xref: /freebsd/sys/powerpc/booke/pmap.c (revision 3157ba2193f225049c28b3527f499567dae6ad14)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/malloc.h>
57 #include <sys/ktr.h>
58 #include <sys/proc.h>
59 #include <sys/user.h>
60 #include <sys/queue.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/msgbuf.h>
64 #include <sys/lock.h>
65 #include <sys/mutex.h>
66 #include <sys/smp.h>
67 #include <sys/vmmeter.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_pager.h>
78 #include <vm/uma.h>
79 
80 #include <machine/bootinfo.h>
81 #include <machine/cpu.h>
82 #include <machine/pcb.h>
83 #include <machine/platform.h>
84 
85 #include <machine/tlb.h>
86 #include <machine/spr.h>
87 #include <machine/vmparam.h>
88 #include <machine/md_var.h>
89 #include <machine/mmuvar.h>
90 #include <machine/pmap.h>
91 #include <machine/pte.h>
92 
93 #include "mmu_if.h"
94 
95 #define DEBUG
96 #undef DEBUG
97 
98 #ifdef  DEBUG
99 #define debugf(fmt, args...) printf(fmt, ##args)
100 #else
101 #define debugf(fmt, args...)
102 #endif
103 
104 #define TODO			panic("%s: not implemented", __func__);
105 
106 #include "opt_sched.h"
107 #ifndef SCHED_4BSD
108 #error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109 #endif
110 extern struct mtx sched_lock;
111 
112 extern int dumpsys_minidump;
113 
114 extern unsigned char _etext[];
115 extern unsigned char _end[];
116 
117 /* Kernel physical load address. */
118 extern uint32_t kernload;
119 vm_offset_t kernstart;
120 vm_size_t kernsize;
121 
122 /* Message buffer and tables. */
123 static vm_offset_t data_start;
124 static vm_size_t data_end;
125 
126 /* Phys/avail memory regions. */
127 static struct mem_region *availmem_regions;
128 static int availmem_regions_sz;
129 static struct mem_region *physmem_regions;
130 static int physmem_regions_sz;
131 
132 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
133 static vm_offset_t zero_page_va;
134 static struct mtx zero_page_mutex;
135 
136 static struct mtx tlbivax_mutex;
137 
138 /*
139  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140  * by idle thred only, no lock required.
141  */
142 static vm_offset_t zero_page_idle_va;
143 
144 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
145 static vm_offset_t copy_page_src_va;
146 static vm_offset_t copy_page_dst_va;
147 static struct mtx copy_page_mutex;
148 
149 /**************************************************************************/
150 /* PMAP */
151 /**************************************************************************/
152 
153 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154     vm_prot_t, boolean_t);
155 
156 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158 
159 /*
160  * If user pmap is processed with mmu_booke_remove and the resident count
161  * drops to 0, there are no more pages to remove, so we need not continue.
162  */
163 #define PMAP_REMOVE_DONE(pmap) \
164 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165 
166 extern void tlb_lock(uint32_t *);
167 extern void tlb_unlock(uint32_t *);
168 extern void tid_flush(tlbtid_t);
169 
170 /**************************************************************************/
171 /* TLB and TID handling */
172 /**************************************************************************/
173 
174 /* Translation ID busy table */
175 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
176 
177 /*
178  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
179  * core revisions and should be read from h/w registers during early config.
180  */
181 uint32_t tlb0_entries;
182 uint32_t tlb0_ways;
183 uint32_t tlb0_entries_per_way;
184 
185 #define TLB0_ENTRIES		(tlb0_entries)
186 #define TLB0_WAYS		(tlb0_ways)
187 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
188 
189 #define TLB1_ENTRIES 16
190 
191 /* In-ram copy of the TLB1 */
192 static tlb_entry_t tlb1[TLB1_ENTRIES];
193 
194 /* Next free entry in the TLB1 */
195 static unsigned int tlb1_idx;
196 
197 static tlbtid_t tid_alloc(struct pmap *);
198 
199 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200 
201 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
202 static void tlb1_write_entry(unsigned int);
203 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
205 
206 static vm_size_t tsize2size(unsigned int);
207 static unsigned int size2tsize(vm_size_t);
208 static unsigned int ilog2(unsigned int);
209 
210 static void set_mas4_defaults(void);
211 
212 static inline void tlb0_flush_entry(vm_offset_t);
213 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214 
215 /**************************************************************************/
216 /* Page table management */
217 /**************************************************************************/
218 
219 /* Data for the pv entry allocation mechanism */
220 static uma_zone_t pvzone;
221 static struct vm_object pvzone_obj;
222 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
223 
224 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
225 
226 #ifndef PMAP_SHPGPERPROC
227 #define PMAP_SHPGPERPROC	200
228 #endif
229 
230 static void ptbl_init(void);
231 static struct ptbl_buf *ptbl_buf_alloc(void);
232 static void ptbl_buf_free(struct ptbl_buf *);
233 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
234 
235 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
236 static void ptbl_free(mmu_t, pmap_t, unsigned int);
237 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
238 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
239 
240 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
241 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
242 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
243 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
244 
245 static pv_entry_t pv_alloc(void);
246 static void pv_free(pv_entry_t);
247 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
248 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
249 
250 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
251 #define PTBL_BUFS		(128 * 16)
252 
253 struct ptbl_buf {
254 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
255 	vm_offset_t kva;		/* va of mapping */
256 };
257 
258 /* ptbl free list and a lock used for access synchronization. */
259 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
260 static struct mtx ptbl_buf_freelist_lock;
261 
262 /* Base address of kva space allocated fot ptbl bufs. */
263 static vm_offset_t ptbl_buf_pool_vabase;
264 
265 /* Pointer to ptbl_buf structures. */
266 static struct ptbl_buf *ptbl_bufs;
267 
268 void pmap_bootstrap_ap(volatile uint32_t *);
269 
270 /*
271  * Kernel MMU interface
272  */
273 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
277     vm_size_t, vm_offset_t);
278 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280     vm_prot_t, boolean_t);
281 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282     vm_page_t, vm_prot_t);
283 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284     vm_prot_t);
285 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287     vm_prot_t);
288 static void		mmu_booke_init(mmu_t);
289 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
292 static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
293 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
294     int);
295 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
296     vm_paddr_t *);
297 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
298     vm_object_t, vm_pindex_t, vm_size_t);
299 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
300 static void		mmu_booke_page_init(mmu_t, vm_page_t);
301 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
302 static void		mmu_booke_pinit(mmu_t, pmap_t);
303 static void		mmu_booke_pinit0(mmu_t, pmap_t);
304 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
305     vm_prot_t);
306 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
308 static void		mmu_booke_release(mmu_t, pmap_t);
309 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
311 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
312 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
313 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
314 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
315 static void		mmu_booke_activate(mmu_t, struct thread *);
316 static void		mmu_booke_deactivate(mmu_t, struct thread *);
317 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
318 static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
319 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320 static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
321 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
322 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
323 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
324 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
325     vm_size_t);
326 static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
327     vm_size_t, vm_size_t *);
328 static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
329     vm_size_t, vm_offset_t);
330 static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
331 
332 static mmu_method_t mmu_booke_methods[] = {
333 	/* pmap dispatcher interface */
334 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
335 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
336 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
337 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
338 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
339 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
340 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
341 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
342 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
343 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
344 	MMUMETHOD(mmu_init,		mmu_booke_init),
345 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
346 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
347 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
348 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
349 	MMUMETHOD(mmu_map,		mmu_booke_map),
350 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
351 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
352 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
353 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
354 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
355 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
356 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
357 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
358 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
359 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
360 	MMUMETHOD(mmu_release,		mmu_booke_release),
361 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
362 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
363 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
364 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
365 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
366 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
367 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
368 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
369 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
370 
371 	/* Internal interfaces */
372 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
373 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
374 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
375 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
376 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
377 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
378 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
379 
380 	/* dumpsys() support */
381 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
382 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
383 	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
384 
385 	{ 0, 0 }
386 };
387 
388 static mmu_def_t booke_mmu = {
389 	MMU_TYPE_BOOKE,
390 	mmu_booke_methods,
391 	0
392 };
393 MMU_DEF(booke_mmu);
394 
395 static inline void
396 tlb_miss_lock(void)
397 {
398 #ifdef SMP
399 	struct pcpu *pc;
400 
401 	if (!smp_started)
402 		return;
403 
404 	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
405 		if (pc != pcpup) {
406 
407 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
408 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
409 
410 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
411 			    ("tlb_miss_lock: tried to lock self"));
412 
413 			tlb_lock(pc->pc_booke_tlb_lock);
414 
415 			CTR1(KTR_PMAP, "%s: locked", __func__);
416 		}
417 	}
418 #endif
419 }
420 
421 static inline void
422 tlb_miss_unlock(void)
423 {
424 #ifdef SMP
425 	struct pcpu *pc;
426 
427 	if (!smp_started)
428 		return;
429 
430 	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
431 		if (pc != pcpup) {
432 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
433 			    __func__, pc->pc_cpuid);
434 
435 			tlb_unlock(pc->pc_booke_tlb_lock);
436 
437 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
438 		}
439 	}
440 #endif
441 }
442 
443 /* Return number of entries in TLB0. */
444 static __inline void
445 tlb0_get_tlbconf(void)
446 {
447 	uint32_t tlb0_cfg;
448 
449 	tlb0_cfg = mfspr(SPR_TLB0CFG);
450 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
451 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
452 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
453 }
454 
455 /* Initialize pool of kva ptbl buffers. */
456 static void
457 ptbl_init(void)
458 {
459 	int i;
460 
461 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
462 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
463 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
464 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
465 
466 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
467 	TAILQ_INIT(&ptbl_buf_freelist);
468 
469 	for (i = 0; i < PTBL_BUFS; i++) {
470 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
471 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
472 	}
473 }
474 
475 /* Get a ptbl_buf from the freelist. */
476 static struct ptbl_buf *
477 ptbl_buf_alloc(void)
478 {
479 	struct ptbl_buf *buf;
480 
481 	mtx_lock(&ptbl_buf_freelist_lock);
482 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
483 	if (buf != NULL)
484 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
485 	mtx_unlock(&ptbl_buf_freelist_lock);
486 
487 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
488 
489 	return (buf);
490 }
491 
492 /* Return ptbl buff to free pool. */
493 static void
494 ptbl_buf_free(struct ptbl_buf *buf)
495 {
496 
497 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
498 
499 	mtx_lock(&ptbl_buf_freelist_lock);
500 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
501 	mtx_unlock(&ptbl_buf_freelist_lock);
502 }
503 
504 /*
505  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
506  */
507 static void
508 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
509 {
510 	struct ptbl_buf *pbuf;
511 
512 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
513 
514 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
515 
516 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
517 		if (pbuf->kva == (vm_offset_t)ptbl) {
518 			/* Remove from pmap ptbl buf list. */
519 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
520 
521 			/* Free corresponding ptbl buf. */
522 			ptbl_buf_free(pbuf);
523 			break;
524 		}
525 }
526 
527 /* Allocate page table. */
528 static pte_t *
529 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
530 {
531 	vm_page_t mtbl[PTBL_PAGES];
532 	vm_page_t m;
533 	struct ptbl_buf *pbuf;
534 	unsigned int pidx;
535 	pte_t *ptbl;
536 	int i;
537 
538 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
539 	    (pmap == kernel_pmap), pdir_idx);
540 
541 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
542 	    ("ptbl_alloc: invalid pdir_idx"));
543 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
544 	    ("pte_alloc: valid ptbl entry exists!"));
545 
546 	pbuf = ptbl_buf_alloc();
547 	if (pbuf == NULL)
548 		panic("pte_alloc: couldn't alloc kernel virtual memory");
549 
550 	ptbl = (pte_t *)pbuf->kva;
551 
552 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
553 
554 	/* Allocate ptbl pages, this will sleep! */
555 	for (i = 0; i < PTBL_PAGES; i++) {
556 		pidx = (PTBL_PAGES * pdir_idx) + i;
557 		while ((m = vm_page_alloc(NULL, pidx,
558 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
559 
560 			PMAP_UNLOCK(pmap);
561 			vm_page_unlock_queues();
562 			VM_WAIT;
563 			vm_page_lock_queues();
564 			PMAP_LOCK(pmap);
565 		}
566 		mtbl[i] = m;
567 	}
568 
569 	/* Map allocated pages into kernel_pmap. */
570 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
571 
572 	/* Zero whole ptbl. */
573 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
574 
575 	/* Add pbuf to the pmap ptbl bufs list. */
576 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
577 
578 	return (ptbl);
579 }
580 
581 /* Free ptbl pages and invalidate pdir entry. */
582 static void
583 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
584 {
585 	pte_t *ptbl;
586 	vm_paddr_t pa;
587 	vm_offset_t va;
588 	vm_page_t m;
589 	int i;
590 
591 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
592 	    (pmap == kernel_pmap), pdir_idx);
593 
594 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
595 	    ("ptbl_free: invalid pdir_idx"));
596 
597 	ptbl = pmap->pm_pdir[pdir_idx];
598 
599 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
600 
601 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
602 
603 	/*
604 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
605 	 * don't attempt to look up the page tables we are releasing.
606 	 */
607 	mtx_lock_spin(&tlbivax_mutex);
608 	tlb_miss_lock();
609 
610 	pmap->pm_pdir[pdir_idx] = NULL;
611 
612 	tlb_miss_unlock();
613 	mtx_unlock_spin(&tlbivax_mutex);
614 
615 	for (i = 0; i < PTBL_PAGES; i++) {
616 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
617 		pa = pte_vatopa(mmu, kernel_pmap, va);
618 		m = PHYS_TO_VM_PAGE(pa);
619 		vm_page_free_zero(m);
620 		atomic_subtract_int(&cnt.v_wire_count, 1);
621 		mmu_booke_kremove(mmu, va);
622 	}
623 
624 	ptbl_free_pmap_ptbl(pmap, ptbl);
625 }
626 
627 /*
628  * Decrement ptbl pages hold count and attempt to free ptbl pages.
629  * Called when removing pte entry from ptbl.
630  *
631  * Return 1 if ptbl pages were freed.
632  */
633 static int
634 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
635 {
636 	pte_t *ptbl;
637 	vm_paddr_t pa;
638 	vm_page_t m;
639 	int i;
640 
641 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
642 	    (pmap == kernel_pmap), pdir_idx);
643 
644 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
645 	    ("ptbl_unhold: invalid pdir_idx"));
646 	KASSERT((pmap != kernel_pmap),
647 	    ("ptbl_unhold: unholding kernel ptbl!"));
648 
649 	ptbl = pmap->pm_pdir[pdir_idx];
650 
651 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
652 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
653 	    ("ptbl_unhold: non kva ptbl"));
654 
655 	/* decrement hold count */
656 	for (i = 0; i < PTBL_PAGES; i++) {
657 		pa = pte_vatopa(mmu, kernel_pmap,
658 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
659 		m = PHYS_TO_VM_PAGE(pa);
660 		m->wire_count--;
661 	}
662 
663 	/*
664 	 * Free ptbl pages if there are no pte etries in this ptbl.
665 	 * wire_count has the same value for all ptbl pages, so check the last
666 	 * page.
667 	 */
668 	if (m->wire_count == 0) {
669 		ptbl_free(mmu, pmap, pdir_idx);
670 
671 		//debugf("ptbl_unhold: e (freed ptbl)\n");
672 		return (1);
673 	}
674 
675 	return (0);
676 }
677 
678 /*
679  * Increment hold count for ptbl pages. This routine is used when a new pte
680  * entry is being inserted into the ptbl.
681  */
682 static void
683 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
684 {
685 	vm_paddr_t pa;
686 	pte_t *ptbl;
687 	vm_page_t m;
688 	int i;
689 
690 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
691 	    pdir_idx);
692 
693 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
694 	    ("ptbl_hold: invalid pdir_idx"));
695 	KASSERT((pmap != kernel_pmap),
696 	    ("ptbl_hold: holding kernel ptbl!"));
697 
698 	ptbl = pmap->pm_pdir[pdir_idx];
699 
700 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
701 
702 	for (i = 0; i < PTBL_PAGES; i++) {
703 		pa = pte_vatopa(mmu, kernel_pmap,
704 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
705 		m = PHYS_TO_VM_PAGE(pa);
706 		m->wire_count++;
707 	}
708 }
709 
710 /* Allocate pv_entry structure. */
711 pv_entry_t
712 pv_alloc(void)
713 {
714 	pv_entry_t pv;
715 
716 	pv_entry_count++;
717 	if (pv_entry_count > pv_entry_high_water)
718 		pagedaemon_wakeup();
719 	pv = uma_zalloc(pvzone, M_NOWAIT);
720 
721 	return (pv);
722 }
723 
724 /* Free pv_entry structure. */
725 static __inline void
726 pv_free(pv_entry_t pve)
727 {
728 
729 	pv_entry_count--;
730 	uma_zfree(pvzone, pve);
731 }
732 
733 
734 /* Allocate and initialize pv_entry structure. */
735 static void
736 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
737 {
738 	pv_entry_t pve;
739 
740 	//int su = (pmap == kernel_pmap);
741 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
742 	//	(u_int32_t)pmap, va, (u_int32_t)m);
743 
744 	pve = pv_alloc();
745 	if (pve == NULL)
746 		panic("pv_insert: no pv entries!");
747 
748 	pve->pv_pmap = pmap;
749 	pve->pv_va = va;
750 
751 	/* add to pv_list */
752 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
753 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
754 
755 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
756 
757 	//debugf("pv_insert: e\n");
758 }
759 
760 /* Destroy pv entry. */
761 static void
762 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
763 {
764 	pv_entry_t pve;
765 
766 	//int su = (pmap == kernel_pmap);
767 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
768 
769 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
770 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
771 
772 	/* find pv entry */
773 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
774 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
775 			/* remove from pv_list */
776 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
777 			if (TAILQ_EMPTY(&m->md.pv_list))
778 				vm_page_flag_clear(m, PG_WRITEABLE);
779 
780 			/* free pv entry struct */
781 			pv_free(pve);
782 			break;
783 		}
784 	}
785 
786 	//debugf("pv_remove: e\n");
787 }
788 
789 /*
790  * Clean pte entry, try to free page table page if requested.
791  *
792  * Return 1 if ptbl pages were freed, otherwise return 0.
793  */
794 static int
795 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
796 {
797 	unsigned int pdir_idx = PDIR_IDX(va);
798 	unsigned int ptbl_idx = PTBL_IDX(va);
799 	vm_page_t m;
800 	pte_t *ptbl;
801 	pte_t *pte;
802 
803 	//int su = (pmap == kernel_pmap);
804 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
805 	//		su, (u_int32_t)pmap, va, flags);
806 
807 	ptbl = pmap->pm_pdir[pdir_idx];
808 	KASSERT(ptbl, ("pte_remove: null ptbl"));
809 
810 	pte = &ptbl[ptbl_idx];
811 
812 	if (pte == NULL || !PTE_ISVALID(pte))
813 		return (0);
814 
815 	if (PTE_ISWIRED(pte))
816 		pmap->pm_stats.wired_count--;
817 
818 	/* Handle managed entry. */
819 	if (PTE_ISMANAGED(pte)) {
820 		/* Get vm_page_t for mapped pte. */
821 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
822 
823 		if (PTE_ISMODIFIED(pte))
824 			vm_page_dirty(m);
825 
826 		if (PTE_ISREFERENCED(pte))
827 			vm_page_flag_set(m, PG_REFERENCED);
828 
829 		pv_remove(pmap, va, m);
830 	}
831 
832 	mtx_lock_spin(&tlbivax_mutex);
833 	tlb_miss_lock();
834 
835 	tlb0_flush_entry(va);
836 	pte->flags = 0;
837 	pte->rpn = 0;
838 
839 	tlb_miss_unlock();
840 	mtx_unlock_spin(&tlbivax_mutex);
841 
842 	pmap->pm_stats.resident_count--;
843 
844 	if (flags & PTBL_UNHOLD) {
845 		//debugf("pte_remove: e (unhold)\n");
846 		return (ptbl_unhold(mmu, pmap, pdir_idx));
847 	}
848 
849 	//debugf("pte_remove: e\n");
850 	return (0);
851 }
852 
853 /*
854  * Insert PTE for a given page and virtual address.
855  */
856 static void
857 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
858 {
859 	unsigned int pdir_idx = PDIR_IDX(va);
860 	unsigned int ptbl_idx = PTBL_IDX(va);
861 	pte_t *ptbl, *pte;
862 
863 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
864 	    pmap == kernel_pmap, pmap, va);
865 
866 	/* Get the page table pointer. */
867 	ptbl = pmap->pm_pdir[pdir_idx];
868 
869 	if (ptbl == NULL) {
870 		/* Allocate page table pages. */
871 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
872 	} else {
873 		/*
874 		 * Check if there is valid mapping for requested
875 		 * va, if there is, remove it.
876 		 */
877 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
878 		if (PTE_ISVALID(pte)) {
879 			pte_remove(mmu, pmap, va, PTBL_HOLD);
880 		} else {
881 			/*
882 			 * pte is not used, increment hold count
883 			 * for ptbl pages.
884 			 */
885 			if (pmap != kernel_pmap)
886 				ptbl_hold(mmu, pmap, pdir_idx);
887 		}
888 	}
889 
890 	/*
891 	 * Insert pv_entry into pv_list for mapped page if part of managed
892 	 * memory.
893 	 */
894         if ((m->flags & PG_FICTITIOUS) == 0) {
895 		if ((m->flags & PG_UNMANAGED) == 0) {
896 			flags |= PTE_MANAGED;
897 
898 			/* Create and insert pv entry. */
899 			pv_insert(pmap, va, m);
900 		}
901 	}
902 
903 	pmap->pm_stats.resident_count++;
904 
905 	mtx_lock_spin(&tlbivax_mutex);
906 	tlb_miss_lock();
907 
908 	tlb0_flush_entry(va);
909 	if (pmap->pm_pdir[pdir_idx] == NULL) {
910 		/*
911 		 * If we just allocated a new page table, hook it in
912 		 * the pdir.
913 		 */
914 		pmap->pm_pdir[pdir_idx] = ptbl;
915 	}
916 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
917 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
918 	pte->flags |= (PTE_VALID | flags);
919 
920 	tlb_miss_unlock();
921 	mtx_unlock_spin(&tlbivax_mutex);
922 }
923 
924 /* Return the pa for the given pmap/va. */
925 static vm_paddr_t
926 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
927 {
928 	vm_paddr_t pa = 0;
929 	pte_t *pte;
930 
931 	pte = pte_find(mmu, pmap, va);
932 	if ((pte != NULL) && PTE_ISVALID(pte))
933 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
934 	return (pa);
935 }
936 
937 /* Get a pointer to a PTE in a page table. */
938 static pte_t *
939 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
940 {
941 	unsigned int pdir_idx = PDIR_IDX(va);
942 	unsigned int ptbl_idx = PTBL_IDX(va);
943 
944 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
945 
946 	if (pmap->pm_pdir[pdir_idx])
947 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
948 
949 	return (NULL);
950 }
951 
952 /**************************************************************************/
953 /* PMAP related */
954 /**************************************************************************/
955 
956 /*
957  * This is called during e500_init, before the system is really initialized.
958  */
959 static void
960 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
961 {
962 	vm_offset_t phys_kernelend;
963 	struct mem_region *mp, *mp1;
964 	int cnt, i, j;
965 	u_int s, e, sz;
966 	u_int phys_avail_count;
967 	vm_size_t physsz, hwphyssz, kstack0_sz;
968 	vm_offset_t kernel_pdir, kstack0, va;
969 	vm_paddr_t kstack0_phys;
970 	void *dpcpu;
971 	pte_t *pte;
972 
973 	debugf("mmu_booke_bootstrap: entered\n");
974 
975 	/* Initialize invalidation mutex */
976 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
977 
978 	/* Read TLB0 size and associativity. */
979 	tlb0_get_tlbconf();
980 
981 	/* Align kernel start and end address (kernel image). */
982 	kernstart = trunc_page(start);
983 	data_start = round_page(kernelend);
984 	kernsize = data_start - kernstart;
985 
986 	data_end = data_start;
987 
988 	/* Allocate space for the message buffer. */
989 	msgbufp = (struct msgbuf *)data_end;
990 	data_end += MSGBUF_SIZE;
991 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
992 	    data_end);
993 
994 	data_end = round_page(data_end);
995 
996 	/* Allocate the dynamic per-cpu area. */
997 	dpcpu = (void *)data_end;
998 	data_end += DPCPU_SIZE;
999 	dpcpu_init(dpcpu, 0);
1000 
1001 	/* Allocate space for ptbl_bufs. */
1002 	ptbl_bufs = (struct ptbl_buf *)data_end;
1003 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1004 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1005 	    data_end);
1006 
1007 	data_end = round_page(data_end);
1008 
1009 	/* Allocate PTE tables for kernel KVA. */
1010 	kernel_pdir = data_end;
1011 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1012 	    PDIR_SIZE - 1) / PDIR_SIZE;
1013 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1014 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1015 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1016 
1017 	debugf(" data_end: 0x%08x\n", data_end);
1018 	if (data_end - kernstart > 0x1000000) {
1019 		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1020 		tlb1_mapin_region(kernstart + 0x1000000,
1021 		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1022 	} else
1023 		data_end = (data_end + 0xffffff) & ~0xffffff;
1024 
1025 	debugf(" updated data_end: 0x%08x\n", data_end);
1026 
1027 	kernsize += data_end - data_start;
1028 
1029 	/*
1030 	 * Clear the structures - note we can only do it safely after the
1031 	 * possible additional TLB1 translations are in place (above) so that
1032 	 * all range up to the currently calculated 'data_end' is covered.
1033 	 */
1034 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1035 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1036 
1037 	/*******************************************************/
1038 	/* Set the start and end of kva. */
1039 	/*******************************************************/
1040 	virtual_avail = round_page(data_end);
1041 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1042 
1043 	/* Allocate KVA space for page zero/copy operations. */
1044 	zero_page_va = virtual_avail;
1045 	virtual_avail += PAGE_SIZE;
1046 	zero_page_idle_va = virtual_avail;
1047 	virtual_avail += PAGE_SIZE;
1048 	copy_page_src_va = virtual_avail;
1049 	virtual_avail += PAGE_SIZE;
1050 	copy_page_dst_va = virtual_avail;
1051 	virtual_avail += PAGE_SIZE;
1052 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1053 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1054 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1055 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1056 
1057 	/* Initialize page zero/copy mutexes. */
1058 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1059 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1060 
1061 	/* Allocate KVA space for ptbl bufs. */
1062 	ptbl_buf_pool_vabase = virtual_avail;
1063 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1064 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1065 	    ptbl_buf_pool_vabase, virtual_avail);
1066 
1067 	/* Calculate corresponding physical addresses for the kernel region. */
1068 	phys_kernelend = kernload + kernsize;
1069 	debugf("kernel image and allocated data:\n");
1070 	debugf(" kernload    = 0x%08x\n", kernload);
1071 	debugf(" kernstart   = 0x%08x\n", kernstart);
1072 	debugf(" kernsize    = 0x%08x\n", kernsize);
1073 
1074 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1075 		panic("mmu_booke_bootstrap: phys_avail too small");
1076 
1077 	/*
1078 	 * Remove kernel physical address range from avail regions list. Page
1079 	 * align all regions.  Non-page aligned memory isn't very interesting
1080 	 * to us.  Also, sort the entries for ascending addresses.
1081 	 */
1082 
1083 	/* Retrieve phys/avail mem regions */
1084 	mem_regions(&physmem_regions, &physmem_regions_sz,
1085 	    &availmem_regions, &availmem_regions_sz);
1086 	sz = 0;
1087 	cnt = availmem_regions_sz;
1088 	debugf("processing avail regions:\n");
1089 	for (mp = availmem_regions; mp->mr_size; mp++) {
1090 		s = mp->mr_start;
1091 		e = mp->mr_start + mp->mr_size;
1092 		debugf(" %08x-%08x -> ", s, e);
1093 		/* Check whether this region holds all of the kernel. */
1094 		if (s < kernload && e > phys_kernelend) {
1095 			availmem_regions[cnt].mr_start = phys_kernelend;
1096 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1097 			e = kernload;
1098 		}
1099 		/* Look whether this regions starts within the kernel. */
1100 		if (s >= kernload && s < phys_kernelend) {
1101 			if (e <= phys_kernelend)
1102 				goto empty;
1103 			s = phys_kernelend;
1104 		}
1105 		/* Now look whether this region ends within the kernel. */
1106 		if (e > kernload && e <= phys_kernelend) {
1107 			if (s >= kernload)
1108 				goto empty;
1109 			e = kernload;
1110 		}
1111 		/* Now page align the start and size of the region. */
1112 		s = round_page(s);
1113 		e = trunc_page(e);
1114 		if (e < s)
1115 			e = s;
1116 		sz = e - s;
1117 		debugf("%08x-%08x = %x\n", s, e, sz);
1118 
1119 		/* Check whether some memory is left here. */
1120 		if (sz == 0) {
1121 		empty:
1122 			memmove(mp, mp + 1,
1123 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1124 			cnt--;
1125 			mp--;
1126 			continue;
1127 		}
1128 
1129 		/* Do an insertion sort. */
1130 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1131 			if (s < mp1->mr_start)
1132 				break;
1133 		if (mp1 < mp) {
1134 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1135 			mp1->mr_start = s;
1136 			mp1->mr_size = sz;
1137 		} else {
1138 			mp->mr_start = s;
1139 			mp->mr_size = sz;
1140 		}
1141 	}
1142 	availmem_regions_sz = cnt;
1143 
1144 	/*******************************************************/
1145 	/* Steal physical memory for kernel stack from the end */
1146 	/* of the first avail region                           */
1147 	/*******************************************************/
1148 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1149 	kstack0_phys = availmem_regions[0].mr_start +
1150 	    availmem_regions[0].mr_size;
1151 	kstack0_phys -= kstack0_sz;
1152 	availmem_regions[0].mr_size -= kstack0_sz;
1153 
1154 	/*******************************************************/
1155 	/* Fill in phys_avail table, based on availmem_regions */
1156 	/*******************************************************/
1157 	phys_avail_count = 0;
1158 	physsz = 0;
1159 	hwphyssz = 0;
1160 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1161 
1162 	debugf("fill in phys_avail:\n");
1163 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1164 
1165 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1166 		    availmem_regions[i].mr_start,
1167 		    availmem_regions[i].mr_start +
1168 		        availmem_regions[i].mr_size,
1169 		    availmem_regions[i].mr_size);
1170 
1171 		if (hwphyssz != 0 &&
1172 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1173 			debugf(" hw.physmem adjust\n");
1174 			if (physsz < hwphyssz) {
1175 				phys_avail[j] = availmem_regions[i].mr_start;
1176 				phys_avail[j + 1] =
1177 				    availmem_regions[i].mr_start +
1178 				    hwphyssz - physsz;
1179 				physsz = hwphyssz;
1180 				phys_avail_count++;
1181 			}
1182 			break;
1183 		}
1184 
1185 		phys_avail[j] = availmem_regions[i].mr_start;
1186 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1187 		    availmem_regions[i].mr_size;
1188 		phys_avail_count++;
1189 		physsz += availmem_regions[i].mr_size;
1190 	}
1191 	physmem = btoc(physsz);
1192 
1193 	/* Calculate the last available physical address. */
1194 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1195 		;
1196 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1197 
1198 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1199 	debugf("phys_avail_count = %d\n", phys_avail_count);
1200 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1201 	    physmem);
1202 
1203 	/*******************************************************/
1204 	/* Initialize (statically allocated) kernel pmap. */
1205 	/*******************************************************/
1206 	PMAP_LOCK_INIT(kernel_pmap);
1207 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1208 
1209 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1210 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1211 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1212 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1213 
1214 	/* Initialize kernel pdir */
1215 	for (i = 0; i < kernel_ptbls; i++)
1216 		kernel_pmap->pm_pdir[kptbl_min + i] =
1217 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1218 
1219 	for (i = 0; i < MAXCPU; i++) {
1220 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1221 
1222 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1223 		tidbusy[i][0] = kernel_pmap;
1224 	}
1225 
1226 	/*
1227 	 * Fill in PTEs covering kernel code and data. They are not required
1228 	 * for address translation, as this area is covered by static TLB1
1229 	 * entries, but for pte_vatopa() to work correctly with kernel area
1230 	 * addresses.
1231 	 */
1232 	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1233 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1234 		pte->rpn = kernload + (va - KERNBASE);
1235 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1236 		    PTE_VALID;
1237 	}
1238 	/* Mark kernel_pmap active on all CPUs */
1239 	kernel_pmap->pm_active = ~0;
1240 
1241 	/*******************************************************/
1242 	/* Final setup */
1243 	/*******************************************************/
1244 
1245 	/* Enter kstack0 into kernel map, provide guard page */
1246 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1247 	thread0.td_kstack = kstack0;
1248 	thread0.td_kstack_pages = KSTACK_PAGES;
1249 
1250 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1251 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1252 	    kstack0_phys, kstack0_phys + kstack0_sz);
1253 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1254 
1255 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1256 	for (i = 0; i < KSTACK_PAGES; i++) {
1257 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1258 		kstack0 += PAGE_SIZE;
1259 		kstack0_phys += PAGE_SIZE;
1260 	}
1261 
1262 	debugf("virtual_avail = %08x\n", virtual_avail);
1263 	debugf("virtual_end   = %08x\n", virtual_end);
1264 
1265 	debugf("mmu_booke_bootstrap: exit\n");
1266 }
1267 
1268 void
1269 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1270 {
1271 	int i;
1272 
1273 	/*
1274 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1275 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1276 	 * these values directly to (re)program AP's TLB1 hardware.
1277 	 */
1278 	for (i = 0; i < tlb1_idx; i ++) {
1279 		/* Skip invalid entries */
1280 		if (!(tlb1[i].mas1 & MAS1_VALID))
1281 			continue;
1282 
1283 		tlb1_write_entry(i);
1284 	}
1285 
1286 	set_mas4_defaults();
1287 }
1288 
1289 /*
1290  * Get the physical page address for the given pmap/virtual address.
1291  */
1292 static vm_paddr_t
1293 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1294 {
1295 	vm_paddr_t pa;
1296 
1297 	PMAP_LOCK(pmap);
1298 	pa = pte_vatopa(mmu, pmap, va);
1299 	PMAP_UNLOCK(pmap);
1300 
1301 	return (pa);
1302 }
1303 
1304 /*
1305  * Extract the physical page address associated with the given
1306  * kernel virtual address.
1307  */
1308 static vm_paddr_t
1309 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1310 {
1311 
1312 	return (pte_vatopa(mmu, kernel_pmap, va));
1313 }
1314 
1315 /*
1316  * Initialize the pmap module.
1317  * Called by vm_init, to initialize any structures that the pmap
1318  * system needs to map virtual memory.
1319  */
1320 static void
1321 mmu_booke_init(mmu_t mmu)
1322 {
1323 	int shpgperproc = PMAP_SHPGPERPROC;
1324 
1325 	/*
1326 	 * Initialize the address space (zone) for the pv entries.  Set a
1327 	 * high water mark so that the system can recover from excessive
1328 	 * numbers of pv entries.
1329 	 */
1330 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1331 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1332 
1333 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1334 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1335 
1336 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1337 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1338 
1339 	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1340 
1341 	/* Pre-fill pvzone with initial number of pv entries. */
1342 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1343 
1344 	/* Initialize ptbl allocation. */
1345 	ptbl_init();
1346 }
1347 
1348 /*
1349  * Map a list of wired pages into kernel virtual address space.  This is
1350  * intended for temporary mappings which do not need page modification or
1351  * references recorded.  Existing mappings in the region are overwritten.
1352  */
1353 static void
1354 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1355 {
1356 	vm_offset_t va;
1357 
1358 	va = sva;
1359 	while (count-- > 0) {
1360 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1361 		va += PAGE_SIZE;
1362 		m++;
1363 	}
1364 }
1365 
1366 /*
1367  * Remove page mappings from kernel virtual address space.  Intended for
1368  * temporary mappings entered by mmu_booke_qenter.
1369  */
1370 static void
1371 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1372 {
1373 	vm_offset_t va;
1374 
1375 	va = sva;
1376 	while (count-- > 0) {
1377 		mmu_booke_kremove(mmu, va);
1378 		va += PAGE_SIZE;
1379 	}
1380 }
1381 
1382 /*
1383  * Map a wired page into kernel virtual address space.
1384  */
1385 static void
1386 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1387 {
1388 	unsigned int pdir_idx = PDIR_IDX(va);
1389 	unsigned int ptbl_idx = PTBL_IDX(va);
1390 	uint32_t flags;
1391 	pte_t *pte;
1392 
1393 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1394 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1395 
1396 	flags = 0;
1397 	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1398 	flags |= PTE_M;
1399 
1400 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1401 
1402 	mtx_lock_spin(&tlbivax_mutex);
1403 	tlb_miss_lock();
1404 
1405 	if (PTE_ISVALID(pte)) {
1406 
1407 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1408 
1409 		/* Flush entry from TLB0 */
1410 		tlb0_flush_entry(va);
1411 	}
1412 
1413 	pte->rpn = pa & ~PTE_PA_MASK;
1414 	pte->flags = flags;
1415 
1416 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1417 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1418 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1419 
1420 	/* Flush the real memory from the instruction cache. */
1421 	if ((flags & (PTE_I | PTE_G)) == 0) {
1422 		__syncicache((void *)va, PAGE_SIZE);
1423 	}
1424 
1425 	tlb_miss_unlock();
1426 	mtx_unlock_spin(&tlbivax_mutex);
1427 }
1428 
1429 /*
1430  * Remove a page from kernel page table.
1431  */
1432 static void
1433 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1434 {
1435 	unsigned int pdir_idx = PDIR_IDX(va);
1436 	unsigned int ptbl_idx = PTBL_IDX(va);
1437 	pte_t *pte;
1438 
1439 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1440 
1441 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1442 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1443 	    ("mmu_booke_kremove: invalid va"));
1444 
1445 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1446 
1447 	if (!PTE_ISVALID(pte)) {
1448 
1449 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1450 
1451 		return;
1452 	}
1453 
1454 	mtx_lock_spin(&tlbivax_mutex);
1455 	tlb_miss_lock();
1456 
1457 	/* Invalidate entry in TLB0, update PTE. */
1458 	tlb0_flush_entry(va);
1459 	pte->flags = 0;
1460 	pte->rpn = 0;
1461 
1462 	tlb_miss_unlock();
1463 	mtx_unlock_spin(&tlbivax_mutex);
1464 }
1465 
1466 /*
1467  * Initialize pmap associated with process 0.
1468  */
1469 static void
1470 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1471 {
1472 
1473 	mmu_booke_pinit(mmu, pmap);
1474 	PCPU_SET(curpmap, pmap);
1475 }
1476 
1477 /*
1478  * Initialize a preallocated and zeroed pmap structure,
1479  * such as one in a vmspace structure.
1480  */
1481 static void
1482 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1483 {
1484 	int i;
1485 
1486 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1487 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1488 
1489 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1490 
1491 	PMAP_LOCK_INIT(pmap);
1492 	for (i = 0; i < MAXCPU; i++)
1493 		pmap->pm_tid[i] = TID_NONE;
1494 	pmap->pm_active = 0;
1495 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1496 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1497 	TAILQ_INIT(&pmap->pm_ptbl_list);
1498 }
1499 
1500 /*
1501  * Release any resources held by the given physical map.
1502  * Called when a pmap initialized by mmu_booke_pinit is being released.
1503  * Should only be called if the map contains no valid mappings.
1504  */
1505 static void
1506 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1507 {
1508 
1509 	printf("mmu_booke_release: s\n");
1510 
1511 	KASSERT(pmap->pm_stats.resident_count == 0,
1512 	    ("pmap_release: pmap resident count %ld != 0",
1513 	    pmap->pm_stats.resident_count));
1514 
1515 	PMAP_LOCK_DESTROY(pmap);
1516 }
1517 
1518 /*
1519  * Insert the given physical page at the specified virtual address in the
1520  * target physical map with the protection requested. If specified the page
1521  * will be wired down.
1522  */
1523 static void
1524 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1525     vm_prot_t prot, boolean_t wired)
1526 {
1527 
1528 	vm_page_lock_queues();
1529 	PMAP_LOCK(pmap);
1530 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1531 	vm_page_unlock_queues();
1532 	PMAP_UNLOCK(pmap);
1533 }
1534 
1535 static void
1536 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1537     vm_prot_t prot, boolean_t wired)
1538 {
1539 	pte_t *pte;
1540 	vm_paddr_t pa;
1541 	uint32_t flags;
1542 	int su, sync;
1543 
1544 	pa = VM_PAGE_TO_PHYS(m);
1545 	su = (pmap == kernel_pmap);
1546 	sync = 0;
1547 
1548 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1549 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1550 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1551 	//		(u_int32_t)m, va, pa, prot, wired);
1552 
1553 	if (su) {
1554 		KASSERT(((va >= virtual_avail) &&
1555 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1556 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1557 	} else {
1558 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1559 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1560 	}
1561 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1562 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1563 	    ("mmu_booke_enter_locked: page %p is not busy", m));
1564 
1565 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1566 
1567 	/*
1568 	 * If there is an existing mapping, and the physical address has not
1569 	 * changed, must be protection or wiring change.
1570 	 */
1571 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1572 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1573 
1574 		/*
1575 		 * Before actually updating pte->flags we calculate and
1576 		 * prepare its new value in a helper var.
1577 		 */
1578 		flags = pte->flags;
1579 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1580 
1581 		/* Wiring change, just update stats. */
1582 		if (wired) {
1583 			if (!PTE_ISWIRED(pte)) {
1584 				flags |= PTE_WIRED;
1585 				pmap->pm_stats.wired_count++;
1586 			}
1587 		} else {
1588 			if (PTE_ISWIRED(pte)) {
1589 				flags &= ~PTE_WIRED;
1590 				pmap->pm_stats.wired_count--;
1591 			}
1592 		}
1593 
1594 		if (prot & VM_PROT_WRITE) {
1595 			/* Add write permissions. */
1596 			flags |= PTE_SW;
1597 			if (!su)
1598 				flags |= PTE_UW;
1599 
1600 			if ((flags & PTE_MANAGED) != 0)
1601 				vm_page_flag_set(m, PG_WRITEABLE);
1602 		} else {
1603 			/* Handle modified pages, sense modify status. */
1604 
1605 			/*
1606 			 * The PTE_MODIFIED flag could be set by underlying
1607 			 * TLB misses since we last read it (above), possibly
1608 			 * other CPUs could update it so we check in the PTE
1609 			 * directly rather than rely on that saved local flags
1610 			 * copy.
1611 			 */
1612 			if (PTE_ISMODIFIED(pte))
1613 				vm_page_dirty(m);
1614 		}
1615 
1616 		if (prot & VM_PROT_EXECUTE) {
1617 			flags |= PTE_SX;
1618 			if (!su)
1619 				flags |= PTE_UX;
1620 
1621 			/*
1622 			 * Check existing flags for execute permissions: if we
1623 			 * are turning execute permissions on, icache should
1624 			 * be flushed.
1625 			 */
1626 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1627 				sync++;
1628 		}
1629 
1630 		flags &= ~PTE_REFERENCED;
1631 
1632 		/*
1633 		 * The new flags value is all calculated -- only now actually
1634 		 * update the PTE.
1635 		 */
1636 		mtx_lock_spin(&tlbivax_mutex);
1637 		tlb_miss_lock();
1638 
1639 		tlb0_flush_entry(va);
1640 		pte->flags = flags;
1641 
1642 		tlb_miss_unlock();
1643 		mtx_unlock_spin(&tlbivax_mutex);
1644 
1645 	} else {
1646 		/*
1647 		 * If there is an existing mapping, but it's for a different
1648 		 * physical address, pte_enter() will delete the old mapping.
1649 		 */
1650 		//if ((pte != NULL) && PTE_ISVALID(pte))
1651 		//	debugf("mmu_booke_enter_locked: replace\n");
1652 		//else
1653 		//	debugf("mmu_booke_enter_locked: new\n");
1654 
1655 		/* Now set up the flags and install the new mapping. */
1656 		flags = (PTE_SR | PTE_VALID);
1657 		flags |= PTE_M;
1658 
1659 		if (!su)
1660 			flags |= PTE_UR;
1661 
1662 		if (prot & VM_PROT_WRITE) {
1663 			flags |= PTE_SW;
1664 			if (!su)
1665 				flags |= PTE_UW;
1666 
1667 			if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1668 				vm_page_flag_set(m, PG_WRITEABLE);
1669 		}
1670 
1671 		if (prot & VM_PROT_EXECUTE) {
1672 			flags |= PTE_SX;
1673 			if (!su)
1674 				flags |= PTE_UX;
1675 		}
1676 
1677 		/* If its wired update stats. */
1678 		if (wired) {
1679 			pmap->pm_stats.wired_count++;
1680 			flags |= PTE_WIRED;
1681 		}
1682 
1683 		pte_enter(mmu, pmap, m, va, flags);
1684 
1685 		/* Flush the real memory from the instruction cache. */
1686 		if (prot & VM_PROT_EXECUTE)
1687 			sync++;
1688 	}
1689 
1690 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1691 		__syncicache((void *)va, PAGE_SIZE);
1692 		sync = 0;
1693 	}
1694 }
1695 
1696 /*
1697  * Maps a sequence of resident pages belonging to the same object.
1698  * The sequence begins with the given page m_start.  This page is
1699  * mapped at the given virtual address start.  Each subsequent page is
1700  * mapped at a virtual address that is offset from start by the same
1701  * amount as the page is offset from m_start within the object.  The
1702  * last page in the sequence is the page with the largest offset from
1703  * m_start that can be mapped at a virtual address less than the given
1704  * virtual address end.  Not every virtual page between start and end
1705  * is mapped; only those for which a resident page exists with the
1706  * corresponding offset from m_start are mapped.
1707  */
1708 static void
1709 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1710     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1711 {
1712 	vm_page_t m;
1713 	vm_pindex_t diff, psize;
1714 
1715 	psize = atop(end - start);
1716 	m = m_start;
1717 	vm_page_lock_queues();
1718 	PMAP_LOCK(pmap);
1719 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1720 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1721 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1722 		m = TAILQ_NEXT(m, listq);
1723 	}
1724 	vm_page_unlock_queues();
1725 	PMAP_UNLOCK(pmap);
1726 }
1727 
1728 static void
1729 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1730     vm_prot_t prot)
1731 {
1732 
1733 	vm_page_lock_queues();
1734 	PMAP_LOCK(pmap);
1735 	mmu_booke_enter_locked(mmu, pmap, va, m,
1736 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1737 	vm_page_unlock_queues();
1738 	PMAP_UNLOCK(pmap);
1739 }
1740 
1741 /*
1742  * Remove the given range of addresses from the specified map.
1743  *
1744  * It is assumed that the start and end are properly rounded to the page size.
1745  */
1746 static void
1747 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1748 {
1749 	pte_t *pte;
1750 	uint8_t hold_flag;
1751 
1752 	int su = (pmap == kernel_pmap);
1753 
1754 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1755 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1756 
1757 	if (su) {
1758 		KASSERT(((va >= virtual_avail) &&
1759 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1760 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1761 	} else {
1762 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1763 		    ("mmu_booke_remove: user pmap, non user va"));
1764 	}
1765 
1766 	if (PMAP_REMOVE_DONE(pmap)) {
1767 		//debugf("mmu_booke_remove: e (empty)\n");
1768 		return;
1769 	}
1770 
1771 	hold_flag = PTBL_HOLD_FLAG(pmap);
1772 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1773 
1774 	vm_page_lock_queues();
1775 	PMAP_LOCK(pmap);
1776 	for (; va < endva; va += PAGE_SIZE) {
1777 		pte = pte_find(mmu, pmap, va);
1778 		if ((pte != NULL) && PTE_ISVALID(pte))
1779 			pte_remove(mmu, pmap, va, hold_flag);
1780 	}
1781 	PMAP_UNLOCK(pmap);
1782 	vm_page_unlock_queues();
1783 
1784 	//debugf("mmu_booke_remove: e\n");
1785 }
1786 
1787 /*
1788  * Remove physical page from all pmaps in which it resides.
1789  */
1790 static void
1791 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1792 {
1793 	pv_entry_t pv, pvn;
1794 	uint8_t hold_flag;
1795 
1796 	vm_page_lock_queues();
1797 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1798 		pvn = TAILQ_NEXT(pv, pv_link);
1799 
1800 		PMAP_LOCK(pv->pv_pmap);
1801 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1802 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1803 		PMAP_UNLOCK(pv->pv_pmap);
1804 	}
1805 	vm_page_flag_clear(m, PG_WRITEABLE);
1806 	vm_page_unlock_queues();
1807 }
1808 
1809 /*
1810  * Map a range of physical addresses into kernel virtual address space.
1811  */
1812 static vm_offset_t
1813 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1814     vm_offset_t pa_end, int prot)
1815 {
1816 	vm_offset_t sva = *virt;
1817 	vm_offset_t va = sva;
1818 
1819 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1820 	//		sva, pa_start, pa_end);
1821 
1822 	while (pa_start < pa_end) {
1823 		mmu_booke_kenter(mmu, va, pa_start);
1824 		va += PAGE_SIZE;
1825 		pa_start += PAGE_SIZE;
1826 	}
1827 	*virt = va;
1828 
1829 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1830 	return (sva);
1831 }
1832 
1833 /*
1834  * The pmap must be activated before it's address space can be accessed in any
1835  * way.
1836  */
1837 static void
1838 mmu_booke_activate(mmu_t mmu, struct thread *td)
1839 {
1840 	pmap_t pmap;
1841 
1842 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1843 
1844 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1845 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1846 
1847 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1848 
1849 	mtx_lock_spin(&sched_lock);
1850 
1851 	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1852 	PCPU_SET(curpmap, pmap);
1853 
1854 	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1855 		tid_alloc(pmap);
1856 
1857 	/* Load PID0 register with pmap tid value. */
1858 	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1859 	__asm __volatile("isync");
1860 
1861 	mtx_unlock_spin(&sched_lock);
1862 
1863 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1864 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1865 }
1866 
1867 /*
1868  * Deactivate the specified process's address space.
1869  */
1870 static void
1871 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1872 {
1873 	pmap_t pmap;
1874 
1875 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1876 
1877 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1878 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1879 
1880 	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1881 	PCPU_SET(curpmap, NULL);
1882 }
1883 
1884 /*
1885  * Copy the range specified by src_addr/len
1886  * from the source map to the range dst_addr/len
1887  * in the destination map.
1888  *
1889  * This routine is only advisory and need not do anything.
1890  */
1891 static void
1892 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1893     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1894 {
1895 
1896 }
1897 
1898 /*
1899  * Set the physical protection on the specified range of this map as requested.
1900  */
1901 static void
1902 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1903     vm_prot_t prot)
1904 {
1905 	vm_offset_t va;
1906 	vm_page_t m;
1907 	pte_t *pte;
1908 
1909 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1910 		mmu_booke_remove(mmu, pmap, sva, eva);
1911 		return;
1912 	}
1913 
1914 	if (prot & VM_PROT_WRITE)
1915 		return;
1916 
1917 	vm_page_lock_queues();
1918 	PMAP_LOCK(pmap);
1919 	for (va = sva; va < eva; va += PAGE_SIZE) {
1920 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1921 			if (PTE_ISVALID(pte)) {
1922 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1923 
1924 				mtx_lock_spin(&tlbivax_mutex);
1925 				tlb_miss_lock();
1926 
1927 				/* Handle modified pages. */
1928 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1929 					vm_page_dirty(m);
1930 
1931 				tlb0_flush_entry(va);
1932 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1933 
1934 				tlb_miss_unlock();
1935 				mtx_unlock_spin(&tlbivax_mutex);
1936 			}
1937 		}
1938 	}
1939 	PMAP_UNLOCK(pmap);
1940 	vm_page_unlock_queues();
1941 }
1942 
1943 /*
1944  * Clear the write and modified bits in each of the given page's mappings.
1945  */
1946 static void
1947 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1948 {
1949 	pv_entry_t pv;
1950 	pte_t *pte;
1951 
1952 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1953 	    ("mmu_booke_remove_write: page %p is not managed", m));
1954 
1955 	/*
1956 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1957 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1958 	 * is clear, no page table entries need updating.
1959 	 */
1960 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1961 	if ((m->oflags & VPO_BUSY) == 0 &&
1962 	    (m->flags & PG_WRITEABLE) == 0)
1963 		return;
1964 	vm_page_lock_queues();
1965 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1966 		PMAP_LOCK(pv->pv_pmap);
1967 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1968 			if (PTE_ISVALID(pte)) {
1969 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1970 
1971 				mtx_lock_spin(&tlbivax_mutex);
1972 				tlb_miss_lock();
1973 
1974 				/* Handle modified pages. */
1975 				if (PTE_ISMODIFIED(pte))
1976 					vm_page_dirty(m);
1977 
1978 				/* Flush mapping from TLB0. */
1979 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1980 
1981 				tlb_miss_unlock();
1982 				mtx_unlock_spin(&tlbivax_mutex);
1983 			}
1984 		}
1985 		PMAP_UNLOCK(pv->pv_pmap);
1986 	}
1987 	vm_page_flag_clear(m, PG_WRITEABLE);
1988 	vm_page_unlock_queues();
1989 }
1990 
1991 static void
1992 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1993 {
1994 	pte_t *pte;
1995 	pmap_t pmap;
1996 	vm_page_t m;
1997 	vm_offset_t addr;
1998 	vm_paddr_t pa;
1999 	int active, valid;
2000 
2001 	va = trunc_page(va);
2002 	sz = round_page(sz);
2003 
2004 	vm_page_lock_queues();
2005 	pmap = PCPU_GET(curpmap);
2006 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2007 	while (sz > 0) {
2008 		PMAP_LOCK(pm);
2009 		pte = pte_find(mmu, pm, va);
2010 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2011 		if (valid)
2012 			pa = PTE_PA(pte);
2013 		PMAP_UNLOCK(pm);
2014 		if (valid) {
2015 			if (!active) {
2016 				/* Create a mapping in the active pmap. */
2017 				addr = 0;
2018 				m = PHYS_TO_VM_PAGE(pa);
2019 				PMAP_LOCK(pmap);
2020 				pte_enter(mmu, pmap, m, addr,
2021 				    PTE_SR | PTE_VALID | PTE_UR);
2022 				__syncicache((void *)addr, PAGE_SIZE);
2023 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2024 				PMAP_UNLOCK(pmap);
2025 			} else
2026 				__syncicache((void *)va, PAGE_SIZE);
2027 		}
2028 		va += PAGE_SIZE;
2029 		sz -= PAGE_SIZE;
2030 	}
2031 	vm_page_unlock_queues();
2032 }
2033 
2034 /*
2035  * Atomically extract and hold the physical page with the given
2036  * pmap and virtual address pair if that mapping permits the given
2037  * protection.
2038  */
2039 static vm_page_t
2040 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2041     vm_prot_t prot)
2042 {
2043 	pte_t *pte;
2044 	vm_page_t m;
2045 	uint32_t pte_wbit;
2046 	vm_paddr_t pa;
2047 
2048 	m = NULL;
2049 	pa = 0;
2050 	PMAP_LOCK(pmap);
2051 retry:
2052 	pte = pte_find(mmu, pmap, va);
2053 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2054 		if (pmap == kernel_pmap)
2055 			pte_wbit = PTE_SW;
2056 		else
2057 			pte_wbit = PTE_UW;
2058 
2059 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2060 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2061 				goto retry;
2062 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2063 			vm_page_hold(m);
2064 		}
2065 	}
2066 
2067 	PA_UNLOCK_COND(pa);
2068 	PMAP_UNLOCK(pmap);
2069 	return (m);
2070 }
2071 
2072 /*
2073  * Initialize a vm_page's machine-dependent fields.
2074  */
2075 static void
2076 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2077 {
2078 
2079 	TAILQ_INIT(&m->md.pv_list);
2080 }
2081 
2082 /*
2083  * mmu_booke_zero_page_area zeros the specified hardware page by
2084  * mapping it into virtual memory and using bzero to clear
2085  * its contents.
2086  *
2087  * off and size must reside within a single page.
2088  */
2089 static void
2090 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2091 {
2092 	vm_offset_t va;
2093 
2094 	/* XXX KASSERT off and size are within a single page? */
2095 
2096 	mtx_lock(&zero_page_mutex);
2097 	va = zero_page_va;
2098 
2099 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2100 	bzero((caddr_t)va + off, size);
2101 	mmu_booke_kremove(mmu, va);
2102 
2103 	mtx_unlock(&zero_page_mutex);
2104 }
2105 
2106 /*
2107  * mmu_booke_zero_page zeros the specified hardware page.
2108  */
2109 static void
2110 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2111 {
2112 
2113 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2114 }
2115 
2116 /*
2117  * mmu_booke_copy_page copies the specified (machine independent) page by
2118  * mapping the page into virtual memory and using memcopy to copy the page,
2119  * one machine dependent page at a time.
2120  */
2121 static void
2122 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2123 {
2124 	vm_offset_t sva, dva;
2125 
2126 	sva = copy_page_src_va;
2127 	dva = copy_page_dst_va;
2128 
2129 	mtx_lock(&copy_page_mutex);
2130 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2131 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2132 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2133 	mmu_booke_kremove(mmu, dva);
2134 	mmu_booke_kremove(mmu, sva);
2135 	mtx_unlock(&copy_page_mutex);
2136 }
2137 
2138 /*
2139  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2140  * into virtual memory and using bzero to clear its contents. This is intended
2141  * to be called from the vm_pagezero process only and outside of Giant. No
2142  * lock is required.
2143  */
2144 static void
2145 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2146 {
2147 	vm_offset_t va;
2148 
2149 	va = zero_page_idle_va;
2150 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2151 	bzero((caddr_t)va, PAGE_SIZE);
2152 	mmu_booke_kremove(mmu, va);
2153 }
2154 
2155 /*
2156  * Return whether or not the specified physical page was modified
2157  * in any of physical maps.
2158  */
2159 static boolean_t
2160 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2161 {
2162 	pte_t *pte;
2163 	pv_entry_t pv;
2164 	boolean_t rv;
2165 
2166 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2167 	    ("mmu_booke_is_modified: page %p is not managed", m));
2168 	rv = FALSE;
2169 
2170 	/*
2171 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2172 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2173 	 * is clear, no PTEs can be modified.
2174 	 */
2175 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2176 	if ((m->oflags & VPO_BUSY) == 0 &&
2177 	    (m->flags & PG_WRITEABLE) == 0)
2178 		return (rv);
2179 	vm_page_lock_queues();
2180 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2181 		PMAP_LOCK(pv->pv_pmap);
2182 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2183 		    PTE_ISVALID(pte)) {
2184 			if (PTE_ISMODIFIED(pte))
2185 				rv = TRUE;
2186 		}
2187 		PMAP_UNLOCK(pv->pv_pmap);
2188 		if (rv)
2189 			break;
2190 	}
2191 	vm_page_unlock_queues();
2192 	return (rv);
2193 }
2194 
2195 /*
2196  * Return whether or not the specified virtual address is eligible
2197  * for prefault.
2198  */
2199 static boolean_t
2200 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2201 {
2202 
2203 	return (FALSE);
2204 }
2205 
2206 /*
2207  * Return whether or not the specified physical page was referenced
2208  * in any physical maps.
2209  */
2210 static boolean_t
2211 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2212 {
2213 	pte_t *pte;
2214 	pv_entry_t pv;
2215 	boolean_t rv;
2216 
2217 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2218 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2219 	rv = FALSE;
2220 	vm_page_lock_queues();
2221 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2222 		PMAP_LOCK(pv->pv_pmap);
2223 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2224 		    PTE_ISVALID(pte)) {
2225 			if (PTE_ISREFERENCED(pte))
2226 				rv = TRUE;
2227 		}
2228 		PMAP_UNLOCK(pv->pv_pmap);
2229 		if (rv)
2230 			break;
2231 	}
2232 	vm_page_unlock_queues();
2233 	return (rv);
2234 }
2235 
2236 /*
2237  * Clear the modify bits on the specified physical page.
2238  */
2239 static void
2240 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2241 {
2242 	pte_t *pte;
2243 	pv_entry_t pv;
2244 
2245 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2246 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2247 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2248 	KASSERT((m->oflags & VPO_BUSY) == 0,
2249 	    ("mmu_booke_clear_modify: page %p is busy", m));
2250 
2251 	/*
2252 	 * If the page is not PG_WRITEABLE, then no PTEs can be modified.
2253 	 * If the object containing the page is locked and the page is not
2254 	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2255 	 */
2256 	if ((m->flags & PG_WRITEABLE) == 0)
2257 		return;
2258 	vm_page_lock_queues();
2259 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2260 		PMAP_LOCK(pv->pv_pmap);
2261 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2262 		    PTE_ISVALID(pte)) {
2263 			mtx_lock_spin(&tlbivax_mutex);
2264 			tlb_miss_lock();
2265 
2266 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2267 				tlb0_flush_entry(pv->pv_va);
2268 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2269 				    PTE_REFERENCED);
2270 			}
2271 
2272 			tlb_miss_unlock();
2273 			mtx_unlock_spin(&tlbivax_mutex);
2274 		}
2275 		PMAP_UNLOCK(pv->pv_pmap);
2276 	}
2277 	vm_page_unlock_queues();
2278 }
2279 
2280 /*
2281  * Return a count of reference bits for a page, clearing those bits.
2282  * It is not necessary for every reference bit to be cleared, but it
2283  * is necessary that 0 only be returned when there are truly no
2284  * reference bits set.
2285  *
2286  * XXX: The exact number of bits to check and clear is a matter that
2287  * should be tested and standardized at some point in the future for
2288  * optimal aging of shared pages.
2289  */
2290 static int
2291 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2292 {
2293 	pte_t *pte;
2294 	pv_entry_t pv;
2295 	int count;
2296 
2297 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2298 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2299 	count = 0;
2300 	vm_page_lock_queues();
2301 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2302 		PMAP_LOCK(pv->pv_pmap);
2303 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2304 		    PTE_ISVALID(pte)) {
2305 			if (PTE_ISREFERENCED(pte)) {
2306 				mtx_lock_spin(&tlbivax_mutex);
2307 				tlb_miss_lock();
2308 
2309 				tlb0_flush_entry(pv->pv_va);
2310 				pte->flags &= ~PTE_REFERENCED;
2311 
2312 				tlb_miss_unlock();
2313 				mtx_unlock_spin(&tlbivax_mutex);
2314 
2315 				if (++count > 4) {
2316 					PMAP_UNLOCK(pv->pv_pmap);
2317 					break;
2318 				}
2319 			}
2320 		}
2321 		PMAP_UNLOCK(pv->pv_pmap);
2322 	}
2323 	vm_page_unlock_queues();
2324 	return (count);
2325 }
2326 
2327 /*
2328  * Clear the reference bit on the specified physical page.
2329  */
2330 static void
2331 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2332 {
2333 	pte_t *pte;
2334 	pv_entry_t pv;
2335 
2336 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2337 	    ("mmu_booke_clear_reference: page %p is not managed", m));
2338 	vm_page_lock_queues();
2339 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2340 		PMAP_LOCK(pv->pv_pmap);
2341 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2342 		    PTE_ISVALID(pte)) {
2343 			if (PTE_ISREFERENCED(pte)) {
2344 				mtx_lock_spin(&tlbivax_mutex);
2345 				tlb_miss_lock();
2346 
2347 				tlb0_flush_entry(pv->pv_va);
2348 				pte->flags &= ~PTE_REFERENCED;
2349 
2350 				tlb_miss_unlock();
2351 				mtx_unlock_spin(&tlbivax_mutex);
2352 			}
2353 		}
2354 		PMAP_UNLOCK(pv->pv_pmap);
2355 	}
2356 	vm_page_unlock_queues();
2357 }
2358 
2359 /*
2360  * Change wiring attribute for a map/virtual-address pair.
2361  */
2362 static void
2363 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2364 {
2365 	pte_t *pte;
2366 
2367 	PMAP_LOCK(pmap);
2368 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2369 		if (wired) {
2370 			if (!PTE_ISWIRED(pte)) {
2371 				pte->flags |= PTE_WIRED;
2372 				pmap->pm_stats.wired_count++;
2373 			}
2374 		} else {
2375 			if (PTE_ISWIRED(pte)) {
2376 				pte->flags &= ~PTE_WIRED;
2377 				pmap->pm_stats.wired_count--;
2378 			}
2379 		}
2380 	}
2381 	PMAP_UNLOCK(pmap);
2382 }
2383 
2384 /*
2385  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2386  * page.  This count may be changed upwards or downwards in the future; it is
2387  * only necessary that true be returned for a small subset of pmaps for proper
2388  * page aging.
2389  */
2390 static boolean_t
2391 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2392 {
2393 	pv_entry_t pv;
2394 	int loops;
2395 	boolean_t rv;
2396 
2397 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2398 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2399 	loops = 0;
2400 	rv = FALSE;
2401 	vm_page_lock_queues();
2402 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2403 		if (pv->pv_pmap == pmap) {
2404 			rv = TRUE;
2405 			break;
2406 		}
2407 		if (++loops >= 16)
2408 			break;
2409 	}
2410 	vm_page_unlock_queues();
2411 	return (rv);
2412 }
2413 
2414 /*
2415  * Return the number of managed mappings to the given physical page that are
2416  * wired.
2417  */
2418 static int
2419 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2420 {
2421 	pv_entry_t pv;
2422 	pte_t *pte;
2423 	int count = 0;
2424 
2425 	if ((m->flags & PG_FICTITIOUS) != 0)
2426 		return (count);
2427 	vm_page_lock_queues();
2428 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2429 		PMAP_LOCK(pv->pv_pmap);
2430 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2431 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2432 				count++;
2433 		PMAP_UNLOCK(pv->pv_pmap);
2434 	}
2435 	vm_page_unlock_queues();
2436 	return (count);
2437 }
2438 
2439 static int
2440 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2441 {
2442 	int i;
2443 	vm_offset_t va;
2444 
2445 	/*
2446 	 * This currently does not work for entries that
2447 	 * overlap TLB1 entries.
2448 	 */
2449 	for (i = 0; i < tlb1_idx; i ++) {
2450 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2451 			return (0);
2452 	}
2453 
2454 	return (EFAULT);
2455 }
2456 
2457 vm_offset_t
2458 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2459     vm_size_t *sz)
2460 {
2461 	vm_paddr_t pa, ppa;
2462 	vm_offset_t va;
2463 	vm_size_t gran;
2464 
2465 	/* Raw physical memory dumps don't have a virtual address. */
2466 	if (md->md_vaddr == ~0UL) {
2467 		/* We always map a 256MB page at 256M. */
2468 		gran = 256 * 1024 * 1024;
2469 		pa = md->md_paddr + ofs;
2470 		ppa = pa & ~(gran - 1);
2471 		ofs = pa - ppa;
2472 		va = gran;
2473 		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2474 		if (*sz > (gran - ofs))
2475 			*sz = gran - ofs;
2476 		return (va + ofs);
2477 	}
2478 
2479 	/* Minidumps are based on virtual memory addresses. */
2480 	va = md->md_vaddr + ofs;
2481 	if (va >= kernstart + kernsize) {
2482 		gran = PAGE_SIZE - (va & PAGE_MASK);
2483 		if (*sz > gran)
2484 			*sz = gran;
2485 	}
2486 	return (va);
2487 }
2488 
2489 void
2490 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2491     vm_offset_t va)
2492 {
2493 
2494 	/* Raw physical memory dumps don't have a virtual address. */
2495 	if (md->md_vaddr == ~0UL) {
2496 		tlb1_idx--;
2497 		tlb1[tlb1_idx].mas1 = 0;
2498 		tlb1[tlb1_idx].mas2 = 0;
2499 		tlb1[tlb1_idx].mas3 = 0;
2500 		tlb1_write_entry(tlb1_idx);
2501 		return;
2502 	}
2503 
2504 	/* Minidumps are based on virtual memory addresses. */
2505 	/* Nothing to do... */
2506 }
2507 
2508 struct pmap_md *
2509 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2510 {
2511 	static struct pmap_md md;
2512 	struct bi_mem_region *mr;
2513 	pte_t *pte;
2514 	vm_offset_t va;
2515 
2516 	if (dumpsys_minidump) {
2517 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2518 		if (prev == NULL) {
2519 			/* 1st: kernel .data and .bss. */
2520 			md.md_index = 1;
2521 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2522 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2523 			return (&md);
2524 		}
2525 		switch (prev->md_index) {
2526 		case 1:
2527 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2528 			md.md_index = 2;
2529 			md.md_vaddr = data_start;
2530 			md.md_size = data_end - data_start;
2531 			break;
2532 		case 2:
2533 			/* 3rd: kernel VM. */
2534 			va = prev->md_vaddr + prev->md_size;
2535 			/* Find start of next chunk (from va). */
2536 			while (va < virtual_end) {
2537 				/* Don't dump the buffer cache. */
2538 				if (va >= kmi.buffer_sva &&
2539 				    va < kmi.buffer_eva) {
2540 					va = kmi.buffer_eva;
2541 					continue;
2542 				}
2543 				pte = pte_find(mmu, kernel_pmap, va);
2544 				if (pte != NULL && PTE_ISVALID(pte))
2545 					break;
2546 				va += PAGE_SIZE;
2547 			}
2548 			if (va < virtual_end) {
2549 				md.md_vaddr = va;
2550 				va += PAGE_SIZE;
2551 				/* Find last page in chunk. */
2552 				while (va < virtual_end) {
2553 					/* Don't run into the buffer cache. */
2554 					if (va == kmi.buffer_sva)
2555 						break;
2556 					pte = pte_find(mmu, kernel_pmap, va);
2557 					if (pte == NULL || !PTE_ISVALID(pte))
2558 						break;
2559 					va += PAGE_SIZE;
2560 				}
2561 				md.md_size = va - md.md_vaddr;
2562 				break;
2563 			}
2564 			md.md_index = 3;
2565 			/* FALLTHROUGH */
2566 		default:
2567 			return (NULL);
2568 		}
2569 	} else { /* minidumps */
2570 		mr = bootinfo_mr();
2571 		if (prev == NULL) {
2572 			/* first physical chunk. */
2573 			md.md_paddr = mr->mem_base;
2574 			md.md_size = mr->mem_size;
2575 			md.md_vaddr = ~0UL;
2576 			md.md_index = 1;
2577 		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2578 			md.md_paddr = mr[md.md_index].mem_base;
2579 			md.md_size = mr[md.md_index].mem_size;
2580 			md.md_vaddr = ~0UL;
2581 			md.md_index++;
2582 		} else {
2583 			/* There's no next physical chunk. */
2584 			return (NULL);
2585 		}
2586 	}
2587 
2588 	return (&md);
2589 }
2590 
2591 /*
2592  * Map a set of physical memory pages into the kernel virtual address space.
2593  * Return a pointer to where it is mapped. This routine is intended to be used
2594  * for mapping device memory, NOT real memory.
2595  */
2596 static void *
2597 mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2598 {
2599 	void *res;
2600 	uintptr_t va;
2601 	vm_size_t sz;
2602 
2603 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2604 	res = (void *)va;
2605 
2606 	do {
2607 		sz = 1 << (ilog2(size) & ~1);
2608 		if (bootverbose)
2609 			printf("Wiring VA=%x to PA=%x (size=%x), "
2610 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2611 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2612 		size -= sz;
2613 		pa += sz;
2614 		va += sz;
2615 	} while (size > 0);
2616 
2617 	return (res);
2618 }
2619 
2620 /*
2621  * 'Unmap' a range mapped by mmu_booke_mapdev().
2622  */
2623 static void
2624 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2625 {
2626 	vm_offset_t base, offset;
2627 
2628 	/*
2629 	 * Unmap only if this is inside kernel virtual space.
2630 	 */
2631 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2632 		base = trunc_page(va);
2633 		offset = va & PAGE_MASK;
2634 		size = roundup(offset + size, PAGE_SIZE);
2635 		kmem_free(kernel_map, base, size);
2636 	}
2637 }
2638 
2639 /*
2640  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2641  * specified pmap. This eliminates the blast of soft faults on process startup
2642  * and immediately after an mmap.
2643  */
2644 static void
2645 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2646     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2647 {
2648 
2649 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2650 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2651 	    ("mmu_booke_object_init_pt: non-device object"));
2652 }
2653 
2654 /*
2655  * Perform the pmap work for mincore.
2656  */
2657 static int
2658 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2659     vm_paddr_t *locked_pa)
2660 {
2661 
2662 	TODO;
2663 	return (0);
2664 }
2665 
2666 /**************************************************************************/
2667 /* TID handling */
2668 /**************************************************************************/
2669 
2670 /*
2671  * Allocate a TID. If necessary, steal one from someone else.
2672  * The new TID is flushed from the TLB before returning.
2673  */
2674 static tlbtid_t
2675 tid_alloc(pmap_t pmap)
2676 {
2677 	tlbtid_t tid;
2678 	int thiscpu;
2679 
2680 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2681 
2682 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2683 
2684 	thiscpu = PCPU_GET(cpuid);
2685 
2686 	tid = PCPU_GET(tid_next);
2687 	if (tid > TID_MAX)
2688 		tid = TID_MIN;
2689 	PCPU_SET(tid_next, tid + 1);
2690 
2691 	/* If we are stealing TID then clear the relevant pmap's field */
2692 	if (tidbusy[thiscpu][tid] != NULL) {
2693 
2694 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2695 
2696 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2697 
2698 		/* Flush all entries from TLB0 matching this TID. */
2699 		tid_flush(tid);
2700 	}
2701 
2702 	tidbusy[thiscpu][tid] = pmap;
2703 	pmap->pm_tid[thiscpu] = tid;
2704 	__asm __volatile("msync; isync");
2705 
2706 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2707 	    PCPU_GET(tid_next));
2708 
2709 	return (tid);
2710 }
2711 
2712 /**************************************************************************/
2713 /* TLB0 handling */
2714 /**************************************************************************/
2715 
2716 static void
2717 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2718     uint32_t mas7)
2719 {
2720 	int as;
2721 	char desc[3];
2722 	tlbtid_t tid;
2723 	vm_size_t size;
2724 	unsigned int tsize;
2725 
2726 	desc[2] = '\0';
2727 	if (mas1 & MAS1_VALID)
2728 		desc[0] = 'V';
2729 	else
2730 		desc[0] = ' ';
2731 
2732 	if (mas1 & MAS1_IPROT)
2733 		desc[1] = 'P';
2734 	else
2735 		desc[1] = ' ';
2736 
2737 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2738 	tid = MAS1_GETTID(mas1);
2739 
2740 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2741 	size = 0;
2742 	if (tsize)
2743 		size = tsize2size(tsize);
2744 
2745 	debugf("%3d: (%s) [AS=%d] "
2746 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2747 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2748 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2749 }
2750 
2751 /* Convert TLB0 va and way number to tlb0[] table index. */
2752 static inline unsigned int
2753 tlb0_tableidx(vm_offset_t va, unsigned int way)
2754 {
2755 	unsigned int idx;
2756 
2757 	idx = (way * TLB0_ENTRIES_PER_WAY);
2758 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2759 	return (idx);
2760 }
2761 
2762 /*
2763  * Invalidate TLB0 entry.
2764  */
2765 static inline void
2766 tlb0_flush_entry(vm_offset_t va)
2767 {
2768 
2769 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2770 
2771 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2772 
2773 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2774 	__asm __volatile("isync; msync");
2775 	__asm __volatile("tlbsync; msync");
2776 
2777 	CTR1(KTR_PMAP, "%s: e", __func__);
2778 }
2779 
2780 /* Print out contents of the MAS registers for each TLB0 entry */
2781 void
2782 tlb0_print_tlbentries(void)
2783 {
2784 	uint32_t mas0, mas1, mas2, mas3, mas7;
2785 	int entryidx, way, idx;
2786 
2787 	debugf("TLB0 entries:\n");
2788 	for (way = 0; way < TLB0_WAYS; way ++)
2789 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2790 
2791 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2792 			mtspr(SPR_MAS0, mas0);
2793 			__asm __volatile("isync");
2794 
2795 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2796 			mtspr(SPR_MAS2, mas2);
2797 
2798 			__asm __volatile("isync; tlbre");
2799 
2800 			mas1 = mfspr(SPR_MAS1);
2801 			mas2 = mfspr(SPR_MAS2);
2802 			mas3 = mfspr(SPR_MAS3);
2803 			mas7 = mfspr(SPR_MAS7);
2804 
2805 			idx = tlb0_tableidx(mas2, way);
2806 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2807 		}
2808 }
2809 
2810 /**************************************************************************/
2811 /* TLB1 handling */
2812 /**************************************************************************/
2813 
2814 /*
2815  * TLB1 mapping notes:
2816  *
2817  * TLB1[0]	CCSRBAR
2818  * TLB1[1]	Kernel text and data.
2819  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2820  *		windows, other devices mappings.
2821  */
2822 
2823 /*
2824  * Write given entry to TLB1 hardware.
2825  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2826  */
2827 static void
2828 tlb1_write_entry(unsigned int idx)
2829 {
2830 	uint32_t mas0, mas7;
2831 
2832 	//debugf("tlb1_write_entry: s\n");
2833 
2834 	/* Clear high order RPN bits */
2835 	mas7 = 0;
2836 
2837 	/* Select entry */
2838 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2839 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2840 
2841 	mtspr(SPR_MAS0, mas0);
2842 	__asm __volatile("isync");
2843 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2844 	__asm __volatile("isync");
2845 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2846 	__asm __volatile("isync");
2847 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2848 	__asm __volatile("isync");
2849 	mtspr(SPR_MAS7, mas7);
2850 	__asm __volatile("isync; tlbwe; isync; msync");
2851 
2852 	//debugf("tlb1_write_entry: e\n");
2853 }
2854 
2855 /*
2856  * Return the largest uint value log such that 2^log <= num.
2857  */
2858 static unsigned int
2859 ilog2(unsigned int num)
2860 {
2861 	int lz;
2862 
2863 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2864 	return (31 - lz);
2865 }
2866 
2867 /*
2868  * Convert TLB TSIZE value to mapped region size.
2869  */
2870 static vm_size_t
2871 tsize2size(unsigned int tsize)
2872 {
2873 
2874 	/*
2875 	 * size = 4^tsize KB
2876 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2877 	 */
2878 
2879 	return ((1 << (2 * tsize)) * 1024);
2880 }
2881 
2882 /*
2883  * Convert region size (must be power of 4) to TLB TSIZE value.
2884  */
2885 static unsigned int
2886 size2tsize(vm_size_t size)
2887 {
2888 
2889 	return (ilog2(size) / 2 - 5);
2890 }
2891 
2892 /*
2893  * Register permanent kernel mapping in TLB1.
2894  *
2895  * Entries are created starting from index 0 (current free entry is
2896  * kept in tlb1_idx) and are not supposed to be invalidated.
2897  */
2898 static int
2899 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2900     uint32_t flags)
2901 {
2902 	uint32_t ts, tid;
2903 	int tsize;
2904 
2905 	if (tlb1_idx >= TLB1_ENTRIES) {
2906 		printf("tlb1_set_entry: TLB1 full!\n");
2907 		return (-1);
2908 	}
2909 
2910 	/* Convert size to TSIZE */
2911 	tsize = size2tsize(size);
2912 
2913 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2914 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2915 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2916 
2917 	/* XXX LOCK tlb1[] */
2918 
2919 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2920 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2921 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2922 
2923 	/* Set supervisor RWX permission bits */
2924 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2925 
2926 	tlb1_write_entry(tlb1_idx++);
2927 
2928 	/* XXX UNLOCK tlb1[] */
2929 
2930 	/*
2931 	 * XXX in general TLB1 updates should be propagated between CPUs,
2932 	 * since current design assumes to have the same TLB1 set-up on all
2933 	 * cores.
2934 	 */
2935 	return (0);
2936 }
2937 
2938 static int
2939 tlb1_entry_size_cmp(const void *a, const void *b)
2940 {
2941 	const vm_size_t *sza;
2942 	const vm_size_t *szb;
2943 
2944 	sza = a;
2945 	szb = b;
2946 	if (*sza > *szb)
2947 		return (-1);
2948 	else if (*sza < *szb)
2949 		return (1);
2950 	else
2951 		return (0);
2952 }
2953 
2954 /*
2955  * Map in contiguous RAM region into the TLB1 using maximum of
2956  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2957  *
2958  * If necessary round up last entry size and return total size
2959  * used by all allocated entries.
2960  */
2961 vm_size_t
2962 tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2963 {
2964 	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2965 	vm_size_t mapped_size, sz, esz;
2966 	unsigned int log;
2967 	int i;
2968 
2969 	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2970 	    __func__, size, va, pa);
2971 
2972 	mapped_size = 0;
2973 	sz = size;
2974 	memset(entry_size, 0, sizeof(entry_size));
2975 
2976 	/* Calculate entry sizes. */
2977 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2978 
2979 		/* Largest region that is power of 4 and fits within size */
2980 		log = ilog2(sz) / 2;
2981 		esz = 1 << (2 * log);
2982 
2983 		/* If this is last entry cover remaining size. */
2984 		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2985 			while (esz < sz)
2986 				esz = esz << 2;
2987 		}
2988 
2989 		entry_size[i] = esz;
2990 		mapped_size += esz;
2991 		if (esz < sz)
2992 			sz -= esz;
2993 		else
2994 			sz = 0;
2995 	}
2996 
2997 	/* Sort entry sizes, required to get proper entry address alignment. */
2998 	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2999 	    sizeof(vm_size_t), tlb1_entry_size_cmp);
3000 
3001 	/* Load TLB1 entries. */
3002 	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
3003 		esz = entry_size[i];
3004 		if (!esz)
3005 			break;
3006 
3007 		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
3008 		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
3009 
3010 		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
3011 
3012 		va += esz;
3013 		pa += esz;
3014 	}
3015 
3016 	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
3017 	    __func__, mapped_size, mapped_size - size);
3018 
3019 	return (mapped_size);
3020 }
3021 
3022 /*
3023  * TLB1 initialization routine, to be called after the very first
3024  * assembler level setup done in locore.S.
3025  */
3026 void
3027 tlb1_init(vm_offset_t ccsrbar)
3028 {
3029 	uint32_t mas0;
3030 
3031 	/* TLB1[1] is used to map the kernel. Save that entry. */
3032 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
3033 	mtspr(SPR_MAS0, mas0);
3034 	__asm __volatile("isync; tlbre");
3035 
3036 	tlb1[1].mas1 = mfspr(SPR_MAS1);
3037 	tlb1[1].mas2 = mfspr(SPR_MAS2);
3038 	tlb1[1].mas3 = mfspr(SPR_MAS3);
3039 
3040 	/* Map in CCSRBAR in TLB1[0] */
3041 	tlb1_idx = 0;
3042 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3043 	/*
3044 	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
3045 	 * for initial mapping of kernel text+data, which was set early in
3046 	 * locore, we need to skip this [busy] entry.
3047 	 */
3048 	tlb1_idx = 2;
3049 
3050 	/* Setup TLB miss defaults */
3051 	set_mas4_defaults();
3052 }
3053 
3054 /*
3055  * Setup MAS4 defaults.
3056  * These values are loaded to MAS0-2 on a TLB miss.
3057  */
3058 static void
3059 set_mas4_defaults(void)
3060 {
3061 	uint32_t mas4;
3062 
3063 	/* Defaults: TLB0, PID0, TSIZED=4K */
3064 	mas4 = MAS4_TLBSELD0;
3065 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3066 #ifdef SMP
3067 	mas4 |= MAS4_MD;
3068 #endif
3069 	mtspr(SPR_MAS4, mas4);
3070 	__asm __volatile("isync");
3071 }
3072 
3073 /*
3074  * Print out contents of the MAS registers for each TLB1 entry
3075  */
3076 void
3077 tlb1_print_tlbentries(void)
3078 {
3079 	uint32_t mas0, mas1, mas2, mas3, mas7;
3080 	int i;
3081 
3082 	debugf("TLB1 entries:\n");
3083 	for (i = 0; i < TLB1_ENTRIES; i++) {
3084 
3085 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3086 		mtspr(SPR_MAS0, mas0);
3087 
3088 		__asm __volatile("isync; tlbre");
3089 
3090 		mas1 = mfspr(SPR_MAS1);
3091 		mas2 = mfspr(SPR_MAS2);
3092 		mas3 = mfspr(SPR_MAS3);
3093 		mas7 = mfspr(SPR_MAS7);
3094 
3095 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3096 	}
3097 }
3098 
3099 /*
3100  * Print out contents of the in-ram tlb1 table.
3101  */
3102 void
3103 tlb1_print_entries(void)
3104 {
3105 	int i;
3106 
3107 	debugf("tlb1[] table entries:\n");
3108 	for (i = 0; i < TLB1_ENTRIES; i++)
3109 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3110 }
3111 
3112 /*
3113  * Return 0 if the physical IO range is encompassed by one of the
3114  * the TLB1 entries, otherwise return related error code.
3115  */
3116 static int
3117 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3118 {
3119 	uint32_t prot;
3120 	vm_paddr_t pa_start;
3121 	vm_paddr_t pa_end;
3122 	unsigned int entry_tsize;
3123 	vm_size_t entry_size;
3124 
3125 	*va = (vm_offset_t)NULL;
3126 
3127 	/* Skip invalid entries */
3128 	if (!(tlb1[i].mas1 & MAS1_VALID))
3129 		return (EINVAL);
3130 
3131 	/*
3132 	 * The entry must be cache-inhibited, guarded, and r/w
3133 	 * so it can function as an i/o page
3134 	 */
3135 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3136 	if (prot != (MAS2_I | MAS2_G))
3137 		return (EPERM);
3138 
3139 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3140 	if (prot != (MAS3_SR | MAS3_SW))
3141 		return (EPERM);
3142 
3143 	/* The address should be within the entry range. */
3144 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3145 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3146 
3147 	entry_size = tsize2size(entry_tsize);
3148 	pa_start = tlb1[i].mas3 & MAS3_RPN;
3149 	pa_end = pa_start + entry_size - 1;
3150 
3151 	if ((pa < pa_start) || ((pa + size) > pa_end))
3152 		return (ERANGE);
3153 
3154 	/* Return virtual address of this mapping. */
3155 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3156 	return (0);
3157 }
3158