xref: /freebsd/sys/powerpc/booke/pmap.c (revision 2d4e511ca269f1908d27f4e5779c53475527391d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ddb.h"
80 #include "opt_kstack_pages.h"
81 
82 #include <sys/param.h>
83 #include <sys/conf.h>
84 #include <sys/malloc.h>
85 #include <sys/ktr.h>
86 #include <sys/proc.h>
87 #include <sys/user.h>
88 #include <sys/queue.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/kerneldump.h>
92 #include <sys/linker.h>
93 #include <sys/msgbuf.h>
94 #include <sys/lock.h>
95 #include <sys/mutex.h>
96 #include <sys/rwlock.h>
97 #include <sys/sched.h>
98 #include <sys/smp.h>
99 #include <sys/vmmeter.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/vm_pagequeue.h>
112 #include <vm/uma.h>
113 
114 #include <machine/_inttypes.h>
115 #include <machine/cpu.h>
116 #include <machine/pcb.h>
117 #include <machine/platform.h>
118 
119 #include <machine/tlb.h>
120 #include <machine/spr.h>
121 #include <machine/md_var.h>
122 #include <machine/mmuvar.h>
123 #include <machine/pmap.h>
124 #include <machine/pte.h>
125 
126 #include <ddb/ddb.h>
127 
128 #include "mmu_if.h"
129 
130 #define	SPARSE_MAPDEV
131 #ifdef  DEBUG
132 #define debugf(fmt, args...) printf(fmt, ##args)
133 #else
134 #define debugf(fmt, args...)
135 #endif
136 
137 #ifdef __powerpc64__
138 #define	PRI0ptrX	"016lx"
139 #else
140 #define	PRI0ptrX	"08x"
141 #endif
142 
143 #define TODO			panic("%s: not implemented", __func__);
144 
145 extern unsigned char _etext[];
146 extern unsigned char _end[];
147 
148 extern uint32_t *bootinfo;
149 
150 vm_paddr_t kernload;
151 vm_offset_t kernstart;
152 vm_size_t kernsize;
153 
154 /* Message buffer and tables. */
155 static vm_offset_t data_start;
156 static vm_size_t data_end;
157 
158 /* Phys/avail memory regions. */
159 static struct mem_region *availmem_regions;
160 static int availmem_regions_sz;
161 static struct mem_region *physmem_regions;
162 static int physmem_regions_sz;
163 
164 #ifndef __powerpc64__
165 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
166 static vm_offset_t zero_page_va;
167 static struct mtx zero_page_mutex;
168 
169 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
170 static vm_offset_t copy_page_src_va;
171 static vm_offset_t copy_page_dst_va;
172 static struct mtx copy_page_mutex;
173 #endif
174 
175 static struct mtx tlbivax_mutex;
176 
177 /**************************************************************************/
178 /* PMAP */
179 /**************************************************************************/
180 
181 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
182     vm_prot_t, u_int flags, int8_t psind);
183 
184 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
185 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
186 #ifdef __powerpc64__
187 unsigned int kernel_pdirs;
188 #endif
189 static uma_zone_t ptbl_root_zone;
190 
191 /*
192  * If user pmap is processed with mmu_booke_remove and the resident count
193  * drops to 0, there are no more pages to remove, so we need not continue.
194  */
195 #define PMAP_REMOVE_DONE(pmap) \
196 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
197 
198 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
199 extern int elf32_nxstack;
200 #endif
201 
202 /**************************************************************************/
203 /* TLB and TID handling */
204 /**************************************************************************/
205 
206 /* Translation ID busy table */
207 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
208 
209 /*
210  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
211  * core revisions and should be read from h/w registers during early config.
212  */
213 uint32_t tlb0_entries;
214 uint32_t tlb0_ways;
215 uint32_t tlb0_entries_per_way;
216 uint32_t tlb1_entries;
217 
218 #define TLB0_ENTRIES		(tlb0_entries)
219 #define TLB0_WAYS		(tlb0_ways)
220 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
221 
222 #define TLB1_ENTRIES (tlb1_entries)
223 
224 /*
225  * Base of the pmap_mapdev() region.  On 32-bit it immediately follows the
226  * userspace address range.  On On 64-bit it's far above, at (1 << 63), and
227  * ranges up to the DMAP, giving 62 bits of PA allowed.  This is far larger than
228  * the widest Book-E address bus, the e6500 has a 40-bit PA space.  This allows
229  * us to map akin to the DMAP, with addresses identical to the PA, offset by the
230  * base.
231  */
232 #ifdef __powerpc64__
233 #define	VM_MAPDEV_BASE		0x8000000000000000
234 #define	VM_MAPDEV_PA_MAX	0x4000000000000000 /* Don't encroach on DMAP */
235 #else
236 #define	VM_MAPDEV_BASE	((vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE)
237 #endif
238 
239 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
240 
241 static tlbtid_t tid_alloc(struct pmap *);
242 static void tid_flush(tlbtid_t tid);
243 
244 #ifdef DDB
245 #ifdef __powerpc64__
246 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
247 #else
248 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
249 #endif
250 #endif
251 
252 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
253 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
254 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
255 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
256 
257 static vm_size_t tsize2size(unsigned int);
258 static unsigned int size2tsize(vm_size_t);
259 static unsigned long ilog2(unsigned long);
260 
261 static void set_mas4_defaults(void);
262 
263 static inline void tlb0_flush_entry(vm_offset_t);
264 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
265 
266 /**************************************************************************/
267 /* Page table management */
268 /**************************************************************************/
269 
270 static struct rwlock_padalign pvh_global_lock;
271 
272 /* Data for the pv entry allocation mechanism */
273 static uma_zone_t pvzone;
274 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
275 
276 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
277 
278 #ifndef PMAP_SHPGPERPROC
279 #define PMAP_SHPGPERPROC	200
280 #endif
281 
282 #ifdef __powerpc64__
283 #define PMAP_ROOT_SIZE	(sizeof(pte_t***) * PP2D_NENTRIES)
284 static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **,
285 			 unsigned int, boolean_t);
286 static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int, vm_page_t);
287 static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int);
288 static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t);
289 #else
290 #define PMAP_ROOT_SIZE	(sizeof(pte_t**) * PDIR_NENTRIES)
291 static void ptbl_init(void);
292 static struct ptbl_buf *ptbl_buf_alloc(void);
293 static void ptbl_buf_free(struct ptbl_buf *);
294 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
295 
296 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
297 static void ptbl_free(mmu_t, pmap_t, unsigned int);
298 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
299 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
300 #endif
301 
302 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
303 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
304 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
305 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
306 static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t);
307 
308 static pv_entry_t pv_alloc(void);
309 static void pv_free(pv_entry_t);
310 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
311 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
312 
313 static void booke_pmap_init_qpages(void);
314 
315 struct ptbl_buf {
316 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
317 	vm_offset_t kva;		/* va of mapping */
318 };
319 
320 #ifndef __powerpc64__
321 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
322 #define PTBL_BUFS		(128 * 16)
323 
324 /* ptbl free list and a lock used for access synchronization. */
325 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
326 static struct mtx ptbl_buf_freelist_lock;
327 
328 /* Base address of kva space allocated fot ptbl bufs. */
329 static vm_offset_t ptbl_buf_pool_vabase;
330 
331 /* Pointer to ptbl_buf structures. */
332 static struct ptbl_buf *ptbl_bufs;
333 #endif
334 
335 #ifdef SMP
336 extern tlb_entry_t __boot_tlb1[];
337 void pmap_bootstrap_ap(volatile uint32_t *);
338 #endif
339 
340 /*
341  * Kernel MMU interface
342  */
343 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
344 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
345     vm_size_t, vm_offset_t);
346 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
347 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
348     vm_offset_t, vm_page_t *, vm_offset_t, int);
349 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
350     vm_prot_t, u_int flags, int8_t psind);
351 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
352     vm_page_t, vm_prot_t);
353 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
354     vm_prot_t);
355 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
356 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
357     vm_prot_t);
358 static void		mmu_booke_init(mmu_t);
359 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
360 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
361 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
362 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
363 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
364     int);
365 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
366     vm_paddr_t *);
367 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
368     vm_object_t, vm_pindex_t, vm_size_t);
369 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
370 static void		mmu_booke_page_init(mmu_t, vm_page_t);
371 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
372 static void		mmu_booke_pinit(mmu_t, pmap_t);
373 static void		mmu_booke_pinit0(mmu_t, pmap_t);
374 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
375     vm_prot_t);
376 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
377 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
378 static void		mmu_booke_release(mmu_t, pmap_t);
379 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
380 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
381 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
382 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
383 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
384 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
385 static void		mmu_booke_activate(mmu_t, struct thread *);
386 static void		mmu_booke_deactivate(mmu_t, struct thread *);
387 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
388 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
389 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
390 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
391 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
392 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
393 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
394 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
395 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
396 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
397     vm_size_t);
398 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
399     void **);
400 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
401     void *);
402 static void		mmu_booke_scan_init(mmu_t);
403 static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
404 static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
405 static int		mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr,
406     vm_size_t sz, vm_memattr_t mode);
407 static int		mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm,
408     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
409 static int		mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
410     int *is_user, vm_offset_t *decoded_addr);
411 static void		mmu_booke_page_array_startup(mmu_t , long);
412 
413 
414 static mmu_method_t mmu_booke_methods[] = {
415 	/* pmap dispatcher interface */
416 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
417 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
418 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
419 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
420 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
421 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
422 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
423 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
424 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
425 	MMUMETHOD(mmu_init,		mmu_booke_init),
426 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
427 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
428 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
429 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
430 	MMUMETHOD(mmu_map,		mmu_booke_map),
431 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
432 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
433 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
434 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
435 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
436 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
437 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
438 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
439 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
440 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
441 	MMUMETHOD(mmu_release,		mmu_booke_release),
442 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
443 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
444 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
445 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
446 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
447 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
448 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
449 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
450 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
451 	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
452 	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
453 	MMUMETHOD(mmu_page_array_startup,	mmu_booke_page_array_startup),
454 
455 	/* Internal interfaces */
456 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
457 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
458 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
459 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
460 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
461 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
462 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
463 	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),
464 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
465 	MMUMETHOD(mmu_change_attr,	mmu_booke_change_attr),
466 	MMUMETHOD(mmu_map_user_ptr,	mmu_booke_map_user_ptr),
467 	MMUMETHOD(mmu_decode_kernel_ptr, mmu_booke_decode_kernel_ptr),
468 
469 	/* dumpsys() support */
470 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
471 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
472 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
473 
474 	{ 0, 0 }
475 };
476 
477 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
478 
479 static __inline uint32_t
480 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
481 {
482 	uint32_t attrib;
483 	int i;
484 
485 	if (ma != VM_MEMATTR_DEFAULT) {
486 		switch (ma) {
487 		case VM_MEMATTR_UNCACHEABLE:
488 			return (MAS2_I | MAS2_G);
489 		case VM_MEMATTR_WRITE_COMBINING:
490 		case VM_MEMATTR_WRITE_BACK:
491 		case VM_MEMATTR_PREFETCHABLE:
492 			return (MAS2_I);
493 		case VM_MEMATTR_WRITE_THROUGH:
494 			return (MAS2_W | MAS2_M);
495 		case VM_MEMATTR_CACHEABLE:
496 			return (MAS2_M);
497 		}
498 	}
499 
500 	/*
501 	 * Assume the page is cache inhibited and access is guarded unless
502 	 * it's in our available memory array.
503 	 */
504 	attrib = _TLB_ENTRY_IO;
505 	for (i = 0; i < physmem_regions_sz; i++) {
506 		if ((pa >= physmem_regions[i].mr_start) &&
507 		    (pa < (physmem_regions[i].mr_start +
508 		     physmem_regions[i].mr_size))) {
509 			attrib = _TLB_ENTRY_MEM;
510 			break;
511 		}
512 	}
513 
514 	return (attrib);
515 }
516 
517 static inline void
518 tlb_miss_lock(void)
519 {
520 #ifdef SMP
521 	struct pcpu *pc;
522 
523 	if (!smp_started)
524 		return;
525 
526 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
527 		if (pc != pcpup) {
528 
529 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
530 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
531 
532 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
533 			    ("tlb_miss_lock: tried to lock self"));
534 
535 			tlb_lock(pc->pc_booke.tlb_lock);
536 
537 			CTR1(KTR_PMAP, "%s: locked", __func__);
538 		}
539 	}
540 #endif
541 }
542 
543 static inline void
544 tlb_miss_unlock(void)
545 {
546 #ifdef SMP
547 	struct pcpu *pc;
548 
549 	if (!smp_started)
550 		return;
551 
552 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
553 		if (pc != pcpup) {
554 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
555 			    __func__, pc->pc_cpuid);
556 
557 			tlb_unlock(pc->pc_booke.tlb_lock);
558 
559 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
560 		}
561 	}
562 #endif
563 }
564 
565 /* Return number of entries in TLB0. */
566 static __inline void
567 tlb0_get_tlbconf(void)
568 {
569 	uint32_t tlb0_cfg;
570 
571 	tlb0_cfg = mfspr(SPR_TLB0CFG);
572 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
573 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
574 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
575 }
576 
577 /* Return number of entries in TLB1. */
578 static __inline void
579 tlb1_get_tlbconf(void)
580 {
581 	uint32_t tlb1_cfg;
582 
583 	tlb1_cfg = mfspr(SPR_TLB1CFG);
584 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
585 }
586 
587 /**************************************************************************/
588 /* Page table related */
589 /**************************************************************************/
590 
591 #ifdef __powerpc64__
592 /* Initialize pool of kva ptbl buffers. */
593 static void
594 ptbl_init(void)
595 {
596 }
597 
598 /* Get a pointer to a PTE in a page table. */
599 static __inline pte_t *
600 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
601 {
602 	pte_t         **pdir;
603 	pte_t          *ptbl;
604 
605 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
606 
607 	pdir = pmap->pm_pp2d[PP2D_IDX(va)];
608 	if (!pdir)
609 		return NULL;
610 	ptbl = pdir[PDIR_IDX(va)];
611 	return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL);
612 }
613 
614 /*
615  * allocate a page of pointers to page directories, do not preallocate the
616  * page tables
617  */
618 static pte_t  **
619 pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep)
620 {
621 	vm_page_t	m;
622 	pte_t          **pdir;
623 	int		req;
624 
625 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
626 	while ((m = vm_page_alloc(NULL, pp2d_idx, req)) == NULL) {
627 		PMAP_UNLOCK(pmap);
628 		if (nosleep) {
629 			return (NULL);
630 		}
631 		vm_wait(NULL);
632 		PMAP_LOCK(pmap);
633 	}
634 
635 	/* Zero whole ptbl. */
636 	pdir = (pte_t **)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
637 	mmu_booke_zero_page(mmu, m);
638 
639 	return (pdir);
640 }
641 
642 /* Free pdir pages and invalidate pdir entry. */
643 static void
644 pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, vm_page_t m)
645 {
646 	pte_t         **pdir;
647 
648 	pdir = pmap->pm_pp2d[pp2d_idx];
649 
650 	KASSERT((pdir != NULL), ("pdir_free: null pdir"));
651 
652 	pmap->pm_pp2d[pp2d_idx] = NULL;
653 
654 	vm_wire_sub(1);
655 	vm_page_free_zero(m);
656 }
657 
658 /*
659  * Decrement pdir pages hold count and attempt to free pdir pages. Called
660  * when removing directory entry from pdir.
661  *
662  * Return 1 if pdir pages were freed.
663  */
664 static int
665 pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx)
666 {
667 	pte_t         **pdir;
668 	vm_paddr_t	pa;
669 	vm_page_t	m;
670 
671 	KASSERT((pmap != kernel_pmap),
672 		("pdir_unhold: unholding kernel pdir!"));
673 
674 	pdir = pmap->pm_pp2d[pp2d_idx];
675 
676 	/* decrement hold count */
677 	pa = DMAP_TO_PHYS((vm_offset_t) pdir);
678 	m = PHYS_TO_VM_PAGE(pa);
679 
680 	/*
681 	 * Free pdir page if there are no dir entries in this pdir.
682 	 */
683 	m->ref_count--;
684 	if (m->ref_count == 0) {
685 		pdir_free(mmu, pmap, pp2d_idx, m);
686 		return (1);
687 	}
688 	return (0);
689 }
690 
691 /*
692  * Increment hold count for pdir pages. This routine is used when new ptlb
693  * entry is being inserted into pdir.
694  */
695 static void
696 pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir)
697 {
698 	vm_page_t	m;
699 
700 	KASSERT((pmap != kernel_pmap),
701 		("pdir_hold: holding kernel pdir!"));
702 
703 	KASSERT((pdir != NULL), ("pdir_hold: null pdir"));
704 
705 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pdir));
706 	m->ref_count++;
707 }
708 
709 /* Allocate page table. */
710 static pte_t   *
711 ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx,
712     boolean_t nosleep)
713 {
714 	vm_page_t	m;
715 	pte_t          *ptbl;
716 	int		req;
717 
718 	KASSERT((pdir[pdir_idx] == NULL),
719 		("%s: valid ptbl entry exists!", __func__));
720 
721 	req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
722 	while ((m = vm_page_alloc(NULL, pdir_idx, req)) == NULL) {
723 		if (nosleep)
724 			return (NULL);
725 		PMAP_UNLOCK(pmap);
726 		rw_wunlock(&pvh_global_lock);
727 		vm_wait(NULL);
728 		rw_wlock(&pvh_global_lock);
729 		PMAP_LOCK(pmap);
730 	}
731 
732 	/* Zero whole ptbl. */
733 	ptbl = (pte_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
734 	mmu_booke_zero_page(mmu, m);
735 
736 	return (ptbl);
737 }
738 
739 /* Free ptbl pages and invalidate pdir entry. */
740 static void
741 ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, vm_page_t m)
742 {
743 	pte_t          *ptbl;
744 
745 	ptbl = pdir[pdir_idx];
746 
747 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
748 
749 	pdir[pdir_idx] = NULL;
750 
751 	vm_wire_sub(1);
752 	vm_page_free_zero(m);
753 }
754 
755 /*
756  * Decrement ptbl pages hold count and attempt to free ptbl pages. Called
757  * when removing pte entry from ptbl.
758  *
759  * Return 1 if ptbl pages were freed.
760  */
761 static int
762 ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va)
763 {
764 	pte_t          *ptbl;
765 	vm_page_t	m;
766 	u_int		pp2d_idx;
767 	pte_t         **pdir;
768 	u_int		pdir_idx;
769 
770 	pp2d_idx = PP2D_IDX(va);
771 	pdir_idx = PDIR_IDX(va);
772 
773 	KASSERT((pmap != kernel_pmap),
774 		("ptbl_unhold: unholding kernel ptbl!"));
775 
776 	pdir = pmap->pm_pp2d[pp2d_idx];
777 	ptbl = pdir[pdir_idx];
778 
779 	/* decrement hold count */
780 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
781 
782 	/*
783 	 * Free ptbl pages if there are no pte entries in this ptbl.
784 	 * ref_count has the same value for all ptbl pages, so check the
785 	 * last page.
786 	 */
787 	m->ref_count--;
788 	if (m->ref_count == 0) {
789 		ptbl_free(mmu, pmap, pdir, pdir_idx, m);
790 		pdir_unhold(mmu, pmap, pp2d_idx);
791 		return (1);
792 	}
793 	return (0);
794 }
795 
796 /*
797  * Increment hold count for ptbl pages. This routine is used when new pte
798  * entry is being inserted into ptbl.
799  */
800 static void
801 ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx)
802 {
803 	pte_t          *ptbl;
804 	vm_page_t	m;
805 
806 	KASSERT((pmap != kernel_pmap),
807 		("ptbl_hold: holding kernel ptbl!"));
808 
809 	ptbl = pdir[pdir_idx];
810 
811 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
812 
813 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl));
814 	m->ref_count++;
815 }
816 #else
817 
818 /* Initialize pool of kva ptbl buffers. */
819 static void
820 ptbl_init(void)
821 {
822 	int i;
823 
824 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
825 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
826 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
827 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
828 
829 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
830 	TAILQ_INIT(&ptbl_buf_freelist);
831 
832 	for (i = 0; i < PTBL_BUFS; i++) {
833 		ptbl_bufs[i].kva =
834 		    ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
835 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
836 	}
837 }
838 
839 /* Get a ptbl_buf from the freelist. */
840 static struct ptbl_buf *
841 ptbl_buf_alloc(void)
842 {
843 	struct ptbl_buf *buf;
844 
845 	mtx_lock(&ptbl_buf_freelist_lock);
846 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
847 	if (buf != NULL)
848 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
849 	mtx_unlock(&ptbl_buf_freelist_lock);
850 
851 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
852 
853 	return (buf);
854 }
855 
856 /* Return ptbl buff to free pool. */
857 static void
858 ptbl_buf_free(struct ptbl_buf *buf)
859 {
860 
861 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
862 
863 	mtx_lock(&ptbl_buf_freelist_lock);
864 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
865 	mtx_unlock(&ptbl_buf_freelist_lock);
866 }
867 
868 /*
869  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
870  */
871 static void
872 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
873 {
874 	struct ptbl_buf *pbuf;
875 
876 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
877 
878 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
879 
880 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
881 		if (pbuf->kva == (vm_offset_t)ptbl) {
882 			/* Remove from pmap ptbl buf list. */
883 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
884 
885 			/* Free corresponding ptbl buf. */
886 			ptbl_buf_free(pbuf);
887 			break;
888 		}
889 }
890 
891 /* Allocate page table. */
892 static pte_t *
893 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
894 {
895 	vm_page_t mtbl[PTBL_PAGES];
896 	vm_page_t m;
897 	struct ptbl_buf *pbuf;
898 	unsigned int pidx;
899 	pte_t *ptbl;
900 	int i, j;
901 
902 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
903 	    (pmap == kernel_pmap), pdir_idx);
904 
905 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
906 	    ("ptbl_alloc: invalid pdir_idx"));
907 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
908 	    ("pte_alloc: valid ptbl entry exists!"));
909 
910 	pbuf = ptbl_buf_alloc();
911 	if (pbuf == NULL)
912 		panic("pte_alloc: couldn't alloc kernel virtual memory");
913 
914 	ptbl = (pte_t *)pbuf->kva;
915 
916 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
917 
918 	for (i = 0; i < PTBL_PAGES; i++) {
919 		pidx = (PTBL_PAGES * pdir_idx) + i;
920 		while ((m = vm_page_alloc(NULL, pidx,
921 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
922 			if (nosleep) {
923 				ptbl_free_pmap_ptbl(pmap, ptbl);
924 				for (j = 0; j < i; j++)
925 					vm_page_free(mtbl[j]);
926 				vm_wire_sub(i);
927 				return (NULL);
928 			}
929 			PMAP_UNLOCK(pmap);
930 			rw_wunlock(&pvh_global_lock);
931 			vm_wait(NULL);
932 			rw_wlock(&pvh_global_lock);
933 			PMAP_LOCK(pmap);
934 		}
935 		mtbl[i] = m;
936 	}
937 
938 	/* Map allocated pages into kernel_pmap. */
939 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
940 
941 	/* Zero whole ptbl. */
942 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
943 
944 	/* Add pbuf to the pmap ptbl bufs list. */
945 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
946 
947 	return (ptbl);
948 }
949 
950 /* Free ptbl pages and invalidate pdir entry. */
951 static void
952 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
953 {
954 	pte_t *ptbl;
955 	vm_paddr_t pa;
956 	vm_offset_t va;
957 	vm_page_t m;
958 	int i;
959 
960 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
961 	    (pmap == kernel_pmap), pdir_idx);
962 
963 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
964 	    ("ptbl_free: invalid pdir_idx"));
965 
966 	ptbl = pmap->pm_pdir[pdir_idx];
967 
968 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
969 
970 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
971 
972 	/*
973 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
974 	 * don't attempt to look up the page tables we are releasing.
975 	 */
976 	mtx_lock_spin(&tlbivax_mutex);
977 	tlb_miss_lock();
978 
979 	pmap->pm_pdir[pdir_idx] = NULL;
980 
981 	tlb_miss_unlock();
982 	mtx_unlock_spin(&tlbivax_mutex);
983 
984 	for (i = 0; i < PTBL_PAGES; i++) {
985 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
986 		pa = pte_vatopa(mmu, kernel_pmap, va);
987 		m = PHYS_TO_VM_PAGE(pa);
988 		vm_page_free_zero(m);
989 		vm_wire_sub(1);
990 		mmu_booke_kremove(mmu, va);
991 	}
992 
993 	ptbl_free_pmap_ptbl(pmap, ptbl);
994 }
995 
996 /*
997  * Decrement ptbl pages hold count and attempt to free ptbl pages.
998  * Called when removing pte entry from ptbl.
999  *
1000  * Return 1 if ptbl pages were freed.
1001  */
1002 static int
1003 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
1004 {
1005 	pte_t *ptbl;
1006 	vm_paddr_t pa;
1007 	vm_page_t m;
1008 	int i;
1009 
1010 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
1011 	    (pmap == kernel_pmap), pdir_idx);
1012 
1013 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
1014 	    ("ptbl_unhold: invalid pdir_idx"));
1015 	KASSERT((pmap != kernel_pmap),
1016 	    ("ptbl_unhold: unholding kernel ptbl!"));
1017 
1018 	ptbl = pmap->pm_pdir[pdir_idx];
1019 
1020 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
1021 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
1022 	    ("ptbl_unhold: non kva ptbl"));
1023 
1024 	/* decrement hold count */
1025 	for (i = 0; i < PTBL_PAGES; i++) {
1026 		pa = pte_vatopa(mmu, kernel_pmap,
1027 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
1028 		m = PHYS_TO_VM_PAGE(pa);
1029 		m->ref_count--;
1030 	}
1031 
1032 	/*
1033 	 * Free ptbl pages if there are no pte etries in this ptbl.
1034 	 * ref_count has the same value for all ptbl pages, so check the last
1035 	 * page.
1036 	 */
1037 	if (m->ref_count == 0) {
1038 		ptbl_free(mmu, pmap, pdir_idx);
1039 
1040 		//debugf("ptbl_unhold: e (freed ptbl)\n");
1041 		return (1);
1042 	}
1043 
1044 	return (0);
1045 }
1046 
1047 /*
1048  * Increment hold count for ptbl pages. This routine is used when a new pte
1049  * entry is being inserted into the ptbl.
1050  */
1051 static void
1052 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
1053 {
1054 	vm_paddr_t pa;
1055 	pte_t *ptbl;
1056 	vm_page_t m;
1057 	int i;
1058 
1059 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
1060 	    pdir_idx);
1061 
1062 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
1063 	    ("ptbl_hold: invalid pdir_idx"));
1064 	KASSERT((pmap != kernel_pmap),
1065 	    ("ptbl_hold: holding kernel ptbl!"));
1066 
1067 	ptbl = pmap->pm_pdir[pdir_idx];
1068 
1069 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
1070 
1071 	for (i = 0; i < PTBL_PAGES; i++) {
1072 		pa = pte_vatopa(mmu, kernel_pmap,
1073 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
1074 		m = PHYS_TO_VM_PAGE(pa);
1075 		m->ref_count++;
1076 	}
1077 }
1078 #endif
1079 
1080 /* Allocate pv_entry structure. */
1081 pv_entry_t
1082 pv_alloc(void)
1083 {
1084 	pv_entry_t pv;
1085 
1086 	pv_entry_count++;
1087 	if (pv_entry_count > pv_entry_high_water)
1088 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
1089 	pv = uma_zalloc(pvzone, M_NOWAIT);
1090 
1091 	return (pv);
1092 }
1093 
1094 /* Free pv_entry structure. */
1095 static __inline void
1096 pv_free(pv_entry_t pve)
1097 {
1098 
1099 	pv_entry_count--;
1100 	uma_zfree(pvzone, pve);
1101 }
1102 
1103 
1104 /* Allocate and initialize pv_entry structure. */
1105 static void
1106 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
1107 {
1108 	pv_entry_t pve;
1109 
1110 	//int su = (pmap == kernel_pmap);
1111 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
1112 	//	(u_int32_t)pmap, va, (u_int32_t)m);
1113 
1114 	pve = pv_alloc();
1115 	if (pve == NULL)
1116 		panic("pv_insert: no pv entries!");
1117 
1118 	pve->pv_pmap = pmap;
1119 	pve->pv_va = va;
1120 
1121 	/* add to pv_list */
1122 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1123 	rw_assert(&pvh_global_lock, RA_WLOCKED);
1124 
1125 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
1126 
1127 	//debugf("pv_insert: e\n");
1128 }
1129 
1130 /* Destroy pv entry. */
1131 static void
1132 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
1133 {
1134 	pv_entry_t pve;
1135 
1136 	//int su = (pmap == kernel_pmap);
1137 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
1138 
1139 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1140 	rw_assert(&pvh_global_lock, RA_WLOCKED);
1141 
1142 	/* find pv entry */
1143 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
1144 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
1145 			/* remove from pv_list */
1146 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
1147 			if (TAILQ_EMPTY(&m->md.pv_list))
1148 				vm_page_aflag_clear(m, PGA_WRITEABLE);
1149 
1150 			/* free pv entry struct */
1151 			pv_free(pve);
1152 			break;
1153 		}
1154 	}
1155 
1156 	//debugf("pv_remove: e\n");
1157 }
1158 
1159 #ifdef __powerpc64__
1160 /*
1161  * Clean pte entry, try to free page table page if requested.
1162  *
1163  * Return 1 if ptbl pages were freed, otherwise return 0.
1164  */
1165 static int
1166 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags)
1167 {
1168 	vm_page_t	m;
1169 	pte_t          *pte;
1170 
1171 	pte = pte_find(mmu, pmap, va);
1172 	KASSERT(pte != NULL, ("%s: NULL pte", __func__));
1173 
1174 	if (!PTE_ISVALID(pte))
1175 		return (0);
1176 
1177 	/* Get vm_page_t for mapped pte. */
1178 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1179 
1180 	if (PTE_ISWIRED(pte))
1181 		pmap->pm_stats.wired_count--;
1182 
1183 	/* Handle managed entry. */
1184 	if (PTE_ISMANAGED(pte)) {
1185 
1186 		/* Handle modified pages. */
1187 		if (PTE_ISMODIFIED(pte))
1188 			vm_page_dirty(m);
1189 
1190 		/* Referenced pages. */
1191 		if (PTE_ISREFERENCED(pte))
1192 			vm_page_aflag_set(m, PGA_REFERENCED);
1193 
1194 		/* Remove pv_entry from pv_list. */
1195 		pv_remove(pmap, va, m);
1196 	} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
1197 		pv_remove(pmap, va, m);
1198 		if (TAILQ_EMPTY(&m->md.pv_list))
1199 			m->md.pv_tracked = false;
1200 	}
1201 	mtx_lock_spin(&tlbivax_mutex);
1202 	tlb_miss_lock();
1203 
1204 	tlb0_flush_entry(va);
1205 	*pte = 0;
1206 
1207 	tlb_miss_unlock();
1208 	mtx_unlock_spin(&tlbivax_mutex);
1209 
1210 	pmap->pm_stats.resident_count--;
1211 
1212 	if (flags & PTBL_UNHOLD) {
1213 		return (ptbl_unhold(mmu, pmap, va));
1214 	}
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Insert PTE for a given page and virtual address.
1220  */
1221 static int
1222 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
1223     boolean_t nosleep)
1224 {
1225 	unsigned int	pp2d_idx = PP2D_IDX(va);
1226 	unsigned int	pdir_idx = PDIR_IDX(va);
1227 	unsigned int	ptbl_idx = PTBL_IDX(va);
1228 	pte_t          *ptbl, *pte, pte_tmp;
1229 	pte_t         **pdir;
1230 
1231 	/* Get the page directory pointer. */
1232 	pdir = pmap->pm_pp2d[pp2d_idx];
1233 	if (pdir == NULL)
1234 		pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep);
1235 
1236 	/* Get the page table pointer. */
1237 	ptbl = pdir[pdir_idx];
1238 
1239 	if (ptbl == NULL) {
1240 		/* Allocate page table pages. */
1241 		ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep);
1242 		if (ptbl == NULL) {
1243 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
1244 			return (ENOMEM);
1245 		}
1246 		pte = &ptbl[ptbl_idx];
1247 	} else {
1248 		/*
1249 		 * Check if there is valid mapping for requested va, if there
1250 		 * is, remove it.
1251 		 */
1252 		pte = &ptbl[ptbl_idx];
1253 		if (PTE_ISVALID(pte)) {
1254 			pte_remove(mmu, pmap, va, PTBL_HOLD);
1255 		} else {
1256 			/*
1257 			 * pte is not used, increment hold count for ptbl
1258 			 * pages.
1259 			 */
1260 			if (pmap != kernel_pmap)
1261 				ptbl_hold(mmu, pmap, pdir, pdir_idx);
1262 		}
1263 	}
1264 
1265 	if (pdir[pdir_idx] == NULL) {
1266 		if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL)
1267 			pdir_hold(mmu, pmap, pdir);
1268 		pdir[pdir_idx] = ptbl;
1269 	}
1270 	if (pmap->pm_pp2d[pp2d_idx] == NULL)
1271 		pmap->pm_pp2d[pp2d_idx] = pdir;
1272 
1273 	/*
1274 	 * Insert pv_entry into pv_list for mapped page if part of managed
1275 	 * memory.
1276 	 */
1277 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1278 		flags |= PTE_MANAGED;
1279 
1280 		/* Create and insert pv entry. */
1281 		pv_insert(pmap, va, m);
1282 	}
1283 
1284 	pmap->pm_stats.resident_count++;
1285 
1286 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
1287 	pte_tmp |= (PTE_VALID | flags);
1288 
1289 	mtx_lock_spin(&tlbivax_mutex);
1290 	tlb_miss_lock();
1291 
1292 	tlb0_flush_entry(va);
1293 	*pte = pte_tmp;
1294 
1295 	tlb_miss_unlock();
1296 	mtx_unlock_spin(&tlbivax_mutex);
1297 
1298 	return (0);
1299 }
1300 
1301 /* Return the pa for the given pmap/va. */
1302 static	vm_paddr_t
1303 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1304 {
1305 	vm_paddr_t	pa = 0;
1306 	pte_t          *pte;
1307 
1308 	pte = pte_find(mmu, pmap, va);
1309 	if ((pte != NULL) && PTE_ISVALID(pte))
1310 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1311 	return (pa);
1312 }
1313 
1314 
1315 /* allocate pte entries to manage (addr & mask) to (addr & mask) + size */
1316 static void
1317 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1318 {
1319 	int		i, j;
1320 	vm_offset_t	va;
1321 	pte_t		*pte;
1322 
1323 	va = addr;
1324 	/* Initialize kernel pdir */
1325 	for (i = 0; i < kernel_pdirs; i++) {
1326 		kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] =
1327 		    (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES));
1328 		for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES));
1329 		    j < PDIR_NENTRIES; j++) {
1330 			kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] =
1331 			    (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE) +
1332 			     (((i * PDIR_NENTRIES) + j) * PAGE_SIZE));
1333 		}
1334 	}
1335 
1336 	/*
1337 	 * Fill in PTEs covering kernel code and data. They are not required
1338 	 * for address translation, as this area is covered by static TLB1
1339 	 * entries, but for pte_vatopa() to work correctly with kernel area
1340 	 * addresses.
1341 	 */
1342 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1343 		pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]);
1344 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1345 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1346 		    PTE_VALID | PTE_PS_4KB;
1347 	}
1348 }
1349 #else
1350 /*
1351  * Clean pte entry, try to free page table page if requested.
1352  *
1353  * Return 1 if ptbl pages were freed, otherwise return 0.
1354  */
1355 static int
1356 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
1357 {
1358 	unsigned int pdir_idx = PDIR_IDX(va);
1359 	unsigned int ptbl_idx = PTBL_IDX(va);
1360 	vm_page_t m;
1361 	pte_t *ptbl;
1362 	pte_t *pte;
1363 
1364 	//int su = (pmap == kernel_pmap);
1365 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
1366 	//		su, (u_int32_t)pmap, va, flags);
1367 
1368 	ptbl = pmap->pm_pdir[pdir_idx];
1369 	KASSERT(ptbl, ("pte_remove: null ptbl"));
1370 
1371 	pte = &ptbl[ptbl_idx];
1372 
1373 	if (pte == NULL || !PTE_ISVALID(pte))
1374 		return (0);
1375 
1376 	if (PTE_ISWIRED(pte))
1377 		pmap->pm_stats.wired_count--;
1378 
1379 	/* Get vm_page_t for mapped pte. */
1380 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1381 
1382 	/* Handle managed entry. */
1383 	if (PTE_ISMANAGED(pte)) {
1384 
1385 		if (PTE_ISMODIFIED(pte))
1386 			vm_page_dirty(m);
1387 
1388 		if (PTE_ISREFERENCED(pte))
1389 			vm_page_aflag_set(m, PGA_REFERENCED);
1390 
1391 		pv_remove(pmap, va, m);
1392 	} else if (pmap == kernel_pmap && m && m->md.pv_tracked) {
1393 		/*
1394 		 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is
1395 		 * used.  This is needed by the NCSW support code for fast
1396 		 * VA<->PA translation.
1397 		 */
1398 		pv_remove(pmap, va, m);
1399 		if (TAILQ_EMPTY(&m->md.pv_list))
1400 			m->md.pv_tracked = false;
1401 	}
1402 
1403 	mtx_lock_spin(&tlbivax_mutex);
1404 	tlb_miss_lock();
1405 
1406 	tlb0_flush_entry(va);
1407 	*pte = 0;
1408 
1409 	tlb_miss_unlock();
1410 	mtx_unlock_spin(&tlbivax_mutex);
1411 
1412 	pmap->pm_stats.resident_count--;
1413 
1414 	if (flags & PTBL_UNHOLD) {
1415 		//debugf("pte_remove: e (unhold)\n");
1416 		return (ptbl_unhold(mmu, pmap, pdir_idx));
1417 	}
1418 
1419 	//debugf("pte_remove: e\n");
1420 	return (0);
1421 }
1422 
1423 /*
1424  * Insert PTE for a given page and virtual address.
1425  */
1426 static int
1427 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
1428     boolean_t nosleep)
1429 {
1430 	unsigned int pdir_idx = PDIR_IDX(va);
1431 	unsigned int ptbl_idx = PTBL_IDX(va);
1432 	pte_t *ptbl, *pte, pte_tmp;
1433 
1434 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
1435 	    pmap == kernel_pmap, pmap, va);
1436 
1437 	/* Get the page table pointer. */
1438 	ptbl = pmap->pm_pdir[pdir_idx];
1439 
1440 	if (ptbl == NULL) {
1441 		/* Allocate page table pages. */
1442 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
1443 		if (ptbl == NULL) {
1444 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
1445 			return (ENOMEM);
1446 		}
1447 		pmap->pm_pdir[pdir_idx] = ptbl;
1448 		pte = &ptbl[ptbl_idx];
1449 	} else {
1450 		/*
1451 		 * Check if there is valid mapping for requested
1452 		 * va, if there is, remove it.
1453 		 */
1454 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
1455 		if (PTE_ISVALID(pte)) {
1456 			pte_remove(mmu, pmap, va, PTBL_HOLD);
1457 		} else {
1458 			/*
1459 			 * pte is not used, increment hold count
1460 			 * for ptbl pages.
1461 			 */
1462 			if (pmap != kernel_pmap)
1463 				ptbl_hold(mmu, pmap, pdir_idx);
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * Insert pv_entry into pv_list for mapped page if part of managed
1469 	 * memory.
1470 	 */
1471 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1472 		flags |= PTE_MANAGED;
1473 
1474 		/* Create and insert pv entry. */
1475 		pv_insert(pmap, va, m);
1476 	}
1477 
1478 	pmap->pm_stats.resident_count++;
1479 
1480 	pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
1481 	pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
1482 
1483 	mtx_lock_spin(&tlbivax_mutex);
1484 	tlb_miss_lock();
1485 
1486 	tlb0_flush_entry(va);
1487 	*pte = pte_tmp;
1488 
1489 	tlb_miss_unlock();
1490 	mtx_unlock_spin(&tlbivax_mutex);
1491 	return (0);
1492 }
1493 
1494 /* Return the pa for the given pmap/va. */
1495 static vm_paddr_t
1496 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1497 {
1498 	vm_paddr_t pa = 0;
1499 	pte_t *pte;
1500 
1501 	pte = pte_find(mmu, pmap, va);
1502 	if ((pte != NULL) && PTE_ISVALID(pte))
1503 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1504 	return (pa);
1505 }
1506 
1507 /* Get a pointer to a PTE in a page table. */
1508 static pte_t *
1509 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1510 {
1511 	unsigned int pdir_idx = PDIR_IDX(va);
1512 	unsigned int ptbl_idx = PTBL_IDX(va);
1513 
1514 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1515 
1516 	if (pmap->pm_pdir[pdir_idx])
1517 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1518 
1519 	return (NULL);
1520 }
1521 
1522 /* Set up kernel page tables. */
1523 static void
1524 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1525 {
1526 	int		i;
1527 	vm_offset_t	va;
1528 	pte_t		*pte;
1529 
1530 	/* Initialize kernel pdir */
1531 	for (i = 0; i < kernel_ptbls; i++)
1532 		kernel_pmap->pm_pdir[kptbl_min + i] =
1533 		    (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1534 
1535 	/*
1536 	 * Fill in PTEs covering kernel code and data. They are not required
1537 	 * for address translation, as this area is covered by static TLB1
1538 	 * entries, but for pte_vatopa() to work correctly with kernel area
1539 	 * addresses.
1540 	 */
1541 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1542 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1543 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1544 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1545 		    PTE_VALID | PTE_PS_4KB;
1546 	}
1547 }
1548 #endif
1549 
1550 /**************************************************************************/
1551 /* PMAP related */
1552 /**************************************************************************/
1553 
1554 /*
1555  * This is called during booke_init, before the system is really initialized.
1556  */
1557 static void
1558 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1559 {
1560 	vm_paddr_t phys_kernelend;
1561 	struct mem_region *mp, *mp1;
1562 	int cnt, i, j;
1563 	vm_paddr_t s, e, sz;
1564 	vm_paddr_t physsz, hwphyssz;
1565 	u_int phys_avail_count;
1566 	vm_size_t kstack0_sz;
1567 	vm_offset_t kernel_pdir, kstack0;
1568 	vm_paddr_t kstack0_phys;
1569 	void *dpcpu;
1570 	vm_offset_t kernel_ptbl_root;
1571 
1572 	debugf("mmu_booke_bootstrap: entered\n");
1573 
1574 	/* Set interesting system properties */
1575 #ifdef __powerpc64__
1576 	hw_direct_map = 1;
1577 #else
1578 	hw_direct_map = 0;
1579 #endif
1580 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
1581 	elf32_nxstack = 1;
1582 #endif
1583 
1584 	/* Initialize invalidation mutex */
1585 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1586 
1587 	/* Read TLB0 size and associativity. */
1588 	tlb0_get_tlbconf();
1589 
1590 	/*
1591 	 * Align kernel start and end address (kernel image).
1592 	 * Note that kernel end does not necessarily relate to kernsize.
1593 	 * kernsize is the size of the kernel that is actually mapped.
1594 	 */
1595 	data_start = round_page(kernelend);
1596 	data_end = data_start;
1597 
1598 	/* Allocate the dynamic per-cpu area. */
1599 	dpcpu = (void *)data_end;
1600 	data_end += DPCPU_SIZE;
1601 
1602 	/* Allocate space for the message buffer. */
1603 	msgbufp = (struct msgbuf *)data_end;
1604 	data_end += msgbufsize;
1605 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1606 	    (uintptr_t)msgbufp, data_end);
1607 
1608 	data_end = round_page(data_end);
1609 
1610 #ifdef __powerpc64__
1611 	kernel_ptbl_root = data_end;
1612 	data_end += PP2D_NENTRIES * sizeof(pte_t**);
1613 #else
1614 	/* Allocate space for ptbl_bufs. */
1615 	ptbl_bufs = (struct ptbl_buf *)data_end;
1616 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1617 	debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1618 	    (uintptr_t)ptbl_bufs, data_end);
1619 
1620 	data_end = round_page(data_end);
1621 	kernel_ptbl_root = data_end;
1622 	data_end += PDIR_NENTRIES * sizeof(pte_t*);
1623 #endif
1624 
1625 	/* Allocate PTE tables for kernel KVA. */
1626 	kernel_pdir = data_end;
1627 	kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
1628 	    PDIR_SIZE);
1629 #ifdef __powerpc64__
1630 	kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES);
1631 	data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE;
1632 #endif
1633 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1634 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1635 	debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1636 	    kernel_pdir, data_end);
1637 
1638 	/* Retrieve phys/avail mem regions */
1639 	mem_regions(&physmem_regions, &physmem_regions_sz,
1640 	    &availmem_regions, &availmem_regions_sz);
1641 
1642 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
1643 		panic("mmu_booke_bootstrap: phys_avail too small");
1644 
1645 	data_end = round_page(data_end);
1646 	vm_page_array = (vm_page_t)data_end;
1647 	/*
1648 	 * Get a rough idea (upper bound) on the size of the page array.  The
1649 	 * vm_page_array will not handle any more pages than we have in the
1650 	 * avail_regions array, and most likely much less.
1651 	 */
1652 	sz = 0;
1653 	for (mp = availmem_regions; mp->mr_size; mp++) {
1654 		sz += mp->mr_size;
1655 	}
1656 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
1657 	data_end += round_page(sz * sizeof(struct vm_page));
1658 
1659 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
1660 	data_end = roundup2(data_end, 1 << 20);
1661 
1662 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
1663 	debugf(" kernstart: %#zx\n", kernstart);
1664 	debugf(" kernsize: %#zx\n", kernsize);
1665 
1666 	if (data_end - kernstart > kernsize) {
1667 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1668 		    kernload + kernsize, (data_end - kernstart) - kernsize,
1669 		    _TLB_ENTRY_MEM);
1670 	}
1671 	data_end = kernstart + kernsize;
1672 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
1673 
1674 	/*
1675 	 * Clear the structures - note we can only do it safely after the
1676 	 * possible additional TLB1 translations are in place (above) so that
1677 	 * all range up to the currently calculated 'data_end' is covered.
1678 	 */
1679 	dpcpu_init(dpcpu, 0);
1680 #ifdef __powerpc64__
1681 	memset((void *)kernel_pdir, 0,
1682 	    kernel_pdirs * PDIR_PAGES * PAGE_SIZE +
1683 	    kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1684 #else
1685 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1686 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1687 #endif
1688 
1689 	/*******************************************************/
1690 	/* Set the start and end of kva. */
1691 	/*******************************************************/
1692 	virtual_avail = round_page(data_end);
1693 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1694 
1695 #ifndef __powerpc64__
1696 	/* Allocate KVA space for page zero/copy operations. */
1697 	zero_page_va = virtual_avail;
1698 	virtual_avail += PAGE_SIZE;
1699 	copy_page_src_va = virtual_avail;
1700 	virtual_avail += PAGE_SIZE;
1701 	copy_page_dst_va = virtual_avail;
1702 	virtual_avail += PAGE_SIZE;
1703 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
1704 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
1705 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
1706 
1707 	/* Initialize page zero/copy mutexes. */
1708 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1709 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1710 
1711 	/* Allocate KVA space for ptbl bufs. */
1712 	ptbl_buf_pool_vabase = virtual_avail;
1713 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1714 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
1715 	    ptbl_buf_pool_vabase, virtual_avail);
1716 #endif
1717 
1718 	/* Calculate corresponding physical addresses for the kernel region. */
1719 	phys_kernelend = kernload + kernsize;
1720 	debugf("kernel image and allocated data:\n");
1721 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
1722 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
1723 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
1724 
1725 	/*
1726 	 * Remove kernel physical address range from avail regions list. Page
1727 	 * align all regions.  Non-page aligned memory isn't very interesting
1728 	 * to us.  Also, sort the entries for ascending addresses.
1729 	 */
1730 
1731 	sz = 0;
1732 	cnt = availmem_regions_sz;
1733 	debugf("processing avail regions:\n");
1734 	for (mp = availmem_regions; mp->mr_size; mp++) {
1735 		s = mp->mr_start;
1736 		e = mp->mr_start + mp->mr_size;
1737 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1738 		/* Check whether this region holds all of the kernel. */
1739 		if (s < kernload && e > phys_kernelend) {
1740 			availmem_regions[cnt].mr_start = phys_kernelend;
1741 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1742 			e = kernload;
1743 		}
1744 		/* Look whether this regions starts within the kernel. */
1745 		if (s >= kernload && s < phys_kernelend) {
1746 			if (e <= phys_kernelend)
1747 				goto empty;
1748 			s = phys_kernelend;
1749 		}
1750 		/* Now look whether this region ends within the kernel. */
1751 		if (e > kernload && e <= phys_kernelend) {
1752 			if (s >= kernload)
1753 				goto empty;
1754 			e = kernload;
1755 		}
1756 		/* Now page align the start and size of the region. */
1757 		s = round_page(s);
1758 		e = trunc_page(e);
1759 		if (e < s)
1760 			e = s;
1761 		sz = e - s;
1762 		debugf("%09jx-%09jx = %jx\n",
1763 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1764 
1765 		/* Check whether some memory is left here. */
1766 		if (sz == 0) {
1767 		empty:
1768 			memmove(mp, mp + 1,
1769 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1770 			cnt--;
1771 			mp--;
1772 			continue;
1773 		}
1774 
1775 		/* Do an insertion sort. */
1776 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1777 			if (s < mp1->mr_start)
1778 				break;
1779 		if (mp1 < mp) {
1780 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1781 			mp1->mr_start = s;
1782 			mp1->mr_size = sz;
1783 		} else {
1784 			mp->mr_start = s;
1785 			mp->mr_size = sz;
1786 		}
1787 	}
1788 	availmem_regions_sz = cnt;
1789 
1790 	/*******************************************************/
1791 	/* Steal physical memory for kernel stack from the end */
1792 	/* of the first avail region                           */
1793 	/*******************************************************/
1794 	kstack0_sz = kstack_pages * PAGE_SIZE;
1795 	kstack0_phys = availmem_regions[0].mr_start +
1796 	    availmem_regions[0].mr_size;
1797 	kstack0_phys -= kstack0_sz;
1798 	availmem_regions[0].mr_size -= kstack0_sz;
1799 
1800 	/*******************************************************/
1801 	/* Fill in phys_avail table, based on availmem_regions */
1802 	/*******************************************************/
1803 	phys_avail_count = 0;
1804 	physsz = 0;
1805 	hwphyssz = 0;
1806 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1807 
1808 	debugf("fill in phys_avail:\n");
1809 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1810 
1811 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1812 		    (uintmax_t)availmem_regions[i].mr_start,
1813 		    (uintmax_t)availmem_regions[i].mr_start +
1814 		        availmem_regions[i].mr_size,
1815 		    (uintmax_t)availmem_regions[i].mr_size);
1816 
1817 		if (hwphyssz != 0 &&
1818 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1819 			debugf(" hw.physmem adjust\n");
1820 			if (physsz < hwphyssz) {
1821 				phys_avail[j] = availmem_regions[i].mr_start;
1822 				phys_avail[j + 1] =
1823 				    availmem_regions[i].mr_start +
1824 				    hwphyssz - physsz;
1825 				physsz = hwphyssz;
1826 				phys_avail_count++;
1827 				dump_avail[j] = phys_avail[j];
1828 				dump_avail[j + 1] = phys_avail[j + 1];
1829 			}
1830 			break;
1831 		}
1832 
1833 		phys_avail[j] = availmem_regions[i].mr_start;
1834 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1835 		    availmem_regions[i].mr_size;
1836 		phys_avail_count++;
1837 		physsz += availmem_regions[i].mr_size;
1838 		dump_avail[j] = phys_avail[j];
1839 		dump_avail[j + 1] = phys_avail[j + 1];
1840 	}
1841 	physmem = btoc(physsz);
1842 
1843 	/* Calculate the last available physical address. */
1844 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1845 		;
1846 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1847 
1848 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1849 	debugf("phys_avail_count = %d\n", phys_avail_count);
1850 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
1851 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
1852 
1853 #ifdef __powerpc64__
1854 	/*
1855 	 * Map the physical memory contiguously in TLB1.
1856 	 * Round so it fits into a single mapping.
1857 	 */
1858 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
1859 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
1860 #endif
1861 
1862 	/*******************************************************/
1863 	/* Initialize (statically allocated) kernel pmap. */
1864 	/*******************************************************/
1865 	PMAP_LOCK_INIT(kernel_pmap);
1866 #ifdef __powerpc64__
1867 	kernel_pmap->pm_pp2d = (pte_t ***)kernel_ptbl_root;
1868 #else
1869 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1870 	kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root;
1871 #endif
1872 
1873 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
1874 	kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir);
1875 	for (i = 0; i < MAXCPU; i++) {
1876 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1877 
1878 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1879 		tidbusy[i][TID_KERNEL] = kernel_pmap;
1880 	}
1881 
1882 	/* Mark kernel_pmap active on all CPUs */
1883 	CPU_FILL(&kernel_pmap->pm_active);
1884 
1885  	/*
1886 	 * Initialize the global pv list lock.
1887 	 */
1888 	rw_init(&pvh_global_lock, "pmap pv global");
1889 
1890 	/*******************************************************/
1891 	/* Final setup */
1892 	/*******************************************************/
1893 
1894 	/* Enter kstack0 into kernel map, provide guard page */
1895 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1896 	thread0.td_kstack = kstack0;
1897 	thread0.td_kstack_pages = kstack_pages;
1898 
1899 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
1900 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
1901 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
1902 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
1903 	    kstack0, kstack0 + kstack0_sz);
1904 
1905 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1906 	for (i = 0; i < kstack_pages; i++) {
1907 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1908 		kstack0 += PAGE_SIZE;
1909 		kstack0_phys += PAGE_SIZE;
1910 	}
1911 
1912 	pmap_bootstrapped = 1;
1913 
1914 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
1915 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
1916 
1917 	debugf("mmu_booke_bootstrap: exit\n");
1918 }
1919 
1920 #ifdef SMP
1921 void
1922 tlb1_ap_prep(void)
1923 {
1924 	tlb_entry_t *e, tmp;
1925 	unsigned int i;
1926 
1927 	/* Prepare TLB1 image for AP processors */
1928 	e = __boot_tlb1;
1929 	for (i = 0; i < TLB1_ENTRIES; i++) {
1930 		tlb1_read_entry(&tmp, i);
1931 
1932 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
1933 			memcpy(e++, &tmp, sizeof(tmp));
1934 	}
1935 }
1936 
1937 void
1938 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1939 {
1940 	int i;
1941 
1942 	/*
1943 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1944 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
1945 	 * created by tlb1_ap_prep(), so use these values directly to
1946 	 * (re)program AP's TLB1 hardware.
1947 	 *
1948 	 * Start at index 1 because index 0 has the kernel map.
1949 	 */
1950 	for (i = 1; i < TLB1_ENTRIES; i++) {
1951 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
1952 			tlb1_write_entry(&__boot_tlb1[i], i);
1953 	}
1954 
1955 	set_mas4_defaults();
1956 }
1957 #endif
1958 
1959 static void
1960 booke_pmap_init_qpages(void)
1961 {
1962 	struct pcpu *pc;
1963 	int i;
1964 
1965 	CPU_FOREACH(i) {
1966 		pc = pcpu_find(i);
1967 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1968 		if (pc->pc_qmap_addr == 0)
1969 			panic("pmap_init_qpages: unable to allocate KVA");
1970 	}
1971 }
1972 
1973 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1974 
1975 /*
1976  * Get the physical page address for the given pmap/virtual address.
1977  */
1978 static vm_paddr_t
1979 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1980 {
1981 	vm_paddr_t pa;
1982 
1983 	PMAP_LOCK(pmap);
1984 	pa = pte_vatopa(mmu, pmap, va);
1985 	PMAP_UNLOCK(pmap);
1986 
1987 	return (pa);
1988 }
1989 
1990 /*
1991  * Extract the physical page address associated with the given
1992  * kernel virtual address.
1993  */
1994 static vm_paddr_t
1995 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1996 {
1997 	tlb_entry_t e;
1998 	vm_paddr_t p = 0;
1999 	int i;
2000 
2001 #ifdef __powerpc64__
2002 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
2003 		return (DMAP_TO_PHYS(va));
2004 #endif
2005 
2006 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
2007 		p = pte_vatopa(mmu, kernel_pmap, va);
2008 
2009 	if (p == 0) {
2010 		/* Check TLB1 mappings */
2011 		for (i = 0; i < TLB1_ENTRIES; i++) {
2012 			tlb1_read_entry(&e, i);
2013 			if (!(e.mas1 & MAS1_VALID))
2014 				continue;
2015 			if (va >= e.virt && va < e.virt + e.size)
2016 				return (e.phys + (va - e.virt));
2017 		}
2018 	}
2019 
2020 	return (p);
2021 }
2022 
2023 /*
2024  * Initialize the pmap module.
2025  * Called by vm_init, to initialize any structures that the pmap
2026  * system needs to map virtual memory.
2027  */
2028 static void
2029 mmu_booke_init(mmu_t mmu)
2030 {
2031 	int shpgperproc = PMAP_SHPGPERPROC;
2032 
2033 	/*
2034 	 * Initialize the address space (zone) for the pv entries.  Set a
2035 	 * high water mark so that the system can recover from excessive
2036 	 * numbers of pv entries.
2037 	 */
2038 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
2039 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
2040 
2041 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
2042 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
2043 
2044 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
2045 	pv_entry_high_water = 9 * (pv_entry_max / 10);
2046 
2047 	uma_zone_reserve_kva(pvzone, pv_entry_max);
2048 
2049 	/* Pre-fill pvzone with initial number of pv entries. */
2050 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
2051 
2052 	/* Create a UMA zone for page table roots. */
2053 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
2054 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
2055 
2056 	/* Initialize ptbl allocation. */
2057 	ptbl_init();
2058 }
2059 
2060 /*
2061  * Map a list of wired pages into kernel virtual address space.  This is
2062  * intended for temporary mappings which do not need page modification or
2063  * references recorded.  Existing mappings in the region are overwritten.
2064  */
2065 static void
2066 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
2067 {
2068 	vm_offset_t va;
2069 
2070 	va = sva;
2071 	while (count-- > 0) {
2072 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2073 		va += PAGE_SIZE;
2074 		m++;
2075 	}
2076 }
2077 
2078 /*
2079  * Remove page mappings from kernel virtual address space.  Intended for
2080  * temporary mappings entered by mmu_booke_qenter.
2081  */
2082 static void
2083 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
2084 {
2085 	vm_offset_t va;
2086 
2087 	va = sva;
2088 	while (count-- > 0) {
2089 		mmu_booke_kremove(mmu, va);
2090 		va += PAGE_SIZE;
2091 	}
2092 }
2093 
2094 /*
2095  * Map a wired page into kernel virtual address space.
2096  */
2097 static void
2098 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
2099 {
2100 
2101 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
2102 }
2103 
2104 static void
2105 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2106 {
2107 	uint32_t flags;
2108 	pte_t *pte;
2109 
2110 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
2111 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
2112 
2113 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2114 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
2115 	flags |= PTE_PS_4KB;
2116 
2117 	pte = pte_find(mmu, kernel_pmap, va);
2118 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
2119 
2120 	mtx_lock_spin(&tlbivax_mutex);
2121 	tlb_miss_lock();
2122 
2123 	if (PTE_ISVALID(pte)) {
2124 
2125 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
2126 
2127 		/* Flush entry from TLB0 */
2128 		tlb0_flush_entry(va);
2129 	}
2130 
2131 	*pte = PTE_RPN_FROM_PA(pa) | flags;
2132 
2133 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
2134 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
2135 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
2136 
2137 	/* Flush the real memory from the instruction cache. */
2138 	if ((flags & (PTE_I | PTE_G)) == 0)
2139 		__syncicache((void *)va, PAGE_SIZE);
2140 
2141 	tlb_miss_unlock();
2142 	mtx_unlock_spin(&tlbivax_mutex);
2143 }
2144 
2145 /*
2146  * Remove a page from kernel page table.
2147  */
2148 static void
2149 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
2150 {
2151 	pte_t *pte;
2152 
2153 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
2154 
2155 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
2156 	    (va <= VM_MAX_KERNEL_ADDRESS)),
2157 	    ("mmu_booke_kremove: invalid va"));
2158 
2159 	pte = pte_find(mmu, kernel_pmap, va);
2160 
2161 	if (!PTE_ISVALID(pte)) {
2162 
2163 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
2164 
2165 		return;
2166 	}
2167 
2168 	mtx_lock_spin(&tlbivax_mutex);
2169 	tlb_miss_lock();
2170 
2171 	/* Invalidate entry in TLB0, update PTE. */
2172 	tlb0_flush_entry(va);
2173 	*pte = 0;
2174 
2175 	tlb_miss_unlock();
2176 	mtx_unlock_spin(&tlbivax_mutex);
2177 }
2178 
2179 /*
2180  * Provide a kernel pointer corresponding to a given userland pointer.
2181  * The returned pointer is valid until the next time this function is
2182  * called in this thread. This is used internally in copyin/copyout.
2183  */
2184 int
2185 mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
2186     void **kaddr, size_t ulen, size_t *klen)
2187 {
2188 
2189 	if (trunc_page((uintptr_t)uaddr + ulen) > VM_MAXUSER_ADDRESS)
2190 		return (EFAULT);
2191 
2192 	*kaddr = (void *)(uintptr_t)uaddr;
2193 	if (klen)
2194 		*klen = ulen;
2195 
2196 	return (0);
2197 }
2198 
2199 /*
2200  * Figure out where a given kernel pointer (usually in a fault) points
2201  * to from the VM's perspective, potentially remapping into userland's
2202  * address space.
2203  */
2204 static int
2205 mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2206     vm_offset_t *decoded_addr)
2207 {
2208 
2209 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
2210 		*is_user = 1;
2211 	else
2212 		*is_user = 0;
2213 
2214 	*decoded_addr = addr;
2215 	return (0);
2216 }
2217 
2218 /*
2219  * Initialize pmap associated with process 0.
2220  */
2221 static void
2222 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
2223 {
2224 
2225 	PMAP_LOCK_INIT(pmap);
2226 	mmu_booke_pinit(mmu, pmap);
2227 	PCPU_SET(curpmap, pmap);
2228 }
2229 
2230 /*
2231  * Initialize a preallocated and zeroed pmap structure,
2232  * such as one in a vmspace structure.
2233  */
2234 static void
2235 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
2236 {
2237 	int i;
2238 
2239 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
2240 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
2241 
2242 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
2243 
2244 	for (i = 0; i < MAXCPU; i++)
2245 		pmap->pm_tid[i] = TID_NONE;
2246 	CPU_ZERO(&kernel_pmap->pm_active);
2247 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2248 #ifdef __powerpc64__
2249 	pmap->pm_pp2d = uma_zalloc(ptbl_root_zone, M_WAITOK);
2250 	bzero(pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES);
2251 #else
2252 	pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK);
2253 	bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
2254 	TAILQ_INIT(&pmap->pm_ptbl_list);
2255 #endif
2256 }
2257 
2258 /*
2259  * Release any resources held by the given physical map.
2260  * Called when a pmap initialized by mmu_booke_pinit is being released.
2261  * Should only be called if the map contains no valid mappings.
2262  */
2263 static void
2264 mmu_booke_release(mmu_t mmu, pmap_t pmap)
2265 {
2266 
2267 	KASSERT(pmap->pm_stats.resident_count == 0,
2268 	    ("pmap_release: pmap resident count %ld != 0",
2269 	    pmap->pm_stats.resident_count));
2270 #ifdef __powerpc64__
2271 	uma_zfree(ptbl_root_zone, pmap->pm_pp2d);
2272 #else
2273 	uma_zfree(ptbl_root_zone, pmap->pm_pdir);
2274 #endif
2275 }
2276 
2277 /*
2278  * Insert the given physical page at the specified virtual address in the
2279  * target physical map with the protection requested. If specified the page
2280  * will be wired down.
2281  */
2282 static int
2283 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2284     vm_prot_t prot, u_int flags, int8_t psind)
2285 {
2286 	int error;
2287 
2288 	rw_wlock(&pvh_global_lock);
2289 	PMAP_LOCK(pmap);
2290 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
2291 	PMAP_UNLOCK(pmap);
2292 	rw_wunlock(&pvh_global_lock);
2293 	return (error);
2294 }
2295 
2296 static int
2297 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2298     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
2299 {
2300 	pte_t *pte;
2301 	vm_paddr_t pa;
2302 	uint32_t flags;
2303 	int error, su, sync;
2304 
2305 	pa = VM_PAGE_TO_PHYS(m);
2306 	su = (pmap == kernel_pmap);
2307 	sync = 0;
2308 
2309 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
2310 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
2311 	//		(u_int32_t)pmap, su, pmap->pm_tid,
2312 	//		(u_int32_t)m, va, pa, prot, flags);
2313 
2314 	if (su) {
2315 		KASSERT(((va >= virtual_avail) &&
2316 		    (va <= VM_MAX_KERNEL_ADDRESS)),
2317 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
2318 	} else {
2319 		KASSERT((va <= VM_MAXUSER_ADDRESS),
2320 		    ("mmu_booke_enter_locked: user pmap, non user va"));
2321 	}
2322 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2323 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
2324 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
2325 		else
2326 			VM_OBJECT_ASSERT_LOCKED(m->object);
2327 	}
2328 
2329 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2330 
2331 	/*
2332 	 * If there is an existing mapping, and the physical address has not
2333 	 * changed, must be protection or wiring change.
2334 	 */
2335 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
2336 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
2337 
2338 		/*
2339 		 * Before actually updating pte->flags we calculate and
2340 		 * prepare its new value in a helper var.
2341 		 */
2342 		flags = *pte;
2343 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
2344 
2345 		/* Wiring change, just update stats. */
2346 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
2347 			if (!PTE_ISWIRED(pte)) {
2348 				flags |= PTE_WIRED;
2349 				pmap->pm_stats.wired_count++;
2350 			}
2351 		} else {
2352 			if (PTE_ISWIRED(pte)) {
2353 				flags &= ~PTE_WIRED;
2354 				pmap->pm_stats.wired_count--;
2355 			}
2356 		}
2357 
2358 		if (prot & VM_PROT_WRITE) {
2359 			/* Add write permissions. */
2360 			flags |= PTE_SW;
2361 			if (!su)
2362 				flags |= PTE_UW;
2363 
2364 			if ((flags & PTE_MANAGED) != 0)
2365 				vm_page_aflag_set(m, PGA_WRITEABLE);
2366 		} else {
2367 			/* Handle modified pages, sense modify status. */
2368 
2369 			/*
2370 			 * The PTE_MODIFIED flag could be set by underlying
2371 			 * TLB misses since we last read it (above), possibly
2372 			 * other CPUs could update it so we check in the PTE
2373 			 * directly rather than rely on that saved local flags
2374 			 * copy.
2375 			 */
2376 			if (PTE_ISMODIFIED(pte))
2377 				vm_page_dirty(m);
2378 		}
2379 
2380 		if (prot & VM_PROT_EXECUTE) {
2381 			flags |= PTE_SX;
2382 			if (!su)
2383 				flags |= PTE_UX;
2384 
2385 			/*
2386 			 * Check existing flags for execute permissions: if we
2387 			 * are turning execute permissions on, icache should
2388 			 * be flushed.
2389 			 */
2390 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
2391 				sync++;
2392 		}
2393 
2394 		flags &= ~PTE_REFERENCED;
2395 
2396 		/*
2397 		 * The new flags value is all calculated -- only now actually
2398 		 * update the PTE.
2399 		 */
2400 		mtx_lock_spin(&tlbivax_mutex);
2401 		tlb_miss_lock();
2402 
2403 		tlb0_flush_entry(va);
2404 		*pte &= ~PTE_FLAGS_MASK;
2405 		*pte |= flags;
2406 
2407 		tlb_miss_unlock();
2408 		mtx_unlock_spin(&tlbivax_mutex);
2409 
2410 	} else {
2411 		/*
2412 		 * If there is an existing mapping, but it's for a different
2413 		 * physical address, pte_enter() will delete the old mapping.
2414 		 */
2415 		//if ((pte != NULL) && PTE_ISVALID(pte))
2416 		//	debugf("mmu_booke_enter_locked: replace\n");
2417 		//else
2418 		//	debugf("mmu_booke_enter_locked: new\n");
2419 
2420 		/* Now set up the flags and install the new mapping. */
2421 		flags = (PTE_SR | PTE_VALID);
2422 		flags |= PTE_M;
2423 
2424 		if (!su)
2425 			flags |= PTE_UR;
2426 
2427 		if (prot & VM_PROT_WRITE) {
2428 			flags |= PTE_SW;
2429 			if (!su)
2430 				flags |= PTE_UW;
2431 
2432 			if ((m->oflags & VPO_UNMANAGED) == 0)
2433 				vm_page_aflag_set(m, PGA_WRITEABLE);
2434 		}
2435 
2436 		if (prot & VM_PROT_EXECUTE) {
2437 			flags |= PTE_SX;
2438 			if (!su)
2439 				flags |= PTE_UX;
2440 		}
2441 
2442 		/* If its wired update stats. */
2443 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
2444 			flags |= PTE_WIRED;
2445 
2446 		error = pte_enter(mmu, pmap, m, va, flags,
2447 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
2448 		if (error != 0)
2449 			return (KERN_RESOURCE_SHORTAGE);
2450 
2451 		if ((flags & PMAP_ENTER_WIRED) != 0)
2452 			pmap->pm_stats.wired_count++;
2453 
2454 		/* Flush the real memory from the instruction cache. */
2455 		if (prot & VM_PROT_EXECUTE)
2456 			sync++;
2457 	}
2458 
2459 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
2460 		__syncicache((void *)va, PAGE_SIZE);
2461 		sync = 0;
2462 	}
2463 
2464 	return (KERN_SUCCESS);
2465 }
2466 
2467 /*
2468  * Maps a sequence of resident pages belonging to the same object.
2469  * The sequence begins with the given page m_start.  This page is
2470  * mapped at the given virtual address start.  Each subsequent page is
2471  * mapped at a virtual address that is offset from start by the same
2472  * amount as the page is offset from m_start within the object.  The
2473  * last page in the sequence is the page with the largest offset from
2474  * m_start that can be mapped at a virtual address less than the given
2475  * virtual address end.  Not every virtual page between start and end
2476  * is mapped; only those for which a resident page exists with the
2477  * corresponding offset from m_start are mapped.
2478  */
2479 static void
2480 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
2481     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
2482 {
2483 	vm_page_t m;
2484 	vm_pindex_t diff, psize;
2485 
2486 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2487 
2488 	psize = atop(end - start);
2489 	m = m_start;
2490 	rw_wlock(&pvh_global_lock);
2491 	PMAP_LOCK(pmap);
2492 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2493 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
2494 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
2495 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
2496 		m = TAILQ_NEXT(m, listq);
2497 	}
2498 	PMAP_UNLOCK(pmap);
2499 	rw_wunlock(&pvh_global_lock);
2500 }
2501 
2502 static void
2503 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
2504     vm_prot_t prot)
2505 {
2506 
2507 	rw_wlock(&pvh_global_lock);
2508 	PMAP_LOCK(pmap);
2509 	mmu_booke_enter_locked(mmu, pmap, va, m,
2510 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
2511 	    PMAP_ENTER_QUICK_LOCKED, 0);
2512 	PMAP_UNLOCK(pmap);
2513 	rw_wunlock(&pvh_global_lock);
2514 }
2515 
2516 /*
2517  * Remove the given range of addresses from the specified map.
2518  *
2519  * It is assumed that the start and end are properly rounded to the page size.
2520  */
2521 static void
2522 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
2523 {
2524 	pte_t *pte;
2525 	uint8_t hold_flag;
2526 
2527 	int su = (pmap == kernel_pmap);
2528 
2529 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
2530 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
2531 
2532 	if (su) {
2533 		KASSERT(((va >= virtual_avail) &&
2534 		    (va <= VM_MAX_KERNEL_ADDRESS)),
2535 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
2536 	} else {
2537 		KASSERT((va <= VM_MAXUSER_ADDRESS),
2538 		    ("mmu_booke_remove: user pmap, non user va"));
2539 	}
2540 
2541 	if (PMAP_REMOVE_DONE(pmap)) {
2542 		//debugf("mmu_booke_remove: e (empty)\n");
2543 		return;
2544 	}
2545 
2546 	hold_flag = PTBL_HOLD_FLAG(pmap);
2547 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
2548 
2549 	rw_wlock(&pvh_global_lock);
2550 	PMAP_LOCK(pmap);
2551 	for (; va < endva; va += PAGE_SIZE) {
2552 		pte = pte_find(mmu, pmap, va);
2553 		if ((pte != NULL) && PTE_ISVALID(pte))
2554 			pte_remove(mmu, pmap, va, hold_flag);
2555 	}
2556 	PMAP_UNLOCK(pmap);
2557 	rw_wunlock(&pvh_global_lock);
2558 
2559 	//debugf("mmu_booke_remove: e\n");
2560 }
2561 
2562 /*
2563  * Remove physical page from all pmaps in which it resides.
2564  */
2565 static void
2566 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
2567 {
2568 	pv_entry_t pv, pvn;
2569 	uint8_t hold_flag;
2570 
2571 	rw_wlock(&pvh_global_lock);
2572 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
2573 		pvn = TAILQ_NEXT(pv, pv_link);
2574 
2575 		PMAP_LOCK(pv->pv_pmap);
2576 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
2577 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
2578 		PMAP_UNLOCK(pv->pv_pmap);
2579 	}
2580 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2581 	rw_wunlock(&pvh_global_lock);
2582 }
2583 
2584 /*
2585  * Map a range of physical addresses into kernel virtual address space.
2586  */
2587 static vm_offset_t
2588 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2589     vm_paddr_t pa_end, int prot)
2590 {
2591 	vm_offset_t sva = *virt;
2592 	vm_offset_t va = sva;
2593 
2594 #ifdef __powerpc64__
2595 	/* XXX: Handle memory not starting at 0x0. */
2596 	if (pa_end < ctob(Maxmem))
2597 		return (PHYS_TO_DMAP(pa_start));
2598 #endif
2599 
2600 	while (pa_start < pa_end) {
2601 		mmu_booke_kenter(mmu, va, pa_start);
2602 		va += PAGE_SIZE;
2603 		pa_start += PAGE_SIZE;
2604 	}
2605 	*virt = va;
2606 
2607 	return (sva);
2608 }
2609 
2610 /*
2611  * The pmap must be activated before it's address space can be accessed in any
2612  * way.
2613  */
2614 static void
2615 mmu_booke_activate(mmu_t mmu, struct thread *td)
2616 {
2617 	pmap_t pmap;
2618 	u_int cpuid;
2619 
2620 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2621 
2622 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
2623 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2624 
2625 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
2626 
2627 	sched_pin();
2628 
2629 	cpuid = PCPU_GET(cpuid);
2630 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2631 	PCPU_SET(curpmap, pmap);
2632 
2633 	if (pmap->pm_tid[cpuid] == TID_NONE)
2634 		tid_alloc(pmap);
2635 
2636 	/* Load PID0 register with pmap tid value. */
2637 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
2638 	__asm __volatile("isync");
2639 
2640 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
2641 
2642 	sched_unpin();
2643 
2644 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2645 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2646 }
2647 
2648 /*
2649  * Deactivate the specified process's address space.
2650  */
2651 static void
2652 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2653 {
2654 	pmap_t pmap;
2655 
2656 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2657 
2658 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
2659 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2660 
2661 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2662 
2663 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2664 	PCPU_SET(curpmap, NULL);
2665 }
2666 
2667 /*
2668  * Copy the range specified by src_addr/len
2669  * from the source map to the range dst_addr/len
2670  * in the destination map.
2671  *
2672  * This routine is only advisory and need not do anything.
2673  */
2674 static void
2675 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2676     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2677 {
2678 
2679 }
2680 
2681 /*
2682  * Set the physical protection on the specified range of this map as requested.
2683  */
2684 static void
2685 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2686     vm_prot_t prot)
2687 {
2688 	vm_offset_t va;
2689 	vm_page_t m;
2690 	pte_t *pte;
2691 
2692 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2693 		mmu_booke_remove(mmu, pmap, sva, eva);
2694 		return;
2695 	}
2696 
2697 	if (prot & VM_PROT_WRITE)
2698 		return;
2699 
2700 	PMAP_LOCK(pmap);
2701 	for (va = sva; va < eva; va += PAGE_SIZE) {
2702 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2703 			if (PTE_ISVALID(pte)) {
2704 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2705 
2706 				mtx_lock_spin(&tlbivax_mutex);
2707 				tlb_miss_lock();
2708 
2709 				/* Handle modified pages. */
2710 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2711 					vm_page_dirty(m);
2712 
2713 				tlb0_flush_entry(va);
2714 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2715 
2716 				tlb_miss_unlock();
2717 				mtx_unlock_spin(&tlbivax_mutex);
2718 			}
2719 		}
2720 	}
2721 	PMAP_UNLOCK(pmap);
2722 }
2723 
2724 /*
2725  * Clear the write and modified bits in each of the given page's mappings.
2726  */
2727 static void
2728 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2729 {
2730 	pv_entry_t pv;
2731 	pte_t *pte;
2732 
2733 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2734 	    ("mmu_booke_remove_write: page %p is not managed", m));
2735 	vm_page_assert_busied(m);
2736 
2737 	if (!pmap_page_is_write_mapped(m))
2738 	        return;
2739 	rw_wlock(&pvh_global_lock);
2740 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2741 		PMAP_LOCK(pv->pv_pmap);
2742 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2743 			if (PTE_ISVALID(pte)) {
2744 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2745 
2746 				mtx_lock_spin(&tlbivax_mutex);
2747 				tlb_miss_lock();
2748 
2749 				/* Handle modified pages. */
2750 				if (PTE_ISMODIFIED(pte))
2751 					vm_page_dirty(m);
2752 
2753 				/* Flush mapping from TLB0. */
2754 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2755 
2756 				tlb_miss_unlock();
2757 				mtx_unlock_spin(&tlbivax_mutex);
2758 			}
2759 		}
2760 		PMAP_UNLOCK(pv->pv_pmap);
2761 	}
2762 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2763 	rw_wunlock(&pvh_global_lock);
2764 }
2765 
2766 static void
2767 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2768 {
2769 	pte_t *pte;
2770 	vm_paddr_t pa = 0;
2771 	int sync_sz, valid;
2772 #ifndef __powerpc64__
2773 	pmap_t pmap;
2774 	vm_page_t m;
2775 	vm_offset_t addr;
2776 	int active;
2777 #endif
2778 
2779 #ifndef __powerpc64__
2780 	rw_wlock(&pvh_global_lock);
2781 	pmap = PCPU_GET(curpmap);
2782 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2783 #endif
2784 	while (sz > 0) {
2785 		PMAP_LOCK(pm);
2786 		pte = pte_find(mmu, pm, va);
2787 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2788 		if (valid)
2789 			pa = PTE_PA(pte);
2790 		PMAP_UNLOCK(pm);
2791 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
2792 		sync_sz = min(sync_sz, sz);
2793 		if (valid) {
2794 #ifdef __powerpc64__
2795 			pa += (va & PAGE_MASK);
2796 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
2797 #else
2798 			if (!active) {
2799 				/* Create a mapping in the active pmap. */
2800 				addr = 0;
2801 				m = PHYS_TO_VM_PAGE(pa);
2802 				PMAP_LOCK(pmap);
2803 				pte_enter(mmu, pmap, m, addr,
2804 				    PTE_SR | PTE_VALID, FALSE);
2805 				addr += (va & PAGE_MASK);
2806 				__syncicache((void *)addr, sync_sz);
2807 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2808 				PMAP_UNLOCK(pmap);
2809 			} else
2810 				__syncicache((void *)va, sync_sz);
2811 #endif
2812 		}
2813 		va += sync_sz;
2814 		sz -= sync_sz;
2815 	}
2816 #ifndef __powerpc64__
2817 	rw_wunlock(&pvh_global_lock);
2818 #endif
2819 }
2820 
2821 /*
2822  * Atomically extract and hold the physical page with the given
2823  * pmap and virtual address pair if that mapping permits the given
2824  * protection.
2825  */
2826 static vm_page_t
2827 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2828     vm_prot_t prot)
2829 {
2830 	pte_t *pte;
2831 	vm_page_t m;
2832 	uint32_t pte_wbit;
2833 
2834 	m = NULL;
2835 	PMAP_LOCK(pmap);
2836 	pte = pte_find(mmu, pmap, va);
2837 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2838 		if (pmap == kernel_pmap)
2839 			pte_wbit = PTE_SW;
2840 		else
2841 			pte_wbit = PTE_UW;
2842 
2843 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
2844 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2845 			if (!vm_page_wire_mapped(m))
2846 				m = NULL;
2847 		}
2848 	}
2849 	PMAP_UNLOCK(pmap);
2850 	return (m);
2851 }
2852 
2853 /*
2854  * Initialize a vm_page's machine-dependent fields.
2855  */
2856 static void
2857 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2858 {
2859 
2860 	m->md.pv_tracked = 0;
2861 	TAILQ_INIT(&m->md.pv_list);
2862 }
2863 
2864 /*
2865  * mmu_booke_zero_page_area zeros the specified hardware page by
2866  * mapping it into virtual memory and using bzero to clear
2867  * its contents.
2868  *
2869  * off and size must reside within a single page.
2870  */
2871 static void
2872 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2873 {
2874 	vm_offset_t va;
2875 
2876 	/* XXX KASSERT off and size are within a single page? */
2877 
2878 #ifdef __powerpc64__
2879 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2880 	bzero((caddr_t)va + off, size);
2881 #else
2882 	mtx_lock(&zero_page_mutex);
2883 	va = zero_page_va;
2884 
2885 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2886 	bzero((caddr_t)va + off, size);
2887 	mmu_booke_kremove(mmu, va);
2888 
2889 	mtx_unlock(&zero_page_mutex);
2890 #endif
2891 }
2892 
2893 /*
2894  * mmu_booke_zero_page zeros the specified hardware page.
2895  */
2896 static void
2897 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2898 {
2899 	vm_offset_t off, va;
2900 
2901 #ifdef __powerpc64__
2902 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2903 
2904 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2905 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2906 #else
2907 	va = zero_page_va;
2908 	mtx_lock(&zero_page_mutex);
2909 
2910 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2911 
2912 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2913 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2914 
2915 	mmu_booke_kremove(mmu, va);
2916 
2917 	mtx_unlock(&zero_page_mutex);
2918 #endif
2919 }
2920 
2921 /*
2922  * mmu_booke_copy_page copies the specified (machine independent) page by
2923  * mapping the page into virtual memory and using memcopy to copy the page,
2924  * one machine dependent page at a time.
2925  */
2926 static void
2927 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2928 {
2929 	vm_offset_t sva, dva;
2930 
2931 #ifdef __powerpc64__
2932 	sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm));
2933 	dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm));
2934 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2935 #else
2936 	sva = copy_page_src_va;
2937 	dva = copy_page_dst_va;
2938 
2939 	mtx_lock(&copy_page_mutex);
2940 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2941 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2942 
2943 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2944 
2945 	mmu_booke_kremove(mmu, dva);
2946 	mmu_booke_kremove(mmu, sva);
2947 	mtx_unlock(&copy_page_mutex);
2948 #endif
2949 }
2950 
2951 static inline void
2952 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2953     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2954 {
2955 	void *a_cp, *b_cp;
2956 	vm_offset_t a_pg_offset, b_pg_offset;
2957 	int cnt;
2958 
2959 #ifdef __powerpc64__
2960 	vm_page_t pa, pb;
2961 
2962 	while (xfersize > 0) {
2963 		a_pg_offset = a_offset & PAGE_MASK;
2964 		pa = ma[a_offset >> PAGE_SHIFT];
2965 		b_pg_offset = b_offset & PAGE_MASK;
2966 		pb = mb[b_offset >> PAGE_SHIFT];
2967 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2968 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2969 		a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) +
2970 		    a_pg_offset);
2971 		b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) +
2972 		    b_pg_offset);
2973 		bcopy(a_cp, b_cp, cnt);
2974 		a_offset += cnt;
2975 		b_offset += cnt;
2976 		xfersize -= cnt;
2977 	}
2978 #else
2979 	mtx_lock(&copy_page_mutex);
2980 	while (xfersize > 0) {
2981 		a_pg_offset = a_offset & PAGE_MASK;
2982 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2983 		mmu_booke_kenter(mmu, copy_page_src_va,
2984 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2985 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2986 		b_pg_offset = b_offset & PAGE_MASK;
2987 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2988 		mmu_booke_kenter(mmu, copy_page_dst_va,
2989 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2990 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2991 		bcopy(a_cp, b_cp, cnt);
2992 		mmu_booke_kremove(mmu, copy_page_dst_va);
2993 		mmu_booke_kremove(mmu, copy_page_src_va);
2994 		a_offset += cnt;
2995 		b_offset += cnt;
2996 		xfersize -= cnt;
2997 	}
2998 	mtx_unlock(&copy_page_mutex);
2999 #endif
3000 }
3001 
3002 static vm_offset_t
3003 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
3004 {
3005 #ifdef __powerpc64__
3006 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
3007 #else
3008 	vm_paddr_t paddr;
3009 	vm_offset_t qaddr;
3010 	uint32_t flags;
3011 	pte_t *pte;
3012 
3013 	paddr = VM_PAGE_TO_PHYS(m);
3014 
3015 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
3016 	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
3017 	flags |= PTE_PS_4KB;
3018 
3019 	critical_enter();
3020 	qaddr = PCPU_GET(qmap_addr);
3021 
3022 	pte = pte_find(mmu, kernel_pmap, qaddr);
3023 
3024 	KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
3025 
3026 	/*
3027 	 * XXX: tlbivax is broadcast to other cores, but qaddr should
3028  	 * not be present in other TLBs.  Is there a better instruction
3029 	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
3030 	 */
3031 	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
3032 	__asm __volatile("isync; msync");
3033 
3034 	*pte = PTE_RPN_FROM_PA(paddr) | flags;
3035 
3036 	/* Flush the real memory from the instruction cache. */
3037 	if ((flags & (PTE_I | PTE_G)) == 0)
3038 		__syncicache((void *)qaddr, PAGE_SIZE);
3039 
3040 	return (qaddr);
3041 #endif
3042 }
3043 
3044 static void
3045 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
3046 {
3047 #ifndef __powerpc64__
3048 	pte_t *pte;
3049 
3050 	pte = pte_find(mmu, kernel_pmap, addr);
3051 
3052 	KASSERT(PCPU_GET(qmap_addr) == addr,
3053 	    ("mmu_booke_quick_remove_page: invalid address"));
3054 	KASSERT(*pte != 0,
3055 	    ("mmu_booke_quick_remove_page: PTE not in use"));
3056 
3057 	*pte = 0;
3058 	critical_exit();
3059 #endif
3060 }
3061 
3062 /*
3063  * Return whether or not the specified physical page was modified
3064  * in any of physical maps.
3065  */
3066 static boolean_t
3067 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
3068 {
3069 	pte_t *pte;
3070 	pv_entry_t pv;
3071 	boolean_t rv;
3072 
3073 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3074 	    ("mmu_booke_is_modified: page %p is not managed", m));
3075 	rv = FALSE;
3076 
3077 	/*
3078 	 * If the page is not busied then this check is racy.
3079 	 */
3080 	if (!pmap_page_is_write_mapped(m))
3081 		return (FALSE);
3082 
3083 	rw_wlock(&pvh_global_lock);
3084 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3085 		PMAP_LOCK(pv->pv_pmap);
3086 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3087 		    PTE_ISVALID(pte)) {
3088 			if (PTE_ISMODIFIED(pte))
3089 				rv = TRUE;
3090 		}
3091 		PMAP_UNLOCK(pv->pv_pmap);
3092 		if (rv)
3093 			break;
3094 	}
3095 	rw_wunlock(&pvh_global_lock);
3096 	return (rv);
3097 }
3098 
3099 /*
3100  * Return whether or not the specified virtual address is eligible
3101  * for prefault.
3102  */
3103 static boolean_t
3104 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
3105 {
3106 
3107 	return (FALSE);
3108 }
3109 
3110 /*
3111  * Return whether or not the specified physical page was referenced
3112  * in any physical maps.
3113  */
3114 static boolean_t
3115 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
3116 {
3117 	pte_t *pte;
3118 	pv_entry_t pv;
3119 	boolean_t rv;
3120 
3121 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3122 	    ("mmu_booke_is_referenced: page %p is not managed", m));
3123 	rv = FALSE;
3124 	rw_wlock(&pvh_global_lock);
3125 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3126 		PMAP_LOCK(pv->pv_pmap);
3127 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3128 		    PTE_ISVALID(pte)) {
3129 			if (PTE_ISREFERENCED(pte))
3130 				rv = TRUE;
3131 		}
3132 		PMAP_UNLOCK(pv->pv_pmap);
3133 		if (rv)
3134 			break;
3135 	}
3136 	rw_wunlock(&pvh_global_lock);
3137 	return (rv);
3138 }
3139 
3140 /*
3141  * Clear the modify bits on the specified physical page.
3142  */
3143 static void
3144 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
3145 {
3146 	pte_t *pte;
3147 	pv_entry_t pv;
3148 
3149 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3150 	    ("mmu_booke_clear_modify: page %p is not managed", m));
3151 	vm_page_assert_busied(m);
3152 
3153 	if (!pmap_page_is_write_mapped(m))
3154 	        return;
3155 
3156 	rw_wlock(&pvh_global_lock);
3157 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3158 		PMAP_LOCK(pv->pv_pmap);
3159 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3160 		    PTE_ISVALID(pte)) {
3161 			mtx_lock_spin(&tlbivax_mutex);
3162 			tlb_miss_lock();
3163 
3164 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
3165 				tlb0_flush_entry(pv->pv_va);
3166 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
3167 				    PTE_REFERENCED);
3168 			}
3169 
3170 			tlb_miss_unlock();
3171 			mtx_unlock_spin(&tlbivax_mutex);
3172 		}
3173 		PMAP_UNLOCK(pv->pv_pmap);
3174 	}
3175 	rw_wunlock(&pvh_global_lock);
3176 }
3177 
3178 /*
3179  * Return a count of reference bits for a page, clearing those bits.
3180  * It is not necessary for every reference bit to be cleared, but it
3181  * is necessary that 0 only be returned when there are truly no
3182  * reference bits set.
3183  *
3184  * As an optimization, update the page's dirty field if a modified bit is
3185  * found while counting reference bits.  This opportunistic update can be
3186  * performed at low cost and can eliminate the need for some future calls
3187  * to pmap_is_modified().  However, since this function stops after
3188  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3189  * dirty pages.  Those dirty pages will only be detected by a future call
3190  * to pmap_is_modified().
3191  */
3192 static int
3193 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
3194 {
3195 	pte_t *pte;
3196 	pv_entry_t pv;
3197 	int count;
3198 
3199 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3200 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
3201 	count = 0;
3202 	rw_wlock(&pvh_global_lock);
3203 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3204 		PMAP_LOCK(pv->pv_pmap);
3205 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
3206 		    PTE_ISVALID(pte)) {
3207 			if (PTE_ISMODIFIED(pte))
3208 				vm_page_dirty(m);
3209 			if (PTE_ISREFERENCED(pte)) {
3210 				mtx_lock_spin(&tlbivax_mutex);
3211 				tlb_miss_lock();
3212 
3213 				tlb0_flush_entry(pv->pv_va);
3214 				*pte &= ~PTE_REFERENCED;
3215 
3216 				tlb_miss_unlock();
3217 				mtx_unlock_spin(&tlbivax_mutex);
3218 
3219 				if (++count >= PMAP_TS_REFERENCED_MAX) {
3220 					PMAP_UNLOCK(pv->pv_pmap);
3221 					break;
3222 				}
3223 			}
3224 		}
3225 		PMAP_UNLOCK(pv->pv_pmap);
3226 	}
3227 	rw_wunlock(&pvh_global_lock);
3228 	return (count);
3229 }
3230 
3231 /*
3232  * Clear the wired attribute from the mappings for the specified range of
3233  * addresses in the given pmap.  Every valid mapping within that range must
3234  * have the wired attribute set.  In contrast, invalid mappings cannot have
3235  * the wired attribute set, so they are ignored.
3236  *
3237  * The wired attribute of the page table entry is not a hardware feature, so
3238  * there is no need to invalidate any TLB entries.
3239  */
3240 static void
3241 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3242 {
3243 	vm_offset_t va;
3244 	pte_t *pte;
3245 
3246 	PMAP_LOCK(pmap);
3247 	for (va = sva; va < eva; va += PAGE_SIZE) {
3248 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
3249 		    PTE_ISVALID(pte)) {
3250 			if (!PTE_ISWIRED(pte))
3251 				panic("mmu_booke_unwire: pte %p isn't wired",
3252 				    pte);
3253 			*pte &= ~PTE_WIRED;
3254 			pmap->pm_stats.wired_count--;
3255 		}
3256 	}
3257 	PMAP_UNLOCK(pmap);
3258 
3259 }
3260 
3261 /*
3262  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
3263  * page.  This count may be changed upwards or downwards in the future; it is
3264  * only necessary that true be returned for a small subset of pmaps for proper
3265  * page aging.
3266  */
3267 static boolean_t
3268 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
3269 {
3270 	pv_entry_t pv;
3271 	int loops;
3272 	boolean_t rv;
3273 
3274 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3275 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
3276 	loops = 0;
3277 	rv = FALSE;
3278 	rw_wlock(&pvh_global_lock);
3279 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3280 		if (pv->pv_pmap == pmap) {
3281 			rv = TRUE;
3282 			break;
3283 		}
3284 		if (++loops >= 16)
3285 			break;
3286 	}
3287 	rw_wunlock(&pvh_global_lock);
3288 	return (rv);
3289 }
3290 
3291 /*
3292  * Return the number of managed mappings to the given physical page that are
3293  * wired.
3294  */
3295 static int
3296 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
3297 {
3298 	pv_entry_t pv;
3299 	pte_t *pte;
3300 	int count = 0;
3301 
3302 	if ((m->oflags & VPO_UNMANAGED) != 0)
3303 		return (count);
3304 	rw_wlock(&pvh_global_lock);
3305 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3306 		PMAP_LOCK(pv->pv_pmap);
3307 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
3308 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
3309 				count++;
3310 		PMAP_UNLOCK(pv->pv_pmap);
3311 	}
3312 	rw_wunlock(&pvh_global_lock);
3313 	return (count);
3314 }
3315 
3316 static int
3317 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
3318 {
3319 	int i;
3320 	vm_offset_t va;
3321 
3322 	/*
3323 	 * This currently does not work for entries that
3324 	 * overlap TLB1 entries.
3325 	 */
3326 	for (i = 0; i < TLB1_ENTRIES; i ++) {
3327 		if (tlb1_iomapped(i, pa, size, &va) == 0)
3328 			return (0);
3329 	}
3330 
3331 	return (EFAULT);
3332 }
3333 
3334 void
3335 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
3336 {
3337 	vm_paddr_t ppa;
3338 	vm_offset_t ofs;
3339 	vm_size_t gran;
3340 
3341 	/* Minidumps are based on virtual memory addresses. */
3342 	if (do_minidump) {
3343 		*va = (void *)(vm_offset_t)pa;
3344 		return;
3345 	}
3346 
3347 	/* Raw physical memory dumps don't have a virtual address. */
3348 	/* We always map a 256MB page at 256M. */
3349 	gran = 256 * 1024 * 1024;
3350 	ppa = rounddown2(pa, gran);
3351 	ofs = pa - ppa;
3352 	*va = (void *)gran;
3353 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
3354 
3355 	if (sz > (gran - ofs))
3356 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
3357 		    _TLB_ENTRY_IO);
3358 }
3359 
3360 void
3361 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
3362 {
3363 	vm_paddr_t ppa;
3364 	vm_offset_t ofs;
3365 	vm_size_t gran;
3366 	tlb_entry_t e;
3367 	int i;
3368 
3369 	/* Minidumps are based on virtual memory addresses. */
3370 	/* Nothing to do... */
3371 	if (do_minidump)
3372 		return;
3373 
3374 	for (i = 0; i < TLB1_ENTRIES; i++) {
3375 		tlb1_read_entry(&e, i);
3376 		if (!(e.mas1 & MAS1_VALID))
3377 			break;
3378 	}
3379 
3380 	/* Raw physical memory dumps don't have a virtual address. */
3381 	i--;
3382 	e.mas1 = 0;
3383 	e.mas2 = 0;
3384 	e.mas3 = 0;
3385 	tlb1_write_entry(&e, i);
3386 
3387 	gran = 256 * 1024 * 1024;
3388 	ppa = rounddown2(pa, gran);
3389 	ofs = pa - ppa;
3390 	if (sz > (gran - ofs)) {
3391 		i--;
3392 		e.mas1 = 0;
3393 		e.mas2 = 0;
3394 		e.mas3 = 0;
3395 		tlb1_write_entry(&e, i);
3396 	}
3397 }
3398 
3399 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3400 
3401 void
3402 mmu_booke_scan_init(mmu_t mmu)
3403 {
3404 	vm_offset_t va;
3405 	pte_t *pte;
3406 	int i;
3407 
3408 	if (!do_minidump) {
3409 		/* Initialize phys. segments for dumpsys(). */
3410 		memset(&dump_map, 0, sizeof(dump_map));
3411 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
3412 		    &availmem_regions_sz);
3413 		for (i = 0; i < physmem_regions_sz; i++) {
3414 			dump_map[i].pa_start = physmem_regions[i].mr_start;
3415 			dump_map[i].pa_size = physmem_regions[i].mr_size;
3416 		}
3417 		return;
3418 	}
3419 
3420 	/* Virtual segments for minidumps: */
3421 	memset(&dump_map, 0, sizeof(dump_map));
3422 
3423 	/* 1st: kernel .data and .bss. */
3424 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3425 	dump_map[0].pa_size =
3426 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
3427 
3428 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3429 	dump_map[1].pa_start = data_start;
3430 	dump_map[1].pa_size = data_end - data_start;
3431 
3432 	/* 3rd: kernel VM. */
3433 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3434 	/* Find start of next chunk (from va). */
3435 	while (va < virtual_end) {
3436 		/* Don't dump the buffer cache. */
3437 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3438 			va = kmi.buffer_eva;
3439 			continue;
3440 		}
3441 		pte = pte_find(mmu, kernel_pmap, va);
3442 		if (pte != NULL && PTE_ISVALID(pte))
3443 			break;
3444 		va += PAGE_SIZE;
3445 	}
3446 	if (va < virtual_end) {
3447 		dump_map[2].pa_start = va;
3448 		va += PAGE_SIZE;
3449 		/* Find last page in chunk. */
3450 		while (va < virtual_end) {
3451 			/* Don't run into the buffer cache. */
3452 			if (va == kmi.buffer_sva)
3453 				break;
3454 			pte = pte_find(mmu, kernel_pmap, va);
3455 			if (pte == NULL || !PTE_ISVALID(pte))
3456 				break;
3457 			va += PAGE_SIZE;
3458 		}
3459 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3460 	}
3461 }
3462 
3463 /*
3464  * Map a set of physical memory pages into the kernel virtual address space.
3465  * Return a pointer to where it is mapped. This routine is intended to be used
3466  * for mapping device memory, NOT real memory.
3467  */
3468 static void *
3469 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
3470 {
3471 
3472 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
3473 }
3474 
3475 static int
3476 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
3477 {
3478 	int i;
3479 
3480 	for (i = 0; i < TLB1_ENTRIES; i++) {
3481 		tlb1_read_entry(e, i);
3482 		if ((e->mas1 & MAS1_VALID) == 0)
3483 			return (i);
3484 	}
3485 	return (-1);
3486 }
3487 
3488 static void *
3489 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3490 {
3491 	tlb_entry_t e;
3492 	vm_paddr_t tmppa;
3493 #ifndef __powerpc64__
3494 	uintptr_t tmpva;
3495 #endif
3496 	uintptr_t va;
3497 	vm_size_t sz;
3498 	int i;
3499 	int wimge;
3500 
3501 	/*
3502 	 * Check if this is premapped in TLB1.
3503 	 */
3504 	sz = size;
3505 	tmppa = pa;
3506 	va = ~0;
3507 	wimge = tlb_calc_wimg(pa, ma);
3508 	for (i = 0; i < TLB1_ENTRIES; i++) {
3509 		tlb1_read_entry(&e, i);
3510 		if (!(e.mas1 & MAS1_VALID))
3511 			continue;
3512 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
3513 			continue;
3514 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
3515 			va = e.virt + (pa - e.phys);
3516 			tmppa = e.phys + e.size;
3517 			sz -= MIN(sz, e.size);
3518 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
3519 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
3520 					break;
3521 				sz -= MIN(sz, e.size);
3522 				tmppa = e.phys + e.size;
3523 			}
3524 			if (sz != 0)
3525 				break;
3526 			return ((void *)va);
3527 		}
3528 	}
3529 
3530 	size = roundup(size, PAGE_SIZE);
3531 
3532 #ifdef __powerpc64__
3533 	KASSERT(pa < VM_MAPDEV_PA_MAX,
3534 	    ("Unsupported physical address! %lx", pa));
3535 	va = VM_MAPDEV_BASE + pa;
3536 #else
3537 	/*
3538 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
3539 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
3540 	 */
3541 #ifdef SPARSE_MAPDEV
3542 	/*
3543 	 * With a sparse mapdev, align to the largest starting region.  This
3544 	 * could feasibly be optimized for a 'best-fit' alignment, but that
3545 	 * calculation could be very costly.
3546 	 * Align to the smaller of:
3547 	 * - first set bit in overlap of (pa & size mask)
3548 	 * - largest size envelope
3549 	 *
3550 	 * It's possible the device mapping may start at a PA that's not larger
3551 	 * than the size mask, so we need to offset in to maximize the TLB entry
3552 	 * range and minimize the number of used TLB entries.
3553 	 */
3554 	do {
3555 	    tmpva = tlb1_map_base;
3556 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
3557 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
3558 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
3559 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
3560 	va = atomic_fetchadd_int(&tlb1_map_base, size);
3561 #endif
3562 #endif
3563 
3564 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
3565 		return (NULL);
3566 
3567 	return ((void *)va);
3568 }
3569 
3570 /*
3571  * 'Unmap' a range mapped by mmu_booke_mapdev().
3572  */
3573 static void
3574 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
3575 {
3576 #ifdef SUPPORTS_SHRINKING_TLB1
3577 	vm_offset_t base, offset;
3578 
3579 	/*
3580 	 * Unmap only if this is inside kernel virtual space.
3581 	 */
3582 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
3583 		base = trunc_page(va);
3584 		offset = va & PAGE_MASK;
3585 		size = roundup(offset + size, PAGE_SIZE);
3586 		kva_free(base, size);
3587 	}
3588 #endif
3589 }
3590 
3591 /*
3592  * mmu_booke_object_init_pt preloads the ptes for a given object into the
3593  * specified pmap. This eliminates the blast of soft faults on process startup
3594  * and immediately after an mmap.
3595  */
3596 static void
3597 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
3598     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3599 {
3600 
3601 	VM_OBJECT_ASSERT_WLOCKED(object);
3602 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3603 	    ("mmu_booke_object_init_pt: non-device object"));
3604 }
3605 
3606 /*
3607  * Perform the pmap work for mincore.
3608  */
3609 static int
3610 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
3611     vm_paddr_t *pap)
3612 {
3613 
3614 	/* XXX: this should be implemented at some point */
3615 	return (0);
3616 }
3617 
3618 static int
3619 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz,
3620     vm_memattr_t mode)
3621 {
3622 	vm_offset_t va;
3623 	pte_t *pte;
3624 	int i, j;
3625 	tlb_entry_t e;
3626 
3627 	addr = trunc_page(addr);
3628 
3629 	/* Only allow changes to mapped kernel addresses.  This includes:
3630 	 * - KVA
3631 	 * - DMAP (powerpc64)
3632 	 * - Device mappings
3633 	 */
3634 	if (addr <= VM_MAXUSER_ADDRESS ||
3635 #ifdef __powerpc64__
3636 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
3637 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
3638 #else
3639 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
3640 #endif
3641 	    (addr > VM_MAX_KERNEL_ADDRESS))
3642 		return (EINVAL);
3643 
3644 	/* Check TLB1 mappings */
3645 	for (i = 0; i < TLB1_ENTRIES; i++) {
3646 		tlb1_read_entry(&e, i);
3647 		if (!(e.mas1 & MAS1_VALID))
3648 			continue;
3649 		if (addr >= e.virt && addr < e.virt + e.size)
3650 			break;
3651 	}
3652 	if (i < TLB1_ENTRIES) {
3653 		/* Only allow full mappings to be modified for now. */
3654 		/* Validate the range. */
3655 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
3656 			tlb1_read_entry(&e, j);
3657 			if (va != e.virt || (sz - (va - addr) < e.size))
3658 				return (EINVAL);
3659 		}
3660 		for (va = addr; va < addr + sz; va += e.size, i++) {
3661 			tlb1_read_entry(&e, i);
3662 			e.mas2 &= ~MAS2_WIMGE_MASK;
3663 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
3664 
3665 			/*
3666 			 * Write it out to the TLB.  Should really re-sync with other
3667 			 * cores.
3668 			 */
3669 			tlb1_write_entry(&e, i);
3670 		}
3671 		return (0);
3672 	}
3673 
3674 	/* Not in TLB1, try through pmap */
3675 	/* First validate the range. */
3676 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
3677 		pte = pte_find(mmu, kernel_pmap, va);
3678 		if (pte == NULL || !PTE_ISVALID(pte))
3679 			return (EINVAL);
3680 	}
3681 
3682 	mtx_lock_spin(&tlbivax_mutex);
3683 	tlb_miss_lock();
3684 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
3685 		pte = pte_find(mmu, kernel_pmap, va);
3686 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
3687 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
3688 		tlb0_flush_entry(va);
3689 	}
3690 	tlb_miss_unlock();
3691 	mtx_unlock_spin(&tlbivax_mutex);
3692 
3693 	return (0);
3694 }
3695 
3696 static void
3697 mmu_booke_page_array_startup(mmu_t mmu, long pages)
3698 {
3699 	vm_page_array_size = pages;
3700 }
3701 
3702 /**************************************************************************/
3703 /* TID handling */
3704 /**************************************************************************/
3705 
3706 /*
3707  * Allocate a TID. If necessary, steal one from someone else.
3708  * The new TID is flushed from the TLB before returning.
3709  */
3710 static tlbtid_t
3711 tid_alloc(pmap_t pmap)
3712 {
3713 	tlbtid_t tid;
3714 	int thiscpu;
3715 
3716 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
3717 
3718 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
3719 
3720 	thiscpu = PCPU_GET(cpuid);
3721 
3722 	tid = PCPU_GET(booke.tid_next);
3723 	if (tid > TID_MAX)
3724 		tid = TID_MIN;
3725 	PCPU_SET(booke.tid_next, tid + 1);
3726 
3727 	/* If we are stealing TID then clear the relevant pmap's field */
3728 	if (tidbusy[thiscpu][tid] != NULL) {
3729 
3730 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
3731 
3732 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
3733 
3734 		/* Flush all entries from TLB0 matching this TID. */
3735 		tid_flush(tid);
3736 	}
3737 
3738 	tidbusy[thiscpu][tid] = pmap;
3739 	pmap->pm_tid[thiscpu] = tid;
3740 	__asm __volatile("msync; isync");
3741 
3742 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
3743 	    PCPU_GET(booke.tid_next));
3744 
3745 	return (tid);
3746 }
3747 
3748 /**************************************************************************/
3749 /* TLB0 handling */
3750 /**************************************************************************/
3751 
3752 /* Convert TLB0 va and way number to tlb0[] table index. */
3753 static inline unsigned int
3754 tlb0_tableidx(vm_offset_t va, unsigned int way)
3755 {
3756 	unsigned int idx;
3757 
3758 	idx = (way * TLB0_ENTRIES_PER_WAY);
3759 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
3760 	return (idx);
3761 }
3762 
3763 /*
3764  * Invalidate TLB0 entry.
3765  */
3766 static inline void
3767 tlb0_flush_entry(vm_offset_t va)
3768 {
3769 
3770 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3771 
3772 	mtx_assert(&tlbivax_mutex, MA_OWNED);
3773 
3774 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3775 	__asm __volatile("isync; msync");
3776 	__asm __volatile("tlbsync; msync");
3777 
3778 	CTR1(KTR_PMAP, "%s: e", __func__);
3779 }
3780 
3781 
3782 /**************************************************************************/
3783 /* TLB1 handling */
3784 /**************************************************************************/
3785 
3786 /*
3787  * TLB1 mapping notes:
3788  *
3789  * TLB1[0]	Kernel text and data.
3790  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3791  *		windows, other devices mappings.
3792  */
3793 
3794  /*
3795  * Read an entry from given TLB1 slot.
3796  */
3797 void
3798 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
3799 {
3800 	register_t msr;
3801 	uint32_t mas0;
3802 
3803 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
3804 
3805 	msr = mfmsr();
3806 	__asm __volatile("wrteei 0");
3807 
3808 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
3809 	mtspr(SPR_MAS0, mas0);
3810 	__asm __volatile("isync; tlbre");
3811 
3812 	entry->mas1 = mfspr(SPR_MAS1);
3813 	entry->mas2 = mfspr(SPR_MAS2);
3814 	entry->mas3 = mfspr(SPR_MAS3);
3815 
3816 	switch ((mfpvr() >> 16) & 0xFFFF) {
3817 	case FSL_E500v2:
3818 	case FSL_E500mc:
3819 	case FSL_E5500:
3820 	case FSL_E6500:
3821 		entry->mas7 = mfspr(SPR_MAS7);
3822 		break;
3823 	default:
3824 		entry->mas7 = 0;
3825 		break;
3826 	}
3827 	__asm __volatile("wrtee %0" :: "r"(msr));
3828 
3829 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
3830 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
3831 	    (entry->mas3 & MAS3_RPN);
3832 	entry->size =
3833 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
3834 }
3835 
3836 struct tlbwrite_args {
3837 	tlb_entry_t *e;
3838 	unsigned int idx;
3839 };
3840 
3841 static uint32_t
3842 tlb1_find_free(void)
3843 {
3844 	tlb_entry_t e;
3845 	int i;
3846 
3847 	for (i = 0; i < TLB1_ENTRIES; i++) {
3848 		tlb1_read_entry(&e, i);
3849 		if ((e.mas1 & MAS1_VALID) == 0)
3850 			return (i);
3851 	}
3852 	return (-1);
3853 }
3854 
3855 static void
3856 tlb1_write_entry_int(void *arg)
3857 {
3858 	struct tlbwrite_args *args = arg;
3859 	uint32_t idx, mas0;
3860 
3861 	idx = args->idx;
3862 	if (idx == -1) {
3863 		idx = tlb1_find_free();
3864 		if (idx == -1)
3865 			panic("No free TLB1 entries!\n");
3866 	}
3867 	/* Select entry */
3868 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
3869 
3870 	mtspr(SPR_MAS0, mas0);
3871 	mtspr(SPR_MAS1, args->e->mas1);
3872 	mtspr(SPR_MAS2, args->e->mas2);
3873 	mtspr(SPR_MAS3, args->e->mas3);
3874 	switch ((mfpvr() >> 16) & 0xFFFF) {
3875 	case FSL_E500mc:
3876 	case FSL_E5500:
3877 	case FSL_E6500:
3878 		mtspr(SPR_MAS8, 0);
3879 		/* FALLTHROUGH */
3880 	case FSL_E500v2:
3881 		mtspr(SPR_MAS7, args->e->mas7);
3882 		break;
3883 	default:
3884 		break;
3885 	}
3886 
3887 	__asm __volatile("isync; tlbwe; isync; msync");
3888 
3889 }
3890 
3891 static void
3892 tlb1_write_entry_sync(void *arg)
3893 {
3894 	/* Empty synchronization point for smp_rendezvous(). */
3895 }
3896 
3897 /*
3898  * Write given entry to TLB1 hardware.
3899  */
3900 static void
3901 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
3902 {
3903 	struct tlbwrite_args args;
3904 
3905 	args.e = e;
3906 	args.idx = idx;
3907 
3908 #ifdef SMP
3909 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
3910 		mb();
3911 		smp_rendezvous(tlb1_write_entry_sync,
3912 		    tlb1_write_entry_int,
3913 		    tlb1_write_entry_sync, &args);
3914 	} else
3915 #endif
3916 	{
3917 		register_t msr;
3918 
3919 		msr = mfmsr();
3920 		__asm __volatile("wrteei 0");
3921 		tlb1_write_entry_int(&args);
3922 		__asm __volatile("wrtee %0" :: "r"(msr));
3923 	}
3924 }
3925 
3926 /*
3927  * Return the largest uint value log such that 2^log <= num.
3928  */
3929 static unsigned long
3930 ilog2(unsigned long num)
3931 {
3932 	long lz;
3933 
3934 #ifdef __powerpc64__
3935 	__asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num));
3936 	return (63 - lz);
3937 #else
3938 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3939 	return (31 - lz);
3940 #endif
3941 }
3942 
3943 /*
3944  * Convert TLB TSIZE value to mapped region size.
3945  */
3946 static vm_size_t
3947 tsize2size(unsigned int tsize)
3948 {
3949 
3950 	/*
3951 	 * size = 4^tsize KB
3952 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3953 	 */
3954 
3955 	return ((1 << (2 * tsize)) * 1024);
3956 }
3957 
3958 /*
3959  * Convert region size (must be power of 4) to TLB TSIZE value.
3960  */
3961 static unsigned int
3962 size2tsize(vm_size_t size)
3963 {
3964 
3965 	return (ilog2(size) / 2 - 5);
3966 }
3967 
3968 /*
3969  * Register permanent kernel mapping in TLB1.
3970  *
3971  * Entries are created starting from index 0 (current free entry is
3972  * kept in tlb1_idx) and are not supposed to be invalidated.
3973  */
3974 int
3975 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3976     uint32_t flags)
3977 {
3978 	tlb_entry_t e;
3979 	uint32_t ts, tid;
3980 	int tsize, index;
3981 
3982 	/* First try to update an existing entry. */
3983 	for (index = 0; index < TLB1_ENTRIES; index++) {
3984 		tlb1_read_entry(&e, index);
3985 		/* Check if we're just updating the flags, and update them. */
3986 		if (e.phys == pa && e.virt == va && e.size == size) {
3987 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
3988 			tlb1_write_entry(&e, index);
3989 			return (0);
3990 		}
3991 	}
3992 
3993 	/* Convert size to TSIZE */
3994 	tsize = size2tsize(size);
3995 
3996 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3997 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3998 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3999 
4000 	e.phys = pa;
4001 	e.virt = va;
4002 	e.size = size;
4003 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
4004 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
4005 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
4006 
4007 	/* Set supervisor RWX permission bits */
4008 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
4009 	e.mas7 = (pa >> 32) & MAS7_RPN;
4010 
4011 	tlb1_write_entry(&e, -1);
4012 
4013 	return (0);
4014 }
4015 
4016 /*
4017  * Map in contiguous RAM region into the TLB1.
4018  */
4019 static vm_size_t
4020 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
4021 {
4022 	vm_offset_t base;
4023 	vm_size_t mapped, sz, ssize;
4024 
4025 	mapped = 0;
4026 	base = va;
4027 	ssize = size;
4028 
4029 	while (size > 0) {
4030 		sz = 1UL << (ilog2(size) & ~1);
4031 		/* Align size to PA */
4032 		if (pa % sz != 0) {
4033 			do {
4034 				sz >>= 2;
4035 			} while (pa % sz != 0);
4036 		}
4037 		/* Now align from there to VA */
4038 		if (va % sz != 0) {
4039 			do {
4040 				sz >>= 2;
4041 			} while (va % sz != 0);
4042 		}
4043 #ifdef __powerpc64__
4044 		/*
4045 		 * Clamp TLB1 entries to 4G.
4046 		 *
4047 		 * While the e6500 supports up to 1TB mappings, the e5500
4048 		 * only supports up to 4G mappings. (0b1011)
4049 		 *
4050 		 * If any e6500 machines capable of supporting a very
4051 		 * large amount of memory appear in the future, we can
4052 		 * revisit this.
4053 		 *
4054 		 * For now, though, since we have plenty of space in TLB1,
4055 		 * always avoid creating entries larger than 4GB.
4056 		 */
4057 		sz = MIN(sz, 1UL << 32);
4058 #endif
4059 		if (bootverbose)
4060 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
4061 			    (void *)va, (uintmax_t)pa, (long)sz);
4062 		if (tlb1_set_entry(va, pa, sz,
4063 		    _TLB_ENTRY_SHARED | wimge) < 0)
4064 			return (mapped);
4065 		size -= sz;
4066 		pa += sz;
4067 		va += sz;
4068 	}
4069 
4070 	mapped = (va - base);
4071 	if (bootverbose)
4072 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
4073 		    mapped, mapped - ssize);
4074 
4075 	return (mapped);
4076 }
4077 
4078 /*
4079  * TLB1 initialization routine, to be called after the very first
4080  * assembler level setup done in locore.S.
4081  */
4082 void
4083 tlb1_init()
4084 {
4085 	vm_offset_t mas2;
4086 	uint32_t mas0, mas1, mas3, mas7;
4087 	uint32_t tsz;
4088 
4089 	tlb1_get_tlbconf();
4090 
4091 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
4092 	mtspr(SPR_MAS0, mas0);
4093 	__asm __volatile("isync; tlbre");
4094 
4095 	mas1 = mfspr(SPR_MAS1);
4096 	mas2 = mfspr(SPR_MAS2);
4097 	mas3 = mfspr(SPR_MAS3);
4098 	mas7 = mfspr(SPR_MAS7);
4099 
4100 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
4101 	    (mas3 & MAS3_RPN);
4102 
4103 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4104 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
4105 	kernstart = trunc_page(mas2);
4106 
4107 	/* Setup TLB miss defaults */
4108 	set_mas4_defaults();
4109 }
4110 
4111 /*
4112  * pmap_early_io_unmap() should be used in short conjunction with
4113  * pmap_early_io_map(), as in the following snippet:
4114  *
4115  * x = pmap_early_io_map(...);
4116  * <do something with x>
4117  * pmap_early_io_unmap(x, size);
4118  *
4119  * And avoiding more allocations between.
4120  */
4121 void
4122 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
4123 {
4124 	int i;
4125 	tlb_entry_t e;
4126 	vm_size_t isize;
4127 
4128 	size = roundup(size, PAGE_SIZE);
4129 	isize = size;
4130 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
4131 		tlb1_read_entry(&e, i);
4132 		if (!(e.mas1 & MAS1_VALID))
4133 			continue;
4134 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
4135 			size -= e.size;
4136 			e.mas1 &= ~MAS1_VALID;
4137 			tlb1_write_entry(&e, i);
4138 		}
4139 	}
4140 	if (tlb1_map_base == va + isize)
4141 		tlb1_map_base -= isize;
4142 }
4143 
4144 vm_offset_t
4145 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
4146 {
4147 	vm_paddr_t pa_base;
4148 	vm_offset_t va, sz;
4149 	int i;
4150 	tlb_entry_t e;
4151 
4152 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
4153 
4154 	for (i = 0; i < TLB1_ENTRIES; i++) {
4155 		tlb1_read_entry(&e, i);
4156 		if (!(e.mas1 & MAS1_VALID))
4157 			continue;
4158 		if (pa >= e.phys && (pa + size) <=
4159 		    (e.phys + e.size))
4160 			return (e.virt + (pa - e.phys));
4161 	}
4162 
4163 	pa_base = rounddown(pa, PAGE_SIZE);
4164 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
4165 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
4166 	va = tlb1_map_base + (pa - pa_base);
4167 
4168 	do {
4169 		sz = 1 << (ilog2(size) & ~1);
4170 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
4171 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
4172 		size -= sz;
4173 		pa_base += sz;
4174 		tlb1_map_base += sz;
4175 	} while (size > 0);
4176 
4177 	return (va);
4178 }
4179 
4180 void
4181 pmap_track_page(pmap_t pmap, vm_offset_t va)
4182 {
4183 	vm_paddr_t pa;
4184 	vm_page_t page;
4185 	struct pv_entry *pve;
4186 
4187 	va = trunc_page(va);
4188 	pa = pmap_kextract(va);
4189 	page = PHYS_TO_VM_PAGE(pa);
4190 
4191 	rw_wlock(&pvh_global_lock);
4192 	PMAP_LOCK(pmap);
4193 
4194 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
4195 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
4196 			goto out;
4197 		}
4198 	}
4199 	page->md.pv_tracked = true;
4200 	pv_insert(pmap, va, page);
4201 out:
4202 	PMAP_UNLOCK(pmap);
4203 	rw_wunlock(&pvh_global_lock);
4204 }
4205 
4206 
4207 /*
4208  * Setup MAS4 defaults.
4209  * These values are loaded to MAS0-2 on a TLB miss.
4210  */
4211 static void
4212 set_mas4_defaults(void)
4213 {
4214 	uint32_t mas4;
4215 
4216 	/* Defaults: TLB0, PID0, TSIZED=4K */
4217 	mas4 = MAS4_TLBSELD0;
4218 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
4219 #ifdef SMP
4220 	mas4 |= MAS4_MD;
4221 #endif
4222 	mtspr(SPR_MAS4, mas4);
4223 	__asm __volatile("isync");
4224 }
4225 
4226 
4227 /*
4228  * Return 0 if the physical IO range is encompassed by one of the
4229  * the TLB1 entries, otherwise return related error code.
4230  */
4231 static int
4232 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
4233 {
4234 	uint32_t prot;
4235 	vm_paddr_t pa_start;
4236 	vm_paddr_t pa_end;
4237 	unsigned int entry_tsize;
4238 	vm_size_t entry_size;
4239 	tlb_entry_t e;
4240 
4241 	*va = (vm_offset_t)NULL;
4242 
4243 	tlb1_read_entry(&e, i);
4244 	/* Skip invalid entries */
4245 	if (!(e.mas1 & MAS1_VALID))
4246 		return (EINVAL);
4247 
4248 	/*
4249 	 * The entry must be cache-inhibited, guarded, and r/w
4250 	 * so it can function as an i/o page
4251 	 */
4252 	prot = e.mas2 & (MAS2_I | MAS2_G);
4253 	if (prot != (MAS2_I | MAS2_G))
4254 		return (EPERM);
4255 
4256 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
4257 	if (prot != (MAS3_SR | MAS3_SW))
4258 		return (EPERM);
4259 
4260 	/* The address should be within the entry range. */
4261 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4262 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
4263 
4264 	entry_size = tsize2size(entry_tsize);
4265 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
4266 	    (e.mas3 & MAS3_RPN);
4267 	pa_end = pa_start + entry_size;
4268 
4269 	if ((pa < pa_start) || ((pa + size) > pa_end))
4270 		return (ERANGE);
4271 
4272 	/* Return virtual address of this mapping. */
4273 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
4274 	return (0);
4275 }
4276 
4277 /*
4278  * Invalidate all TLB0 entries which match the given TID. Note this is
4279  * dedicated for cases when invalidations should NOT be propagated to other
4280  * CPUs.
4281  */
4282 static void
4283 tid_flush(tlbtid_t tid)
4284 {
4285 	register_t msr;
4286 	uint32_t mas0, mas1, mas2;
4287 	int entry, way;
4288 
4289 
4290 	/* Don't evict kernel translations */
4291 	if (tid == TID_KERNEL)
4292 		return;
4293 
4294 	msr = mfmsr();
4295 	__asm __volatile("wrteei 0");
4296 
4297 	/*
4298 	 * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use
4299 	 * it for PID invalidation.
4300 	 */
4301 	switch ((mfpvr() >> 16) & 0xffff) {
4302 	case FSL_E500mc:
4303 	case FSL_E5500:
4304 	case FSL_E6500:
4305 		mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT);
4306 		/* tlbilxpid */
4307 		__asm __volatile("isync; .long 0x7c200024; isync; msync");
4308 		__asm __volatile("wrtee %0" :: "r"(msr));
4309 		return;
4310 	}
4311 
4312 	for (way = 0; way < TLB0_WAYS; way++)
4313 		for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
4314 
4315 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
4316 			mtspr(SPR_MAS0, mas0);
4317 
4318 			mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
4319 			mtspr(SPR_MAS2, mas2);
4320 
4321 			__asm __volatile("isync; tlbre");
4322 
4323 			mas1 = mfspr(SPR_MAS1);
4324 
4325 			if (!(mas1 & MAS1_VALID))
4326 				continue;
4327 			if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
4328 				continue;
4329 			mas1 &= ~MAS1_VALID;
4330 			mtspr(SPR_MAS1, mas1);
4331 			__asm __volatile("isync; tlbwe; isync; msync");
4332 		}
4333 	__asm __volatile("wrtee %0" :: "r"(msr));
4334 }
4335 
4336 #ifdef DDB
4337 /* Print out contents of the MAS registers for each TLB0 entry */
4338 static void
4339 #ifdef __powerpc64__
4340 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
4341 #else
4342 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
4343 #endif
4344     uint32_t mas7)
4345 {
4346 	int as;
4347 	char desc[3];
4348 	tlbtid_t tid;
4349 	vm_size_t size;
4350 	unsigned int tsize;
4351 
4352 	desc[2] = '\0';
4353 	if (mas1 & MAS1_VALID)
4354 		desc[0] = 'V';
4355 	else
4356 		desc[0] = ' ';
4357 
4358 	if (mas1 & MAS1_IPROT)
4359 		desc[1] = 'P';
4360 	else
4361 		desc[1] = ' ';
4362 
4363 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
4364 	tid = MAS1_GETTID(mas1);
4365 
4366 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
4367 	size = 0;
4368 	if (tsize)
4369 		size = tsize2size(tsize);
4370 
4371 	printf("%3d: (%s) [AS=%d] "
4372 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
4373 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
4374 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
4375 }
4376 
4377 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
4378 {
4379 	uint32_t mas0, mas1, mas3, mas7;
4380 #ifdef __powerpc64__
4381 	uint64_t mas2;
4382 #else
4383 	uint32_t mas2;
4384 #endif
4385 	int entryidx, way, idx;
4386 
4387 	printf("TLB0 entries:\n");
4388 	for (way = 0; way < TLB0_WAYS; way ++)
4389 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
4390 
4391 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
4392 			mtspr(SPR_MAS0, mas0);
4393 
4394 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
4395 			mtspr(SPR_MAS2, mas2);
4396 
4397 			__asm __volatile("isync; tlbre");
4398 
4399 			mas1 = mfspr(SPR_MAS1);
4400 			mas2 = mfspr(SPR_MAS2);
4401 			mas3 = mfspr(SPR_MAS3);
4402 			mas7 = mfspr(SPR_MAS7);
4403 
4404 			idx = tlb0_tableidx(mas2, way);
4405 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
4406 		}
4407 }
4408 
4409 /*
4410  * Print out contents of the MAS registers for each TLB1 entry
4411  */
4412 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
4413 {
4414 	uint32_t mas0, mas1, mas3, mas7;
4415 #ifdef __powerpc64__
4416 	uint64_t mas2;
4417 #else
4418 	uint32_t mas2;
4419 #endif
4420 	int i;
4421 
4422 	printf("TLB1 entries:\n");
4423 	for (i = 0; i < TLB1_ENTRIES; i++) {
4424 
4425 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
4426 		mtspr(SPR_MAS0, mas0);
4427 
4428 		__asm __volatile("isync; tlbre");
4429 
4430 		mas1 = mfspr(SPR_MAS1);
4431 		mas2 = mfspr(SPR_MAS2);
4432 		mas3 = mfspr(SPR_MAS3);
4433 		mas7 = mfspr(SPR_MAS7);
4434 
4435 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
4436 	}
4437 }
4438 #endif
4439