock_spin(&tlbivax_mutex);
1943 
1944 				if (++count >= PMAP_TS_REFERENCED_MAX) {
1945 					PMAP_UNLOCK(pv->pv_pmap);
1946 					break;
1947 				}
1948 			}
1949 		}
1950 		PMAP_UNLOCK(pv->pv_pmap);
1951 	}
1952 	rw_wunlock(&pvh_global_lock);
1953 	return (count);
1954 }
1955 
1956 /*
1957  * Clear the wired attribute from the mappings for the specified range of
1958  * addresses in the given pmap.  Every valid mapping within that range must
1959  * have the wired attribute set.  In contrast, invalid mappings cannot have
1960  * the wired attribute set, so they are ignored.
1961  *
1962  * The wired attribute of the page table entry is not a hardware feature, so
1963  * there is no need to invalidate any TLB entries.
1964  */
1965 static void
1966 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1967 {
1968 	vm_offset_t va;
1969 	pte_t *pte;
1970 
1971 	PMAP_LOCK(pmap);
1972 	for (va = sva; va < eva; va += PAGE_SIZE) {
1973 		if ((pte = pte_find(pmap, va)) != NULL &&
1974 		    PTE_ISVALID(pte)) {
1975 			if (!PTE_ISWIRED(pte))
1976 				panic("mmu_booke_unwire: pte %p isn't wired",
1977 				    pte);
1978 			*pte &= ~PTE_WIRED;
1979 			pmap->pm_stats.wired_count--;
1980 		}
1981 	}
1982 	PMAP_UNLOCK(pmap);
1983 
1984 }
1985 
1986 /*
1987  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
1988  * page.  This count may be changed upwards or downwards in the future; it is
1989  * only necessary that true be returned for a small subset of pmaps for proper
1990  * page aging.
1991  */
1992 static bool
1993 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
1994 {
1995 	pv_entry_t pv;
1996 	int loops;
1997 	bool rv;
1998 
1999 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2000 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2001 	loops = 0;
2002 	rv = false;
2003 	rw_wlock(&pvh_global_lock);
2004 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2005 		if (pv->pv_pmap == pmap) {
2006 			rv = true;
2007 			break;
2008 		}
2009 		if (++loops >= 16)
2010 			break;
2011 	}
2012 	rw_wunlock(&pvh_global_lock);
2013 	return (rv);
2014 }
2015 
2016 /*
2017  * Return the number of managed mappings to the given physical page that are
2018  * wired.
2019  */
2020 static int
2021 mmu_booke_page_wired_mappings(vm_page_t m)
2022 {
2023 	pv_entry_t pv;
2024 	pte_t *pte;
2025 	int count = 0;
2026 
2027 	if ((m->oflags & VPO_UNMANAGED) != 0)
2028 		return (count);
2029 	rw_wlock(&pvh_global_lock);
2030 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2031 		PMAP_LOCK(pv->pv_pmap);
2032 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
2033 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2034 				count++;
2035 		PMAP_UNLOCK(pv->pv_pmap);
2036 	}
2037 	rw_wunlock(&pvh_global_lock);
2038 	return (count);
2039 }
2040 
2041 static int
2042 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2043 {
2044 	int i;
2045 	vm_offset_t va;
2046 
2047 	/*
2048 	 * This currently does not work for entries that
2049 	 * overlap TLB1 entries.
2050 	 */
2051 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2052 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2053 			return (0);
2054 	}
2055 
2056 	return (EFAULT);
2057 }
2058 
2059 void
2060 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2061 {
2062 	vm_paddr_t ppa;
2063 	vm_offset_t ofs;
2064 	vm_size_t gran;
2065 
2066 	/* Minidumps are based on virtual memory addresses. */
2067 	if (do_minidump) {
2068 		*va = (void *)(vm_offset_t)pa;
2069 		return;
2070 	}
2071 
2072 	/* Raw physical memory dumps don't have a virtual address. */
2073 	/* We always map a 256MB page at 256M. */
2074 	gran = 256 * 1024 * 1024;
2075 	ppa = rounddown2(pa, gran);
2076 	ofs = pa - ppa;
2077 	*va = (void *)gran;
2078 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2079 
2080 	if (sz > (gran - ofs))
2081 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2082 		    _TLB_ENTRY_IO);
2083 }
2084 
2085 void
2086 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
2087 {
2088 	vm_paddr_t ppa;
2089 	vm_offset_t ofs;
2090 	vm_size_t gran;
2091 	tlb_entry_t e;
2092 	int i;
2093 
2094 	/* Minidumps are based on virtual memory addresses. */
2095 	/* Nothing to do... */
2096 	if (do_minidump)
2097 		return;
2098 
2099 	for (i = 0; i < TLB1_ENTRIES; i++) {
2100 		tlb1_read_entry(&e, i);
2101 		if (!(e.mas1 & MAS1_VALID))
2102 			break;
2103 	}
2104 
2105 	/* Raw physical memory dumps don't have a virtual address. */
2106 	i--;
2107 	e.mas1 = 0;
2108 	e.mas2 = 0;
2109 	e.mas3 = 0;
2110 	tlb1_write_entry(&e, i);
2111 
2112 	gran = 256 * 1024 * 1024;
2113 	ppa = rounddown2(pa, gran);
2114 	ofs = pa - ppa;
2115 	if (sz > (gran - ofs)) {
2116 		i--;
2117 		e.mas1 = 0;
2118 		e.mas2 = 0;
2119 		e.mas3 = 0;
2120 		tlb1_write_entry(&e, i);
2121 	}
2122 }
2123 
2124 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2125 
2126 void
2127 mmu_booke_scan_init(void)
2128 {
2129 	vm_offset_t va;
2130 	pte_t *pte;
2131 	int i;
2132 
2133 	if (!do_minidump) {
2134 		/* Initialize phys. segments for dumpsys(). */
2135 		memset(&dump_map, 0, sizeof(dump_map));
2136 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2137 		    &availmem_regions_sz);
2138 		for (i = 0; i < physmem_regions_sz; i++) {
2139 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2140 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2141 		}
2142 		return;
2143 	}
2144 
2145 	/* Virtual segments for minidumps: */
2146 	memset(&dump_map, 0, sizeof(dump_map));
2147 
2148 	/* 1st: kernel .data and .bss. */
2149 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2150 	dump_map[0].pa_size =
2151 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2152 
2153 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2154 	dump_map[1].pa_start = data_start;
2155 	dump_map[1].pa_size = data_end - data_start;
2156 
2157 	/* 3rd: kernel VM. */
2158 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2159 	/* Find start of next chunk (from va). */
2160 	while (va < virtual_end) {
2161 		/* Don't dump the buffer cache. */
2162 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2163 			va = kmi.buffer_eva;
2164 			continue;
2165 		}
2166 		pte = pte_find(kernel_pmap, va);
2167 		if (pte != NULL && PTE_ISVALID(pte))
2168 			break;
2169 		va += PAGE_SIZE;
2170 	}
2171 	if (va < virtual_end) {
2172 		dump_map[2].pa_start = va;
2173 		va += PAGE_SIZE;
2174 		/* Find last page in chunk. */
2175 		while (va < virtual_end) {
2176 			/* Don't run into the buffer cache. */
2177 			if (va == kmi.buffer_sva)
2178 				break;
2179 			pte = pte_find(kernel_pmap, va);
2180 			if (pte == NULL || !PTE_ISVALID(pte))
2181 				break;
2182 			va += PAGE_SIZE;
2183 		}
2184 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2185 	}
2186 }
2187 
2188 /*
2189  * Map a set of physical memory pages into the kernel virtual address space.
2190  * Return a pointer to where it is mapped. This routine is intended to be used
2191  * for mapping device memory, NOT real memory.
2192  */
2193 static void *
2194 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
2195 {
2196 
2197 	return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2198 }
2199 
2200 static int
2201 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
2202 {
2203 	int i;
2204 
2205 	for (i = 0; i < TLB1_ENTRIES; i++) {
2206 		tlb1_read_entry(e, i);
2207 		if ((e->mas1 & MAS1_VALID) == 0)
2208 			continue;
2209 		if (e->phys == pa)
2210 			return (i);
2211 	}
2212 	return (-1);
2213 }
2214 
2215 static void *
2216 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2217 {
2218 	tlb_entry_t e;
2219 	vm_paddr_t tmppa;
2220 #ifndef __powerpc64__
2221 	uintptr_t tmpva;
2222 #endif
2223 	uintptr_t va, retva;
2224 	vm_size_t sz;
2225 	int i;
2226 	int wimge;
2227 
2228 	/*
2229 	 * Check if this is premapped in TLB1.
2230 	 */
2231 	sz = size;
2232 	tmppa = pa;
2233 	va = ~0;
2234 	wimge = tlb_calc_wimg(pa, ma);
2235 	for (i = 0; i < TLB1_ENTRIES; i++) {
2236 		tlb1_read_entry(&e, i);
2237 		if (!(e.mas1 & MAS1_VALID))
2238 			continue;
2239 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2240 			continue;
2241 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
2242 			va = e.virt + (pa - e.phys);
2243 			tmppa = e.phys + e.size;
2244 			sz -= MIN(sz, e.size - (pa - e.phys));
2245 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
2246 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2247 					break;
2248 				sz -= MIN(sz, e.size);
2249 				tmppa = e.phys + e.size;
2250 			}
2251 			if (sz != 0)
2252 				break;
2253 			return ((void *)va);
2254 		}
2255 	}
2256 
2257 	size = roundup(size, PAGE_SIZE);
2258 
2259 #ifdef __powerpc64__
2260 	KASSERT(pa < VM_MAPDEV_PA_MAX,
2261 	    ("Unsupported physical address! %lx", pa));
2262 	va = VM_MAPDEV_BASE + pa;
2263 	retva = va;
2264 #ifdef POW2_MAPPINGS
2265 	/*
2266 	 * Align the mapping to a power of 2 size, taking into account that we
2267 	 * may need to increase the size multiple times to satisfy the size and
2268 	 * alignment requirements.
2269 	 *
2270 	 * This works in the general case because it's very rare (near never?)
2271 	 * to have different access properties (WIMG) within a single
2272 	 * power-of-two region.  If a design does call for that, POW2_MAPPINGS
2273 	 * can be undefined, and exact mappings will be used instead.
2274 	 */
2275 	sz = size;
2276 	size = roundup2(size, 1 << ilog2(size));
2277 	while (rounddown2(va, size) + size < va + sz)
2278 		size <<= 1;
2279 	va = rounddown2(va, size);
2280 	pa = rounddown2(pa, size);
2281 #endif
2282 #else
2283 	/*
2284 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2285 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2286 	 */
2287 #ifdef SPARSE_MAPDEV
2288 	/*
2289 	 * With a sparse mapdev, align to the largest starting region.  This
2290 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2291 	 * calculation could be very costly.
2292 	 * Align to the smaller of:
2293 	 * - first set bit in overlap of (pa & size mask)
2294 	 * - largest size envelope
2295 	 *
2296 	 * It's possible the device mapping may start at a PA that's not larger
2297 	 * than the size mask, so we need to offset in to maximize the TLB entry
2298 	 * range and minimize the number of used TLB entries.
2299 	 */
2300 	do {
2301 	    tmpva = tlb1_map_base;
2302 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
2303 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
2304 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
2305 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2306 #endif
2307 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2308 	retva = va;
2309 #endif
2310 
2311 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
2312 		return (NULL);
2313 
2314 	return ((void *)retva);
2315 }
2316 
2317 /*
2318  * 'Unmap' a range mapped by mmu_booke_mapdev().
2319  */
2320 static void
2321 mmu_booke_unmapdev(void *p, vm_size_t size)
2322 {
2323 #ifdef SUPPORTS_SHRINKING_TLB1
2324 	vm_offset_t base, offset, va;
2325 
2326 	/*
2327 	 * Unmap only if this is inside kernel virtual space.
2328 	 */
2329 	va = (vm_offset_t)p;
2330 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2331 		base = trunc_page(va);
2332 		offset = va & PAGE_MASK;
2333 		size = roundup(offset + size, PAGE_SIZE);
2334 		mmu_booke_qremove(base, atop(size));
2335 		kva_free(base, size);
2336 	}
2337 #endif
2338 }
2339 
2340 /*
2341  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2342  * specified pmap. This eliminates the blast of soft faults on process startup
2343  * and immediately after an mmap.
2344  */
2345 static void
2346 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
2347     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2348 {
2349 
2350 	VM_OBJECT_ASSERT_WLOCKED(object);
2351 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2352 	    ("mmu_booke_object_init_pt: non-device object"));
2353 }
2354 
2355 /*
2356  * Perform the pmap work for mincore.
2357  */
2358 static int
2359 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
2360 {
2361 
2362 	/* XXX: this should be implemented at some point */
2363 	return (0);
2364 }
2365 
2366 static int
2367 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
2368 {
2369 	vm_offset_t va;
2370 	pte_t *pte;
2371 	int i, j;
2372 	tlb_entry_t e;
2373 
2374 	addr = trunc_page(addr);
2375 
2376 	/* Only allow changes to mapped kernel addresses.  This includes:
2377 	 * - KVA
2378 	 * - DMAP (powerpc64)
2379 	 * - Device mappings
2380 	 */
2381 	if (addr <= VM_MAXUSER_ADDRESS ||
2382 #ifdef __powerpc64__
2383 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
2384 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
2385 #else
2386 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
2387 #endif
2388 	    (addr > VM_MAX_KERNEL_ADDRESS))
2389 		return (EINVAL);
2390 
2391 	/* Check TLB1 mappings */
2392 	for (i = 0; i < TLB1_ENTRIES; i++) {
2393 		tlb1_read_entry(&e, i);
2394 		if (!(e.mas1 & MAS1_VALID))
2395 			continue;
2396 		if (addr >= e.virt && addr < e.virt + e.size)
2397 			break;
2398 	}
2399 	if (i < TLB1_ENTRIES) {
2400 		/* Only allow full mappings to be modified for now. */
2401 		/* Validate the range. */
2402 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2403 			tlb1_read_entry(&e, j);
2404 			if (va != e.virt || (sz - (va - addr) < e.size))
2405 				return (EINVAL);
2406 		}
2407 		for (va = addr; va < addr + sz; va += e.size, i++) {
2408 			tlb1_read_entry(&e, i);
2409 			e.mas2 &= ~MAS2_WIMGE_MASK;
2410 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2411 
2412 			/*
2413 			 * Write it out to the TLB.  Should really re-sync with other
2414 			 * cores.
2415 			 */
2416 			tlb1_write_entry(&e, i);
2417 		}
2418 		return (0);
2419 	}
2420 
2421 	/* Not in TLB1, try through pmap */
2422 	/* First validate the range. */
2423 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2424 		pte = pte_find(kernel_pmap, va);
2425 		if (pte == NULL || !PTE_ISVALID(pte))
2426 			return (EINVAL);
2427 	}
2428 
2429 	mtx_lock_spin(&tlbivax_mutex);
2430 	tlb_miss_lock();
2431 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2432 		pte = pte_find(kernel_pmap, va);
2433 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2434 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2435 		tlb0_flush_entry(va);
2436 	}
2437 	tlb_miss_unlock();
2438 	mtx_unlock_spin(&tlbivax_mutex);
2439 
2440 	return (0);
2441 }
2442 
2443 static void
2444 mmu_booke_page_array_startup(long pages)
2445 {
2446 	vm_page_array_size = pages;
2447 }
2448 
2449 /**************************************************************************/
2450 /* TID handling */
2451 /**************************************************************************/
2452 
2453 /*
2454  * Allocate a TID. If necessary, steal one from someone else.
2455  * The new TID is flushed from the TLB before returning.
2456  */
2457 static tlbtid_t
2458 tid_alloc(pmap_t pmap)
2459 {
2460 	tlbtid_t tid;
2461 	int thiscpu;
2462 
2463 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2464 
2465 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2466 
2467 	thiscpu = PCPU_GET(cpuid);
2468 
2469 	tid = PCPU_GET(booke.tid_next);
2470 	if (tid > TID_MAX)
2471 		tid = TID_MIN;
2472 	PCPU_SET(booke.tid_next, tid + 1);
2473 
2474 	/* If we are stealing TID then clear the relevant pmap's field */
2475 	if (tidbusy[thiscpu][tid] != NULL) {
2476 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2477 
2478 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2479 
2480 		/* Flush all entries from TLB0 matching this TID. */
2481 		tid_flush(tid);
2482 	}
2483 
2484 	tidbusy[thiscpu][tid] = pmap;
2485 	pmap->pm_tid[thiscpu] = tid;
2486 	__asm __volatile("msync; isync");
2487 
2488 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2489 	    PCPU_GET(booke.tid_next));
2490 
2491 	return (tid);
2492 }
2493 
2494 /**************************************************************************/
2495 /* TLB0 handling */
2496 /**************************************************************************/
2497 
2498 /* Convert TLB0 va and way number to tlb0[] table index. */
2499 static inline unsigned int
2500 tlb0_tableidx(vm_offset_t va, unsigned int way)
2501 {
2502 	unsigned int idx;
2503 
2504 	idx = (way * TLB0_ENTRIES_PER_WAY);
2505 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2506 	return (idx);
2507 }
2508 
2509 /*
2510  * Invalidate TLB0 entry.
2511  */
2512 static inline void
2513 tlb0_flush_entry(vm_offset_t va)
2514 {
2515 
2516 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2517 
2518 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2519 
2520 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2521 	__asm __volatile("isync; msync");
2522 	__asm __volatile("tlbsync; msync");
2523 
2524 	CTR1(KTR_PMAP, "%s: e", __func__);
2525 }
2526 
2527 /**************************************************************************/
2528 /* TLB1 handling */
2529 /**************************************************************************/
2530 
2531 /*
2532  * TLB1 mapping notes:
2533  *
2534  * TLB1[0]	Kernel text and data.
2535  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2536  *		windows, other devices mappings.
2537  */
2538 
2539  /*
2540  * Read an entry from given TLB1 slot.
2541  */
2542 void
2543 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
2544 {
2545 	register_t msr;
2546 	uint32_t mas0;
2547 
2548 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
2549 
2550 	msr = mfmsr();
2551 	__asm __volatile("wrteei 0");
2552 
2553 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
2554 	mtspr(SPR_MAS0, mas0);
2555 	__asm __volatile("isync; tlbre");
2556 
2557 	entry->mas1 = mfspr(SPR_MAS1);
2558 	entry->mas2 = mfspr(SPR_MAS2);
2559 	entry->mas3 = mfspr(SPR_MAS3);
2560 
2561 	switch ((mfpvr() >> 16) & 0xFFFF) {
2562 	case FSL_E500v2:
2563 	case FSL_E500mc:
2564 	case FSL_E5500:
2565 	case FSL_E6500:
2566 		entry->mas7 = mfspr(SPR_MAS7);
2567 		break;
2568 	default:
2569 		entry->mas7 = 0;
2570 		break;
2571 	}
2572 	__asm __volatile("wrtee %0" :: "r"(msr));
2573 
2574 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
2575 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
2576 	    (entry->mas3 & MAS3_RPN);
2577 	entry->size =
2578 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
2579 }
2580 
2581 struct tlbwrite_args {
2582 	tlb_entry_t *e;
2583 	unsigned int idx;
2584 };
2585 
2586 static uint32_t
2587 tlb1_find_free(void)
2588 {
2589 	tlb_entry_t e;
2590 	int i;
2591 
2592 	for (i = 0; i < TLB1_ENTRIES; i++) {
2593 		tlb1_read_entry(&e, i);
2594 		if ((e.mas1 & MAS1_VALID) == 0)
2595 			return (i);
2596 	}
2597 	return (-1);
2598 }
2599 
2600 static void
2601 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
2602 {
2603 	tlb_entry_t e;
2604 	int i;
2605 
2606 	for (i = 0; i < TLB1_ENTRIES; i++) {
2607 		tlb1_read_entry(&e, i);
2608 		if ((e.mas1 & MAS1_VALID) == 0)
2609 			continue;
2610 		if ((e.mas2 & MAS2_EPN_MASK) >= va &&
2611 		    (e.mas2 & MAS2_EPN_MASK) < va + size) {
2612 			mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
2613 			__asm __volatile("isync; tlbwe; isync; msync");
2614 		}
2615 	}
2616 }
2617 
2618 static void
2619 tlb1_write_entry_int(void *arg)
2620 {
2621 	struct tlbwrite_args *args = arg;
2622 	uint32_t idx, mas0;
2623 
2624 	idx = args->idx;
2625 	if (idx == -1) {
2626 		tlb1_purge_va_range(args->e->virt, args->e->size);
2627 		idx = tlb1_find_free();
2628 		if (idx == -1)
2629 			panic("No free TLB1 entries!\n");
2630 	}
2631 	/* Select entry */
2632 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2633 
2634 	mtspr(SPR_MAS0, mas0);
2635 	mtspr(SPR_MAS1, args->e->mas1);
2636 	mtspr(SPR_MAS2, args->e->mas2);
2637 	mtspr(SPR_MAS3, args->e->mas3);
2638 	switch ((mfpvr() >> 16) & 0xFFFF) {
2639 	case FSL_E500mc:
2640 	case FSL_E5500:
2641 	case FSL_E6500:
2642 		mtspr(SPR_MAS8, 0);
2643 		/* FALLTHROUGH */
2644 	case FSL_E500v2:
2645 		mtspr(SPR_MAS7, args->e->mas7);
2646 		break;
2647 	default:
2648 		break;
2649 	}
2650 
2651 	__asm __volatile("isync; tlbwe; isync; msync");
2652 
2653 }
2654 
2655 static void
2656 tlb1_write_entry_sync(void *arg)
2657 {
2658 	/* Empty synchronization point for smp_rendezvous(). */
2659 }
2660 
2661 /*
2662  * Write given entry to TLB1 hardware.
2663  */
2664 static void
2665 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
2666 {
2667 	struct tlbwrite_args args;
2668 
2669 	args.e = e;
2670 	args.idx = idx;
2671 
2672 #ifdef SMP
2673 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
2674 		mb();
2675 		smp_rendezvous(tlb1_write_entry_sync,
2676 		    tlb1_write_entry_int,
2677 		    tlb1_write_entry_sync, &args);
2678 	} else
2679 #endif
2680 	{
2681 		register_t msr;
2682 
2683 		msr = mfmsr();
2684 		__asm __volatile("wrteei 0");
2685 		tlb1_write_entry_int(&args);
2686 		__asm __volatile("wrtee %0" :: "r"(msr));
2687 	}
2688 }
2689 
2690 /*
2691  * Convert TLB TSIZE value to mapped region size.
2692  */
2693 static vm_size_t
2694 tsize2size(unsigned int tsize)
2695 {
2696 
2697 	/*
2698 	 * size = 4^tsize KB
2699 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2700 	 */
2701 
2702 	return ((1 << (2 * tsize)) * 1024);
2703 }
2704 
2705 /*
2706  * Convert region size (must be power of 4) to TLB TSIZE value.
2707  */
2708 static unsigned int
2709 size2tsize(vm_size_t size)
2710 {
2711 
2712 	return (ilog2(size) / 2 - 5);
2713 }
2714 
2715 /*
2716  * Register permanent kernel mapping in TLB1.
2717  *
2718  * Entries are created starting from index 0 (current free entry is
2719  * kept in tlb1_idx) and are not supposed to be invalidated.
2720  */
2721 int
2722 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
2723     uint32_t flags)
2724 {
2725 	tlb_entry_t e;
2726 	uint32_t ts, tid;
2727 	int tsize, index;
2728 
2729 	/* First try to update an existing entry. */
2730 	for (index = 0; index < TLB1_ENTRIES; index++) {
2731 		tlb1_read_entry(&e, index);
2732 		/* Check if we're just updating the flags, and update them. */
2733 		if (e.phys == pa && e.virt == va && e.size == size) {
2734 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
2735 			tlb1_write_entry(&e, index);
2736 			return (0);
2737 		}
2738 	}
2739 
2740 	/* Convert size to TSIZE */
2741 	tsize = size2tsize(size);
2742 
2743 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2744 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2745 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2746 
2747 	e.phys = pa;
2748 	e.virt = va;
2749 	e.size = size;
2750 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2751 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2752 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
2753 
2754 	/* Set supervisor RWX permission bits */
2755 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2756 	e.mas7 = (pa >> 32) & MAS7_RPN;
2757 
2758 	tlb1_write_entry(&e, -1);
2759 
2760 	return (0);
2761 }
2762 
2763 /*
2764  * Map in contiguous RAM region into the TLB1.
2765  */
2766 static vm_size_t
2767 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
2768 {
2769 	vm_offset_t base;
2770 	vm_size_t mapped, sz, ssize;
2771 
2772 	mapped = 0;
2773 	base = va;
2774 	ssize = size;
2775 
2776 	while (size > 0) {
2777 		sz = 1UL << (ilog2(size) & ~1);
2778 		/* Align size to PA */
2779 		if (pa % sz != 0) {
2780 			do {
2781 				sz >>= 2;
2782 			} while (pa % sz != 0);
2783 		}
2784 		/* Now align from there to VA */
2785 		if (va % sz != 0) {
2786 			do {
2787 				sz >>= 2;
2788 			} while (va % sz != 0);
2789 		}
2790 #ifdef __powerpc64__
2791 		/*
2792 		 * Clamp TLB1 entries to 4G.
2793 		 *
2794 		 * While the e6500 supports up to 1TB mappings, the e5500
2795 		 * only supports up to 4G mappings. (0b1011)
2796 		 *
2797 		 * If any e6500 machines capable of supporting a very
2798 		 * large amount of memory appear in the future, we can
2799 		 * revisit this.
2800 		 *
2801 		 * For now, though, since we have plenty of space in TLB1,
2802 		 * always avoid creating entries larger than 4GB.
2803 		 */
2804 		sz = MIN(sz, 1UL << 32);
2805 #endif
2806 		if (bootverbose)
2807 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
2808 			    (void *)va, (uintmax_t)pa, (long)sz);
2809 		if (tlb1_set_entry(va, pa, sz,
2810 		    _TLB_ENTRY_SHARED | wimge) < 0)
2811 			return (mapped);
2812 		size -= sz;
2813 		pa += sz;
2814 		va += sz;
2815 	}
2816 
2817 	mapped = (va - base);
2818 	if (bootverbose)
2819 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
2820 		    mapped, mapped - ssize);
2821 
2822 	return (mapped);
2823 }
2824 
2825 /*
2826  * TLB1 initialization routine, to be called after the very first
2827  * assembler level setup done in locore.S.
2828  */
2829 void
2830 tlb1_init(void)
2831 {
2832 	vm_offset_t mas2;
2833 	uint32_t mas0, mas1, mas3, mas7;
2834 	uint32_t tsz;
2835 
2836 	tlb1_get_tlbconf();
2837 
2838 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
2839 	mtspr(SPR_MAS0, mas0);
2840 	__asm __volatile("isync; tlbre");
2841 
2842 	mas1 = mfspr(SPR_MAS1);
2843 	mas2 = mfspr(SPR_MAS2);
2844 	mas3 = mfspr(SPR_MAS3);
2845 	mas7 = mfspr(SPR_MAS7);
2846 
2847 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
2848 	    (mas3 & MAS3_RPN);
2849 
2850 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2851 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
2852 	kernstart = trunc_page(mas2);
2853 
2854 	/* Setup TLB miss defaults */
2855 	set_mas4_defaults();
2856 }
2857 
2858 /*
2859  * pmap_early_io_unmap() should be used in short conjunction with
2860  * pmap_early_io_map(), as in the following snippet:
2861  *
2862  * x = pmap_early_io_map(...);
2863  * <do something with x>
2864  * pmap_early_io_unmap(x, size);
2865  *
2866  * And avoiding more allocations between.
2867  */
2868 void
2869 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
2870 {
2871 	int i;
2872 	tlb_entry_t e;
2873 	vm_size_t isize;
2874 
2875 	size = roundup(size, PAGE_SIZE);
2876 	isize = size;
2877 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
2878 		tlb1_read_entry(&e, i);
2879 		if (!(e.mas1 & MAS1_VALID))
2880 			continue;
2881 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
2882 			size -= e.size;
2883 			e.mas1 &= ~MAS1_VALID;
2884 			tlb1_write_entry(&e, i);
2885 		}
2886 	}
2887 	if (tlb1_map_base == va + isize)
2888 		tlb1_map_base -= isize;
2889 }
2890 
2891 vm_offset_t
2892 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
2893 {
2894 	vm_paddr_t pa_base;
2895 	vm_offset_t va, sz;
2896 	int i;
2897 	tlb_entry_t e;
2898 
2899 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
2900 
2901 	for (i = 0; i < TLB1_ENTRIES; i++) {
2902 		tlb1_read_entry(&e, i);
2903 		if (!(e.mas1 & MAS1_VALID))
2904 			continue;
2905 		if (pa >= e.phys && (pa + size) <=
2906 		    (e.phys + e.size))
2907 			return (e.virt + (pa - e.phys));
2908 	}
2909 
2910 	pa_base = rounddown(pa, PAGE_SIZE);
2911 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
2912 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
2913 	va = tlb1_map_base + (pa - pa_base);
2914 
2915 	do {
2916 		sz = 1 << (ilog2(size) & ~1);
2917 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
2918 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
2919 		size -= sz;
2920 		pa_base += sz;
2921 		tlb1_map_base += sz;
2922 	} while (size > 0);
2923 
2924 	return (va);
2925 }
2926 
2927 void
2928 pmap_track_page(pmap_t pmap, vm_offset_t va)
2929 {
2930 	vm_paddr_t pa;
2931 	vm_page_t page;
2932 	struct pv_entry *pve;
2933 
2934 	va = trunc_page(va);
2935 	pa = pmap_kextract(va);
2936 	page = PHYS_TO_VM_PAGE(pa);
2937 
2938 	rw_wlock(&pvh_global_lock);
2939 	PMAP_LOCK(pmap);
2940 
2941 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
2942 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
2943 			goto out;
2944 		}
2945 	}
2946 	page->md.pv_tracked = true;
2947 	pv_insert(pmap, va, page);
2948 out:
2949 	PMAP_UNLOCK(pmap);
2950 	rw_wunlock(&pvh_global_lock);
2951 }
2952 
2953 /*
2954  * Setup MAS4 defaults.
2955  * These values are loaded to MAS0-2 on a TLB miss.
2956  */
2957 static void
2958 set_mas4_defaults(void)
2959 {
2960 	uint32_t mas4;
2961 
2962 	/* Defaults: TLB0, PID0, TSIZED=4K */
2963 	mas4 = MAS4_TLBSELD0;
2964 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2965 #ifdef SMP
2966 	mas4 |= MAS4_MD;
2967 #endif
2968 	mtspr(SPR_MAS4, mas4);
2969 	__asm __volatile("isync");
2970 }
2971 
2972 /*
2973  * Return 0 if the physical IO range is encompassed by one of the
2974  * the TLB1 entries, otherwise return related error code.
2975  */
2976 static int
2977 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2978 {
2979 	uint32_t prot;
2980 	vm_paddr_t pa_start;
2981 	vm_paddr_t pa_end;
2982 	unsigned int entry_tsize;
2983 	vm_size_t entry_size;
2984 	tlb_entry_t e;
2985 
2986 	*va = (vm_offset_t)NULL;
2987 
2988 	tlb1_read_entry(&e, i);
2989 	/* Skip invalid entries */
2990 	if (!(e.mas1 & MAS1_VALID))
2991 		return (EINVAL);
2992 
2993 	/*
2994 	 * The entry must be cache-inhibited, guarded, and r/w
2995 	 * so it can function as an i/o page
2996 	 */
2997 	prot = e.mas2 & (MAS2_I | MAS2_G);
2998 	if (prot != (MAS2_I | MAS2_G))
2999 		return (EPERM);
3000 
3001 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
3002 	if (prot != (MAS3_SR | MAS3_SW))
3003 		return (EPERM);
3004 
3005 	/* The address should be within the entry range. */
3006 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3007 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3008 
3009 	entry_size = tsize2size(entry_tsize);
3010 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3011 	    (e.mas3 & MAS3_RPN);
3012 	pa_end = pa_start + entry_size;
3013 
3014 	if ((pa < pa_start) || ((pa + size) > pa_end))
3015 		return (ERANGE);
3016 
3017 	/* Return virtual address of this mapping. */
3018 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3019 	return (0);
3020 }
3021 
3022 #ifdef DDB
3023 /* Print out contents of the MAS registers for each TLB0 entry */
3024 static void
3025 #ifdef __powerpc64__
3026 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
3027 #else
3028 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3029 #endif
3030     uint32_t mas7)
3031 {
3032 	int as;
3033 	char desc[3];
3034 	tlbtid_t tid;
3035 	vm_size_t size;
3036 	unsigned int tsize;
3037 
3038 	desc[2] = '\0';
3039 	if (mas1 & MAS1_VALID)
3040 		desc[0] = 'V';
3041 	else
3042 		desc[0] = ' ';
3043 
3044 	if (mas1 & MAS1_IPROT)
3045 		desc[1] = 'P';
3046 	else
3047 		desc[1] = ' ';
3048 
3049 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3050 	tid = MAS1_GETTID(mas1);
3051 
3052 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3053 	size = 0;
3054 	if (tsize)
3055 		size = tsize2size(tsize);
3056 
3057 	printf("%3d: (%s) [AS=%d] "
3058 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
3059 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3060 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
3061 }
3062 
3063 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
3064 {
3065 	uint32_t mas0, mas1, mas3, mas7;
3066 #ifdef __powerpc64__
3067 	uint64_t mas2;
3068 #else
3069 	uint32_t mas2;
3070 #endif
3071 	int entryidx, way, idx;
3072 
3073 	printf("TLB0 entries:\n");
3074 	for (way = 0; way < TLB0_WAYS; way ++)
3075 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3076 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3077 			mtspr(SPR_MAS0, mas0);
3078 
3079 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3080 			mtspr(SPR_MAS2, mas2);
3081 
3082 			__asm __volatile("isync; tlbre");
3083 
3084 			mas1 = mfspr(SPR_MAS1);
3085 			mas2 = mfspr(SPR_MAS2);
3086 			mas3 = mfspr(SPR_MAS3);
3087 			mas7 = mfspr(SPR_MAS7);
3088 
3089 			idx = tlb0_tableidx(mas2, way);
3090 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3091 		}
3092 }
3093 
3094 /*
3095  * Print out contents of the MAS registers for each TLB1 entry
3096  */
3097 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
3098 {
3099 	uint32_t mas0, mas1, mas3, mas7;
3100 #ifdef __powerpc64__
3101 	uint64_t mas2;
3102 #else
3103 	uint32_t mas2;
3104 #endif
3105 	int i;
3106 
3107 	printf("TLB1 entries:\n");
3108 	for (i = 0; i < TLB1_ENTRIES; i++) {
3109 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3110 		mtspr(SPR_MAS0, mas0);
3111 
3112 		__asm __volatile("isync; tlbre");
3113 
3114 		mas1 = mfspr(SPR_MAS1);
3115 		mas2 = mfspr(SPR_MAS2);
3116 		mas3 = mfspr(SPR_MAS3);
3117 		mas7 = mfspr(SPR_MAS7);
3118 
3119 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3120 	}
3121 }
3122 #endif
3123