1 /*- 2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> 3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * Some hw specific parts of this pmap were derived or influenced 27 * by NetBSD's ibm4xx pmap module. More generic code is shared with 28 * a few other pmap modules from the FreeBSD tree. 29 */ 30 31 /* 32 * VM layout notes: 33 * 34 * Kernel and user threads run within one common virtual address space 35 * defined by AS=0. 36 * 37 * 32-bit pmap: 38 * Virtual address space layout: 39 * ----------------------------- 40 * 0x0000_0000 - 0x7fff_ffff : user process 41 * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) 42 * 0xc000_0000 - 0xc0ff_ffff : kernel reserved 43 * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. 44 * 0xc100_0000 - 0xffff_ffff : KVA 45 * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy 46 * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs 47 * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 48 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space 49 * 50 * 64-bit pmap: 51 * Virtual address space layout: 52 * ----------------------------- 53 * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : user process 54 * 0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff : text, data, heap, maps, libraries 55 * 0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff : mmio region 56 * 0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : stack 57 * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff : kernel reserved 58 * 0xc000_0000_0000_0000 - endkernel-1 : kernel code & data 59 * endkernel - msgbufp-1 : flat device tree 60 * msgbufp - ptbl_bufs-1 : message buffer 61 * ptbl_bufs - kernel_pdir-1 : kernel page tables 62 * kernel_pdir - kernel_pp2d-1 : kernel page directory 63 * kernel_pp2d - . : kernel pointers to page directory 64 * pmap_zero_copy_min - crashdumpmap-1 : reserved for page zero/copy 65 * crashdumpmap - ptbl_buf_pool_vabase-1 : reserved for ptbl bufs 66 * ptbl_buf_pool_vabase - virtual_avail-1 : user page directories and page tables 67 * virtual_avail - 0xcfff_ffff_ffff_ffff : actual free KVA space 68 * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : coprocessor region 69 * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff : mmio region 70 * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : direct map 71 * 0xf000_0000_0000_0000 - +Maxmem : physmem map 72 * - 0xffff_ffff_ffff_ffff : device direct map 73 */ 74 75 #include <sys/cdefs.h> 76 __FBSDID("$FreeBSD$"); 77 78 #include "opt_kstack_pages.h" 79 80 #include <sys/param.h> 81 #include <sys/conf.h> 82 #include <sys/malloc.h> 83 #include <sys/ktr.h> 84 #include <sys/proc.h> 85 #include <sys/user.h> 86 #include <sys/queue.h> 87 #include <sys/systm.h> 88 #include <sys/kernel.h> 89 #include <sys/kerneldump.h> 90 #include <sys/linker.h> 91 #include <sys/msgbuf.h> 92 #include <sys/lock.h> 93 #include <sys/mutex.h> 94 #include <sys/rwlock.h> 95 #include <sys/sched.h> 96 #include <sys/smp.h> 97 #include <sys/vmmeter.h> 98 99 #include <vm/vm.h> 100 #include <vm/vm_page.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_extern.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_param.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_pager.h> 108 #include <vm/uma.h> 109 110 #include <machine/_inttypes.h> 111 #include <machine/cpu.h> 112 #include <machine/pcb.h> 113 #include <machine/platform.h> 114 115 #include <machine/tlb.h> 116 #include <machine/spr.h> 117 #include <machine/md_var.h> 118 #include <machine/mmuvar.h> 119 #include <machine/pmap.h> 120 #include <machine/pte.h> 121 122 #include "mmu_if.h" 123 124 #define SPARSE_MAPDEV 125 #ifdef DEBUG 126 #define debugf(fmt, args...) printf(fmt, ##args) 127 #else 128 #define debugf(fmt, args...) 129 #endif 130 131 #ifdef __powerpc64__ 132 #define PRI0ptrX "016lx" 133 #else 134 #define PRI0ptrX "08x" 135 #endif 136 137 #define TODO panic("%s: not implemented", __func__); 138 139 extern unsigned char _etext[]; 140 extern unsigned char _end[]; 141 142 extern uint32_t *bootinfo; 143 144 vm_paddr_t kernload; 145 vm_offset_t kernstart; 146 vm_size_t kernsize; 147 148 /* Message buffer and tables. */ 149 static vm_offset_t data_start; 150 static vm_size_t data_end; 151 152 /* Phys/avail memory regions. */ 153 static struct mem_region *availmem_regions; 154 static int availmem_regions_sz; 155 static struct mem_region *physmem_regions; 156 static int physmem_regions_sz; 157 158 /* Reserved KVA space and mutex for mmu_booke_zero_page. */ 159 static vm_offset_t zero_page_va; 160 static struct mtx zero_page_mutex; 161 162 static struct mtx tlbivax_mutex; 163 164 /* Reserved KVA space and mutex for mmu_booke_copy_page. */ 165 static vm_offset_t copy_page_src_va; 166 static vm_offset_t copy_page_dst_va; 167 static struct mtx copy_page_mutex; 168 169 /**************************************************************************/ 170 /* PMAP */ 171 /**************************************************************************/ 172 173 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, 174 vm_prot_t, u_int flags, int8_t psind); 175 176 unsigned int kptbl_min; /* Index of the first kernel ptbl. */ 177 unsigned int kernel_ptbls; /* Number of KVA ptbls. */ 178 #ifdef __powerpc64__ 179 unsigned int kernel_pdirs; 180 #endif 181 182 /* 183 * If user pmap is processed with mmu_booke_remove and the resident count 184 * drops to 0, there are no more pages to remove, so we need not continue. 185 */ 186 #define PMAP_REMOVE_DONE(pmap) \ 187 ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) 188 189 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) 190 extern int elf32_nxstack; 191 #endif 192 193 /**************************************************************************/ 194 /* TLB and TID handling */ 195 /**************************************************************************/ 196 197 /* Translation ID busy table */ 198 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; 199 200 /* 201 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 202 * core revisions and should be read from h/w registers during early config. 203 */ 204 uint32_t tlb0_entries; 205 uint32_t tlb0_ways; 206 uint32_t tlb0_entries_per_way; 207 uint32_t tlb1_entries; 208 209 #define TLB0_ENTRIES (tlb0_entries) 210 #define TLB0_WAYS (tlb0_ways) 211 #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) 212 213 #define TLB1_ENTRIES (tlb1_entries) 214 215 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE; 216 217 static tlbtid_t tid_alloc(struct pmap *); 218 static void tid_flush(tlbtid_t tid); 219 220 #ifdef __powerpc64__ 221 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t); 222 #else 223 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); 224 #endif 225 226 static void tlb1_read_entry(tlb_entry_t *, unsigned int); 227 static void tlb1_write_entry(tlb_entry_t *, unsigned int); 228 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); 229 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); 230 231 static vm_size_t tsize2size(unsigned int); 232 static unsigned int size2tsize(vm_size_t); 233 static unsigned int ilog2(unsigned int); 234 235 static void set_mas4_defaults(void); 236 237 static inline void tlb0_flush_entry(vm_offset_t); 238 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); 239 240 /**************************************************************************/ 241 /* Page table management */ 242 /**************************************************************************/ 243 244 static struct rwlock_padalign pvh_global_lock; 245 246 /* Data for the pv entry allocation mechanism */ 247 static uma_zone_t pvzone; 248 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; 249 250 #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ 251 252 #ifndef PMAP_SHPGPERPROC 253 #define PMAP_SHPGPERPROC 200 254 #endif 255 256 static void ptbl_init(void); 257 static struct ptbl_buf *ptbl_buf_alloc(void); 258 static void ptbl_buf_free(struct ptbl_buf *); 259 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); 260 261 #ifdef __powerpc64__ 262 static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **, 263 unsigned int, boolean_t); 264 static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int); 265 static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int); 266 static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t); 267 #else 268 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); 269 static void ptbl_free(mmu_t, pmap_t, unsigned int); 270 static void ptbl_hold(mmu_t, pmap_t, unsigned int); 271 static int ptbl_unhold(mmu_t, pmap_t, unsigned int); 272 #endif 273 274 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); 275 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); 276 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); 277 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); 278 static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t); 279 280 static pv_entry_t pv_alloc(void); 281 static void pv_free(pv_entry_t); 282 static void pv_insert(pmap_t, vm_offset_t, vm_page_t); 283 static void pv_remove(pmap_t, vm_offset_t, vm_page_t); 284 285 static void booke_pmap_init_qpages(void); 286 287 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ 288 #ifdef __powerpc64__ 289 #define PTBL_BUFS (16UL * 16 * 16) 290 #else 291 #define PTBL_BUFS (128 * 16) 292 #endif 293 294 struct ptbl_buf { 295 TAILQ_ENTRY(ptbl_buf) link; /* list link */ 296 vm_offset_t kva; /* va of mapping */ 297 }; 298 299 /* ptbl free list and a lock used for access synchronization. */ 300 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; 301 static struct mtx ptbl_buf_freelist_lock; 302 303 /* Base address of kva space allocated fot ptbl bufs. */ 304 static vm_offset_t ptbl_buf_pool_vabase; 305 306 /* Pointer to ptbl_buf structures. */ 307 static struct ptbl_buf *ptbl_bufs; 308 309 #ifdef SMP 310 extern tlb_entry_t __boot_tlb1[]; 311 void pmap_bootstrap_ap(volatile uint32_t *); 312 #endif 313 314 /* 315 * Kernel MMU interface 316 */ 317 static void mmu_booke_clear_modify(mmu_t, vm_page_t); 318 static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, 319 vm_size_t, vm_offset_t); 320 static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); 321 static void mmu_booke_copy_pages(mmu_t, vm_page_t *, 322 vm_offset_t, vm_page_t *, vm_offset_t, int); 323 static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, 324 vm_prot_t, u_int flags, int8_t psind); 325 static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 326 vm_page_t, vm_prot_t); 327 static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, 328 vm_prot_t); 329 static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); 330 static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, 331 vm_prot_t); 332 static void mmu_booke_init(mmu_t); 333 static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); 334 static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 335 static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); 336 static int mmu_booke_ts_referenced(mmu_t, vm_page_t); 337 static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, 338 int); 339 static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, 340 vm_paddr_t *); 341 static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, 342 vm_object_t, vm_pindex_t, vm_size_t); 343 static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); 344 static void mmu_booke_page_init(mmu_t, vm_page_t); 345 static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); 346 static void mmu_booke_pinit(mmu_t, pmap_t); 347 static void mmu_booke_pinit0(mmu_t, pmap_t); 348 static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, 349 vm_prot_t); 350 static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 351 static void mmu_booke_qremove(mmu_t, vm_offset_t, int); 352 static void mmu_booke_release(mmu_t, pmap_t); 353 static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 354 static void mmu_booke_remove_all(mmu_t, vm_page_t); 355 static void mmu_booke_remove_write(mmu_t, vm_page_t); 356 static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 357 static void mmu_booke_zero_page(mmu_t, vm_page_t); 358 static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); 359 static void mmu_booke_activate(mmu_t, struct thread *); 360 static void mmu_booke_deactivate(mmu_t, struct thread *); 361 static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 362 static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); 363 static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); 364 static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); 365 static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); 366 static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); 367 static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); 368 static void mmu_booke_kremove(mmu_t, vm_offset_t); 369 static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 370 static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, 371 vm_size_t); 372 static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, 373 void **); 374 static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, 375 void *); 376 static void mmu_booke_scan_init(mmu_t); 377 static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m); 378 static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr); 379 static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, 380 vm_size_t sz, vm_memattr_t mode); 381 382 static mmu_method_t mmu_booke_methods[] = { 383 /* pmap dispatcher interface */ 384 MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), 385 MMUMETHOD(mmu_copy, mmu_booke_copy), 386 MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), 387 MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), 388 MMUMETHOD(mmu_enter, mmu_booke_enter), 389 MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), 390 MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), 391 MMUMETHOD(mmu_extract, mmu_booke_extract), 392 MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), 393 MMUMETHOD(mmu_init, mmu_booke_init), 394 MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), 395 MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), 396 MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), 397 MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), 398 MMUMETHOD(mmu_map, mmu_booke_map), 399 MMUMETHOD(mmu_mincore, mmu_booke_mincore), 400 MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), 401 MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), 402 MMUMETHOD(mmu_page_init, mmu_booke_page_init), 403 MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), 404 MMUMETHOD(mmu_pinit, mmu_booke_pinit), 405 MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), 406 MMUMETHOD(mmu_protect, mmu_booke_protect), 407 MMUMETHOD(mmu_qenter, mmu_booke_qenter), 408 MMUMETHOD(mmu_qremove, mmu_booke_qremove), 409 MMUMETHOD(mmu_release, mmu_booke_release), 410 MMUMETHOD(mmu_remove, mmu_booke_remove), 411 MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), 412 MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), 413 MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), 414 MMUMETHOD(mmu_unwire, mmu_booke_unwire), 415 MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), 416 MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), 417 MMUMETHOD(mmu_activate, mmu_booke_activate), 418 MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), 419 MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page), 420 MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page), 421 422 /* Internal interfaces */ 423 MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), 424 MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), 425 MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), 426 MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), 427 MMUMETHOD(mmu_kenter, mmu_booke_kenter), 428 MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), 429 MMUMETHOD(mmu_kextract, mmu_booke_kextract), 430 MMUMETHOD(mmu_kremove, mmu_booke_kremove), 431 MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), 432 MMUMETHOD(mmu_change_attr, mmu_booke_change_attr), 433 434 /* dumpsys() support */ 435 MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), 436 MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), 437 MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), 438 439 { 0, 0 } 440 }; 441 442 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); 443 444 static __inline uint32_t 445 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) 446 { 447 uint32_t attrib; 448 int i; 449 450 if (ma != VM_MEMATTR_DEFAULT) { 451 switch (ma) { 452 case VM_MEMATTR_UNCACHEABLE: 453 return (MAS2_I | MAS2_G); 454 case VM_MEMATTR_WRITE_COMBINING: 455 case VM_MEMATTR_WRITE_BACK: 456 case VM_MEMATTR_PREFETCHABLE: 457 return (MAS2_I); 458 case VM_MEMATTR_WRITE_THROUGH: 459 return (MAS2_W | MAS2_M); 460 case VM_MEMATTR_CACHEABLE: 461 return (MAS2_M); 462 } 463 } 464 465 /* 466 * Assume the page is cache inhibited and access is guarded unless 467 * it's in our available memory array. 468 */ 469 attrib = _TLB_ENTRY_IO; 470 for (i = 0; i < physmem_regions_sz; i++) { 471 if ((pa >= physmem_regions[i].mr_start) && 472 (pa < (physmem_regions[i].mr_start + 473 physmem_regions[i].mr_size))) { 474 attrib = _TLB_ENTRY_MEM; 475 break; 476 } 477 } 478 479 return (attrib); 480 } 481 482 static inline void 483 tlb_miss_lock(void) 484 { 485 #ifdef SMP 486 struct pcpu *pc; 487 488 if (!smp_started) 489 return; 490 491 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 492 if (pc != pcpup) { 493 494 CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " 495 "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); 496 497 KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), 498 ("tlb_miss_lock: tried to lock self")); 499 500 tlb_lock(pc->pc_booke_tlb_lock); 501 502 CTR1(KTR_PMAP, "%s: locked", __func__); 503 } 504 } 505 #endif 506 } 507 508 static inline void 509 tlb_miss_unlock(void) 510 { 511 #ifdef SMP 512 struct pcpu *pc; 513 514 if (!smp_started) 515 return; 516 517 STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { 518 if (pc != pcpup) { 519 CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", 520 __func__, pc->pc_cpuid); 521 522 tlb_unlock(pc->pc_booke_tlb_lock); 523 524 CTR1(KTR_PMAP, "%s: unlocked", __func__); 525 } 526 } 527 #endif 528 } 529 530 /* Return number of entries in TLB0. */ 531 static __inline void 532 tlb0_get_tlbconf(void) 533 { 534 uint32_t tlb0_cfg; 535 536 tlb0_cfg = mfspr(SPR_TLB0CFG); 537 tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; 538 tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; 539 tlb0_entries_per_way = tlb0_entries / tlb0_ways; 540 } 541 542 /* Return number of entries in TLB1. */ 543 static __inline void 544 tlb1_get_tlbconf(void) 545 { 546 uint32_t tlb1_cfg; 547 548 tlb1_cfg = mfspr(SPR_TLB1CFG); 549 tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; 550 } 551 552 /**************************************************************************/ 553 /* Page table related */ 554 /**************************************************************************/ 555 556 #ifdef __powerpc64__ 557 /* Initialize pool of kva ptbl buffers. */ 558 static void 559 ptbl_init(void) 560 { 561 int i; 562 563 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 564 TAILQ_INIT(&ptbl_buf_freelist); 565 566 for (i = 0; i < PTBL_BUFS; i++) { 567 ptbl_bufs[i].kva = ptbl_buf_pool_vabase + 568 i * MAX(PTBL_PAGES,PDIR_PAGES) * PAGE_SIZE; 569 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 570 } 571 } 572 573 /* Get an sf_buf from the freelist. */ 574 static struct ptbl_buf * 575 ptbl_buf_alloc(void) 576 { 577 struct ptbl_buf *buf; 578 579 mtx_lock(&ptbl_buf_freelist_lock); 580 buf = TAILQ_FIRST(&ptbl_buf_freelist); 581 if (buf != NULL) 582 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 583 mtx_unlock(&ptbl_buf_freelist_lock); 584 585 return (buf); 586 } 587 588 /* Return ptbl buff to free pool. */ 589 static void 590 ptbl_buf_free(struct ptbl_buf *buf) 591 { 592 mtx_lock(&ptbl_buf_freelist_lock); 593 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 594 mtx_unlock(&ptbl_buf_freelist_lock); 595 } 596 597 /* 598 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 599 */ 600 static void 601 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t * ptbl) 602 { 603 struct ptbl_buf *pbuf; 604 605 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) { 606 if (pbuf->kva == (vm_offset_t) ptbl) { 607 /* Remove from pmap ptbl buf list. */ 608 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 609 610 /* Free corresponding ptbl buf. */ 611 ptbl_buf_free(pbuf); 612 613 break; 614 } 615 } 616 } 617 618 /* Get a pointer to a PTE in a page table. */ 619 static __inline pte_t * 620 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 621 { 622 pte_t **pdir; 623 pte_t *ptbl; 624 625 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 626 627 pdir = pmap->pm_pp2d[PP2D_IDX(va)]; 628 if (!pdir) 629 return NULL; 630 ptbl = pdir[PDIR_IDX(va)]; 631 return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL); 632 } 633 634 /* 635 * Search the list of allocated pdir bufs and find on list of allocated pdirs 636 */ 637 static void 638 ptbl_free_pmap_pdir(mmu_t mmu, pmap_t pmap, pte_t ** pdir) 639 { 640 struct ptbl_buf *pbuf; 641 642 TAILQ_FOREACH(pbuf, &pmap->pm_pdir_list, link) { 643 if (pbuf->kva == (vm_offset_t) pdir) { 644 /* Remove from pmap ptbl buf list. */ 645 TAILQ_REMOVE(&pmap->pm_pdir_list, pbuf, link); 646 647 /* Free corresponding pdir buf. */ 648 ptbl_buf_free(pbuf); 649 650 break; 651 } 652 } 653 } 654 /* Free pdir pages and invalidate pdir entry. */ 655 static void 656 pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx) 657 { 658 pte_t **pdir; 659 vm_paddr_t pa; 660 vm_offset_t va; 661 vm_page_t m; 662 int i; 663 664 pdir = pmap->pm_pp2d[pp2d_idx]; 665 666 KASSERT((pdir != NULL), ("pdir_free: null pdir")); 667 668 pmap->pm_pp2d[pp2d_idx] = NULL; 669 670 for (i = 0; i < PDIR_PAGES; i++) { 671 va = ((vm_offset_t) pdir + (i * PAGE_SIZE)); 672 pa = pte_vatopa(mmu, kernel_pmap, va); 673 m = PHYS_TO_VM_PAGE(pa); 674 vm_page_free_zero(m); 675 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 676 pmap_kremove(va); 677 } 678 679 ptbl_free_pmap_pdir(mmu, pmap, pdir); 680 } 681 682 /* 683 * Decrement pdir pages hold count and attempt to free pdir pages. Called 684 * when removing directory entry from pdir. 685 * 686 * Return 1 if pdir pages were freed. 687 */ 688 static int 689 pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx) 690 { 691 pte_t **pdir; 692 vm_paddr_t pa; 693 vm_page_t m; 694 int i; 695 696 KASSERT((pmap != kernel_pmap), 697 ("pdir_unhold: unholding kernel pdir!")); 698 699 pdir = pmap->pm_pp2d[pp2d_idx]; 700 701 KASSERT(((vm_offset_t) pdir >= VM_MIN_KERNEL_ADDRESS), 702 ("pdir_unhold: non kva pdir")); 703 704 /* decrement hold count */ 705 for (i = 0; i < PDIR_PAGES; i++) { 706 pa = pte_vatopa(mmu, kernel_pmap, 707 (vm_offset_t) pdir + (i * PAGE_SIZE)); 708 m = PHYS_TO_VM_PAGE(pa); 709 m->wire_count--; 710 } 711 712 /* 713 * Free pdir pages if there are no dir entries in this pdir. 714 * wire_count has the same value for all ptbl pages, so check the 715 * last page. 716 */ 717 if (m->wire_count == 0) { 718 pdir_free(mmu, pmap, pp2d_idx); 719 return (1); 720 } 721 return (0); 722 } 723 724 /* 725 * Increment hold count for pdir pages. This routine is used when new ptlb 726 * entry is being inserted into pdir. 727 */ 728 static void 729 pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir) 730 { 731 vm_paddr_t pa; 732 vm_page_t m; 733 int i; 734 735 KASSERT((pmap != kernel_pmap), 736 ("pdir_hold: holding kernel pdir!")); 737 738 KASSERT((pdir != NULL), ("pdir_hold: null pdir")); 739 740 for (i = 0; i < PDIR_PAGES; i++) { 741 pa = pte_vatopa(mmu, kernel_pmap, 742 (vm_offset_t) pdir + (i * PAGE_SIZE)); 743 m = PHYS_TO_VM_PAGE(pa); 744 m->wire_count++; 745 } 746 } 747 748 /* Allocate page table. */ 749 static pte_t * 750 ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, 751 boolean_t nosleep) 752 { 753 vm_page_t mtbl [PTBL_PAGES]; 754 vm_page_t m; 755 struct ptbl_buf *pbuf; 756 unsigned int pidx; 757 pte_t *ptbl; 758 int i, j; 759 int req; 760 761 KASSERT((pdir[pdir_idx] == NULL), 762 ("%s: valid ptbl entry exists!", __func__)); 763 764 pbuf = ptbl_buf_alloc(); 765 if (pbuf == NULL) 766 panic("%s: couldn't alloc kernel virtual memory", __func__); 767 768 ptbl = (pte_t *) pbuf->kva; 769 770 for (i = 0; i < PTBL_PAGES; i++) { 771 pidx = (PTBL_PAGES * pdir_idx) + i; 772 req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; 773 while ((m = vm_page_alloc(NULL, pidx, req)) == NULL) { 774 PMAP_UNLOCK(pmap); 775 rw_wunlock(&pvh_global_lock); 776 if (nosleep) { 777 ptbl_free_pmap_ptbl(pmap, ptbl); 778 for (j = 0; j < i; j++) 779 vm_page_free(mtbl[j]); 780 atomic_subtract_int(&vm_cnt.v_wire_count, i); 781 return (NULL); 782 } 783 VM_WAIT; 784 rw_wlock(&pvh_global_lock); 785 PMAP_LOCK(pmap); 786 } 787 mtbl[i] = m; 788 } 789 790 /* Mapin allocated pages into kernel_pmap. */ 791 mmu_booke_qenter(mmu, (vm_offset_t) ptbl, mtbl, PTBL_PAGES); 792 /* Zero whole ptbl. */ 793 bzero((caddr_t) ptbl, PTBL_PAGES * PAGE_SIZE); 794 795 /* Add pbuf to the pmap ptbl bufs list. */ 796 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 797 798 return (ptbl); 799 } 800 801 /* Free ptbl pages and invalidate pdir entry. */ 802 static void 803 ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) 804 { 805 pte_t *ptbl; 806 vm_paddr_t pa; 807 vm_offset_t va; 808 vm_page_t m; 809 int i; 810 811 ptbl = pdir[pdir_idx]; 812 813 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 814 815 pdir[pdir_idx] = NULL; 816 817 for (i = 0; i < PTBL_PAGES; i++) { 818 va = ((vm_offset_t) ptbl + (i * PAGE_SIZE)); 819 pa = pte_vatopa(mmu, kernel_pmap, va); 820 m = PHYS_TO_VM_PAGE(pa); 821 vm_page_free_zero(m); 822 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 823 pmap_kremove(va); 824 } 825 826 ptbl_free_pmap_ptbl(pmap, ptbl); 827 } 828 829 /* 830 * Decrement ptbl pages hold count and attempt to free ptbl pages. Called 831 * when removing pte entry from ptbl. 832 * 833 * Return 1 if ptbl pages were freed. 834 */ 835 static int 836 ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va) 837 { 838 pte_t *ptbl; 839 vm_paddr_t pa; 840 vm_page_t m; 841 u_int pp2d_idx; 842 pte_t **pdir; 843 u_int pdir_idx; 844 int i; 845 846 pp2d_idx = PP2D_IDX(va); 847 pdir_idx = PDIR_IDX(va); 848 849 KASSERT((pmap != kernel_pmap), 850 ("ptbl_unhold: unholding kernel ptbl!")); 851 852 pdir = pmap->pm_pp2d[pp2d_idx]; 853 ptbl = pdir[pdir_idx]; 854 855 KASSERT(((vm_offset_t) ptbl >= VM_MIN_KERNEL_ADDRESS), 856 ("ptbl_unhold: non kva ptbl")); 857 858 /* decrement hold count */ 859 for (i = 0; i < PTBL_PAGES; i++) { 860 pa = pte_vatopa(mmu, kernel_pmap, 861 (vm_offset_t) ptbl + (i * PAGE_SIZE)); 862 m = PHYS_TO_VM_PAGE(pa); 863 m->wire_count--; 864 } 865 866 /* 867 * Free ptbl pages if there are no pte entries in this ptbl. 868 * wire_count has the same value for all ptbl pages, so check the 869 * last page. 870 */ 871 if (m->wire_count == 0) { 872 /* A pair of indirect entries might point to this ptbl page */ 873 #if 0 874 tlb_flush_entry(pmap, va & ~((2UL * PAGE_SIZE_1M) - 1), 875 TLB_SIZE_1M, MAS6_SIND); 876 tlb_flush_entry(pmap, (va & ~((2UL * PAGE_SIZE_1M) - 1)) | PAGE_SIZE_1M, 877 TLB_SIZE_1M, MAS6_SIND); 878 #endif 879 ptbl_free(mmu, pmap, pdir, pdir_idx); 880 pdir_unhold(mmu, pmap, pp2d_idx); 881 return (1); 882 } 883 return (0); 884 } 885 886 /* 887 * Increment hold count for ptbl pages. This routine is used when new pte 888 * entry is being inserted into ptbl. 889 */ 890 static void 891 ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) 892 { 893 vm_paddr_t pa; 894 pte_t *ptbl; 895 vm_page_t m; 896 int i; 897 898 KASSERT((pmap != kernel_pmap), 899 ("ptbl_hold: holding kernel ptbl!")); 900 901 ptbl = pdir[pdir_idx]; 902 903 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 904 905 for (i = 0; i < PTBL_PAGES; i++) { 906 pa = pte_vatopa(mmu, kernel_pmap, 907 (vm_offset_t) ptbl + (i * PAGE_SIZE)); 908 m = PHYS_TO_VM_PAGE(pa); 909 m->wire_count++; 910 } 911 } 912 #else 913 914 /* Initialize pool of kva ptbl buffers. */ 915 static void 916 ptbl_init(void) 917 { 918 int i; 919 920 CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, 921 (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); 922 CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", 923 __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); 924 925 mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); 926 TAILQ_INIT(&ptbl_buf_freelist); 927 928 for (i = 0; i < PTBL_BUFS; i++) { 929 ptbl_bufs[i].kva = 930 ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; 931 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); 932 } 933 } 934 935 /* Get a ptbl_buf from the freelist. */ 936 static struct ptbl_buf * 937 ptbl_buf_alloc(void) 938 { 939 struct ptbl_buf *buf; 940 941 mtx_lock(&ptbl_buf_freelist_lock); 942 buf = TAILQ_FIRST(&ptbl_buf_freelist); 943 if (buf != NULL) 944 TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); 945 mtx_unlock(&ptbl_buf_freelist_lock); 946 947 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 948 949 return (buf); 950 } 951 952 /* Return ptbl buff to free pool. */ 953 static void 954 ptbl_buf_free(struct ptbl_buf *buf) 955 { 956 957 CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); 958 959 mtx_lock(&ptbl_buf_freelist_lock); 960 TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); 961 mtx_unlock(&ptbl_buf_freelist_lock); 962 } 963 964 /* 965 * Search the list of allocated ptbl bufs and find on list of allocated ptbls 966 */ 967 static void 968 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) 969 { 970 struct ptbl_buf *pbuf; 971 972 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 973 974 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 975 976 TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) 977 if (pbuf->kva == (vm_offset_t)ptbl) { 978 /* Remove from pmap ptbl buf list. */ 979 TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); 980 981 /* Free corresponding ptbl buf. */ 982 ptbl_buf_free(pbuf); 983 break; 984 } 985 } 986 987 /* Allocate page table. */ 988 static pte_t * 989 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) 990 { 991 vm_page_t mtbl[PTBL_PAGES]; 992 vm_page_t m; 993 struct ptbl_buf *pbuf; 994 unsigned int pidx; 995 pte_t *ptbl; 996 int i, j; 997 998 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 999 (pmap == kernel_pmap), pdir_idx); 1000 1001 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1002 ("ptbl_alloc: invalid pdir_idx")); 1003 KASSERT((pmap->pm_pdir[pdir_idx] == NULL), 1004 ("pte_alloc: valid ptbl entry exists!")); 1005 1006 pbuf = ptbl_buf_alloc(); 1007 if (pbuf == NULL) 1008 panic("pte_alloc: couldn't alloc kernel virtual memory"); 1009 1010 ptbl = (pte_t *)pbuf->kva; 1011 1012 CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); 1013 1014 for (i = 0; i < PTBL_PAGES; i++) { 1015 pidx = (PTBL_PAGES * pdir_idx) + i; 1016 while ((m = vm_page_alloc(NULL, pidx, 1017 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { 1018 PMAP_UNLOCK(pmap); 1019 rw_wunlock(&pvh_global_lock); 1020 if (nosleep) { 1021 ptbl_free_pmap_ptbl(pmap, ptbl); 1022 for (j = 0; j < i; j++) 1023 vm_page_free(mtbl[j]); 1024 atomic_subtract_int(&vm_cnt.v_wire_count, i); 1025 return (NULL); 1026 } 1027 VM_WAIT; 1028 rw_wlock(&pvh_global_lock); 1029 PMAP_LOCK(pmap); 1030 } 1031 mtbl[i] = m; 1032 } 1033 1034 /* Map allocated pages into kernel_pmap. */ 1035 mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); 1036 1037 /* Zero whole ptbl. */ 1038 bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); 1039 1040 /* Add pbuf to the pmap ptbl bufs list. */ 1041 TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); 1042 1043 return (ptbl); 1044 } 1045 1046 /* Free ptbl pages and invalidate pdir entry. */ 1047 static void 1048 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 1049 { 1050 pte_t *ptbl; 1051 vm_paddr_t pa; 1052 vm_offset_t va; 1053 vm_page_t m; 1054 int i; 1055 1056 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 1057 (pmap == kernel_pmap), pdir_idx); 1058 1059 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1060 ("ptbl_free: invalid pdir_idx")); 1061 1062 ptbl = pmap->pm_pdir[pdir_idx]; 1063 1064 CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); 1065 1066 KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); 1067 1068 /* 1069 * Invalidate the pdir entry as soon as possible, so that other CPUs 1070 * don't attempt to look up the page tables we are releasing. 1071 */ 1072 mtx_lock_spin(&tlbivax_mutex); 1073 tlb_miss_lock(); 1074 1075 pmap->pm_pdir[pdir_idx] = NULL; 1076 1077 tlb_miss_unlock(); 1078 mtx_unlock_spin(&tlbivax_mutex); 1079 1080 for (i = 0; i < PTBL_PAGES; i++) { 1081 va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); 1082 pa = pte_vatopa(mmu, kernel_pmap, va); 1083 m = PHYS_TO_VM_PAGE(pa); 1084 vm_page_free_zero(m); 1085 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1086 mmu_booke_kremove(mmu, va); 1087 } 1088 1089 ptbl_free_pmap_ptbl(pmap, ptbl); 1090 } 1091 1092 /* 1093 * Decrement ptbl pages hold count and attempt to free ptbl pages. 1094 * Called when removing pte entry from ptbl. 1095 * 1096 * Return 1 if ptbl pages were freed. 1097 */ 1098 static int 1099 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 1100 { 1101 pte_t *ptbl; 1102 vm_paddr_t pa; 1103 vm_page_t m; 1104 int i; 1105 1106 CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, 1107 (pmap == kernel_pmap), pdir_idx); 1108 1109 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1110 ("ptbl_unhold: invalid pdir_idx")); 1111 KASSERT((pmap != kernel_pmap), 1112 ("ptbl_unhold: unholding kernel ptbl!")); 1113 1114 ptbl = pmap->pm_pdir[pdir_idx]; 1115 1116 //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); 1117 KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), 1118 ("ptbl_unhold: non kva ptbl")); 1119 1120 /* decrement hold count */ 1121 for (i = 0; i < PTBL_PAGES; i++) { 1122 pa = pte_vatopa(mmu, kernel_pmap, 1123 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 1124 m = PHYS_TO_VM_PAGE(pa); 1125 m->wire_count--; 1126 } 1127 1128 /* 1129 * Free ptbl pages if there are no pte etries in this ptbl. 1130 * wire_count has the same value for all ptbl pages, so check the last 1131 * page. 1132 */ 1133 if (m->wire_count == 0) { 1134 ptbl_free(mmu, pmap, pdir_idx); 1135 1136 //debugf("ptbl_unhold: e (freed ptbl)\n"); 1137 return (1); 1138 } 1139 1140 return (0); 1141 } 1142 1143 /* 1144 * Increment hold count for ptbl pages. This routine is used when a new pte 1145 * entry is being inserted into the ptbl. 1146 */ 1147 static void 1148 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) 1149 { 1150 vm_paddr_t pa; 1151 pte_t *ptbl; 1152 vm_page_t m; 1153 int i; 1154 1155 CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, 1156 pdir_idx); 1157 1158 KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), 1159 ("ptbl_hold: invalid pdir_idx")); 1160 KASSERT((pmap != kernel_pmap), 1161 ("ptbl_hold: holding kernel ptbl!")); 1162 1163 ptbl = pmap->pm_pdir[pdir_idx]; 1164 1165 KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); 1166 1167 for (i = 0; i < PTBL_PAGES; i++) { 1168 pa = pte_vatopa(mmu, kernel_pmap, 1169 (vm_offset_t)ptbl + (i * PAGE_SIZE)); 1170 m = PHYS_TO_VM_PAGE(pa); 1171 m->wire_count++; 1172 } 1173 } 1174 #endif 1175 1176 /* Allocate pv_entry structure. */ 1177 pv_entry_t 1178 pv_alloc(void) 1179 { 1180 pv_entry_t pv; 1181 1182 pv_entry_count++; 1183 if (pv_entry_count > pv_entry_high_water) 1184 pagedaemon_wakeup(); 1185 pv = uma_zalloc(pvzone, M_NOWAIT); 1186 1187 return (pv); 1188 } 1189 1190 /* Free pv_entry structure. */ 1191 static __inline void 1192 pv_free(pv_entry_t pve) 1193 { 1194 1195 pv_entry_count--; 1196 uma_zfree(pvzone, pve); 1197 } 1198 1199 1200 /* Allocate and initialize pv_entry structure. */ 1201 static void 1202 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) 1203 { 1204 pv_entry_t pve; 1205 1206 //int su = (pmap == kernel_pmap); 1207 //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, 1208 // (u_int32_t)pmap, va, (u_int32_t)m); 1209 1210 pve = pv_alloc(); 1211 if (pve == NULL) 1212 panic("pv_insert: no pv entries!"); 1213 1214 pve->pv_pmap = pmap; 1215 pve->pv_va = va; 1216 1217 /* add to pv_list */ 1218 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1219 rw_assert(&pvh_global_lock, RA_WLOCKED); 1220 1221 TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); 1222 1223 //debugf("pv_insert: e\n"); 1224 } 1225 1226 /* Destroy pv entry. */ 1227 static void 1228 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) 1229 { 1230 pv_entry_t pve; 1231 1232 //int su = (pmap == kernel_pmap); 1233 //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); 1234 1235 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1236 rw_assert(&pvh_global_lock, RA_WLOCKED); 1237 1238 /* find pv entry */ 1239 TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { 1240 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 1241 /* remove from pv_list */ 1242 TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); 1243 if (TAILQ_EMPTY(&m->md.pv_list)) 1244 vm_page_aflag_clear(m, PGA_WRITEABLE); 1245 1246 /* free pv entry struct */ 1247 pv_free(pve); 1248 break; 1249 } 1250 } 1251 1252 //debugf("pv_remove: e\n"); 1253 } 1254 1255 #ifdef __powerpc64__ 1256 /* 1257 * Clean pte entry, try to free page table page if requested. 1258 * 1259 * Return 1 if ptbl pages were freed, otherwise return 0. 1260 */ 1261 static int 1262 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags) 1263 { 1264 vm_page_t m; 1265 pte_t *pte; 1266 1267 pte = pte_find(mmu, pmap, va); 1268 KASSERT(pte != NULL, ("%s: NULL pte", __func__)); 1269 1270 if (!PTE_ISVALID(pte)) 1271 return (0); 1272 1273 /* Get vm_page_t for mapped pte. */ 1274 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1275 1276 if (PTE_ISWIRED(pte)) 1277 pmap->pm_stats.wired_count--; 1278 1279 /* Handle managed entry. */ 1280 if (PTE_ISMANAGED(pte)) { 1281 1282 /* Handle modified pages. */ 1283 if (PTE_ISMODIFIED(pte)) 1284 vm_page_dirty(m); 1285 1286 /* Referenced pages. */ 1287 if (PTE_ISREFERENCED(pte)) 1288 vm_page_aflag_set(m, PGA_REFERENCED); 1289 1290 /* Remove pv_entry from pv_list. */ 1291 pv_remove(pmap, va, m); 1292 } 1293 mtx_lock_spin(&tlbivax_mutex); 1294 tlb_miss_lock(); 1295 1296 tlb0_flush_entry(va); 1297 *pte = 0; 1298 1299 tlb_miss_unlock(); 1300 mtx_unlock_spin(&tlbivax_mutex); 1301 1302 pmap->pm_stats.resident_count--; 1303 1304 if (flags & PTBL_UNHOLD) { 1305 return (ptbl_unhold(mmu, pmap, va)); 1306 } 1307 return (0); 1308 } 1309 1310 /* 1311 * allocate a page of pointers to page directories, do not preallocate the 1312 * page tables 1313 */ 1314 static pte_t ** 1315 pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep) 1316 { 1317 vm_page_t mtbl [PDIR_PAGES]; 1318 vm_page_t m; 1319 struct ptbl_buf *pbuf; 1320 pte_t **pdir; 1321 unsigned int pidx; 1322 int i; 1323 int req; 1324 1325 pbuf = ptbl_buf_alloc(); 1326 1327 if (pbuf == NULL) 1328 panic("%s: couldn't alloc kernel virtual memory", __func__); 1329 1330 /* Allocate pdir pages, this will sleep! */ 1331 for (i = 0; i < PDIR_PAGES; i++) { 1332 pidx = (PDIR_PAGES * pp2d_idx) + i; 1333 req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; 1334 while ((m = vm_page_alloc(NULL, pidx, req)) == NULL) { 1335 PMAP_UNLOCK(pmap); 1336 VM_WAIT; 1337 PMAP_LOCK(pmap); 1338 } 1339 mtbl[i] = m; 1340 } 1341 1342 /* Mapin allocated pages into kernel_pmap. */ 1343 pdir = (pte_t **) pbuf->kva; 1344 pmap_qenter((vm_offset_t) pdir, mtbl, PDIR_PAGES); 1345 1346 /* Zero whole pdir. */ 1347 bzero((caddr_t) pdir, PDIR_PAGES * PAGE_SIZE); 1348 1349 /* Add pdir to the pmap pdir bufs list. */ 1350 TAILQ_INSERT_TAIL(&pmap->pm_pdir_list, pbuf, link); 1351 1352 return pdir; 1353 } 1354 1355 /* 1356 * Insert PTE for a given page and virtual address. 1357 */ 1358 static int 1359 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 1360 boolean_t nosleep) 1361 { 1362 unsigned int pp2d_idx = PP2D_IDX(va); 1363 unsigned int pdir_idx = PDIR_IDX(va); 1364 unsigned int ptbl_idx = PTBL_IDX(va); 1365 pte_t *ptbl, *pte; 1366 pte_t **pdir; 1367 1368 /* Get the page directory pointer. */ 1369 pdir = pmap->pm_pp2d[pp2d_idx]; 1370 if (pdir == NULL) 1371 pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep); 1372 1373 /* Get the page table pointer. */ 1374 ptbl = pdir[pdir_idx]; 1375 1376 if (ptbl == NULL) { 1377 /* Allocate page table pages. */ 1378 ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep); 1379 if (ptbl == NULL) { 1380 KASSERT(nosleep, ("nosleep and NULL ptbl")); 1381 return (ENOMEM); 1382 } 1383 } else { 1384 /* 1385 * Check if there is valid mapping for requested va, if there 1386 * is, remove it. 1387 */ 1388 pte = &pdir[pdir_idx][ptbl_idx]; 1389 if (PTE_ISVALID(pte)) { 1390 pte_remove(mmu, pmap, va, PTBL_HOLD); 1391 } else { 1392 /* 1393 * pte is not used, increment hold count for ptbl 1394 * pages. 1395 */ 1396 if (pmap != kernel_pmap) 1397 ptbl_hold(mmu, pmap, pdir, pdir_idx); 1398 } 1399 } 1400 1401 if (pdir[pdir_idx] == NULL) { 1402 if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL) 1403 pdir_hold(mmu, pmap, pdir); 1404 pdir[pdir_idx] = ptbl; 1405 } 1406 if (pmap->pm_pp2d[pp2d_idx] == NULL) 1407 pmap->pm_pp2d[pp2d_idx] = pdir; 1408 1409 /* 1410 * Insert pv_entry into pv_list for mapped page if part of managed 1411 * memory. 1412 */ 1413 if ((m->oflags & VPO_UNMANAGED) == 0) { 1414 flags |= PTE_MANAGED; 1415 1416 /* Create and insert pv entry. */ 1417 pv_insert(pmap, va, m); 1418 } 1419 1420 mtx_lock_spin(&tlbivax_mutex); 1421 tlb_miss_lock(); 1422 1423 tlb0_flush_entry(va); 1424 pmap->pm_stats.resident_count++; 1425 pte = &pdir[pdir_idx][ptbl_idx]; 1426 *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 1427 *pte |= (PTE_VALID | flags); 1428 1429 tlb_miss_unlock(); 1430 mtx_unlock_spin(&tlbivax_mutex); 1431 1432 return (0); 1433 } 1434 1435 /* Return the pa for the given pmap/va. */ 1436 static vm_paddr_t 1437 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1438 { 1439 vm_paddr_t pa = 0; 1440 pte_t *pte; 1441 1442 pte = pte_find(mmu, pmap, va); 1443 if ((pte != NULL) && PTE_ISVALID(pte)) 1444 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 1445 return (pa); 1446 } 1447 1448 1449 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */ 1450 static void 1451 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) 1452 { 1453 int i, j; 1454 vm_offset_t va; 1455 pte_t *pte; 1456 1457 va = addr; 1458 /* Initialize kernel pdir */ 1459 for (i = 0; i < kernel_pdirs; i++) { 1460 kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] = 1461 (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES)); 1462 for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES)); 1463 j < PDIR_NENTRIES; j++) { 1464 kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] = 1465 (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE * PDIR_PAGES) + 1466 (((i * PDIR_NENTRIES) + j) * PAGE_SIZE * PTBL_PAGES)); 1467 } 1468 } 1469 1470 /* 1471 * Fill in PTEs covering kernel code and data. They are not required 1472 * for address translation, as this area is covered by static TLB1 1473 * entries, but for pte_vatopa() to work correctly with kernel area 1474 * addresses. 1475 */ 1476 for (va = addr; va < data_end; va += PAGE_SIZE) { 1477 pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]); 1478 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 1479 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1480 PTE_VALID | PTE_PS_4KB; 1481 } 1482 } 1483 #else 1484 /* 1485 * Clean pte entry, try to free page table page if requested. 1486 * 1487 * Return 1 if ptbl pages were freed, otherwise return 0. 1488 */ 1489 static int 1490 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) 1491 { 1492 unsigned int pdir_idx = PDIR_IDX(va); 1493 unsigned int ptbl_idx = PTBL_IDX(va); 1494 vm_page_t m; 1495 pte_t *ptbl; 1496 pte_t *pte; 1497 1498 //int su = (pmap == kernel_pmap); 1499 //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", 1500 // su, (u_int32_t)pmap, va, flags); 1501 1502 ptbl = pmap->pm_pdir[pdir_idx]; 1503 KASSERT(ptbl, ("pte_remove: null ptbl")); 1504 1505 pte = &ptbl[ptbl_idx]; 1506 1507 if (pte == NULL || !PTE_ISVALID(pte)) 1508 return (0); 1509 1510 if (PTE_ISWIRED(pte)) 1511 pmap->pm_stats.wired_count--; 1512 1513 /* Get vm_page_t for mapped pte. */ 1514 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 1515 1516 /* Handle managed entry. */ 1517 if (PTE_ISMANAGED(pte)) { 1518 1519 if (PTE_ISMODIFIED(pte)) 1520 vm_page_dirty(m); 1521 1522 if (PTE_ISREFERENCED(pte)) 1523 vm_page_aflag_set(m, PGA_REFERENCED); 1524 1525 pv_remove(pmap, va, m); 1526 } else if (m->md.pv_tracked) { 1527 /* 1528 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is 1529 * used. This is needed by the NCSW support code for fast 1530 * VA<->PA translation. 1531 */ 1532 pv_remove(pmap, va, m); 1533 if (TAILQ_EMPTY(&m->md.pv_list)) 1534 m->md.pv_tracked = false; 1535 } 1536 1537 mtx_lock_spin(&tlbivax_mutex); 1538 tlb_miss_lock(); 1539 1540 tlb0_flush_entry(va); 1541 *pte = 0; 1542 1543 tlb_miss_unlock(); 1544 mtx_unlock_spin(&tlbivax_mutex); 1545 1546 pmap->pm_stats.resident_count--; 1547 1548 if (flags & PTBL_UNHOLD) { 1549 //debugf("pte_remove: e (unhold)\n"); 1550 return (ptbl_unhold(mmu, pmap, pdir_idx)); 1551 } 1552 1553 //debugf("pte_remove: e\n"); 1554 return (0); 1555 } 1556 1557 /* 1558 * Insert PTE for a given page and virtual address. 1559 */ 1560 static int 1561 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, 1562 boolean_t nosleep) 1563 { 1564 unsigned int pdir_idx = PDIR_IDX(va); 1565 unsigned int ptbl_idx = PTBL_IDX(va); 1566 pte_t *ptbl, *pte; 1567 1568 CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, 1569 pmap == kernel_pmap, pmap, va); 1570 1571 /* Get the page table pointer. */ 1572 ptbl = pmap->pm_pdir[pdir_idx]; 1573 1574 if (ptbl == NULL) { 1575 /* Allocate page table pages. */ 1576 ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); 1577 if (ptbl == NULL) { 1578 KASSERT(nosleep, ("nosleep and NULL ptbl")); 1579 return (ENOMEM); 1580 } 1581 } else { 1582 /* 1583 * Check if there is valid mapping for requested 1584 * va, if there is, remove it. 1585 */ 1586 pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; 1587 if (PTE_ISVALID(pte)) { 1588 pte_remove(mmu, pmap, va, PTBL_HOLD); 1589 } else { 1590 /* 1591 * pte is not used, increment hold count 1592 * for ptbl pages. 1593 */ 1594 if (pmap != kernel_pmap) 1595 ptbl_hold(mmu, pmap, pdir_idx); 1596 } 1597 } 1598 1599 /* 1600 * Insert pv_entry into pv_list for mapped page if part of managed 1601 * memory. 1602 */ 1603 if ((m->oflags & VPO_UNMANAGED) == 0) { 1604 flags |= PTE_MANAGED; 1605 1606 /* Create and insert pv entry. */ 1607 pv_insert(pmap, va, m); 1608 } 1609 1610 pmap->pm_stats.resident_count++; 1611 1612 mtx_lock_spin(&tlbivax_mutex); 1613 tlb_miss_lock(); 1614 1615 tlb0_flush_entry(va); 1616 if (pmap->pm_pdir[pdir_idx] == NULL) { 1617 /* 1618 * If we just allocated a new page table, hook it in 1619 * the pdir. 1620 */ 1621 pmap->pm_pdir[pdir_idx] = ptbl; 1622 } 1623 pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); 1624 *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); 1625 *pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ 1626 1627 tlb_miss_unlock(); 1628 mtx_unlock_spin(&tlbivax_mutex); 1629 return (0); 1630 } 1631 1632 /* Return the pa for the given pmap/va. */ 1633 static vm_paddr_t 1634 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1635 { 1636 vm_paddr_t pa = 0; 1637 pte_t *pte; 1638 1639 pte = pte_find(mmu, pmap, va); 1640 if ((pte != NULL) && PTE_ISVALID(pte)) 1641 pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); 1642 return (pa); 1643 } 1644 1645 /* Get a pointer to a PTE in a page table. */ 1646 static pte_t * 1647 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1648 { 1649 unsigned int pdir_idx = PDIR_IDX(va); 1650 unsigned int ptbl_idx = PTBL_IDX(va); 1651 1652 KASSERT((pmap != NULL), ("pte_find: invalid pmap")); 1653 1654 if (pmap->pm_pdir[pdir_idx]) 1655 return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); 1656 1657 return (NULL); 1658 } 1659 1660 /* Set up kernel page tables. */ 1661 static void 1662 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) 1663 { 1664 int i; 1665 vm_offset_t va; 1666 pte_t *pte; 1667 1668 /* Initialize kernel pdir */ 1669 for (i = 0; i < kernel_ptbls; i++) 1670 kernel_pmap->pm_pdir[kptbl_min + i] = 1671 (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); 1672 1673 /* 1674 * Fill in PTEs covering kernel code and data. They are not required 1675 * for address translation, as this area is covered by static TLB1 1676 * entries, but for pte_vatopa() to work correctly with kernel area 1677 * addresses. 1678 */ 1679 for (va = addr; va < data_end; va += PAGE_SIZE) { 1680 pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); 1681 *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); 1682 *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | 1683 PTE_VALID | PTE_PS_4KB; 1684 } 1685 } 1686 #endif 1687 1688 /**************************************************************************/ 1689 /* PMAP related */ 1690 /**************************************************************************/ 1691 1692 /* 1693 * This is called during booke_init, before the system is really initialized. 1694 */ 1695 static void 1696 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) 1697 { 1698 vm_paddr_t phys_kernelend; 1699 struct mem_region *mp, *mp1; 1700 int cnt, i, j; 1701 vm_paddr_t s, e, sz; 1702 vm_paddr_t physsz, hwphyssz; 1703 u_int phys_avail_count; 1704 vm_size_t kstack0_sz; 1705 vm_offset_t kernel_pdir, kstack0; 1706 vm_paddr_t kstack0_phys; 1707 void *dpcpu; 1708 1709 debugf("mmu_booke_bootstrap: entered\n"); 1710 1711 /* Set interesting system properties */ 1712 hw_direct_map = 0; 1713 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) 1714 elf32_nxstack = 1; 1715 #endif 1716 1717 /* Initialize invalidation mutex */ 1718 mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); 1719 1720 /* Read TLB0 size and associativity. */ 1721 tlb0_get_tlbconf(); 1722 1723 /* 1724 * Align kernel start and end address (kernel image). 1725 * Note that kernel end does not necessarily relate to kernsize. 1726 * kernsize is the size of the kernel that is actually mapped. 1727 */ 1728 kernstart = trunc_page(start); 1729 data_start = round_page(kernelend); 1730 data_end = data_start; 1731 1732 /* 1733 * Addresses of preloaded modules (like file systems) use 1734 * physical addresses. Make sure we relocate those into 1735 * virtual addresses. 1736 */ 1737 preload_addr_relocate = kernstart - kernload; 1738 1739 /* Allocate the dynamic per-cpu area. */ 1740 dpcpu = (void *)data_end; 1741 data_end += DPCPU_SIZE; 1742 1743 /* Allocate space for the message buffer. */ 1744 msgbufp = (struct msgbuf *)data_end; 1745 data_end += msgbufsize; 1746 debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 1747 (uintptr_t)msgbufp, data_end); 1748 1749 data_end = round_page(data_end); 1750 1751 /* Allocate space for ptbl_bufs. */ 1752 ptbl_bufs = (struct ptbl_buf *)data_end; 1753 data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; 1754 debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 1755 (uintptr_t)ptbl_bufs, data_end); 1756 1757 data_end = round_page(data_end); 1758 1759 /* Allocate PTE tables for kernel KVA. */ 1760 kernel_pdir = data_end; 1761 kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, 1762 PDIR_SIZE); 1763 #ifdef __powerpc64__ 1764 kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES); 1765 data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE; 1766 #endif 1767 data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; 1768 debugf(" kernel ptbls: %d\n", kernel_ptbls); 1769 debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", 1770 kernel_pdir, data_end); 1771 1772 debugf(" data_end: 0x%"PRI0ptrX"\n", data_end); 1773 if (data_end - kernstart > kernsize) { 1774 kernsize += tlb1_mapin_region(kernstart + kernsize, 1775 kernload + kernsize, (data_end - kernstart) - kernsize); 1776 } 1777 data_end = kernstart + kernsize; 1778 debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end); 1779 1780 /* 1781 * Clear the structures - note we can only do it safely after the 1782 * possible additional TLB1 translations are in place (above) so that 1783 * all range up to the currently calculated 'data_end' is covered. 1784 */ 1785 dpcpu_init(dpcpu, 0); 1786 memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); 1787 #ifdef __powerpc64__ 1788 memset((void *)kernel_pdir, 0, 1789 kernel_pdirs * PDIR_PAGES * PAGE_SIZE + 1790 kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1791 #else 1792 memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); 1793 #endif 1794 1795 /*******************************************************/ 1796 /* Set the start and end of kva. */ 1797 /*******************************************************/ 1798 virtual_avail = round_page(data_end); 1799 virtual_end = VM_MAX_KERNEL_ADDRESS; 1800 1801 /* Allocate KVA space for page zero/copy operations. */ 1802 zero_page_va = virtual_avail; 1803 virtual_avail += PAGE_SIZE; 1804 copy_page_src_va = virtual_avail; 1805 virtual_avail += PAGE_SIZE; 1806 copy_page_dst_va = virtual_avail; 1807 virtual_avail += PAGE_SIZE; 1808 debugf("zero_page_va = 0x%08x\n", zero_page_va); 1809 debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); 1810 debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); 1811 1812 /* Initialize page zero/copy mutexes. */ 1813 mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); 1814 mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); 1815 1816 /* Allocate KVA space for ptbl bufs. */ 1817 ptbl_buf_pool_vabase = virtual_avail; 1818 virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; 1819 debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", 1820 ptbl_buf_pool_vabase, virtual_avail); 1821 1822 /* Calculate corresponding physical addresses for the kernel region. */ 1823 phys_kernelend = kernload + kernsize; 1824 debugf("kernel image and allocated data:\n"); 1825 debugf(" kernload = 0x%09llx\n", (uint64_t)kernload); 1826 debugf(" kernstart = 0x%08x\n", kernstart); 1827 debugf(" kernsize = 0x%08x\n", kernsize); 1828 1829 if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) 1830 panic("mmu_booke_bootstrap: phys_avail too small"); 1831 1832 /* 1833 * Remove kernel physical address range from avail regions list. Page 1834 * align all regions. Non-page aligned memory isn't very interesting 1835 * to us. Also, sort the entries for ascending addresses. 1836 */ 1837 1838 /* Retrieve phys/avail mem regions */ 1839 mem_regions(&physmem_regions, &physmem_regions_sz, 1840 &availmem_regions, &availmem_regions_sz); 1841 sz = 0; 1842 cnt = availmem_regions_sz; 1843 debugf("processing avail regions:\n"); 1844 for (mp = availmem_regions; mp->mr_size; mp++) { 1845 s = mp->mr_start; 1846 e = mp->mr_start + mp->mr_size; 1847 debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e); 1848 /* Check whether this region holds all of the kernel. */ 1849 if (s < kernload && e > phys_kernelend) { 1850 availmem_regions[cnt].mr_start = phys_kernelend; 1851 availmem_regions[cnt++].mr_size = e - phys_kernelend; 1852 e = kernload; 1853 } 1854 /* Look whether this regions starts within the kernel. */ 1855 if (s >= kernload && s < phys_kernelend) { 1856 if (e <= phys_kernelend) 1857 goto empty; 1858 s = phys_kernelend; 1859 } 1860 /* Now look whether this region ends within the kernel. */ 1861 if (e > kernload && e <= phys_kernelend) { 1862 if (s >= kernload) 1863 goto empty; 1864 e = kernload; 1865 } 1866 /* Now page align the start and size of the region. */ 1867 s = round_page(s); 1868 e = trunc_page(e); 1869 if (e < s) 1870 e = s; 1871 sz = e - s; 1872 debugf("%09jx-%09jx = %jx\n", 1873 (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz); 1874 1875 /* Check whether some memory is left here. */ 1876 if (sz == 0) { 1877 empty: 1878 memmove(mp, mp + 1, 1879 (cnt - (mp - availmem_regions)) * sizeof(*mp)); 1880 cnt--; 1881 mp--; 1882 continue; 1883 } 1884 1885 /* Do an insertion sort. */ 1886 for (mp1 = availmem_regions; mp1 < mp; mp1++) 1887 if (s < mp1->mr_start) 1888 break; 1889 if (mp1 < mp) { 1890 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 1891 mp1->mr_start = s; 1892 mp1->mr_size = sz; 1893 } else { 1894 mp->mr_start = s; 1895 mp->mr_size = sz; 1896 } 1897 } 1898 availmem_regions_sz = cnt; 1899 1900 /*******************************************************/ 1901 /* Steal physical memory for kernel stack from the end */ 1902 /* of the first avail region */ 1903 /*******************************************************/ 1904 kstack0_sz = kstack_pages * PAGE_SIZE; 1905 kstack0_phys = availmem_regions[0].mr_start + 1906 availmem_regions[0].mr_size; 1907 kstack0_phys -= kstack0_sz; 1908 availmem_regions[0].mr_size -= kstack0_sz; 1909 1910 /*******************************************************/ 1911 /* Fill in phys_avail table, based on availmem_regions */ 1912 /*******************************************************/ 1913 phys_avail_count = 0; 1914 physsz = 0; 1915 hwphyssz = 0; 1916 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 1917 1918 debugf("fill in phys_avail:\n"); 1919 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { 1920 1921 debugf(" region: 0x%jx - 0x%jx (0x%jx)\n", 1922 (uintmax_t)availmem_regions[i].mr_start, 1923 (uintmax_t)availmem_regions[i].mr_start + 1924 availmem_regions[i].mr_size, 1925 (uintmax_t)availmem_regions[i].mr_size); 1926 1927 if (hwphyssz != 0 && 1928 (physsz + availmem_regions[i].mr_size) >= hwphyssz) { 1929 debugf(" hw.physmem adjust\n"); 1930 if (physsz < hwphyssz) { 1931 phys_avail[j] = availmem_regions[i].mr_start; 1932 phys_avail[j + 1] = 1933 availmem_regions[i].mr_start + 1934 hwphyssz - physsz; 1935 physsz = hwphyssz; 1936 phys_avail_count++; 1937 } 1938 break; 1939 } 1940 1941 phys_avail[j] = availmem_regions[i].mr_start; 1942 phys_avail[j + 1] = availmem_regions[i].mr_start + 1943 availmem_regions[i].mr_size; 1944 phys_avail_count++; 1945 physsz += availmem_regions[i].mr_size; 1946 } 1947 physmem = btoc(physsz); 1948 1949 /* Calculate the last available physical address. */ 1950 for (i = 0; phys_avail[i + 2] != 0; i += 2) 1951 ; 1952 Maxmem = powerpc_btop(phys_avail[i + 1]); 1953 1954 debugf("Maxmem = 0x%08lx\n", Maxmem); 1955 debugf("phys_avail_count = %d\n", phys_avail_count); 1956 debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n", 1957 (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem); 1958 1959 /*******************************************************/ 1960 /* Initialize (statically allocated) kernel pmap. */ 1961 /*******************************************************/ 1962 PMAP_LOCK_INIT(kernel_pmap); 1963 #ifndef __powerpc64__ 1964 kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; 1965 #endif 1966 1967 debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap); 1968 kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir); 1969 for (i = 0; i < MAXCPU; i++) { 1970 kernel_pmap->pm_tid[i] = TID_KERNEL; 1971 1972 /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ 1973 tidbusy[i][TID_KERNEL] = kernel_pmap; 1974 } 1975 1976 /* Mark kernel_pmap active on all CPUs */ 1977 CPU_FILL(&kernel_pmap->pm_active); 1978 1979 /* 1980 * Initialize the global pv list lock. 1981 */ 1982 rw_init(&pvh_global_lock, "pmap pv global"); 1983 1984 /*******************************************************/ 1985 /* Final setup */ 1986 /*******************************************************/ 1987 1988 /* Enter kstack0 into kernel map, provide guard page */ 1989 kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1990 thread0.td_kstack = kstack0; 1991 thread0.td_kstack_pages = kstack_pages; 1992 1993 debugf("kstack_sz = 0x%08x\n", kstack0_sz); 1994 debugf("kstack0_phys at 0x%09llx - 0x%09llx\n", 1995 kstack0_phys, kstack0_phys + kstack0_sz); 1996 debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n", 1997 kstack0, kstack0 + kstack0_sz); 1998 1999 virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; 2000 for (i = 0; i < kstack_pages; i++) { 2001 mmu_booke_kenter(mmu, kstack0, kstack0_phys); 2002 kstack0 += PAGE_SIZE; 2003 kstack0_phys += PAGE_SIZE; 2004 } 2005 2006 pmap_bootstrapped = 1; 2007 2008 debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail); 2009 debugf("virtual_end = %"PRI0ptrX"\n", virtual_end); 2010 2011 debugf("mmu_booke_bootstrap: exit\n"); 2012 } 2013 2014 #ifdef SMP 2015 void 2016 tlb1_ap_prep(void) 2017 { 2018 tlb_entry_t *e, tmp; 2019 unsigned int i; 2020 2021 /* Prepare TLB1 image for AP processors */ 2022 e = __boot_tlb1; 2023 for (i = 0; i < TLB1_ENTRIES; i++) { 2024 tlb1_read_entry(&tmp, i); 2025 2026 if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED)) 2027 memcpy(e++, &tmp, sizeof(tmp)); 2028 } 2029 } 2030 2031 void 2032 pmap_bootstrap_ap(volatile uint32_t *trcp __unused) 2033 { 2034 int i; 2035 2036 /* 2037 * Finish TLB1 configuration: the BSP already set up its TLB1 and we 2038 * have the snapshot of its contents in the s/w __boot_tlb1[] table 2039 * created by tlb1_ap_prep(), so use these values directly to 2040 * (re)program AP's TLB1 hardware. 2041 * 2042 * Start at index 1 because index 0 has the kernel map. 2043 */ 2044 for (i = 1; i < TLB1_ENTRIES; i++) { 2045 if (__boot_tlb1[i].mas1 & MAS1_VALID) 2046 tlb1_write_entry(&__boot_tlb1[i], i); 2047 } 2048 2049 set_mas4_defaults(); 2050 } 2051 #endif 2052 2053 static void 2054 booke_pmap_init_qpages(void) 2055 { 2056 struct pcpu *pc; 2057 int i; 2058 2059 CPU_FOREACH(i) { 2060 pc = pcpu_find(i); 2061 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); 2062 if (pc->pc_qmap_addr == 0) 2063 panic("pmap_init_qpages: unable to allocate KVA"); 2064 } 2065 } 2066 2067 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL); 2068 2069 /* 2070 * Get the physical page address for the given pmap/virtual address. 2071 */ 2072 static vm_paddr_t 2073 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) 2074 { 2075 vm_paddr_t pa; 2076 2077 PMAP_LOCK(pmap); 2078 pa = pte_vatopa(mmu, pmap, va); 2079 PMAP_UNLOCK(pmap); 2080 2081 return (pa); 2082 } 2083 2084 /* 2085 * Extract the physical page address associated with the given 2086 * kernel virtual address. 2087 */ 2088 static vm_paddr_t 2089 mmu_booke_kextract(mmu_t mmu, vm_offset_t va) 2090 { 2091 tlb_entry_t e; 2092 int i; 2093 2094 /* Check TLB1 mappings */ 2095 for (i = 0; i < TLB1_ENTRIES; i++) { 2096 tlb1_read_entry(&e, i); 2097 if (!(e.mas1 & MAS1_VALID)) 2098 continue; 2099 if (va >= e.virt && va < e.virt + e.size) 2100 return (e.phys + (va - e.virt)); 2101 } 2102 2103 return (pte_vatopa(mmu, kernel_pmap, va)); 2104 } 2105 2106 /* 2107 * Initialize the pmap module. 2108 * Called by vm_init, to initialize any structures that the pmap 2109 * system needs to map virtual memory. 2110 */ 2111 static void 2112 mmu_booke_init(mmu_t mmu) 2113 { 2114 int shpgperproc = PMAP_SHPGPERPROC; 2115 2116 /* 2117 * Initialize the address space (zone) for the pv entries. Set a 2118 * high water mark so that the system can recover from excessive 2119 * numbers of pv entries. 2120 */ 2121 pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, 2122 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 2123 2124 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); 2125 pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; 2126 2127 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); 2128 pv_entry_high_water = 9 * (pv_entry_max / 10); 2129 2130 uma_zone_reserve_kva(pvzone, pv_entry_max); 2131 2132 /* Pre-fill pvzone with initial number of pv entries. */ 2133 uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); 2134 2135 /* Initialize ptbl allocation. */ 2136 ptbl_init(); 2137 } 2138 2139 /* 2140 * Map a list of wired pages into kernel virtual address space. This is 2141 * intended for temporary mappings which do not need page modification or 2142 * references recorded. Existing mappings in the region are overwritten. 2143 */ 2144 static void 2145 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 2146 { 2147 vm_offset_t va; 2148 2149 va = sva; 2150 while (count-- > 0) { 2151 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 2152 va += PAGE_SIZE; 2153 m++; 2154 } 2155 } 2156 2157 /* 2158 * Remove page mappings from kernel virtual address space. Intended for 2159 * temporary mappings entered by mmu_booke_qenter. 2160 */ 2161 static void 2162 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) 2163 { 2164 vm_offset_t va; 2165 2166 va = sva; 2167 while (count-- > 0) { 2168 mmu_booke_kremove(mmu, va); 2169 va += PAGE_SIZE; 2170 } 2171 } 2172 2173 /* 2174 * Map a wired page into kernel virtual address space. 2175 */ 2176 static void 2177 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 2178 { 2179 2180 mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 2181 } 2182 2183 static void 2184 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 2185 { 2186 uint32_t flags; 2187 pte_t *pte; 2188 2189 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 2190 (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); 2191 2192 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 2193 flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT; 2194 flags |= PTE_PS_4KB; 2195 2196 pte = pte_find(mmu, kernel_pmap, va); 2197 KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va. NULL PTE")); 2198 2199 mtx_lock_spin(&tlbivax_mutex); 2200 tlb_miss_lock(); 2201 2202 if (PTE_ISVALID(pte)) { 2203 2204 CTR1(KTR_PMAP, "%s: replacing entry!", __func__); 2205 2206 /* Flush entry from TLB0 */ 2207 tlb0_flush_entry(va); 2208 } 2209 2210 *pte = PTE_RPN_FROM_PA(pa) | flags; 2211 2212 //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " 2213 // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", 2214 // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); 2215 2216 /* Flush the real memory from the instruction cache. */ 2217 if ((flags & (PTE_I | PTE_G)) == 0) 2218 __syncicache((void *)va, PAGE_SIZE); 2219 2220 tlb_miss_unlock(); 2221 mtx_unlock_spin(&tlbivax_mutex); 2222 } 2223 2224 /* 2225 * Remove a page from kernel page table. 2226 */ 2227 static void 2228 mmu_booke_kremove(mmu_t mmu, vm_offset_t va) 2229 { 2230 pte_t *pte; 2231 2232 CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va); 2233 2234 KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && 2235 (va <= VM_MAX_KERNEL_ADDRESS)), 2236 ("mmu_booke_kremove: invalid va")); 2237 2238 pte = pte_find(mmu, kernel_pmap, va); 2239 2240 if (!PTE_ISVALID(pte)) { 2241 2242 CTR1(KTR_PMAP, "%s: invalid pte", __func__); 2243 2244 return; 2245 } 2246 2247 mtx_lock_spin(&tlbivax_mutex); 2248 tlb_miss_lock(); 2249 2250 /* Invalidate entry in TLB0, update PTE. */ 2251 tlb0_flush_entry(va); 2252 *pte = 0; 2253 2254 tlb_miss_unlock(); 2255 mtx_unlock_spin(&tlbivax_mutex); 2256 } 2257 2258 /* 2259 * Initialize pmap associated with process 0. 2260 */ 2261 static void 2262 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) 2263 { 2264 2265 PMAP_LOCK_INIT(pmap); 2266 mmu_booke_pinit(mmu, pmap); 2267 PCPU_SET(curpmap, pmap); 2268 } 2269 2270 /* 2271 * Initialize a preallocated and zeroed pmap structure, 2272 * such as one in a vmspace structure. 2273 */ 2274 static void 2275 mmu_booke_pinit(mmu_t mmu, pmap_t pmap) 2276 { 2277 int i; 2278 2279 CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, 2280 curthread->td_proc->p_pid, curthread->td_proc->p_comm); 2281 2282 KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); 2283 2284 for (i = 0; i < MAXCPU; i++) 2285 pmap->pm_tid[i] = TID_NONE; 2286 CPU_ZERO(&kernel_pmap->pm_active); 2287 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); 2288 #ifdef __powerpc64__ 2289 bzero(&pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES); 2290 TAILQ_INIT(&pmap->pm_pdir_list); 2291 #else 2292 bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); 2293 #endif 2294 TAILQ_INIT(&pmap->pm_ptbl_list); 2295 } 2296 2297 /* 2298 * Release any resources held by the given physical map. 2299 * Called when a pmap initialized by mmu_booke_pinit is being released. 2300 * Should only be called if the map contains no valid mappings. 2301 */ 2302 static void 2303 mmu_booke_release(mmu_t mmu, pmap_t pmap) 2304 { 2305 2306 KASSERT(pmap->pm_stats.resident_count == 0, 2307 ("pmap_release: pmap resident count %ld != 0", 2308 pmap->pm_stats.resident_count)); 2309 } 2310 2311 /* 2312 * Insert the given physical page at the specified virtual address in the 2313 * target physical map with the protection requested. If specified the page 2314 * will be wired down. 2315 */ 2316 static int 2317 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 2318 vm_prot_t prot, u_int flags, int8_t psind) 2319 { 2320 int error; 2321 2322 rw_wlock(&pvh_global_lock); 2323 PMAP_LOCK(pmap); 2324 error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); 2325 PMAP_UNLOCK(pmap); 2326 rw_wunlock(&pvh_global_lock); 2327 return (error); 2328 } 2329 2330 static int 2331 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 2332 vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) 2333 { 2334 pte_t *pte; 2335 vm_paddr_t pa; 2336 uint32_t flags; 2337 int error, su, sync; 2338 2339 pa = VM_PAGE_TO_PHYS(m); 2340 su = (pmap == kernel_pmap); 2341 sync = 0; 2342 2343 //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " 2344 // "pa=0x%08x prot=0x%08x flags=%#x)\n", 2345 // (u_int32_t)pmap, su, pmap->pm_tid, 2346 // (u_int32_t)m, va, pa, prot, flags); 2347 2348 if (su) { 2349 KASSERT(((va >= virtual_avail) && 2350 (va <= VM_MAX_KERNEL_ADDRESS)), 2351 ("mmu_booke_enter_locked: kernel pmap, non kernel va")); 2352 } else { 2353 KASSERT((va <= VM_MAXUSER_ADDRESS), 2354 ("mmu_booke_enter_locked: user pmap, non user va")); 2355 } 2356 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 2357 VM_OBJECT_ASSERT_LOCKED(m->object); 2358 2359 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 2360 2361 /* 2362 * If there is an existing mapping, and the physical address has not 2363 * changed, must be protection or wiring change. 2364 */ 2365 if (((pte = pte_find(mmu, pmap, va)) != NULL) && 2366 (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { 2367 2368 /* 2369 * Before actually updating pte->flags we calculate and 2370 * prepare its new value in a helper var. 2371 */ 2372 flags = *pte; 2373 flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); 2374 2375 /* Wiring change, just update stats. */ 2376 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { 2377 if (!PTE_ISWIRED(pte)) { 2378 flags |= PTE_WIRED; 2379 pmap->pm_stats.wired_count++; 2380 } 2381 } else { 2382 if (PTE_ISWIRED(pte)) { 2383 flags &= ~PTE_WIRED; 2384 pmap->pm_stats.wired_count--; 2385 } 2386 } 2387 2388 if (prot & VM_PROT_WRITE) { 2389 /* Add write permissions. */ 2390 flags |= PTE_SW; 2391 if (!su) 2392 flags |= PTE_UW; 2393 2394 if ((flags & PTE_MANAGED) != 0) 2395 vm_page_aflag_set(m, PGA_WRITEABLE); 2396 } else { 2397 /* Handle modified pages, sense modify status. */ 2398 2399 /* 2400 * The PTE_MODIFIED flag could be set by underlying 2401 * TLB misses since we last read it (above), possibly 2402 * other CPUs could update it so we check in the PTE 2403 * directly rather than rely on that saved local flags 2404 * copy. 2405 */ 2406 if (PTE_ISMODIFIED(pte)) 2407 vm_page_dirty(m); 2408 } 2409 2410 if (prot & VM_PROT_EXECUTE) { 2411 flags |= PTE_SX; 2412 if (!su) 2413 flags |= PTE_UX; 2414 2415 /* 2416 * Check existing flags for execute permissions: if we 2417 * are turning execute permissions on, icache should 2418 * be flushed. 2419 */ 2420 if ((*pte & (PTE_UX | PTE_SX)) == 0) 2421 sync++; 2422 } 2423 2424 flags &= ~PTE_REFERENCED; 2425 2426 /* 2427 * The new flags value is all calculated -- only now actually 2428 * update the PTE. 2429 */ 2430 mtx_lock_spin(&tlbivax_mutex); 2431 tlb_miss_lock(); 2432 2433 tlb0_flush_entry(va); 2434 *pte &= ~PTE_FLAGS_MASK; 2435 *pte |= flags; 2436 2437 tlb_miss_unlock(); 2438 mtx_unlock_spin(&tlbivax_mutex); 2439 2440 } else { 2441 /* 2442 * If there is an existing mapping, but it's for a different 2443 * physical address, pte_enter() will delete the old mapping. 2444 */ 2445 //if ((pte != NULL) && PTE_ISVALID(pte)) 2446 // debugf("mmu_booke_enter_locked: replace\n"); 2447 //else 2448 // debugf("mmu_booke_enter_locked: new\n"); 2449 2450 /* Now set up the flags and install the new mapping. */ 2451 flags = (PTE_SR | PTE_VALID); 2452 flags |= PTE_M; 2453 2454 if (!su) 2455 flags |= PTE_UR; 2456 2457 if (prot & VM_PROT_WRITE) { 2458 flags |= PTE_SW; 2459 if (!su) 2460 flags |= PTE_UW; 2461 2462 if ((m->oflags & VPO_UNMANAGED) == 0) 2463 vm_page_aflag_set(m, PGA_WRITEABLE); 2464 } 2465 2466 if (prot & VM_PROT_EXECUTE) { 2467 flags |= PTE_SX; 2468 if (!su) 2469 flags |= PTE_UX; 2470 } 2471 2472 /* If its wired update stats. */ 2473 if ((pmap_flags & PMAP_ENTER_WIRED) != 0) 2474 flags |= PTE_WIRED; 2475 2476 error = pte_enter(mmu, pmap, m, va, flags, 2477 (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); 2478 if (error != 0) 2479 return (KERN_RESOURCE_SHORTAGE); 2480 2481 if ((flags & PMAP_ENTER_WIRED) != 0) 2482 pmap->pm_stats.wired_count++; 2483 2484 /* Flush the real memory from the instruction cache. */ 2485 if (prot & VM_PROT_EXECUTE) 2486 sync++; 2487 } 2488 2489 if (sync && (su || pmap == PCPU_GET(curpmap))) { 2490 __syncicache((void *)va, PAGE_SIZE); 2491 sync = 0; 2492 } 2493 2494 return (KERN_SUCCESS); 2495 } 2496 2497 /* 2498 * Maps a sequence of resident pages belonging to the same object. 2499 * The sequence begins with the given page m_start. This page is 2500 * mapped at the given virtual address start. Each subsequent page is 2501 * mapped at a virtual address that is offset from start by the same 2502 * amount as the page is offset from m_start within the object. The 2503 * last page in the sequence is the page with the largest offset from 2504 * m_start that can be mapped at a virtual address less than the given 2505 * virtual address end. Not every virtual page between start and end 2506 * is mapped; only those for which a resident page exists with the 2507 * corresponding offset from m_start are mapped. 2508 */ 2509 static void 2510 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, 2511 vm_offset_t end, vm_page_t m_start, vm_prot_t prot) 2512 { 2513 vm_page_t m; 2514 vm_pindex_t diff, psize; 2515 2516 VM_OBJECT_ASSERT_LOCKED(m_start->object); 2517 2518 psize = atop(end - start); 2519 m = m_start; 2520 rw_wlock(&pvh_global_lock); 2521 PMAP_LOCK(pmap); 2522 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 2523 mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, 2524 prot & (VM_PROT_READ | VM_PROT_EXECUTE), 2525 PMAP_ENTER_NOSLEEP, 0); 2526 m = TAILQ_NEXT(m, listq); 2527 } 2528 rw_wunlock(&pvh_global_lock); 2529 PMAP_UNLOCK(pmap); 2530 } 2531 2532 static void 2533 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 2534 vm_prot_t prot) 2535 { 2536 2537 rw_wlock(&pvh_global_lock); 2538 PMAP_LOCK(pmap); 2539 mmu_booke_enter_locked(mmu, pmap, va, m, 2540 prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 2541 0); 2542 rw_wunlock(&pvh_global_lock); 2543 PMAP_UNLOCK(pmap); 2544 } 2545 2546 /* 2547 * Remove the given range of addresses from the specified map. 2548 * 2549 * It is assumed that the start and end are properly rounded to the page size. 2550 */ 2551 static void 2552 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) 2553 { 2554 pte_t *pte; 2555 uint8_t hold_flag; 2556 2557 int su = (pmap == kernel_pmap); 2558 2559 //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", 2560 // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); 2561 2562 if (su) { 2563 KASSERT(((va >= virtual_avail) && 2564 (va <= VM_MAX_KERNEL_ADDRESS)), 2565 ("mmu_booke_remove: kernel pmap, non kernel va")); 2566 } else { 2567 KASSERT((va <= VM_MAXUSER_ADDRESS), 2568 ("mmu_booke_remove: user pmap, non user va")); 2569 } 2570 2571 if (PMAP_REMOVE_DONE(pmap)) { 2572 //debugf("mmu_booke_remove: e (empty)\n"); 2573 return; 2574 } 2575 2576 hold_flag = PTBL_HOLD_FLAG(pmap); 2577 //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); 2578 2579 rw_wlock(&pvh_global_lock); 2580 PMAP_LOCK(pmap); 2581 for (; va < endva; va += PAGE_SIZE) { 2582 pte = pte_find(mmu, pmap, va); 2583 if ((pte != NULL) && PTE_ISVALID(pte)) 2584 pte_remove(mmu, pmap, va, hold_flag); 2585 } 2586 PMAP_UNLOCK(pmap); 2587 rw_wunlock(&pvh_global_lock); 2588 2589 //debugf("mmu_booke_remove: e\n"); 2590 } 2591 2592 /* 2593 * Remove physical page from all pmaps in which it resides. 2594 */ 2595 static void 2596 mmu_booke_remove_all(mmu_t mmu, vm_page_t m) 2597 { 2598 pv_entry_t pv, pvn; 2599 uint8_t hold_flag; 2600 2601 rw_wlock(&pvh_global_lock); 2602 for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { 2603 pvn = TAILQ_NEXT(pv, pv_link); 2604 2605 PMAP_LOCK(pv->pv_pmap); 2606 hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); 2607 pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); 2608 PMAP_UNLOCK(pv->pv_pmap); 2609 } 2610 vm_page_aflag_clear(m, PGA_WRITEABLE); 2611 rw_wunlock(&pvh_global_lock); 2612 } 2613 2614 /* 2615 * Map a range of physical addresses into kernel virtual address space. 2616 */ 2617 static vm_offset_t 2618 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 2619 vm_paddr_t pa_end, int prot) 2620 { 2621 vm_offset_t sva = *virt; 2622 vm_offset_t va = sva; 2623 2624 //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", 2625 // sva, pa_start, pa_end); 2626 2627 while (pa_start < pa_end) { 2628 mmu_booke_kenter(mmu, va, pa_start); 2629 va += PAGE_SIZE; 2630 pa_start += PAGE_SIZE; 2631 } 2632 *virt = va; 2633 2634 //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); 2635 return (sva); 2636 } 2637 2638 /* 2639 * The pmap must be activated before it's address space can be accessed in any 2640 * way. 2641 */ 2642 static void 2643 mmu_booke_activate(mmu_t mmu, struct thread *td) 2644 { 2645 pmap_t pmap; 2646 u_int cpuid; 2647 2648 pmap = &td->td_proc->p_vmspace->vm_pmap; 2649 2650 CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", 2651 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 2652 2653 KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); 2654 2655 sched_pin(); 2656 2657 cpuid = PCPU_GET(cpuid); 2658 CPU_SET_ATOMIC(cpuid, &pmap->pm_active); 2659 PCPU_SET(curpmap, pmap); 2660 2661 if (pmap->pm_tid[cpuid] == TID_NONE) 2662 tid_alloc(pmap); 2663 2664 /* Load PID0 register with pmap tid value. */ 2665 mtspr(SPR_PID0, pmap->pm_tid[cpuid]); 2666 __asm __volatile("isync"); 2667 2668 mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); 2669 2670 sched_unpin(); 2671 2672 CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, 2673 pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); 2674 } 2675 2676 /* 2677 * Deactivate the specified process's address space. 2678 */ 2679 static void 2680 mmu_booke_deactivate(mmu_t mmu, struct thread *td) 2681 { 2682 pmap_t pmap; 2683 2684 pmap = &td->td_proc->p_vmspace->vm_pmap; 2685 2686 CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", 2687 __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); 2688 2689 td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); 2690 2691 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); 2692 PCPU_SET(curpmap, NULL); 2693 } 2694 2695 /* 2696 * Copy the range specified by src_addr/len 2697 * from the source map to the range dst_addr/len 2698 * in the destination map. 2699 * 2700 * This routine is only advisory and need not do anything. 2701 */ 2702 static void 2703 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, 2704 vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) 2705 { 2706 2707 } 2708 2709 /* 2710 * Set the physical protection on the specified range of this map as requested. 2711 */ 2712 static void 2713 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 2714 vm_prot_t prot) 2715 { 2716 vm_offset_t va; 2717 vm_page_t m; 2718 pte_t *pte; 2719 2720 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2721 mmu_booke_remove(mmu, pmap, sva, eva); 2722 return; 2723 } 2724 2725 if (prot & VM_PROT_WRITE) 2726 return; 2727 2728 PMAP_LOCK(pmap); 2729 for (va = sva; va < eva; va += PAGE_SIZE) { 2730 if ((pte = pte_find(mmu, pmap, va)) != NULL) { 2731 if (PTE_ISVALID(pte)) { 2732 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2733 2734 mtx_lock_spin(&tlbivax_mutex); 2735 tlb_miss_lock(); 2736 2737 /* Handle modified pages. */ 2738 if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) 2739 vm_page_dirty(m); 2740 2741 tlb0_flush_entry(va); 2742 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2743 2744 tlb_miss_unlock(); 2745 mtx_unlock_spin(&tlbivax_mutex); 2746 } 2747 } 2748 } 2749 PMAP_UNLOCK(pmap); 2750 } 2751 2752 /* 2753 * Clear the write and modified bits in each of the given page's mappings. 2754 */ 2755 static void 2756 mmu_booke_remove_write(mmu_t mmu, vm_page_t m) 2757 { 2758 pv_entry_t pv; 2759 pte_t *pte; 2760 2761 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2762 ("mmu_booke_remove_write: page %p is not managed", m)); 2763 2764 /* 2765 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 2766 * set by another thread while the object is locked. Thus, 2767 * if PGA_WRITEABLE is clear, no page table entries need updating. 2768 */ 2769 VM_OBJECT_ASSERT_WLOCKED(m->object); 2770 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 2771 return; 2772 rw_wlock(&pvh_global_lock); 2773 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 2774 PMAP_LOCK(pv->pv_pmap); 2775 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { 2776 if (PTE_ISVALID(pte)) { 2777 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2778 2779 mtx_lock_spin(&tlbivax_mutex); 2780 tlb_miss_lock(); 2781 2782 /* Handle modified pages. */ 2783 if (PTE_ISMODIFIED(pte)) 2784 vm_page_dirty(m); 2785 2786 /* Flush mapping from TLB0. */ 2787 *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); 2788 2789 tlb_miss_unlock(); 2790 mtx_unlock_spin(&tlbivax_mutex); 2791 } 2792 } 2793 PMAP_UNLOCK(pv->pv_pmap); 2794 } 2795 vm_page_aflag_clear(m, PGA_WRITEABLE); 2796 rw_wunlock(&pvh_global_lock); 2797 } 2798 2799 static void 2800 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2801 { 2802 pte_t *pte; 2803 pmap_t pmap; 2804 vm_page_t m; 2805 vm_offset_t addr; 2806 vm_paddr_t pa = 0; 2807 int active, valid; 2808 2809 va = trunc_page(va); 2810 sz = round_page(sz); 2811 2812 rw_wlock(&pvh_global_lock); 2813 pmap = PCPU_GET(curpmap); 2814 active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; 2815 while (sz > 0) { 2816 PMAP_LOCK(pm); 2817 pte = pte_find(mmu, pm, va); 2818 valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; 2819 if (valid) 2820 pa = PTE_PA(pte); 2821 PMAP_UNLOCK(pm); 2822 if (valid) { 2823 if (!active) { 2824 /* Create a mapping in the active pmap. */ 2825 addr = 0; 2826 m = PHYS_TO_VM_PAGE(pa); 2827 PMAP_LOCK(pmap); 2828 pte_enter(mmu, pmap, m, addr, 2829 PTE_SR | PTE_VALID | PTE_UR, FALSE); 2830 __syncicache((void *)addr, PAGE_SIZE); 2831 pte_remove(mmu, pmap, addr, PTBL_UNHOLD); 2832 PMAP_UNLOCK(pmap); 2833 } else 2834 __syncicache((void *)va, PAGE_SIZE); 2835 } 2836 va += PAGE_SIZE; 2837 sz -= PAGE_SIZE; 2838 } 2839 rw_wunlock(&pvh_global_lock); 2840 } 2841 2842 /* 2843 * Atomically extract and hold the physical page with the given 2844 * pmap and virtual address pair if that mapping permits the given 2845 * protection. 2846 */ 2847 static vm_page_t 2848 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, 2849 vm_prot_t prot) 2850 { 2851 pte_t *pte; 2852 vm_page_t m; 2853 uint32_t pte_wbit; 2854 vm_paddr_t pa; 2855 2856 m = NULL; 2857 pa = 0; 2858 PMAP_LOCK(pmap); 2859 retry: 2860 pte = pte_find(mmu, pmap, va); 2861 if ((pte != NULL) && PTE_ISVALID(pte)) { 2862 if (pmap == kernel_pmap) 2863 pte_wbit = PTE_SW; 2864 else 2865 pte_wbit = PTE_UW; 2866 2867 if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { 2868 if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) 2869 goto retry; 2870 m = PHYS_TO_VM_PAGE(PTE_PA(pte)); 2871 vm_page_hold(m); 2872 } 2873 } 2874 2875 PA_UNLOCK_COND(pa); 2876 PMAP_UNLOCK(pmap); 2877 return (m); 2878 } 2879 2880 /* 2881 * Initialize a vm_page's machine-dependent fields. 2882 */ 2883 static void 2884 mmu_booke_page_init(mmu_t mmu, vm_page_t m) 2885 { 2886 2887 TAILQ_INIT(&m->md.pv_list); 2888 } 2889 2890 /* 2891 * mmu_booke_zero_page_area zeros the specified hardware page by 2892 * mapping it into virtual memory and using bzero to clear 2893 * its contents. 2894 * 2895 * off and size must reside within a single page. 2896 */ 2897 static void 2898 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 2899 { 2900 vm_offset_t va; 2901 2902 /* XXX KASSERT off and size are within a single page? */ 2903 2904 mtx_lock(&zero_page_mutex); 2905 va = zero_page_va; 2906 2907 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2908 bzero((caddr_t)va + off, size); 2909 mmu_booke_kremove(mmu, va); 2910 2911 mtx_unlock(&zero_page_mutex); 2912 } 2913 2914 /* 2915 * mmu_booke_zero_page zeros the specified hardware page. 2916 */ 2917 static void 2918 mmu_booke_zero_page(mmu_t mmu, vm_page_t m) 2919 { 2920 vm_offset_t off, va; 2921 2922 mtx_lock(&zero_page_mutex); 2923 va = zero_page_va; 2924 2925 mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); 2926 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 2927 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 2928 mmu_booke_kremove(mmu, va); 2929 2930 mtx_unlock(&zero_page_mutex); 2931 } 2932 2933 /* 2934 * mmu_booke_copy_page copies the specified (machine independent) page by 2935 * mapping the page into virtual memory and using memcopy to copy the page, 2936 * one machine dependent page at a time. 2937 */ 2938 static void 2939 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) 2940 { 2941 vm_offset_t sva, dva; 2942 2943 sva = copy_page_src_va; 2944 dva = copy_page_dst_va; 2945 2946 mtx_lock(©_page_mutex); 2947 mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); 2948 mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); 2949 memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); 2950 mmu_booke_kremove(mmu, dva); 2951 mmu_booke_kremove(mmu, sva); 2952 mtx_unlock(©_page_mutex); 2953 } 2954 2955 static inline void 2956 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 2957 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 2958 { 2959 void *a_cp, *b_cp; 2960 vm_offset_t a_pg_offset, b_pg_offset; 2961 int cnt; 2962 2963 mtx_lock(©_page_mutex); 2964 while (xfersize > 0) { 2965 a_pg_offset = a_offset & PAGE_MASK; 2966 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 2967 mmu_booke_kenter(mmu, copy_page_src_va, 2968 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 2969 a_cp = (char *)copy_page_src_va + a_pg_offset; 2970 b_pg_offset = b_offset & PAGE_MASK; 2971 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 2972 mmu_booke_kenter(mmu, copy_page_dst_va, 2973 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 2974 b_cp = (char *)copy_page_dst_va + b_pg_offset; 2975 bcopy(a_cp, b_cp, cnt); 2976 mmu_booke_kremove(mmu, copy_page_dst_va); 2977 mmu_booke_kremove(mmu, copy_page_src_va); 2978 a_offset += cnt; 2979 b_offset += cnt; 2980 xfersize -= cnt; 2981 } 2982 mtx_unlock(©_page_mutex); 2983 } 2984 2985 static vm_offset_t 2986 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) 2987 { 2988 vm_paddr_t paddr; 2989 vm_offset_t qaddr; 2990 uint32_t flags; 2991 pte_t *pte; 2992 2993 paddr = VM_PAGE_TO_PHYS(m); 2994 2995 flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; 2996 flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; 2997 flags |= PTE_PS_4KB; 2998 2999 critical_enter(); 3000 qaddr = PCPU_GET(qmap_addr); 3001 3002 pte = pte_find(mmu, kernel_pmap, qaddr); 3003 3004 KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); 3005 3006 /* 3007 * XXX: tlbivax is broadcast to other cores, but qaddr should 3008 * not be present in other TLBs. Is there a better instruction 3009 * sequence to use? Or just forget it & use mmu_booke_kenter()... 3010 */ 3011 __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); 3012 __asm __volatile("isync; msync"); 3013 3014 *pte = PTE_RPN_FROM_PA(paddr) | flags; 3015 3016 /* Flush the real memory from the instruction cache. */ 3017 if ((flags & (PTE_I | PTE_G)) == 0) 3018 __syncicache((void *)qaddr, PAGE_SIZE); 3019 3020 return (qaddr); 3021 } 3022 3023 static void 3024 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) 3025 { 3026 pte_t *pte; 3027 3028 pte = pte_find(mmu, kernel_pmap, addr); 3029 3030 KASSERT(PCPU_GET(qmap_addr) == addr, 3031 ("mmu_booke_quick_remove_page: invalid address")); 3032 KASSERT(*pte != 0, 3033 ("mmu_booke_quick_remove_page: PTE not in use")); 3034 3035 *pte = 0; 3036 critical_exit(); 3037 } 3038 3039 /* 3040 * Return whether or not the specified physical page was modified 3041 * in any of physical maps. 3042 */ 3043 static boolean_t 3044 mmu_booke_is_modified(mmu_t mmu, vm_page_t m) 3045 { 3046 pte_t *pte; 3047 pv_entry_t pv; 3048 boolean_t rv; 3049 3050 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3051 ("mmu_booke_is_modified: page %p is not managed", m)); 3052 rv = FALSE; 3053 3054 /* 3055 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 3056 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 3057 * is clear, no PTEs can be modified. 3058 */ 3059 VM_OBJECT_ASSERT_WLOCKED(m->object); 3060 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 3061 return (rv); 3062 rw_wlock(&pvh_global_lock); 3063 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3064 PMAP_LOCK(pv->pv_pmap); 3065 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3066 PTE_ISVALID(pte)) { 3067 if (PTE_ISMODIFIED(pte)) 3068 rv = TRUE; 3069 } 3070 PMAP_UNLOCK(pv->pv_pmap); 3071 if (rv) 3072 break; 3073 } 3074 rw_wunlock(&pvh_global_lock); 3075 return (rv); 3076 } 3077 3078 /* 3079 * Return whether or not the specified virtual address is eligible 3080 * for prefault. 3081 */ 3082 static boolean_t 3083 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) 3084 { 3085 3086 return (FALSE); 3087 } 3088 3089 /* 3090 * Return whether or not the specified physical page was referenced 3091 * in any physical maps. 3092 */ 3093 static boolean_t 3094 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) 3095 { 3096 pte_t *pte; 3097 pv_entry_t pv; 3098 boolean_t rv; 3099 3100 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3101 ("mmu_booke_is_referenced: page %p is not managed", m)); 3102 rv = FALSE; 3103 rw_wlock(&pvh_global_lock); 3104 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3105 PMAP_LOCK(pv->pv_pmap); 3106 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3107 PTE_ISVALID(pte)) { 3108 if (PTE_ISREFERENCED(pte)) 3109 rv = TRUE; 3110 } 3111 PMAP_UNLOCK(pv->pv_pmap); 3112 if (rv) 3113 break; 3114 } 3115 rw_wunlock(&pvh_global_lock); 3116 return (rv); 3117 } 3118 3119 /* 3120 * Clear the modify bits on the specified physical page. 3121 */ 3122 static void 3123 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) 3124 { 3125 pte_t *pte; 3126 pv_entry_t pv; 3127 3128 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3129 ("mmu_booke_clear_modify: page %p is not managed", m)); 3130 VM_OBJECT_ASSERT_WLOCKED(m->object); 3131 KASSERT(!vm_page_xbusied(m), 3132 ("mmu_booke_clear_modify: page %p is exclusive busied", m)); 3133 3134 /* 3135 * If the page is not PG_AWRITEABLE, then no PTEs can be modified. 3136 * If the object containing the page is locked and the page is not 3137 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set. 3138 */ 3139 if ((m->aflags & PGA_WRITEABLE) == 0) 3140 return; 3141 rw_wlock(&pvh_global_lock); 3142 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3143 PMAP_LOCK(pv->pv_pmap); 3144 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3145 PTE_ISVALID(pte)) { 3146 mtx_lock_spin(&tlbivax_mutex); 3147 tlb_miss_lock(); 3148 3149 if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) { 3150 tlb0_flush_entry(pv->pv_va); 3151 *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | 3152 PTE_REFERENCED); 3153 } 3154 3155 tlb_miss_unlock(); 3156 mtx_unlock_spin(&tlbivax_mutex); 3157 } 3158 PMAP_UNLOCK(pv->pv_pmap); 3159 } 3160 rw_wunlock(&pvh_global_lock); 3161 } 3162 3163 /* 3164 * Return a count of reference bits for a page, clearing those bits. 3165 * It is not necessary for every reference bit to be cleared, but it 3166 * is necessary that 0 only be returned when there are truly no 3167 * reference bits set. 3168 * 3169 * As an optimization, update the page's dirty field if a modified bit is 3170 * found while counting reference bits. This opportunistic update can be 3171 * performed at low cost and can eliminate the need for some future calls 3172 * to pmap_is_modified(). However, since this function stops after 3173 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some 3174 * dirty pages. Those dirty pages will only be detected by a future call 3175 * to pmap_is_modified(). 3176 */ 3177 static int 3178 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) 3179 { 3180 pte_t *pte; 3181 pv_entry_t pv; 3182 int count; 3183 3184 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3185 ("mmu_booke_ts_referenced: page %p is not managed", m)); 3186 count = 0; 3187 rw_wlock(&pvh_global_lock); 3188 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3189 PMAP_LOCK(pv->pv_pmap); 3190 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && 3191 PTE_ISVALID(pte)) { 3192 if (PTE_ISMODIFIED(pte)) 3193 vm_page_dirty(m); 3194 if (PTE_ISREFERENCED(pte)) { 3195 mtx_lock_spin(&tlbivax_mutex); 3196 tlb_miss_lock(); 3197 3198 tlb0_flush_entry(pv->pv_va); 3199 *pte &= ~PTE_REFERENCED; 3200 3201 tlb_miss_unlock(); 3202 mtx_unlock_spin(&tlbivax_mutex); 3203 3204 if (++count >= PMAP_TS_REFERENCED_MAX) { 3205 PMAP_UNLOCK(pv->pv_pmap); 3206 break; 3207 } 3208 } 3209 } 3210 PMAP_UNLOCK(pv->pv_pmap); 3211 } 3212 rw_wunlock(&pvh_global_lock); 3213 return (count); 3214 } 3215 3216 /* 3217 * Clear the wired attribute from the mappings for the specified range of 3218 * addresses in the given pmap. Every valid mapping within that range must 3219 * have the wired attribute set. In contrast, invalid mappings cannot have 3220 * the wired attribute set, so they are ignored. 3221 * 3222 * The wired attribute of the page table entry is not a hardware feature, so 3223 * there is no need to invalidate any TLB entries. 3224 */ 3225 static void 3226 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) 3227 { 3228 vm_offset_t va; 3229 pte_t *pte; 3230 3231 PMAP_LOCK(pmap); 3232 for (va = sva; va < eva; va += PAGE_SIZE) { 3233 if ((pte = pte_find(mmu, pmap, va)) != NULL && 3234 PTE_ISVALID(pte)) { 3235 if (!PTE_ISWIRED(pte)) 3236 panic("mmu_booke_unwire: pte %p isn't wired", 3237 pte); 3238 *pte &= ~PTE_WIRED; 3239 pmap->pm_stats.wired_count--; 3240 } 3241 } 3242 PMAP_UNLOCK(pmap); 3243 3244 } 3245 3246 /* 3247 * Return true if the pmap's pv is one of the first 16 pvs linked to from this 3248 * page. This count may be changed upwards or downwards in the future; it is 3249 * only necessary that true be returned for a small subset of pmaps for proper 3250 * page aging. 3251 */ 3252 static boolean_t 3253 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 3254 { 3255 pv_entry_t pv; 3256 int loops; 3257 boolean_t rv; 3258 3259 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3260 ("mmu_booke_page_exists_quick: page %p is not managed", m)); 3261 loops = 0; 3262 rv = FALSE; 3263 rw_wlock(&pvh_global_lock); 3264 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3265 if (pv->pv_pmap == pmap) { 3266 rv = TRUE; 3267 break; 3268 } 3269 if (++loops >= 16) 3270 break; 3271 } 3272 rw_wunlock(&pvh_global_lock); 3273 return (rv); 3274 } 3275 3276 /* 3277 * Return the number of managed mappings to the given physical page that are 3278 * wired. 3279 */ 3280 static int 3281 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) 3282 { 3283 pv_entry_t pv; 3284 pte_t *pte; 3285 int count = 0; 3286 3287 if ((m->oflags & VPO_UNMANAGED) != 0) 3288 return (count); 3289 rw_wlock(&pvh_global_lock); 3290 TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { 3291 PMAP_LOCK(pv->pv_pmap); 3292 if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) 3293 if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) 3294 count++; 3295 PMAP_UNLOCK(pv->pv_pmap); 3296 } 3297 rw_wunlock(&pvh_global_lock); 3298 return (count); 3299 } 3300 3301 static int 3302 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 3303 { 3304 int i; 3305 vm_offset_t va; 3306 3307 /* 3308 * This currently does not work for entries that 3309 * overlap TLB1 entries. 3310 */ 3311 for (i = 0; i < TLB1_ENTRIES; i ++) { 3312 if (tlb1_iomapped(i, pa, size, &va) == 0) 3313 return (0); 3314 } 3315 3316 return (EFAULT); 3317 } 3318 3319 void 3320 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) 3321 { 3322 vm_paddr_t ppa; 3323 vm_offset_t ofs; 3324 vm_size_t gran; 3325 3326 /* Minidumps are based on virtual memory addresses. */ 3327 if (do_minidump) { 3328 *va = (void *)(vm_offset_t)pa; 3329 return; 3330 } 3331 3332 /* Raw physical memory dumps don't have a virtual address. */ 3333 /* We always map a 256MB page at 256M. */ 3334 gran = 256 * 1024 * 1024; 3335 ppa = rounddown2(pa, gran); 3336 ofs = pa - ppa; 3337 *va = (void *)gran; 3338 tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); 3339 3340 if (sz > (gran - ofs)) 3341 tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, 3342 _TLB_ENTRY_IO); 3343 } 3344 3345 void 3346 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) 3347 { 3348 vm_paddr_t ppa; 3349 vm_offset_t ofs; 3350 vm_size_t gran; 3351 tlb_entry_t e; 3352 int i; 3353 3354 /* Minidumps are based on virtual memory addresses. */ 3355 /* Nothing to do... */ 3356 if (do_minidump) 3357 return; 3358 3359 for (i = 0; i < TLB1_ENTRIES; i++) { 3360 tlb1_read_entry(&e, i); 3361 if (!(e.mas1 & MAS1_VALID)) 3362 break; 3363 } 3364 3365 /* Raw physical memory dumps don't have a virtual address. */ 3366 i--; 3367 e.mas1 = 0; 3368 e.mas2 = 0; 3369 e.mas3 = 0; 3370 tlb1_write_entry(&e, i); 3371 3372 gran = 256 * 1024 * 1024; 3373 ppa = rounddown2(pa, gran); 3374 ofs = pa - ppa; 3375 if (sz > (gran - ofs)) { 3376 i--; 3377 e.mas1 = 0; 3378 e.mas2 = 0; 3379 e.mas3 = 0; 3380 tlb1_write_entry(&e, i); 3381 } 3382 } 3383 3384 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 3385 3386 void 3387 mmu_booke_scan_init(mmu_t mmu) 3388 { 3389 vm_offset_t va; 3390 pte_t *pte; 3391 int i; 3392 3393 if (!do_minidump) { 3394 /* Initialize phys. segments for dumpsys(). */ 3395 memset(&dump_map, 0, sizeof(dump_map)); 3396 mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, 3397 &availmem_regions_sz); 3398 for (i = 0; i < physmem_regions_sz; i++) { 3399 dump_map[i].pa_start = physmem_regions[i].mr_start; 3400 dump_map[i].pa_size = physmem_regions[i].mr_size; 3401 } 3402 return; 3403 } 3404 3405 /* Virtual segments for minidumps: */ 3406 memset(&dump_map, 0, sizeof(dump_map)); 3407 3408 /* 1st: kernel .data and .bss. */ 3409 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 3410 dump_map[0].pa_size = 3411 round_page((uintptr_t)_end) - dump_map[0].pa_start; 3412 3413 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 3414 dump_map[1].pa_start = data_start; 3415 dump_map[1].pa_size = data_end - data_start; 3416 3417 /* 3rd: kernel VM. */ 3418 va = dump_map[1].pa_start + dump_map[1].pa_size; 3419 /* Find start of next chunk (from va). */ 3420 while (va < virtual_end) { 3421 /* Don't dump the buffer cache. */ 3422 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 3423 va = kmi.buffer_eva; 3424 continue; 3425 } 3426 pte = pte_find(mmu, kernel_pmap, va); 3427 if (pte != NULL && PTE_ISVALID(pte)) 3428 break; 3429 va += PAGE_SIZE; 3430 } 3431 if (va < virtual_end) { 3432 dump_map[2].pa_start = va; 3433 va += PAGE_SIZE; 3434 /* Find last page in chunk. */ 3435 while (va < virtual_end) { 3436 /* Don't run into the buffer cache. */ 3437 if (va == kmi.buffer_sva) 3438 break; 3439 pte = pte_find(mmu, kernel_pmap, va); 3440 if (pte == NULL || !PTE_ISVALID(pte)) 3441 break; 3442 va += PAGE_SIZE; 3443 } 3444 dump_map[2].pa_size = va - dump_map[2].pa_start; 3445 } 3446 } 3447 3448 /* 3449 * Map a set of physical memory pages into the kernel virtual address space. 3450 * Return a pointer to where it is mapped. This routine is intended to be used 3451 * for mapping device memory, NOT real memory. 3452 */ 3453 static void * 3454 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 3455 { 3456 3457 return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); 3458 } 3459 3460 static void * 3461 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 3462 { 3463 tlb_entry_t e; 3464 void *res; 3465 uintptr_t va, tmpva; 3466 vm_size_t sz; 3467 int i; 3468 3469 /* 3470 * Check if this is premapped in TLB1. Note: this should probably also 3471 * check whether a sequence of TLB1 entries exist that match the 3472 * requirement, but now only checks the easy case. 3473 */ 3474 if (ma == VM_MEMATTR_DEFAULT) { 3475 for (i = 0; i < TLB1_ENTRIES; i++) { 3476 tlb1_read_entry(&e, i); 3477 if (!(e.mas1 & MAS1_VALID)) 3478 continue; 3479 if (pa >= e.phys && 3480 (pa + size) <= (e.phys + e.size)) 3481 return (void *)(e.virt + 3482 (vm_offset_t)(pa - e.phys)); 3483 } 3484 } 3485 3486 size = roundup(size, PAGE_SIZE); 3487 3488 /* 3489 * The device mapping area is between VM_MAXUSER_ADDRESS and 3490 * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing. 3491 */ 3492 #ifdef SPARSE_MAPDEV 3493 /* 3494 * With a sparse mapdev, align to the largest starting region. This 3495 * could feasibly be optimized for a 'best-fit' alignment, but that 3496 * calculation could be very costly. 3497 */ 3498 do { 3499 tmpva = tlb1_map_base; 3500 va = roundup(tlb1_map_base, 1 << flsl(size)); 3501 #ifdef __powerpc64__ 3502 } while (!atomic_cmpset_long(&tlb1_map_base, tmpva, va + size)); 3503 #else 3504 } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size)); 3505 #endif 3506 #else 3507 #ifdef __powerpc64__ 3508 va = atomic_fetchadd_long(&tlb1_map_base, size); 3509 #else 3510 va = atomic_fetchadd_int(&tlb1_map_base, size); 3511 #endif 3512 #endif 3513 res = (void *)va; 3514 3515 do { 3516 sz = 1 << (ilog2(size) & ~1); 3517 if (va % sz != 0) { 3518 do { 3519 sz >>= 2; 3520 } while (va % sz != 0); 3521 } 3522 if (bootverbose) 3523 printf("Wiring VA=%lx to PA=%jx (size=%lx)\n", 3524 va, (uintmax_t)pa, sz); 3525 tlb1_set_entry(va, pa, sz, 3526 _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)); 3527 size -= sz; 3528 pa += sz; 3529 va += sz; 3530 } while (size > 0); 3531 3532 return (res); 3533 } 3534 3535 /* 3536 * 'Unmap' a range mapped by mmu_booke_mapdev(). 3537 */ 3538 static void 3539 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 3540 { 3541 #ifdef SUPPORTS_SHRINKING_TLB1 3542 vm_offset_t base, offset; 3543 3544 /* 3545 * Unmap only if this is inside kernel virtual space. 3546 */ 3547 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { 3548 base = trunc_page(va); 3549 offset = va & PAGE_MASK; 3550 size = roundup(offset + size, PAGE_SIZE); 3551 kva_free(base, size); 3552 } 3553 #endif 3554 } 3555 3556 /* 3557 * mmu_booke_object_init_pt preloads the ptes for a given object into the 3558 * specified pmap. This eliminates the blast of soft faults on process startup 3559 * and immediately after an mmap. 3560 */ 3561 static void 3562 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 3563 vm_object_t object, vm_pindex_t pindex, vm_size_t size) 3564 { 3565 3566 VM_OBJECT_ASSERT_WLOCKED(object); 3567 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, 3568 ("mmu_booke_object_init_pt: non-device object")); 3569 } 3570 3571 /* 3572 * Perform the pmap work for mincore. 3573 */ 3574 static int 3575 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, 3576 vm_paddr_t *locked_pa) 3577 { 3578 3579 /* XXX: this should be implemented at some point */ 3580 return (0); 3581 } 3582 3583 static int 3584 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, 3585 vm_memattr_t mode) 3586 { 3587 vm_offset_t va; 3588 pte_t *pte; 3589 int i, j; 3590 tlb_entry_t e; 3591 3592 /* Check TLB1 mappings */ 3593 for (i = 0; i < TLB1_ENTRIES; i++) { 3594 tlb1_read_entry(&e, i); 3595 if (!(e.mas1 & MAS1_VALID)) 3596 continue; 3597 if (addr >= e.virt && addr < e.virt + e.size) 3598 break; 3599 } 3600 if (i < TLB1_ENTRIES) { 3601 /* Only allow full mappings to be modified for now. */ 3602 /* Validate the range. */ 3603 for (j = i, va = addr; va < addr + sz; va += e.size, j++) { 3604 tlb1_read_entry(&e, j); 3605 if (va != e.virt || (sz - (va - addr) < e.size)) 3606 return (EINVAL); 3607 } 3608 for (va = addr; va < addr + sz; va += e.size, i++) { 3609 tlb1_read_entry(&e, i); 3610 e.mas2 &= ~MAS2_WIMGE_MASK; 3611 e.mas2 |= tlb_calc_wimg(e.phys, mode); 3612 3613 /* 3614 * Write it out to the TLB. Should really re-sync with other 3615 * cores. 3616 */ 3617 tlb1_write_entry(&e, i); 3618 } 3619 return (0); 3620 } 3621 3622 /* Not in TLB1, try through pmap */ 3623 /* First validate the range. */ 3624 for (va = addr; va < addr + sz; va += PAGE_SIZE) { 3625 pte = pte_find(mmu, kernel_pmap, va); 3626 if (pte == NULL || !PTE_ISVALID(pte)) 3627 return (EINVAL); 3628 } 3629 3630 mtx_lock_spin(&tlbivax_mutex); 3631 tlb_miss_lock(); 3632 for (va = addr; va < addr + sz; va += PAGE_SIZE) { 3633 pte = pte_find(mmu, kernel_pmap, va); 3634 *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT); 3635 *pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT; 3636 tlb0_flush_entry(va); 3637 } 3638 tlb_miss_unlock(); 3639 mtx_unlock_spin(&tlbivax_mutex); 3640 3641 return (0); 3642 } 3643 3644 /**************************************************************************/ 3645 /* TID handling */ 3646 /**************************************************************************/ 3647 3648 /* 3649 * Allocate a TID. If necessary, steal one from someone else. 3650 * The new TID is flushed from the TLB before returning. 3651 */ 3652 static tlbtid_t 3653 tid_alloc(pmap_t pmap) 3654 { 3655 tlbtid_t tid; 3656 int thiscpu; 3657 3658 KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); 3659 3660 CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); 3661 3662 thiscpu = PCPU_GET(cpuid); 3663 3664 tid = PCPU_GET(tid_next); 3665 if (tid > TID_MAX) 3666 tid = TID_MIN; 3667 PCPU_SET(tid_next, tid + 1); 3668 3669 /* If we are stealing TID then clear the relevant pmap's field */ 3670 if (tidbusy[thiscpu][tid] != NULL) { 3671 3672 CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); 3673 3674 tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; 3675 3676 /* Flush all entries from TLB0 matching this TID. */ 3677 tid_flush(tid); 3678 } 3679 3680 tidbusy[thiscpu][tid] = pmap; 3681 pmap->pm_tid[thiscpu] = tid; 3682 __asm __volatile("msync; isync"); 3683 3684 CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, 3685 PCPU_GET(tid_next)); 3686 3687 return (tid); 3688 } 3689 3690 /**************************************************************************/ 3691 /* TLB0 handling */ 3692 /**************************************************************************/ 3693 3694 static void 3695 #ifdef __powerpc64__ 3696 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3, 3697 #else 3698 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, 3699 #endif 3700 uint32_t mas7) 3701 { 3702 int as; 3703 char desc[3]; 3704 tlbtid_t tid; 3705 vm_size_t size; 3706 unsigned int tsize; 3707 3708 desc[2] = '\0'; 3709 if (mas1 & MAS1_VALID) 3710 desc[0] = 'V'; 3711 else 3712 desc[0] = ' '; 3713 3714 if (mas1 & MAS1_IPROT) 3715 desc[1] = 'P'; 3716 else 3717 desc[1] = ' '; 3718 3719 as = (mas1 & MAS1_TS_MASK) ? 1 : 0; 3720 tid = MAS1_GETTID(mas1); 3721 3722 tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 3723 size = 0; 3724 if (tsize) 3725 size = tsize2size(tsize); 3726 3727 debugf("%3d: (%s) [AS=%d] " 3728 "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " 3729 "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n", 3730 i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); 3731 } 3732 3733 /* Convert TLB0 va and way number to tlb0[] table index. */ 3734 static inline unsigned int 3735 tlb0_tableidx(vm_offset_t va, unsigned int way) 3736 { 3737 unsigned int idx; 3738 3739 idx = (way * TLB0_ENTRIES_PER_WAY); 3740 idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; 3741 return (idx); 3742 } 3743 3744 /* 3745 * Invalidate TLB0 entry. 3746 */ 3747 static inline void 3748 tlb0_flush_entry(vm_offset_t va) 3749 { 3750 3751 CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); 3752 3753 mtx_assert(&tlbivax_mutex, MA_OWNED); 3754 3755 __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); 3756 __asm __volatile("isync; msync"); 3757 __asm __volatile("tlbsync; msync"); 3758 3759 CTR1(KTR_PMAP, "%s: e", __func__); 3760 } 3761 3762 /* Print out contents of the MAS registers for each TLB0 entry */ 3763 void 3764 tlb0_print_tlbentries(void) 3765 { 3766 uint32_t mas0, mas1, mas3, mas7; 3767 #ifdef __powerpc64__ 3768 uint64_t mas2; 3769 #else 3770 uint32_t mas2; 3771 #endif 3772 int entryidx, way, idx; 3773 3774 debugf("TLB0 entries:\n"); 3775 for (way = 0; way < TLB0_WAYS; way ++) 3776 for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { 3777 3778 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 3779 mtspr(SPR_MAS0, mas0); 3780 __asm __volatile("isync"); 3781 3782 mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; 3783 mtspr(SPR_MAS2, mas2); 3784 3785 __asm __volatile("isync; tlbre"); 3786 3787 mas1 = mfspr(SPR_MAS1); 3788 mas2 = mfspr(SPR_MAS2); 3789 mas3 = mfspr(SPR_MAS3); 3790 mas7 = mfspr(SPR_MAS7); 3791 3792 idx = tlb0_tableidx(mas2, way); 3793 tlb_print_entry(idx, mas1, mas2, mas3, mas7); 3794 } 3795 } 3796 3797 /**************************************************************************/ 3798 /* TLB1 handling */ 3799 /**************************************************************************/ 3800 3801 /* 3802 * TLB1 mapping notes: 3803 * 3804 * TLB1[0] Kernel text and data. 3805 * TLB1[1-15] Additional kernel text and data mappings (if required), PCI 3806 * windows, other devices mappings. 3807 */ 3808 3809 /* 3810 * Read an entry from given TLB1 slot. 3811 */ 3812 void 3813 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot) 3814 { 3815 register_t msr; 3816 uint32_t mas0; 3817 3818 KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__)); 3819 3820 msr = mfmsr(); 3821 mtmsr(msr & ~PSL_EE); 3822 3823 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot); 3824 mtspr(SPR_MAS0, mas0); 3825 __asm __volatile("isync; tlbre"); 3826 3827 entry->mas1 = mfspr(SPR_MAS1); 3828 entry->mas2 = mfspr(SPR_MAS2); 3829 entry->mas3 = mfspr(SPR_MAS3); 3830 3831 switch ((mfpvr() >> 16) & 0xFFFF) { 3832 case FSL_E500v2: 3833 case FSL_E500mc: 3834 case FSL_E5500: 3835 case FSL_E6500: 3836 entry->mas7 = mfspr(SPR_MAS7); 3837 break; 3838 default: 3839 entry->mas7 = 0; 3840 break; 3841 } 3842 mtmsr(msr); 3843 3844 entry->virt = entry->mas2 & MAS2_EPN_MASK; 3845 entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) | 3846 (entry->mas3 & MAS3_RPN); 3847 entry->size = 3848 tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT); 3849 } 3850 3851 /* 3852 * Write given entry to TLB1 hardware. 3853 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). 3854 */ 3855 static void 3856 tlb1_write_entry(tlb_entry_t *e, unsigned int idx) 3857 { 3858 register_t msr; 3859 uint32_t mas0; 3860 3861 //debugf("tlb1_write_entry: s\n"); 3862 3863 /* Select entry */ 3864 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); 3865 //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); 3866 3867 msr = mfmsr(); 3868 mtmsr(msr & ~PSL_EE); 3869 3870 mtspr(SPR_MAS0, mas0); 3871 __asm __volatile("isync"); 3872 mtspr(SPR_MAS1, e->mas1); 3873 __asm __volatile("isync"); 3874 mtspr(SPR_MAS2, e->mas2); 3875 __asm __volatile("isync"); 3876 mtspr(SPR_MAS3, e->mas3); 3877 __asm __volatile("isync"); 3878 switch ((mfpvr() >> 16) & 0xFFFF) { 3879 case FSL_E500mc: 3880 case FSL_E5500: 3881 case FSL_E6500: 3882 mtspr(SPR_MAS8, 0); 3883 __asm __volatile("isync"); 3884 /* FALLTHROUGH */ 3885 case FSL_E500v2: 3886 mtspr(SPR_MAS7, e->mas7); 3887 __asm __volatile("isync"); 3888 break; 3889 default: 3890 break; 3891 } 3892 3893 __asm __volatile("tlbwe; isync; msync"); 3894 mtmsr(msr); 3895 3896 //debugf("tlb1_write_entry: e\n"); 3897 } 3898 3899 /* 3900 * Return the largest uint value log such that 2^log <= num. 3901 */ 3902 static unsigned int 3903 ilog2(unsigned int num) 3904 { 3905 int lz; 3906 3907 __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); 3908 return (31 - lz); 3909 } 3910 3911 /* 3912 * Convert TLB TSIZE value to mapped region size. 3913 */ 3914 static vm_size_t 3915 tsize2size(unsigned int tsize) 3916 { 3917 3918 /* 3919 * size = 4^tsize KB 3920 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) 3921 */ 3922 3923 return ((1 << (2 * tsize)) * 1024); 3924 } 3925 3926 /* 3927 * Convert region size (must be power of 4) to TLB TSIZE value. 3928 */ 3929 static unsigned int 3930 size2tsize(vm_size_t size) 3931 { 3932 3933 return (ilog2(size) / 2 - 5); 3934 } 3935 3936 /* 3937 * Register permanent kernel mapping in TLB1. 3938 * 3939 * Entries are created starting from index 0 (current free entry is 3940 * kept in tlb1_idx) and are not supposed to be invalidated. 3941 */ 3942 int 3943 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size, 3944 uint32_t flags) 3945 { 3946 tlb_entry_t e; 3947 uint32_t ts, tid; 3948 int tsize, index; 3949 3950 for (index = 0; index < TLB1_ENTRIES; index++) { 3951 tlb1_read_entry(&e, index); 3952 if ((e.mas1 & MAS1_VALID) == 0) 3953 break; 3954 /* Check if we're just updating the flags, and update them. */ 3955 if (e.phys == pa && e.virt == va && e.size == size) { 3956 e.mas2 = (va & MAS2_EPN_MASK) | flags; 3957 tlb1_write_entry(&e, index); 3958 return (0); 3959 } 3960 } 3961 if (index >= TLB1_ENTRIES) { 3962 printf("tlb1_set_entry: TLB1 full!\n"); 3963 return (-1); 3964 } 3965 3966 /* Convert size to TSIZE */ 3967 tsize = size2tsize(size); 3968 3969 tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; 3970 /* XXX TS is hard coded to 0 for now as we only use single address space */ 3971 ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; 3972 3973 e.phys = pa; 3974 e.virt = va; 3975 e.size = size; 3976 e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; 3977 e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); 3978 e.mas2 = (va & MAS2_EPN_MASK) | flags; 3979 3980 /* Set supervisor RWX permission bits */ 3981 e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; 3982 e.mas7 = (pa >> 32) & MAS7_RPN; 3983 3984 tlb1_write_entry(&e, index); 3985 3986 /* 3987 * XXX in general TLB1 updates should be propagated between CPUs, 3988 * since current design assumes to have the same TLB1 set-up on all 3989 * cores. 3990 */ 3991 return (0); 3992 } 3993 3994 /* 3995 * Map in contiguous RAM region into the TLB1 using maximum of 3996 * KERNEL_REGION_MAX_TLB_ENTRIES entries. 3997 * 3998 * If necessary round up last entry size and return total size 3999 * used by all allocated entries. 4000 */ 4001 vm_size_t 4002 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) 4003 { 4004 vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; 4005 vm_size_t mapped, pgsz, base, mask; 4006 int idx, nents; 4007 4008 /* Round up to the next 1M */ 4009 size = roundup2(size, 1 << 20); 4010 4011 mapped = 0; 4012 idx = 0; 4013 base = va; 4014 pgsz = 64*1024*1024; 4015 while (mapped < size) { 4016 while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { 4017 while (pgsz > (size - mapped)) 4018 pgsz >>= 2; 4019 pgs[idx++] = pgsz; 4020 mapped += pgsz; 4021 } 4022 4023 /* We under-map. Correct for this. */ 4024 if (mapped < size) { 4025 while (pgs[idx - 1] == pgsz) { 4026 idx--; 4027 mapped -= pgsz; 4028 } 4029 /* XXX We may increase beyond out starting point. */ 4030 pgsz <<= 2; 4031 pgs[idx++] = pgsz; 4032 mapped += pgsz; 4033 } 4034 } 4035 4036 nents = idx; 4037 mask = pgs[0] - 1; 4038 /* Align address to the boundary */ 4039 if (va & mask) { 4040 va = (va + mask) & ~mask; 4041 pa = (pa + mask) & ~mask; 4042 } 4043 4044 for (idx = 0; idx < nents; idx++) { 4045 pgsz = pgs[idx]; 4046 debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz); 4047 tlb1_set_entry(va, pa, pgsz, 4048 _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM); 4049 pa += pgsz; 4050 va += pgsz; 4051 } 4052 4053 mapped = (va - base); 4054 printf("mapped size 0x%"PRI0ptrX" (wasted space 0x%"PRIxPTR")\n", 4055 mapped, mapped - size); 4056 return (mapped); 4057 } 4058 4059 /* 4060 * TLB1 initialization routine, to be called after the very first 4061 * assembler level setup done in locore.S. 4062 */ 4063 void 4064 tlb1_init() 4065 { 4066 uint32_t mas0, mas1, mas2, mas3, mas7; 4067 uint32_t tsz; 4068 4069 tlb1_get_tlbconf(); 4070 4071 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0); 4072 mtspr(SPR_MAS0, mas0); 4073 __asm __volatile("isync; tlbre"); 4074 4075 mas1 = mfspr(SPR_MAS1); 4076 mas2 = mfspr(SPR_MAS2); 4077 mas3 = mfspr(SPR_MAS3); 4078 mas7 = mfspr(SPR_MAS7); 4079 4080 kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) | 4081 (mas3 & MAS3_RPN); 4082 4083 tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 4084 kernsize += (tsz > 0) ? tsize2size(tsz) : 0; 4085 4086 /* Setup TLB miss defaults */ 4087 set_mas4_defaults(); 4088 } 4089 4090 /* 4091 * pmap_early_io_unmap() should be used in short conjunction with 4092 * pmap_early_io_map(), as in the following snippet: 4093 * 4094 * x = pmap_early_io_map(...); 4095 * <do something with x> 4096 * pmap_early_io_unmap(x, size); 4097 * 4098 * And avoiding more allocations between. 4099 */ 4100 void 4101 pmap_early_io_unmap(vm_offset_t va, vm_size_t size) 4102 { 4103 int i; 4104 tlb_entry_t e; 4105 vm_size_t isize; 4106 4107 size = roundup(size, PAGE_SIZE); 4108 isize = size; 4109 for (i = 0; i < TLB1_ENTRIES && size > 0; i++) { 4110 tlb1_read_entry(&e, i); 4111 if (!(e.mas1 & MAS1_VALID)) 4112 continue; 4113 if (va <= e.virt && (va + isize) >= (e.virt + e.size)) { 4114 size -= e.size; 4115 e.mas1 &= ~MAS1_VALID; 4116 tlb1_write_entry(&e, i); 4117 } 4118 } 4119 if (tlb1_map_base == va + isize) 4120 tlb1_map_base -= isize; 4121 } 4122 4123 vm_offset_t 4124 pmap_early_io_map(vm_paddr_t pa, vm_size_t size) 4125 { 4126 vm_paddr_t pa_base; 4127 vm_offset_t va, sz; 4128 int i; 4129 tlb_entry_t e; 4130 4131 KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); 4132 4133 for (i = 0; i < TLB1_ENTRIES; i++) { 4134 tlb1_read_entry(&e, i); 4135 if (!(e.mas1 & MAS1_VALID)) 4136 continue; 4137 if (pa >= e.phys && (pa + size) <= 4138 (e.phys + e.size)) 4139 return (e.virt + (pa - e.phys)); 4140 } 4141 4142 pa_base = rounddown(pa, PAGE_SIZE); 4143 size = roundup(size + (pa - pa_base), PAGE_SIZE); 4144 tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); 4145 va = tlb1_map_base + (pa - pa_base); 4146 4147 do { 4148 sz = 1 << (ilog2(size) & ~1); 4149 tlb1_set_entry(tlb1_map_base, pa_base, sz, 4150 _TLB_ENTRY_SHARED | _TLB_ENTRY_IO); 4151 size -= sz; 4152 pa_base += sz; 4153 tlb1_map_base += sz; 4154 } while (size > 0); 4155 4156 return (va); 4157 } 4158 4159 void 4160 pmap_track_page(pmap_t pmap, vm_offset_t va) 4161 { 4162 vm_paddr_t pa; 4163 vm_page_t page; 4164 struct pv_entry *pve; 4165 4166 va = trunc_page(va); 4167 pa = pmap_kextract(va); 4168 4169 rw_wlock(&pvh_global_lock); 4170 PMAP_LOCK(pmap); 4171 page = PHYS_TO_VM_PAGE(pa); 4172 4173 TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) { 4174 if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { 4175 goto out; 4176 } 4177 } 4178 page->md.pv_tracked = true; 4179 pv_insert(pmap, va, page); 4180 out: 4181 PMAP_UNLOCK(pmap); 4182 rw_wunlock(&pvh_global_lock); 4183 } 4184 4185 4186 /* 4187 * Setup MAS4 defaults. 4188 * These values are loaded to MAS0-2 on a TLB miss. 4189 */ 4190 static void 4191 set_mas4_defaults(void) 4192 { 4193 uint32_t mas4; 4194 4195 /* Defaults: TLB0, PID0, TSIZED=4K */ 4196 mas4 = MAS4_TLBSELD0; 4197 mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; 4198 #ifdef SMP 4199 mas4 |= MAS4_MD; 4200 #endif 4201 mtspr(SPR_MAS4, mas4); 4202 __asm __volatile("isync"); 4203 } 4204 4205 /* 4206 * Print out contents of the MAS registers for each TLB1 entry 4207 */ 4208 void 4209 tlb1_print_tlbentries(void) 4210 { 4211 uint32_t mas0, mas1, mas3, mas7; 4212 #ifdef __powerpc64__ 4213 uint64_t mas2; 4214 #else 4215 uint32_t mas2; 4216 #endif 4217 int i; 4218 4219 debugf("TLB1 entries:\n"); 4220 for (i = 0; i < TLB1_ENTRIES; i++) { 4221 4222 mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); 4223 mtspr(SPR_MAS0, mas0); 4224 4225 __asm __volatile("isync; tlbre"); 4226 4227 mas1 = mfspr(SPR_MAS1); 4228 mas2 = mfspr(SPR_MAS2); 4229 mas3 = mfspr(SPR_MAS3); 4230 mas7 = mfspr(SPR_MAS7); 4231 4232 tlb_print_entry(i, mas1, mas2, mas3, mas7); 4233 } 4234 } 4235 4236 /* 4237 * Return 0 if the physical IO range is encompassed by one of the 4238 * the TLB1 entries, otherwise return related error code. 4239 */ 4240 static int 4241 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) 4242 { 4243 uint32_t prot; 4244 vm_paddr_t pa_start; 4245 vm_paddr_t pa_end; 4246 unsigned int entry_tsize; 4247 vm_size_t entry_size; 4248 tlb_entry_t e; 4249 4250 *va = (vm_offset_t)NULL; 4251 4252 tlb1_read_entry(&e, i); 4253 /* Skip invalid entries */ 4254 if (!(e.mas1 & MAS1_VALID)) 4255 return (EINVAL); 4256 4257 /* 4258 * The entry must be cache-inhibited, guarded, and r/w 4259 * so it can function as an i/o page 4260 */ 4261 prot = e.mas2 & (MAS2_I | MAS2_G); 4262 if (prot != (MAS2_I | MAS2_G)) 4263 return (EPERM); 4264 4265 prot = e.mas3 & (MAS3_SR | MAS3_SW); 4266 if (prot != (MAS3_SR | MAS3_SW)) 4267 return (EPERM); 4268 4269 /* The address should be within the entry range. */ 4270 entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; 4271 KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); 4272 4273 entry_size = tsize2size(entry_tsize); 4274 pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | 4275 (e.mas3 & MAS3_RPN); 4276 pa_end = pa_start + entry_size; 4277 4278 if ((pa < pa_start) || ((pa + size) > pa_end)) 4279 return (ERANGE); 4280 4281 /* Return virtual address of this mapping. */ 4282 *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start); 4283 return (0); 4284 } 4285 4286 /* 4287 * Invalidate all TLB0 entries which match the given TID. Note this is 4288 * dedicated for cases when invalidations should NOT be propagated to other 4289 * CPUs. 4290 */ 4291 static void 4292 tid_flush(tlbtid_t tid) 4293 { 4294 register_t msr; 4295 uint32_t mas0, mas1, mas2; 4296 int entry, way; 4297 4298 4299 /* Don't evict kernel translations */ 4300 if (tid == TID_KERNEL) 4301 return; 4302 4303 msr = mfmsr(); 4304 __asm __volatile("wrteei 0"); 4305 4306 for (way = 0; way < TLB0_WAYS; way++) 4307 for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { 4308 4309 mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); 4310 mtspr(SPR_MAS0, mas0); 4311 __asm __volatile("isync"); 4312 4313 mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; 4314 mtspr(SPR_MAS2, mas2); 4315 4316 __asm __volatile("isync; tlbre"); 4317 4318 mas1 = mfspr(SPR_MAS1); 4319 4320 if (!(mas1 & MAS1_VALID)) 4321 continue; 4322 if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) 4323 continue; 4324 mas1 &= ~MAS1_VALID; 4325 mtspr(SPR_MAS1, mas1); 4326 __asm __volatile("isync; tlbwe; isync; msync"); 4327 } 4328 mtmsr(msr); 4329 } 4330