xref: /freebsd/sys/powerpc/booke/pmap.c (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ddb.h"
80 #include "opt_kstack_pages.h"
81 
82 #include <sys/param.h>
83 #include <sys/conf.h>
84 #include <sys/malloc.h>
85 #include <sys/ktr.h>
86 #include <sys/proc.h>
87 #include <sys/user.h>
88 #include <sys/queue.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/kerneldump.h>
92 #include <sys/linker.h>
93 #include <sys/msgbuf.h>
94 #include <sys/lock.h>
95 #include <sys/mutex.h>
96 #include <sys/rwlock.h>
97 #include <sys/sched.h>
98 #include <sys/smp.h>
99 #include <sys/vmmeter.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/vm_pagequeue.h>
112 #include <vm/vm_dumpset.h>
113 #include <vm/uma.h>
114 
115 #include <machine/_inttypes.h>
116 #include <machine/cpu.h>
117 #include <machine/pcb.h>
118 #include <machine/platform.h>
119 
120 #include <machine/tlb.h>
121 #include <machine/spr.h>
122 #include <machine/md_var.h>
123 #include <machine/mmuvar.h>
124 #include <machine/pmap.h>
125 #include <machine/pte.h>
126 
127 #include <ddb/ddb.h>
128 
129 #define	SPARSE_MAPDEV
130 
131 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
132 #define	POW2_MAPPINGS
133 
134 #ifdef  DEBUG
135 #define debugf(fmt, args...) printf(fmt, ##args)
136 #else
137 #define debugf(fmt, args...)
138 #endif
139 
140 #ifdef __powerpc64__
141 #define	PRI0ptrX	"016lx"
142 #else
143 #define	PRI0ptrX	"08x"
144 #endif
145 
146 #define TODO			panic("%s: not implemented", __func__);
147 
148 extern unsigned char _etext[];
149 extern unsigned char _end[];
150 
151 extern uint32_t *bootinfo;
152 
153 vm_paddr_t kernload;
154 vm_offset_t kernstart;
155 vm_size_t kernsize;
156 
157 /* Message buffer and tables. */
158 static vm_offset_t data_start;
159 static vm_size_t data_end;
160 
161 /* Phys/avail memory regions. */
162 static struct mem_region *availmem_regions;
163 static int availmem_regions_sz;
164 static struct mem_region *physmem_regions;
165 static int physmem_regions_sz;
166 
167 #ifndef __powerpc64__
168 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
169 static vm_offset_t zero_page_va;
170 static struct mtx zero_page_mutex;
171 
172 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
173 static vm_offset_t copy_page_src_va;
174 static vm_offset_t copy_page_dst_va;
175 static struct mtx copy_page_mutex;
176 #endif
177 
178 static struct mtx tlbivax_mutex;
179 
180 /**************************************************************************/
181 /* PMAP */
182 /**************************************************************************/
183 
184 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
185     vm_prot_t, u_int flags, int8_t psind);
186 
187 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
188 static uma_zone_t ptbl_root_zone;
189 
190 /*
191  * If user pmap is processed with mmu_booke_remove and the resident count
192  * drops to 0, there are no more pages to remove, so we need not continue.
193  */
194 #define PMAP_REMOVE_DONE(pmap) \
195 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
196 
197 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
198 extern int elf32_nxstack;
199 #endif
200 
201 /**************************************************************************/
202 /* TLB and TID handling */
203 /**************************************************************************/
204 
205 /* Translation ID busy table */
206 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
207 
208 /*
209  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
210  * core revisions and should be read from h/w registers during early config.
211  */
212 uint32_t tlb0_entries;
213 uint32_t tlb0_ways;
214 uint32_t tlb0_entries_per_way;
215 uint32_t tlb1_entries;
216 
217 #define TLB0_ENTRIES		(tlb0_entries)
218 #define TLB0_WAYS		(tlb0_ways)
219 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
220 
221 #define TLB1_ENTRIES (tlb1_entries)
222 
223 static tlbtid_t tid_alloc(struct pmap *);
224 
225 #ifdef DDB
226 #ifdef __powerpc64__
227 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
228 #else
229 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
230 #endif
231 #endif
232 
233 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
234 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
235 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
236 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
237 
238 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
239 
240 static vm_size_t tsize2size(unsigned int);
241 static unsigned int size2tsize(vm_size_t);
242 static unsigned long ilog2(unsigned long);
243 
244 static void set_mas4_defaults(void);
245 
246 static inline void tlb0_flush_entry(vm_offset_t);
247 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
248 
249 /**************************************************************************/
250 /* Page table management */
251 /**************************************************************************/
252 
253 static struct rwlock_padalign pvh_global_lock;
254 
255 /* Data for the pv entry allocation mechanism */
256 static uma_zone_t pvzone;
257 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
258 
259 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
260 
261 #ifndef PMAP_SHPGPERPROC
262 #define PMAP_SHPGPERPROC	200
263 #endif
264 
265 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
266 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
267 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
268 static pte_t *pte_find(pmap_t, vm_offset_t);
269 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
270 
271 static pv_entry_t pv_alloc(void);
272 static void pv_free(pv_entry_t);
273 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
274 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
275 
276 static void booke_pmap_init_qpages(void);
277 
278 static inline void tlb_miss_lock(void);
279 static inline void tlb_miss_unlock(void);
280 
281 #ifdef SMP
282 extern tlb_entry_t __boot_tlb1[];
283 void pmap_bootstrap_ap(volatile uint32_t *);
284 #endif
285 
286 /*
287  * Kernel MMU interface
288  */
289 static void		mmu_booke_clear_modify(vm_page_t);
290 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
291     vm_size_t, vm_offset_t);
292 static void		mmu_booke_copy_page(vm_page_t, vm_page_t);
293 static void		mmu_booke_copy_pages(vm_page_t *,
294     vm_offset_t, vm_page_t *, vm_offset_t, int);
295 static int		mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
296     vm_prot_t, u_int flags, int8_t psind);
297 static void		mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
298     vm_page_t, vm_prot_t);
299 static void		mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
300     vm_prot_t);
301 static vm_paddr_t	mmu_booke_extract(pmap_t, vm_offset_t);
302 static vm_page_t	mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
303     vm_prot_t);
304 static void		mmu_booke_init(void);
305 static boolean_t	mmu_booke_is_modified(vm_page_t);
306 static boolean_t	mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
307 static boolean_t	mmu_booke_is_referenced(vm_page_t);
308 static int		mmu_booke_ts_referenced(vm_page_t);
309 static vm_offset_t	mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
310     int);
311 static int		mmu_booke_mincore(pmap_t, vm_offset_t,
312     vm_paddr_t *);
313 static void		mmu_booke_object_init_pt(pmap_t, vm_offset_t,
314     vm_object_t, vm_pindex_t, vm_size_t);
315 static boolean_t	mmu_booke_page_exists_quick(pmap_t, vm_page_t);
316 static void		mmu_booke_page_init(vm_page_t);
317 static int		mmu_booke_page_wired_mappings(vm_page_t);
318 static int		mmu_booke_pinit(pmap_t);
319 static void		mmu_booke_pinit0(pmap_t);
320 static void		mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
321     vm_prot_t);
322 static void		mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
323 static void		mmu_booke_qremove(vm_offset_t, int);
324 static void		mmu_booke_release(pmap_t);
325 static void		mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
326 static void		mmu_booke_remove_all(vm_page_t);
327 static void		mmu_booke_remove_write(vm_page_t);
328 static void		mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
329 static void		mmu_booke_zero_page(vm_page_t);
330 static void		mmu_booke_zero_page_area(vm_page_t, int, int);
331 static void		mmu_booke_activate(struct thread *);
332 static void		mmu_booke_deactivate(struct thread *);
333 static void		mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
334 static void		*mmu_booke_mapdev(vm_paddr_t, vm_size_t);
335 static void		*mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
336 static void		mmu_booke_unmapdev(vm_offset_t, vm_size_t);
337 static vm_paddr_t	mmu_booke_kextract(vm_offset_t);
338 static void		mmu_booke_kenter(vm_offset_t, vm_paddr_t);
339 static void		mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
340 static void		mmu_booke_kremove(vm_offset_t);
341 static boolean_t	mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
342 static void		mmu_booke_sync_icache(pmap_t, vm_offset_t,
343     vm_size_t);
344 static void		mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
345     void **);
346 static void		mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
347     void *);
348 static void		mmu_booke_scan_init(void);
349 static vm_offset_t	mmu_booke_quick_enter_page(vm_page_t m);
350 static void		mmu_booke_quick_remove_page(vm_offset_t addr);
351 static int		mmu_booke_change_attr(vm_offset_t addr,
352     vm_size_t sz, vm_memattr_t mode);
353 static int		mmu_booke_decode_kernel_ptr(vm_offset_t addr,
354     int *is_user, vm_offset_t *decoded_addr);
355 static void		mmu_booke_page_array_startup(long);
356 static boolean_t mmu_booke_page_is_mapped(vm_page_t m);
357 
358 static struct pmap_funcs mmu_booke_methods = {
359 	/* pmap dispatcher interface */
360 	.clear_modify = mmu_booke_clear_modify,
361 	.copy = mmu_booke_copy,
362 	.copy_page = mmu_booke_copy_page,
363 	.copy_pages = mmu_booke_copy_pages,
364 	.enter = mmu_booke_enter,
365 	.enter_object = mmu_booke_enter_object,
366 	.enter_quick = mmu_booke_enter_quick,
367 	.extract = mmu_booke_extract,
368 	.extract_and_hold = mmu_booke_extract_and_hold,
369 	.init = mmu_booke_init,
370 	.is_modified = mmu_booke_is_modified,
371 	.is_prefaultable = mmu_booke_is_prefaultable,
372 	.is_referenced = mmu_booke_is_referenced,
373 	.ts_referenced = mmu_booke_ts_referenced,
374 	.map = mmu_booke_map,
375 	.mincore = mmu_booke_mincore,
376 	.object_init_pt = mmu_booke_object_init_pt,
377 	.page_exists_quick = mmu_booke_page_exists_quick,
378 	.page_init = mmu_booke_page_init,
379 	.page_wired_mappings =  mmu_booke_page_wired_mappings,
380 	.pinit = mmu_booke_pinit,
381 	.pinit0 = mmu_booke_pinit0,
382 	.protect = mmu_booke_protect,
383 	.qenter = mmu_booke_qenter,
384 	.qremove = mmu_booke_qremove,
385 	.release = mmu_booke_release,
386 	.remove = mmu_booke_remove,
387 	.remove_all = mmu_booke_remove_all,
388 	.remove_write = mmu_booke_remove_write,
389 	.sync_icache = mmu_booke_sync_icache,
390 	.unwire = mmu_booke_unwire,
391 	.zero_page = mmu_booke_zero_page,
392 	.zero_page_area = mmu_booke_zero_page_area,
393 	.activate = mmu_booke_activate,
394 	.deactivate = mmu_booke_deactivate,
395 	.quick_enter_page =  mmu_booke_quick_enter_page,
396 	.quick_remove_page =  mmu_booke_quick_remove_page,
397 	.page_array_startup = mmu_booke_page_array_startup,
398 	.page_is_mapped = mmu_booke_page_is_mapped,
399 
400 	/* Internal interfaces */
401 	.bootstrap = mmu_booke_bootstrap,
402 	.dev_direct_mapped = mmu_booke_dev_direct_mapped,
403 	.mapdev = mmu_booke_mapdev,
404 	.mapdev_attr = mmu_booke_mapdev_attr,
405 	.kenter = mmu_booke_kenter,
406 	.kenter_attr = mmu_booke_kenter_attr,
407 	.kextract = mmu_booke_kextract,
408 	.kremove = mmu_booke_kremove,
409 	.unmapdev = mmu_booke_unmapdev,
410 	.change_attr = mmu_booke_change_attr,
411 	.decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
412 
413 	/* dumpsys() support */
414 	.dumpsys_map_chunk = mmu_booke_dumpsys_map,
415 	.dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
416 	.dumpsys_pa_init = mmu_booke_scan_init,
417 };
418 
419 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
420 
421 #ifdef __powerpc64__
422 #include "pmap_64.c"
423 #else
424 #include "pmap_32.c"
425 #endif
426 
427 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
428 
429 static __inline uint32_t
430 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
431 {
432 	uint32_t attrib;
433 	int i;
434 
435 	if (ma != VM_MEMATTR_DEFAULT) {
436 		switch (ma) {
437 		case VM_MEMATTR_UNCACHEABLE:
438 			return (MAS2_I | MAS2_G);
439 		case VM_MEMATTR_WRITE_COMBINING:
440 		case VM_MEMATTR_WRITE_BACK:
441 		case VM_MEMATTR_PREFETCHABLE:
442 			return (MAS2_I);
443 		case VM_MEMATTR_WRITE_THROUGH:
444 			return (MAS2_W | MAS2_M);
445 		case VM_MEMATTR_CACHEABLE:
446 			return (MAS2_M);
447 		}
448 	}
449 
450 	/*
451 	 * Assume the page is cache inhibited and access is guarded unless
452 	 * it's in our available memory array.
453 	 */
454 	attrib = _TLB_ENTRY_IO;
455 	for (i = 0; i < physmem_regions_sz; i++) {
456 		if ((pa >= physmem_regions[i].mr_start) &&
457 		    (pa < (physmem_regions[i].mr_start +
458 		     physmem_regions[i].mr_size))) {
459 			attrib = _TLB_ENTRY_MEM;
460 			break;
461 		}
462 	}
463 
464 	return (attrib);
465 }
466 
467 static inline void
468 tlb_miss_lock(void)
469 {
470 #ifdef SMP
471 	struct pcpu *pc;
472 
473 	if (!smp_started)
474 		return;
475 
476 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
477 		if (pc != pcpup) {
478 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
479 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
480 
481 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
482 			    ("tlb_miss_lock: tried to lock self"));
483 
484 			tlb_lock(pc->pc_booke.tlb_lock);
485 
486 			CTR1(KTR_PMAP, "%s: locked", __func__);
487 		}
488 	}
489 #endif
490 }
491 
492 static inline void
493 tlb_miss_unlock(void)
494 {
495 #ifdef SMP
496 	struct pcpu *pc;
497 
498 	if (!smp_started)
499 		return;
500 
501 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
502 		if (pc != pcpup) {
503 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
504 			    __func__, pc->pc_cpuid);
505 
506 			tlb_unlock(pc->pc_booke.tlb_lock);
507 
508 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
509 		}
510 	}
511 #endif
512 }
513 
514 /* Return number of entries in TLB0. */
515 static __inline void
516 tlb0_get_tlbconf(void)
517 {
518 	uint32_t tlb0_cfg;
519 
520 	tlb0_cfg = mfspr(SPR_TLB0CFG);
521 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
522 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
523 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
524 }
525 
526 /* Return number of entries in TLB1. */
527 static __inline void
528 tlb1_get_tlbconf(void)
529 {
530 	uint32_t tlb1_cfg;
531 
532 	tlb1_cfg = mfspr(SPR_TLB1CFG);
533 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
534 }
535 
536 /**************************************************************************/
537 /* Page table related */
538 /**************************************************************************/
539 
540 /* Allocate pv_entry structure. */
541 pv_entry_t
542 pv_alloc(void)
543 {
544 	pv_entry_t pv;
545 
546 	pv_entry_count++;
547 	if (pv_entry_count > pv_entry_high_water)
548 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
549 	pv = uma_zalloc(pvzone, M_NOWAIT);
550 
551 	return (pv);
552 }
553 
554 /* Free pv_entry structure. */
555 static __inline void
556 pv_free(pv_entry_t pve)
557 {
558 
559 	pv_entry_count--;
560 	uma_zfree(pvzone, pve);
561 }
562 
563 /* Allocate and initialize pv_entry structure. */
564 static void
565 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
566 {
567 	pv_entry_t pve;
568 
569 	//int su = (pmap == kernel_pmap);
570 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
571 	//	(u_int32_t)pmap, va, (u_int32_t)m);
572 
573 	pve = pv_alloc();
574 	if (pve == NULL)
575 		panic("pv_insert: no pv entries!");
576 
577 	pve->pv_pmap = pmap;
578 	pve->pv_va = va;
579 
580 	/* add to pv_list */
581 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
582 	rw_assert(&pvh_global_lock, RA_WLOCKED);
583 
584 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
585 
586 	//debugf("pv_insert: e\n");
587 }
588 
589 /* Destroy pv entry. */
590 static void
591 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
592 {
593 	pv_entry_t pve;
594 
595 	//int su = (pmap == kernel_pmap);
596 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
597 
598 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
599 	rw_assert(&pvh_global_lock, RA_WLOCKED);
600 
601 	/* find pv entry */
602 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
603 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
604 			/* remove from pv_list */
605 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
606 			if (TAILQ_EMPTY(&m->md.pv_list))
607 				vm_page_aflag_clear(m, PGA_WRITEABLE);
608 
609 			/* free pv entry struct */
610 			pv_free(pve);
611 			break;
612 		}
613 	}
614 
615 	//debugf("pv_remove: e\n");
616 }
617 
618 /**************************************************************************/
619 /* PMAP related */
620 /**************************************************************************/
621 
622 /*
623  * This is called during booke_init, before the system is really initialized.
624  */
625 static void
626 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
627 {
628 	vm_paddr_t phys_kernelend;
629 	struct mem_region *mp, *mp1;
630 	int cnt, i, j;
631 	vm_paddr_t s, e, sz;
632 	vm_paddr_t physsz, hwphyssz;
633 	u_int phys_avail_count;
634 	vm_size_t kstack0_sz;
635 	vm_paddr_t kstack0_phys;
636 	vm_offset_t kstack0;
637 	void *dpcpu;
638 
639 	debugf("mmu_booke_bootstrap: entered\n");
640 
641 	/* Set interesting system properties */
642 #ifdef __powerpc64__
643 	hw_direct_map = 1;
644 #else
645 	hw_direct_map = 0;
646 #endif
647 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
648 	elf32_nxstack = 1;
649 #endif
650 
651 	/* Initialize invalidation mutex */
652 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
653 
654 	/* Read TLB0 size and associativity. */
655 	tlb0_get_tlbconf();
656 
657 	/*
658 	 * Align kernel start and end address (kernel image).
659 	 * Note that kernel end does not necessarily relate to kernsize.
660 	 * kernsize is the size of the kernel that is actually mapped.
661 	 */
662 	data_start = round_page(kernelend);
663 	data_end = data_start;
664 
665 	/* Allocate the dynamic per-cpu area. */
666 	dpcpu = (void *)data_end;
667 	data_end += DPCPU_SIZE;
668 
669 	/* Allocate space for the message buffer. */
670 	msgbufp = (struct msgbuf *)data_end;
671 	data_end += msgbufsize;
672 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
673 	    (uintptr_t)msgbufp, data_end);
674 
675 	data_end = round_page(data_end);
676 	data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
677 
678 	/* Retrieve phys/avail mem regions */
679 	mem_regions(&physmem_regions, &physmem_regions_sz,
680 	    &availmem_regions, &availmem_regions_sz);
681 
682 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
683 		panic("mmu_booke_bootstrap: phys_avail too small");
684 
685 	data_end = round_page(data_end);
686 	vm_page_array = (vm_page_t)data_end;
687 	/*
688 	 * Get a rough idea (upper bound) on the size of the page array.  The
689 	 * vm_page_array will not handle any more pages than we have in the
690 	 * avail_regions array, and most likely much less.
691 	 */
692 	sz = 0;
693 	for (mp = availmem_regions; mp->mr_size; mp++) {
694 		sz += mp->mr_size;
695 	}
696 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
697 	data_end += round_page(sz * sizeof(struct vm_page));
698 
699 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
700 	data_end = roundup2(data_end, 1 << 20);
701 
702 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
703 	debugf(" kernstart: %#zx\n", kernstart);
704 	debugf(" kernsize: %#zx\n", kernsize);
705 
706 	if (data_end - kernstart > kernsize) {
707 		kernsize += tlb1_mapin_region(kernstart + kernsize,
708 		    kernload + kernsize, (data_end - kernstart) - kernsize,
709 		    _TLB_ENTRY_MEM);
710 	}
711 	data_end = kernstart + kernsize;
712 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
713 
714 	/*
715 	 * Clear the structures - note we can only do it safely after the
716 	 * possible additional TLB1 translations are in place (above) so that
717 	 * all range up to the currently calculated 'data_end' is covered.
718 	 */
719 	bzero((void *)data_start, data_end - data_start);
720 	dpcpu_init(dpcpu, 0);
721 
722 	/*******************************************************/
723 	/* Set the start and end of kva. */
724 	/*******************************************************/
725 	virtual_avail = round_page(data_end);
726 	virtual_end = VM_MAX_KERNEL_ADDRESS;
727 
728 #ifndef __powerpc64__
729 	/* Allocate KVA space for page zero/copy operations. */
730 	zero_page_va = virtual_avail;
731 	virtual_avail += PAGE_SIZE;
732 	copy_page_src_va = virtual_avail;
733 	virtual_avail += PAGE_SIZE;
734 	copy_page_dst_va = virtual_avail;
735 	virtual_avail += PAGE_SIZE;
736 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
737 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
738 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
739 
740 	/* Initialize page zero/copy mutexes. */
741 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
742 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
743 
744 	/* Allocate KVA space for ptbl bufs. */
745 	ptbl_buf_pool_vabase = virtual_avail;
746 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
747 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
748 	    ptbl_buf_pool_vabase, virtual_avail);
749 #endif
750 
751 	/* Calculate corresponding physical addresses for the kernel region. */
752 	phys_kernelend = kernload + kernsize;
753 	debugf("kernel image and allocated data:\n");
754 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
755 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
756 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
757 
758 	/*
759 	 * Remove kernel physical address range from avail regions list. Page
760 	 * align all regions.  Non-page aligned memory isn't very interesting
761 	 * to us.  Also, sort the entries for ascending addresses.
762 	 */
763 
764 	sz = 0;
765 	cnt = availmem_regions_sz;
766 	debugf("processing avail regions:\n");
767 	for (mp = availmem_regions; mp->mr_size; mp++) {
768 		s = mp->mr_start;
769 		e = mp->mr_start + mp->mr_size;
770 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
771 		/* Check whether this region holds all of the kernel. */
772 		if (s < kernload && e > phys_kernelend) {
773 			availmem_regions[cnt].mr_start = phys_kernelend;
774 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
775 			e = kernload;
776 		}
777 		/* Look whether this regions starts within the kernel. */
778 		if (s >= kernload && s < phys_kernelend) {
779 			if (e <= phys_kernelend)
780 				goto empty;
781 			s = phys_kernelend;
782 		}
783 		/* Now look whether this region ends within the kernel. */
784 		if (e > kernload && e <= phys_kernelend) {
785 			if (s >= kernload)
786 				goto empty;
787 			e = kernload;
788 		}
789 		/* Now page align the start and size of the region. */
790 		s = round_page(s);
791 		e = trunc_page(e);
792 		if (e < s)
793 			e = s;
794 		sz = e - s;
795 		debugf("%09jx-%09jx = %jx\n",
796 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
797 
798 		/* Check whether some memory is left here. */
799 		if (sz == 0) {
800 		empty:
801 			memmove(mp, mp + 1,
802 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
803 			cnt--;
804 			mp--;
805 			continue;
806 		}
807 
808 		/* Do an insertion sort. */
809 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
810 			if (s < mp1->mr_start)
811 				break;
812 		if (mp1 < mp) {
813 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
814 			mp1->mr_start = s;
815 			mp1->mr_size = sz;
816 		} else {
817 			mp->mr_start = s;
818 			mp->mr_size = sz;
819 		}
820 	}
821 	availmem_regions_sz = cnt;
822 
823 	/*******************************************************/
824 	/* Steal physical memory for kernel stack from the end */
825 	/* of the first avail region                           */
826 	/*******************************************************/
827 	kstack0_sz = kstack_pages * PAGE_SIZE;
828 	kstack0_phys = availmem_regions[0].mr_start +
829 	    availmem_regions[0].mr_size;
830 	kstack0_phys -= kstack0_sz;
831 	availmem_regions[0].mr_size -= kstack0_sz;
832 
833 	/*******************************************************/
834 	/* Fill in phys_avail table, based on availmem_regions */
835 	/*******************************************************/
836 	phys_avail_count = 0;
837 	physsz = 0;
838 	hwphyssz = 0;
839 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
840 
841 	debugf("fill in phys_avail:\n");
842 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
843 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
844 		    (uintmax_t)availmem_regions[i].mr_start,
845 		    (uintmax_t)availmem_regions[i].mr_start +
846 		        availmem_regions[i].mr_size,
847 		    (uintmax_t)availmem_regions[i].mr_size);
848 
849 		if (hwphyssz != 0 &&
850 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
851 			debugf(" hw.physmem adjust\n");
852 			if (physsz < hwphyssz) {
853 				phys_avail[j] = availmem_regions[i].mr_start;
854 				phys_avail[j + 1] =
855 				    availmem_regions[i].mr_start +
856 				    hwphyssz - physsz;
857 				physsz = hwphyssz;
858 				phys_avail_count++;
859 				dump_avail[j] = phys_avail[j];
860 				dump_avail[j + 1] = phys_avail[j + 1];
861 			}
862 			break;
863 		}
864 
865 		phys_avail[j] = availmem_regions[i].mr_start;
866 		phys_avail[j + 1] = availmem_regions[i].mr_start +
867 		    availmem_regions[i].mr_size;
868 		phys_avail_count++;
869 		physsz += availmem_regions[i].mr_size;
870 		dump_avail[j] = phys_avail[j];
871 		dump_avail[j + 1] = phys_avail[j + 1];
872 	}
873 	physmem = btoc(physsz);
874 
875 	/* Calculate the last available physical address. */
876 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
877 		;
878 	Maxmem = powerpc_btop(phys_avail[i + 1]);
879 
880 	debugf("Maxmem = 0x%08lx\n", Maxmem);
881 	debugf("phys_avail_count = %d\n", phys_avail_count);
882 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
883 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
884 
885 #ifdef __powerpc64__
886 	/*
887 	 * Map the physical memory contiguously in TLB1.
888 	 * Round so it fits into a single mapping.
889 	 */
890 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
891 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
892 #endif
893 
894 	/*******************************************************/
895 	/* Initialize (statically allocated) kernel pmap. */
896 	/*******************************************************/
897 	PMAP_LOCK_INIT(kernel_pmap);
898 
899 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
900 	kernel_pte_alloc(virtual_avail, kernstart);
901 	for (i = 0; i < MAXCPU; i++) {
902 		kernel_pmap->pm_tid[i] = TID_KERNEL;
903 
904 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
905 		tidbusy[i][TID_KERNEL] = kernel_pmap;
906 	}
907 
908 	/* Mark kernel_pmap active on all CPUs */
909 	CPU_FILL(&kernel_pmap->pm_active);
910 
911  	/*
912 	 * Initialize the global pv list lock.
913 	 */
914 	rw_init(&pvh_global_lock, "pmap pv global");
915 
916 	/*******************************************************/
917 	/* Final setup */
918 	/*******************************************************/
919 
920 	/* Enter kstack0 into kernel map, provide guard page */
921 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
922 	thread0.td_kstack = kstack0;
923 	thread0.td_kstack_pages = kstack_pages;
924 
925 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
926 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
927 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
928 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
929 	    kstack0, kstack0 + kstack0_sz);
930 
931 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
932 	for (i = 0; i < kstack_pages; i++) {
933 		mmu_booke_kenter(kstack0, kstack0_phys);
934 		kstack0 += PAGE_SIZE;
935 		kstack0_phys += PAGE_SIZE;
936 	}
937 
938 	pmap_bootstrapped = 1;
939 
940 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
941 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
942 
943 	debugf("mmu_booke_bootstrap: exit\n");
944 }
945 
946 #ifdef SMP
947 void
948 tlb1_ap_prep(void)
949 {
950 	tlb_entry_t *e, tmp;
951 	unsigned int i;
952 
953 	/* Prepare TLB1 image for AP processors */
954 	e = __boot_tlb1;
955 	for (i = 0; i < TLB1_ENTRIES; i++) {
956 		tlb1_read_entry(&tmp, i);
957 
958 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
959 			memcpy(e++, &tmp, sizeof(tmp));
960 	}
961 }
962 
963 void
964 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
965 {
966 	int i;
967 
968 	/*
969 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
970 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
971 	 * created by tlb1_ap_prep(), so use these values directly to
972 	 * (re)program AP's TLB1 hardware.
973 	 *
974 	 * Start at index 1 because index 0 has the kernel map.
975 	 */
976 	for (i = 1; i < TLB1_ENTRIES; i++) {
977 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
978 			tlb1_write_entry(&__boot_tlb1[i], i);
979 	}
980 
981 	set_mas4_defaults();
982 }
983 #endif
984 
985 static void
986 booke_pmap_init_qpages(void)
987 {
988 	struct pcpu *pc;
989 	int i;
990 
991 	CPU_FOREACH(i) {
992 		pc = pcpu_find(i);
993 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
994 		if (pc->pc_qmap_addr == 0)
995 			panic("pmap_init_qpages: unable to allocate KVA");
996 	}
997 }
998 
999 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1000 
1001 /*
1002  * Get the physical page address for the given pmap/virtual address.
1003  */
1004 static vm_paddr_t
1005 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
1006 {
1007 	vm_paddr_t pa;
1008 
1009 	PMAP_LOCK(pmap);
1010 	pa = pte_vatopa(pmap, va);
1011 	PMAP_UNLOCK(pmap);
1012 
1013 	return (pa);
1014 }
1015 
1016 /*
1017  * Extract the physical page address associated with the given
1018  * kernel virtual address.
1019  */
1020 static vm_paddr_t
1021 mmu_booke_kextract(vm_offset_t va)
1022 {
1023 	tlb_entry_t e;
1024 	vm_paddr_t p = 0;
1025 	int i;
1026 
1027 #ifdef __powerpc64__
1028 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1029 		return (DMAP_TO_PHYS(va));
1030 #endif
1031 
1032 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1033 		p = pte_vatopa(kernel_pmap, va);
1034 
1035 	if (p == 0) {
1036 		/* Check TLB1 mappings */
1037 		for (i = 0; i < TLB1_ENTRIES; i++) {
1038 			tlb1_read_entry(&e, i);
1039 			if (!(e.mas1 & MAS1_VALID))
1040 				continue;
1041 			if (va >= e.virt && va < e.virt + e.size)
1042 				return (e.phys + (va - e.virt));
1043 		}
1044 	}
1045 
1046 	return (p);
1047 }
1048 
1049 /*
1050  * Initialize the pmap module.
1051  * Called by vm_init, to initialize any structures that the pmap
1052  * system needs to map virtual memory.
1053  */
1054 static void
1055 mmu_booke_init()
1056 {
1057 	int shpgperproc = PMAP_SHPGPERPROC;
1058 
1059 	/*
1060 	 * Initialize the address space (zone) for the pv entries.  Set a
1061 	 * high water mark so that the system can recover from excessive
1062 	 * numbers of pv entries.
1063 	 */
1064 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1065 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1066 
1067 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1068 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1069 
1070 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1071 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1072 
1073 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1074 
1075 	/* Pre-fill pvzone with initial number of pv entries. */
1076 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1077 
1078 	/* Create a UMA zone for page table roots. */
1079 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
1080 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
1081 
1082 	/* Initialize ptbl allocation. */
1083 	ptbl_init();
1084 }
1085 
1086 /*
1087  * Map a list of wired pages into kernel virtual address space.  This is
1088  * intended for temporary mappings which do not need page modification or
1089  * references recorded.  Existing mappings in the region are overwritten.
1090  */
1091 static void
1092 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
1093 {
1094 	vm_offset_t va;
1095 
1096 	va = sva;
1097 	while (count-- > 0) {
1098 		mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
1099 		va += PAGE_SIZE;
1100 		m++;
1101 	}
1102 }
1103 
1104 /*
1105  * Remove page mappings from kernel virtual address space.  Intended for
1106  * temporary mappings entered by mmu_booke_qenter.
1107  */
1108 static void
1109 mmu_booke_qremove(vm_offset_t sva, int count)
1110 {
1111 	vm_offset_t va;
1112 
1113 	va = sva;
1114 	while (count-- > 0) {
1115 		mmu_booke_kremove(va);
1116 		va += PAGE_SIZE;
1117 	}
1118 }
1119 
1120 /*
1121  * Map a wired page into kernel virtual address space.
1122  */
1123 static void
1124 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
1125 {
1126 
1127 	mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1128 }
1129 
1130 static void
1131 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1132 {
1133 	uint32_t flags;
1134 	pte_t *pte;
1135 
1136 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1137 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1138 
1139 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1140 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1141 	flags |= PTE_PS_4KB;
1142 
1143 	pte = pte_find(kernel_pmap, va);
1144 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
1145 
1146 	mtx_lock_spin(&tlbivax_mutex);
1147 	tlb_miss_lock();
1148 
1149 	if (PTE_ISVALID(pte)) {
1150 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1151 
1152 		/* Flush entry from TLB0 */
1153 		tlb0_flush_entry(va);
1154 	}
1155 
1156 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1157 
1158 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1159 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1160 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1161 
1162 	/* Flush the real memory from the instruction cache. */
1163 	if ((flags & (PTE_I | PTE_G)) == 0)
1164 		__syncicache((void *)va, PAGE_SIZE);
1165 
1166 	tlb_miss_unlock();
1167 	mtx_unlock_spin(&tlbivax_mutex);
1168 }
1169 
1170 /*
1171  * Remove a page from kernel page table.
1172  */
1173 static void
1174 mmu_booke_kremove(vm_offset_t va)
1175 {
1176 	pte_t *pte;
1177 
1178 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
1179 
1180 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1181 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1182 	    ("mmu_booke_kremove: invalid va"));
1183 
1184 	pte = pte_find(kernel_pmap, va);
1185 
1186 	if (!PTE_ISVALID(pte)) {
1187 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1188 
1189 		return;
1190 	}
1191 
1192 	mtx_lock_spin(&tlbivax_mutex);
1193 	tlb_miss_lock();
1194 
1195 	/* Invalidate entry in TLB0, update PTE. */
1196 	tlb0_flush_entry(va);
1197 	*pte = 0;
1198 
1199 	tlb_miss_unlock();
1200 	mtx_unlock_spin(&tlbivax_mutex);
1201 }
1202 
1203 /*
1204  * Figure out where a given kernel pointer (usually in a fault) points
1205  * to from the VM's perspective, potentially remapping into userland's
1206  * address space.
1207  */
1208 static int
1209 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1210     vm_offset_t *decoded_addr)
1211 {
1212 
1213 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
1214 		*is_user = 1;
1215 	else
1216 		*is_user = 0;
1217 
1218 	*decoded_addr = addr;
1219 	return (0);
1220 }
1221 
1222 static boolean_t
1223 mmu_booke_page_is_mapped(vm_page_t m)
1224 {
1225 
1226 	return (!TAILQ_EMPTY(&(m)->md.pv_list));
1227 }
1228 
1229 /*
1230  * Initialize pmap associated with process 0.
1231  */
1232 static void
1233 mmu_booke_pinit0(pmap_t pmap)
1234 {
1235 
1236 	PMAP_LOCK_INIT(pmap);
1237 	mmu_booke_pinit(pmap);
1238 	PCPU_SET(curpmap, pmap);
1239 }
1240 
1241 /*
1242  * Insert the given physical page at the specified virtual address in the
1243  * target physical map with the protection requested. If specified the page
1244  * will be wired down.
1245  */
1246 static int
1247 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1248     vm_prot_t prot, u_int flags, int8_t psind)
1249 {
1250 	int error;
1251 
1252 	rw_wlock(&pvh_global_lock);
1253 	PMAP_LOCK(pmap);
1254 	error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
1255 	PMAP_UNLOCK(pmap);
1256 	rw_wunlock(&pvh_global_lock);
1257 	return (error);
1258 }
1259 
1260 static int
1261 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1262     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1263 {
1264 	pte_t *pte;
1265 	vm_paddr_t pa;
1266 	pte_t flags;
1267 	int error, su, sync;
1268 
1269 	pa = VM_PAGE_TO_PHYS(m);
1270 	su = (pmap == kernel_pmap);
1271 	sync = 0;
1272 
1273 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1274 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1275 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1276 	//		(u_int32_t)m, va, pa, prot, flags);
1277 
1278 	if (su) {
1279 		KASSERT(((va >= virtual_avail) &&
1280 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1281 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1282 	} else {
1283 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1284 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1285 	}
1286 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1287 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1288 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1289 		else
1290 			VM_OBJECT_ASSERT_LOCKED(m->object);
1291 	}
1292 
1293 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1294 
1295 	/*
1296 	 * If there is an existing mapping, and the physical address has not
1297 	 * changed, must be protection or wiring change.
1298 	 */
1299 	if (((pte = pte_find(pmap, va)) != NULL) &&
1300 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1301 
1302 		/*
1303 		 * Before actually updating pte->flags we calculate and
1304 		 * prepare its new value in a helper var.
1305 		 */
1306 		flags = *pte;
1307 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1308 
1309 		/* Wiring change, just update stats. */
1310 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1311 			if (!PTE_ISWIRED(pte)) {
1312 				flags |= PTE_WIRED;
1313 				pmap->pm_stats.wired_count++;
1314 			}
1315 		} else {
1316 			if (PTE_ISWIRED(pte)) {
1317 				flags &= ~PTE_WIRED;
1318 				pmap->pm_stats.wired_count--;
1319 			}
1320 		}
1321 
1322 		if (prot & VM_PROT_WRITE) {
1323 			/* Add write permissions. */
1324 			flags |= PTE_SW;
1325 			if (!su)
1326 				flags |= PTE_UW;
1327 
1328 			if ((flags & PTE_MANAGED) != 0)
1329 				vm_page_aflag_set(m, PGA_WRITEABLE);
1330 		} else {
1331 			/* Handle modified pages, sense modify status. */
1332 
1333 			/*
1334 			 * The PTE_MODIFIED flag could be set by underlying
1335 			 * TLB misses since we last read it (above), possibly
1336 			 * other CPUs could update it so we check in the PTE
1337 			 * directly rather than rely on that saved local flags
1338 			 * copy.
1339 			 */
1340 			if (PTE_ISMODIFIED(pte))
1341 				vm_page_dirty(m);
1342 		}
1343 
1344 		if (prot & VM_PROT_EXECUTE) {
1345 			flags |= PTE_SX;
1346 			if (!su)
1347 				flags |= PTE_UX;
1348 
1349 			/*
1350 			 * Check existing flags for execute permissions: if we
1351 			 * are turning execute permissions on, icache should
1352 			 * be flushed.
1353 			 */
1354 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1355 				sync++;
1356 		}
1357 
1358 		flags &= ~PTE_REFERENCED;
1359 
1360 		/*
1361 		 * The new flags value is all calculated -- only now actually
1362 		 * update the PTE.
1363 		 */
1364 		mtx_lock_spin(&tlbivax_mutex);
1365 		tlb_miss_lock();
1366 
1367 		tlb0_flush_entry(va);
1368 		*pte &= ~PTE_FLAGS_MASK;
1369 		*pte |= flags;
1370 
1371 		tlb_miss_unlock();
1372 		mtx_unlock_spin(&tlbivax_mutex);
1373 
1374 	} else {
1375 		/*
1376 		 * If there is an existing mapping, but it's for a different
1377 		 * physical address, pte_enter() will delete the old mapping.
1378 		 */
1379 		//if ((pte != NULL) && PTE_ISVALID(pte))
1380 		//	debugf("mmu_booke_enter_locked: replace\n");
1381 		//else
1382 		//	debugf("mmu_booke_enter_locked: new\n");
1383 
1384 		/* Now set up the flags and install the new mapping. */
1385 		flags = (PTE_SR | PTE_VALID);
1386 		flags |= PTE_M;
1387 
1388 		if (!su)
1389 			flags |= PTE_UR;
1390 
1391 		if (prot & VM_PROT_WRITE) {
1392 			flags |= PTE_SW;
1393 			if (!su)
1394 				flags |= PTE_UW;
1395 
1396 			if ((m->oflags & VPO_UNMANAGED) == 0)
1397 				vm_page_aflag_set(m, PGA_WRITEABLE);
1398 		}
1399 
1400 		if (prot & VM_PROT_EXECUTE) {
1401 			flags |= PTE_SX;
1402 			if (!su)
1403 				flags |= PTE_UX;
1404 		}
1405 
1406 		/* If its wired update stats. */
1407 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1408 			flags |= PTE_WIRED;
1409 
1410 		error = pte_enter(pmap, m, va, flags,
1411 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1412 		if (error != 0)
1413 			return (KERN_RESOURCE_SHORTAGE);
1414 
1415 		if ((flags & PMAP_ENTER_WIRED) != 0)
1416 			pmap->pm_stats.wired_count++;
1417 
1418 		/* Flush the real memory from the instruction cache. */
1419 		if (prot & VM_PROT_EXECUTE)
1420 			sync++;
1421 	}
1422 
1423 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1424 		__syncicache((void *)va, PAGE_SIZE);
1425 		sync = 0;
1426 	}
1427 
1428 	return (KERN_SUCCESS);
1429 }
1430 
1431 /*
1432  * Maps a sequence of resident pages belonging to the same object.
1433  * The sequence begins with the given page m_start.  This page is
1434  * mapped at the given virtual address start.  Each subsequent page is
1435  * mapped at a virtual address that is offset from start by the same
1436  * amount as the page is offset from m_start within the object.  The
1437  * last page in the sequence is the page with the largest offset from
1438  * m_start that can be mapped at a virtual address less than the given
1439  * virtual address end.  Not every virtual page between start and end
1440  * is mapped; only those for which a resident page exists with the
1441  * corresponding offset from m_start are mapped.
1442  */
1443 static void
1444 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
1445     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1446 {
1447 	vm_page_t m;
1448 	vm_pindex_t diff, psize;
1449 
1450 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1451 
1452 	psize = atop(end - start);
1453 	m = m_start;
1454 	rw_wlock(&pvh_global_lock);
1455 	PMAP_LOCK(pmap);
1456 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1457 		mmu_booke_enter_locked(pmap, start + ptoa(diff), m,
1458 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1459 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1460 		m = TAILQ_NEXT(m, listq);
1461 	}
1462 	PMAP_UNLOCK(pmap);
1463 	rw_wunlock(&pvh_global_lock);
1464 }
1465 
1466 static void
1467 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
1468     vm_prot_t prot)
1469 {
1470 
1471 	rw_wlock(&pvh_global_lock);
1472 	PMAP_LOCK(pmap);
1473 	mmu_booke_enter_locked(pmap, va, m,
1474 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1475 	    PMAP_ENTER_QUICK_LOCKED, 0);
1476 	PMAP_UNLOCK(pmap);
1477 	rw_wunlock(&pvh_global_lock);
1478 }
1479 
1480 /*
1481  * Remove the given range of addresses from the specified map.
1482  *
1483  * It is assumed that the start and end are properly rounded to the page size.
1484  */
1485 static void
1486 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1487 {
1488 	pte_t *pte;
1489 	uint8_t hold_flag;
1490 
1491 	int su = (pmap == kernel_pmap);
1492 
1493 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1494 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1495 
1496 	if (su) {
1497 		KASSERT(((va >= virtual_avail) &&
1498 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1499 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1500 	} else {
1501 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1502 		    ("mmu_booke_remove: user pmap, non user va"));
1503 	}
1504 
1505 	if (PMAP_REMOVE_DONE(pmap)) {
1506 		//debugf("mmu_booke_remove: e (empty)\n");
1507 		return;
1508 	}
1509 
1510 	hold_flag = PTBL_HOLD_FLAG(pmap);
1511 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1512 
1513 	rw_wlock(&pvh_global_lock);
1514 	PMAP_LOCK(pmap);
1515 	for (; va < endva; va += PAGE_SIZE) {
1516 		pte = pte_find_next(pmap, &va);
1517 		if ((pte == NULL) || !PTE_ISVALID(pte))
1518 			break;
1519 		if (va >= endva)
1520 			break;
1521 		pte_remove(pmap, va, hold_flag);
1522 	}
1523 	PMAP_UNLOCK(pmap);
1524 	rw_wunlock(&pvh_global_lock);
1525 
1526 	//debugf("mmu_booke_remove: e\n");
1527 }
1528 
1529 /*
1530  * Remove physical page from all pmaps in which it resides.
1531  */
1532 static void
1533 mmu_booke_remove_all(vm_page_t m)
1534 {
1535 	pv_entry_t pv, pvn;
1536 	uint8_t hold_flag;
1537 
1538 	rw_wlock(&pvh_global_lock);
1539 	TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
1540 		PMAP_LOCK(pv->pv_pmap);
1541 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1542 		pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
1543 		PMAP_UNLOCK(pv->pv_pmap);
1544 	}
1545 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1546 	rw_wunlock(&pvh_global_lock);
1547 }
1548 
1549 /*
1550  * Map a range of physical addresses into kernel virtual address space.
1551  */
1552 static vm_offset_t
1553 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
1554     vm_paddr_t pa_end, int prot)
1555 {
1556 	vm_offset_t sva = *virt;
1557 	vm_offset_t va = sva;
1558 
1559 #ifdef __powerpc64__
1560 	/* XXX: Handle memory not starting at 0x0. */
1561 	if (pa_end < ctob(Maxmem))
1562 		return (PHYS_TO_DMAP(pa_start));
1563 #endif
1564 
1565 	while (pa_start < pa_end) {
1566 		mmu_booke_kenter(va, pa_start);
1567 		va += PAGE_SIZE;
1568 		pa_start += PAGE_SIZE;
1569 	}
1570 	*virt = va;
1571 
1572 	return (sva);
1573 }
1574 
1575 /*
1576  * The pmap must be activated before it's address space can be accessed in any
1577  * way.
1578  */
1579 static void
1580 mmu_booke_activate(struct thread *td)
1581 {
1582 	pmap_t pmap;
1583 	u_int cpuid;
1584 
1585 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1586 
1587 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
1588 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1589 
1590 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1591 
1592 	sched_pin();
1593 
1594 	cpuid = PCPU_GET(cpuid);
1595 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1596 	PCPU_SET(curpmap, pmap);
1597 
1598 	if (pmap->pm_tid[cpuid] == TID_NONE)
1599 		tid_alloc(pmap);
1600 
1601 	/* Load PID0 register with pmap tid value. */
1602 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1603 	__asm __volatile("isync");
1604 
1605 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1606 
1607 	sched_unpin();
1608 
1609 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1610 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1611 }
1612 
1613 /*
1614  * Deactivate the specified process's address space.
1615  */
1616 static void
1617 mmu_booke_deactivate(struct thread *td)
1618 {
1619 	pmap_t pmap;
1620 
1621 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1622 
1623 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
1624 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1625 
1626 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1627 
1628 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1629 	PCPU_SET(curpmap, NULL);
1630 }
1631 
1632 /*
1633  * Copy the range specified by src_addr/len
1634  * from the source map to the range dst_addr/len
1635  * in the destination map.
1636  *
1637  * This routine is only advisory and need not do anything.
1638  */
1639 static void
1640 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
1641     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1642 {
1643 
1644 }
1645 
1646 /*
1647  * Set the physical protection on the specified range of this map as requested.
1648  */
1649 static void
1650 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1651     vm_prot_t prot)
1652 {
1653 	vm_offset_t va;
1654 	vm_page_t m;
1655 	pte_t *pte;
1656 
1657 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1658 		mmu_booke_remove(pmap, sva, eva);
1659 		return;
1660 	}
1661 
1662 	if (prot & VM_PROT_WRITE)
1663 		return;
1664 
1665 	PMAP_LOCK(pmap);
1666 	for (va = sva; va < eva; va += PAGE_SIZE) {
1667 		if ((pte = pte_find(pmap, va)) != NULL) {
1668 			if (PTE_ISVALID(pte)) {
1669 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1670 
1671 				mtx_lock_spin(&tlbivax_mutex);
1672 				tlb_miss_lock();
1673 
1674 				/* Handle modified pages. */
1675 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1676 					vm_page_dirty(m);
1677 
1678 				tlb0_flush_entry(va);
1679 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1680 
1681 				tlb_miss_unlock();
1682 				mtx_unlock_spin(&tlbivax_mutex);
1683 			}
1684 		}
1685 	}
1686 	PMAP_UNLOCK(pmap);
1687 }
1688 
1689 /*
1690  * Clear the write and modified bits in each of the given page's mappings.
1691  */
1692 static void
1693 mmu_booke_remove_write(vm_page_t m)
1694 {
1695 	pv_entry_t pv;
1696 	pte_t *pte;
1697 
1698 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1699 	    ("mmu_booke_remove_write: page %p is not managed", m));
1700 	vm_page_assert_busied(m);
1701 
1702 	if (!pmap_page_is_write_mapped(m))
1703 	        return;
1704 	rw_wlock(&pvh_global_lock);
1705 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1706 		PMAP_LOCK(pv->pv_pmap);
1707 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
1708 			if (PTE_ISVALID(pte)) {
1709 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1710 
1711 				mtx_lock_spin(&tlbivax_mutex);
1712 				tlb_miss_lock();
1713 
1714 				/* Handle modified pages. */
1715 				if (PTE_ISMODIFIED(pte))
1716 					vm_page_dirty(m);
1717 
1718 				/* Flush mapping from TLB0. */
1719 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1720 
1721 				tlb_miss_unlock();
1722 				mtx_unlock_spin(&tlbivax_mutex);
1723 			}
1724 		}
1725 		PMAP_UNLOCK(pv->pv_pmap);
1726 	}
1727 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1728 	rw_wunlock(&pvh_global_lock);
1729 }
1730 
1731 /*
1732  * Atomically extract and hold the physical page with the given
1733  * pmap and virtual address pair if that mapping permits the given
1734  * protection.
1735  */
1736 static vm_page_t
1737 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
1738     vm_prot_t prot)
1739 {
1740 	pte_t *pte;
1741 	vm_page_t m;
1742 	uint32_t pte_wbit;
1743 
1744 	m = NULL;
1745 	PMAP_LOCK(pmap);
1746 	pte = pte_find(pmap, va);
1747 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1748 		if (pmap == kernel_pmap)
1749 			pte_wbit = PTE_SW;
1750 		else
1751 			pte_wbit = PTE_UW;
1752 
1753 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
1754 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1755 			if (!vm_page_wire_mapped(m))
1756 				m = NULL;
1757 		}
1758 	}
1759 	PMAP_UNLOCK(pmap);
1760 	return (m);
1761 }
1762 
1763 /*
1764  * Initialize a vm_page's machine-dependent fields.
1765  */
1766 static void
1767 mmu_booke_page_init(vm_page_t m)
1768 {
1769 
1770 	m->md.pv_tracked = 0;
1771 	TAILQ_INIT(&m->md.pv_list);
1772 }
1773 
1774 /*
1775  * Return whether or not the specified physical page was modified
1776  * in any of physical maps.
1777  */
1778 static boolean_t
1779 mmu_booke_is_modified(vm_page_t m)
1780 {
1781 	pte_t *pte;
1782 	pv_entry_t pv;
1783 	boolean_t rv;
1784 
1785 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1786 	    ("mmu_booke_is_modified: page %p is not managed", m));
1787 	rv = FALSE;
1788 
1789 	/*
1790 	 * If the page is not busied then this check is racy.
1791 	 */
1792 	if (!pmap_page_is_write_mapped(m))
1793 		return (FALSE);
1794 
1795 	rw_wlock(&pvh_global_lock);
1796 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1797 		PMAP_LOCK(pv->pv_pmap);
1798 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1799 		    PTE_ISVALID(pte)) {
1800 			if (PTE_ISMODIFIED(pte))
1801 				rv = TRUE;
1802 		}
1803 		PMAP_UNLOCK(pv->pv_pmap);
1804 		if (rv)
1805 			break;
1806 	}
1807 	rw_wunlock(&pvh_global_lock);
1808 	return (rv);
1809 }
1810 
1811 /*
1812  * Return whether or not the specified virtual address is eligible
1813  * for prefault.
1814  */
1815 static boolean_t
1816 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1817 {
1818 
1819 	return (FALSE);
1820 }
1821 
1822 /*
1823  * Return whether or not the specified physical page was referenced
1824  * in any physical maps.
1825  */
1826 static boolean_t
1827 mmu_booke_is_referenced(vm_page_t m)
1828 {
1829 	pte_t *pte;
1830 	pv_entry_t pv;
1831 	boolean_t rv;
1832 
1833 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1834 	    ("mmu_booke_is_referenced: page %p is not managed", m));
1835 	rv = FALSE;
1836 	rw_wlock(&pvh_global_lock);
1837 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1838 		PMAP_LOCK(pv->pv_pmap);
1839 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1840 		    PTE_ISVALID(pte)) {
1841 			if (PTE_ISREFERENCED(pte))
1842 				rv = TRUE;
1843 		}
1844 		PMAP_UNLOCK(pv->pv_pmap);
1845 		if (rv)
1846 			break;
1847 	}
1848 	rw_wunlock(&pvh_global_lock);
1849 	return (rv);
1850 }
1851 
1852 /*
1853  * Clear the modify bits on the specified physical page.
1854  */
1855 static void
1856 mmu_booke_clear_modify(vm_page_t m)
1857 {
1858 	pte_t *pte;
1859 	pv_entry_t pv;
1860 
1861 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1862 	    ("mmu_booke_clear_modify: page %p is not managed", m));
1863 	vm_page_assert_busied(m);
1864 
1865 	if (!pmap_page_is_write_mapped(m))
1866 	        return;
1867 
1868 	rw_wlock(&pvh_global_lock);
1869 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1870 		PMAP_LOCK(pv->pv_pmap);
1871 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1872 		    PTE_ISVALID(pte)) {
1873 			mtx_lock_spin(&tlbivax_mutex);
1874 			tlb_miss_lock();
1875 
1876 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
1877 				tlb0_flush_entry(pv->pv_va);
1878 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
1879 				    PTE_REFERENCED);
1880 			}
1881 
1882 			tlb_miss_unlock();
1883 			mtx_unlock_spin(&tlbivax_mutex);
1884 		}
1885 		PMAP_UNLOCK(pv->pv_pmap);
1886 	}
1887 	rw_wunlock(&pvh_global_lock);
1888 }
1889 
1890 /*
1891  * Return a count of reference bits for a page, clearing those bits.
1892  * It is not necessary for every reference bit to be cleared, but it
1893  * is necessary that 0 only be returned when there are truly no
1894  * reference bits set.
1895  *
1896  * As an optimization, update the page's dirty field if a modified bit is
1897  * found while counting reference bits.  This opportunistic update can be
1898  * performed at low cost and can eliminate the need for some future calls
1899  * to pmap_is_modified().  However, since this function stops after
1900  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
1901  * dirty pages.  Those dirty pages will only be detected by a future call
1902  * to pmap_is_modified().
1903  */
1904 static int
1905 mmu_booke_ts_referenced(vm_page_t m)
1906 {
1907 	pte_t *pte;
1908 	pv_entry_t pv;
1909 	int count;
1910 
1911 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1912 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
1913 	count = 0;
1914 	rw_wlock(&pvh_global_lock);
1915 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1916 		PMAP_LOCK(pv->pv_pmap);
1917 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1918 		    PTE_ISVALID(pte)) {
1919 			if (PTE_ISMODIFIED(pte))
1920 				vm_page_dirty(m);
1921 			if (PTE_ISREFERENCED(pte)) {
1922 				mtx_lock_spin(&tlbivax_mutex);
1923 				tlb_miss_lock();
1924 
1925 				tlb0_flush_entry(pv->pv_va);
1926 				*pte &= ~PTE_REFERENCED;
1927 
1928 				tlb_miss_unlock();
1929 				mtx_unlock_spin(&tlbivax_mutex);
1930 
1931 				if (++count >= PMAP_TS_REFERENCED_MAX) {
1932 					PMAP_UNLOCK(pv->pv_pmap);
1933 					break;
1934 				}
1935 			}
1936 		}
1937 		PMAP_UNLOCK(pv->pv_pmap);
1938 	}
1939 	rw_wunlock(&pvh_global_lock);
1940 	return (count);
1941 }
1942 
1943 /*
1944  * Clear the wired attribute from the mappings for the specified range of
1945  * addresses in the given pmap.  Every valid mapping within that range must
1946  * have the wired attribute set.  In contrast, invalid mappings cannot have
1947  * the wired attribute set, so they are ignored.
1948  *
1949  * The wired attribute of the page table entry is not a hardware feature, so
1950  * there is no need to invalidate any TLB entries.
1951  */
1952 static void
1953 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1954 {
1955 	vm_offset_t va;
1956 	pte_t *pte;
1957 
1958 	PMAP_LOCK(pmap);
1959 	for (va = sva; va < eva; va += PAGE_SIZE) {
1960 		if ((pte = pte_find(pmap, va)) != NULL &&
1961 		    PTE_ISVALID(pte)) {
1962 			if (!PTE_ISWIRED(pte))
1963 				panic("mmu_booke_unwire: pte %p isn't wired",
1964 				    pte);
1965 			*pte &= ~PTE_WIRED;
1966 			pmap->pm_stats.wired_count--;
1967 		}
1968 	}
1969 	PMAP_UNLOCK(pmap);
1970 
1971 }
1972 
1973 /*
1974  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
1975  * page.  This count may be changed upwards or downwards in the future; it is
1976  * only necessary that true be returned for a small subset of pmaps for proper
1977  * page aging.
1978  */
1979 static boolean_t
1980 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
1981 {
1982 	pv_entry_t pv;
1983 	int loops;
1984 	boolean_t rv;
1985 
1986 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1987 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
1988 	loops = 0;
1989 	rv = FALSE;
1990 	rw_wlock(&pvh_global_lock);
1991 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1992 		if (pv->pv_pmap == pmap) {
1993 			rv = TRUE;
1994 			break;
1995 		}
1996 		if (++loops >= 16)
1997 			break;
1998 	}
1999 	rw_wunlock(&pvh_global_lock);
2000 	return (rv);
2001 }
2002 
2003 /*
2004  * Return the number of managed mappings to the given physical page that are
2005  * wired.
2006  */
2007 static int
2008 mmu_booke_page_wired_mappings(vm_page_t m)
2009 {
2010 	pv_entry_t pv;
2011 	pte_t *pte;
2012 	int count = 0;
2013 
2014 	if ((m->oflags & VPO_UNMANAGED) != 0)
2015 		return (count);
2016 	rw_wlock(&pvh_global_lock);
2017 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2018 		PMAP_LOCK(pv->pv_pmap);
2019 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
2020 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2021 				count++;
2022 		PMAP_UNLOCK(pv->pv_pmap);
2023 	}
2024 	rw_wunlock(&pvh_global_lock);
2025 	return (count);
2026 }
2027 
2028 static int
2029 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2030 {
2031 	int i;
2032 	vm_offset_t va;
2033 
2034 	/*
2035 	 * This currently does not work for entries that
2036 	 * overlap TLB1 entries.
2037 	 */
2038 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2039 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2040 			return (0);
2041 	}
2042 
2043 	return (EFAULT);
2044 }
2045 
2046 void
2047 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2048 {
2049 	vm_paddr_t ppa;
2050 	vm_offset_t ofs;
2051 	vm_size_t gran;
2052 
2053 	/* Minidumps are based on virtual memory addresses. */
2054 	if (do_minidump) {
2055 		*va = (void *)(vm_offset_t)pa;
2056 		return;
2057 	}
2058 
2059 	/* Raw physical memory dumps don't have a virtual address. */
2060 	/* We always map a 256MB page at 256M. */
2061 	gran = 256 * 1024 * 1024;
2062 	ppa = rounddown2(pa, gran);
2063 	ofs = pa - ppa;
2064 	*va = (void *)gran;
2065 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2066 
2067 	if (sz > (gran - ofs))
2068 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2069 		    _TLB_ENTRY_IO);
2070 }
2071 
2072 void
2073 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
2074 {
2075 	vm_paddr_t ppa;
2076 	vm_offset_t ofs;
2077 	vm_size_t gran;
2078 	tlb_entry_t e;
2079 	int i;
2080 
2081 	/* Minidumps are based on virtual memory addresses. */
2082 	/* Nothing to do... */
2083 	if (do_minidump)
2084 		return;
2085 
2086 	for (i = 0; i < TLB1_ENTRIES; i++) {
2087 		tlb1_read_entry(&e, i);
2088 		if (!(e.mas1 & MAS1_VALID))
2089 			break;
2090 	}
2091 
2092 	/* Raw physical memory dumps don't have a virtual address. */
2093 	i--;
2094 	e.mas1 = 0;
2095 	e.mas2 = 0;
2096 	e.mas3 = 0;
2097 	tlb1_write_entry(&e, i);
2098 
2099 	gran = 256 * 1024 * 1024;
2100 	ppa = rounddown2(pa, gran);
2101 	ofs = pa - ppa;
2102 	if (sz > (gran - ofs)) {
2103 		i--;
2104 		e.mas1 = 0;
2105 		e.mas2 = 0;
2106 		e.mas3 = 0;
2107 		tlb1_write_entry(&e, i);
2108 	}
2109 }
2110 
2111 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2112 
2113 void
2114 mmu_booke_scan_init()
2115 {
2116 	vm_offset_t va;
2117 	pte_t *pte;
2118 	int i;
2119 
2120 	if (!do_minidump) {
2121 		/* Initialize phys. segments for dumpsys(). */
2122 		memset(&dump_map, 0, sizeof(dump_map));
2123 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2124 		    &availmem_regions_sz);
2125 		for (i = 0; i < physmem_regions_sz; i++) {
2126 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2127 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2128 		}
2129 		return;
2130 	}
2131 
2132 	/* Virtual segments for minidumps: */
2133 	memset(&dump_map, 0, sizeof(dump_map));
2134 
2135 	/* 1st: kernel .data and .bss. */
2136 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2137 	dump_map[0].pa_size =
2138 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2139 
2140 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2141 	dump_map[1].pa_start = data_start;
2142 	dump_map[1].pa_size = data_end - data_start;
2143 
2144 	/* 3rd: kernel VM. */
2145 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2146 	/* Find start of next chunk (from va). */
2147 	while (va < virtual_end) {
2148 		/* Don't dump the buffer cache. */
2149 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2150 			va = kmi.buffer_eva;
2151 			continue;
2152 		}
2153 		pte = pte_find(kernel_pmap, va);
2154 		if (pte != NULL && PTE_ISVALID(pte))
2155 			break;
2156 		va += PAGE_SIZE;
2157 	}
2158 	if (va < virtual_end) {
2159 		dump_map[2].pa_start = va;
2160 		va += PAGE_SIZE;
2161 		/* Find last page in chunk. */
2162 		while (va < virtual_end) {
2163 			/* Don't run into the buffer cache. */
2164 			if (va == kmi.buffer_sva)
2165 				break;
2166 			pte = pte_find(kernel_pmap, va);
2167 			if (pte == NULL || !PTE_ISVALID(pte))
2168 				break;
2169 			va += PAGE_SIZE;
2170 		}
2171 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2172 	}
2173 }
2174 
2175 /*
2176  * Map a set of physical memory pages into the kernel virtual address space.
2177  * Return a pointer to where it is mapped. This routine is intended to be used
2178  * for mapping device memory, NOT real memory.
2179  */
2180 static void *
2181 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
2182 {
2183 
2184 	return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2185 }
2186 
2187 static int
2188 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
2189 {
2190 	int i;
2191 
2192 	for (i = 0; i < TLB1_ENTRIES; i++) {
2193 		tlb1_read_entry(e, i);
2194 		if ((e->mas1 & MAS1_VALID) == 0)
2195 			continue;
2196 		if (e->phys == pa)
2197 			return (i);
2198 	}
2199 	return (-1);
2200 }
2201 
2202 static void *
2203 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2204 {
2205 	tlb_entry_t e;
2206 	vm_paddr_t tmppa;
2207 #ifndef __powerpc64__
2208 	uintptr_t tmpva;
2209 #endif
2210 	uintptr_t va, retva;
2211 	vm_size_t sz;
2212 	int i;
2213 	int wimge;
2214 
2215 	/*
2216 	 * Check if this is premapped in TLB1.
2217 	 */
2218 	sz = size;
2219 	tmppa = pa;
2220 	va = ~0;
2221 	wimge = tlb_calc_wimg(pa, ma);
2222 	for (i = 0; i < TLB1_ENTRIES; i++) {
2223 		tlb1_read_entry(&e, i);
2224 		if (!(e.mas1 & MAS1_VALID))
2225 			continue;
2226 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2227 			continue;
2228 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
2229 			va = e.virt + (pa - e.phys);
2230 			tmppa = e.phys + e.size;
2231 			sz -= MIN(sz, e.size - (pa - e.phys));
2232 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
2233 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2234 					break;
2235 				sz -= MIN(sz, e.size);
2236 				tmppa = e.phys + e.size;
2237 			}
2238 			if (sz != 0)
2239 				break;
2240 			return ((void *)va);
2241 		}
2242 	}
2243 
2244 	size = roundup(size, PAGE_SIZE);
2245 
2246 #ifdef __powerpc64__
2247 	KASSERT(pa < VM_MAPDEV_PA_MAX,
2248 	    ("Unsupported physical address! %lx", pa));
2249 	va = VM_MAPDEV_BASE + pa;
2250 	retva = va;
2251 #ifdef POW2_MAPPINGS
2252 	/*
2253 	 * Align the mapping to a power of 2 size, taking into account that we
2254 	 * may need to increase the size multiple times to satisfy the size and
2255 	 * alignment requirements.
2256 	 *
2257 	 * This works in the general case because it's very rare (near never?)
2258 	 * to have different access properties (WIMG) within a single
2259 	 * power-of-two region.  If a design does call for that, POW2_MAPPINGS
2260 	 * can be undefined, and exact mappings will be used instead.
2261 	 */
2262 	sz = size;
2263 	size = roundup2(size, 1 << ilog2(size));
2264 	while (rounddown2(va, size) + size < va + sz)
2265 		size <<= 1;
2266 	va = rounddown2(va, size);
2267 	pa = rounddown2(pa, size);
2268 #endif
2269 #else
2270 	/*
2271 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2272 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2273 	 */
2274 #ifdef SPARSE_MAPDEV
2275 	/*
2276 	 * With a sparse mapdev, align to the largest starting region.  This
2277 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2278 	 * calculation could be very costly.
2279 	 * Align to the smaller of:
2280 	 * - first set bit in overlap of (pa & size mask)
2281 	 * - largest size envelope
2282 	 *
2283 	 * It's possible the device mapping may start at a PA that's not larger
2284 	 * than the size mask, so we need to offset in to maximize the TLB entry
2285 	 * range and minimize the number of used TLB entries.
2286 	 */
2287 	do {
2288 	    tmpva = tlb1_map_base;
2289 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
2290 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
2291 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
2292 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2293 #endif
2294 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2295 	retva = va;
2296 #endif
2297 
2298 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
2299 		return (NULL);
2300 
2301 	return ((void *)retva);
2302 }
2303 
2304 /*
2305  * 'Unmap' a range mapped by mmu_booke_mapdev().
2306  */
2307 static void
2308 mmu_booke_unmapdev(vm_offset_t va, vm_size_t size)
2309 {
2310 #ifdef SUPPORTS_SHRINKING_TLB1
2311 	vm_offset_t base, offset;
2312 
2313 	/*
2314 	 * Unmap only if this is inside kernel virtual space.
2315 	 */
2316 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2317 		base = trunc_page(va);
2318 		offset = va & PAGE_MASK;
2319 		size = roundup(offset + size, PAGE_SIZE);
2320 		mmu_booke_qremove(base, atop(size));
2321 		kva_free(base, size);
2322 	}
2323 #endif
2324 }
2325 
2326 /*
2327  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2328  * specified pmap. This eliminates the blast of soft faults on process startup
2329  * and immediately after an mmap.
2330  */
2331 static void
2332 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
2333     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2334 {
2335 
2336 	VM_OBJECT_ASSERT_WLOCKED(object);
2337 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2338 	    ("mmu_booke_object_init_pt: non-device object"));
2339 }
2340 
2341 /*
2342  * Perform the pmap work for mincore.
2343  */
2344 static int
2345 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
2346 {
2347 
2348 	/* XXX: this should be implemented at some point */
2349 	return (0);
2350 }
2351 
2352 static int
2353 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
2354 {
2355 	vm_offset_t va;
2356 	pte_t *pte;
2357 	int i, j;
2358 	tlb_entry_t e;
2359 
2360 	addr = trunc_page(addr);
2361 
2362 	/* Only allow changes to mapped kernel addresses.  This includes:
2363 	 * - KVA
2364 	 * - DMAP (powerpc64)
2365 	 * - Device mappings
2366 	 */
2367 	if (addr <= VM_MAXUSER_ADDRESS ||
2368 #ifdef __powerpc64__
2369 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
2370 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
2371 #else
2372 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
2373 #endif
2374 	    (addr > VM_MAX_KERNEL_ADDRESS))
2375 		return (EINVAL);
2376 
2377 	/* Check TLB1 mappings */
2378 	for (i = 0; i < TLB1_ENTRIES; i++) {
2379 		tlb1_read_entry(&e, i);
2380 		if (!(e.mas1 & MAS1_VALID))
2381 			continue;
2382 		if (addr >= e.virt && addr < e.virt + e.size)
2383 			break;
2384 	}
2385 	if (i < TLB1_ENTRIES) {
2386 		/* Only allow full mappings to be modified for now. */
2387 		/* Validate the range. */
2388 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2389 			tlb1_read_entry(&e, j);
2390 			if (va != e.virt || (sz - (va - addr) < e.size))
2391 				return (EINVAL);
2392 		}
2393 		for (va = addr; va < addr + sz; va += e.size, i++) {
2394 			tlb1_read_entry(&e, i);
2395 			e.mas2 &= ~MAS2_WIMGE_MASK;
2396 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2397 
2398 			/*
2399 			 * Write it out to the TLB.  Should really re-sync with other
2400 			 * cores.
2401 			 */
2402 			tlb1_write_entry(&e, i);
2403 		}
2404 		return (0);
2405 	}
2406 
2407 	/* Not in TLB1, try through pmap */
2408 	/* First validate the range. */
2409 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2410 		pte = pte_find(kernel_pmap, va);
2411 		if (pte == NULL || !PTE_ISVALID(pte))
2412 			return (EINVAL);
2413 	}
2414 
2415 	mtx_lock_spin(&tlbivax_mutex);
2416 	tlb_miss_lock();
2417 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2418 		pte = pte_find(kernel_pmap, va);
2419 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2420 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2421 		tlb0_flush_entry(va);
2422 	}
2423 	tlb_miss_unlock();
2424 	mtx_unlock_spin(&tlbivax_mutex);
2425 
2426 	return (0);
2427 }
2428 
2429 static void
2430 mmu_booke_page_array_startup(long pages)
2431 {
2432 	vm_page_array_size = pages;
2433 }
2434 
2435 /**************************************************************************/
2436 /* TID handling */
2437 /**************************************************************************/
2438 
2439 /*
2440  * Allocate a TID. If necessary, steal one from someone else.
2441  * The new TID is flushed from the TLB before returning.
2442  */
2443 static tlbtid_t
2444 tid_alloc(pmap_t pmap)
2445 {
2446 	tlbtid_t tid;
2447 	int thiscpu;
2448 
2449 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2450 
2451 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2452 
2453 	thiscpu = PCPU_GET(cpuid);
2454 
2455 	tid = PCPU_GET(booke.tid_next);
2456 	if (tid > TID_MAX)
2457 		tid = TID_MIN;
2458 	PCPU_SET(booke.tid_next, tid + 1);
2459 
2460 	/* If we are stealing TID then clear the relevant pmap's field */
2461 	if (tidbusy[thiscpu][tid] != NULL) {
2462 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2463 
2464 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2465 
2466 		/* Flush all entries from TLB0 matching this TID. */
2467 		tid_flush(tid);
2468 	}
2469 
2470 	tidbusy[thiscpu][tid] = pmap;
2471 	pmap->pm_tid[thiscpu] = tid;
2472 	__asm __volatile("msync; isync");
2473 
2474 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2475 	    PCPU_GET(booke.tid_next));
2476 
2477 	return (tid);
2478 }
2479 
2480 /**************************************************************************/
2481 /* TLB0 handling */
2482 /**************************************************************************/
2483 
2484 /* Convert TLB0 va and way number to tlb0[] table index. */
2485 static inline unsigned int
2486 tlb0_tableidx(vm_offset_t va, unsigned int way)
2487 {
2488 	unsigned int idx;
2489 
2490 	idx = (way * TLB0_ENTRIES_PER_WAY);
2491 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2492 	return (idx);
2493 }
2494 
2495 /*
2496  * Invalidate TLB0 entry.
2497  */
2498 static inline void
2499 tlb0_flush_entry(vm_offset_t va)
2500 {
2501 
2502 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2503 
2504 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2505 
2506 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2507 	__asm __volatile("isync; msync");
2508 	__asm __volatile("tlbsync; msync");
2509 
2510 	CTR1(KTR_PMAP, "%s: e", __func__);
2511 }
2512 
2513 /**************************************************************************/
2514 /* TLB1 handling */
2515 /**************************************************************************/
2516 
2517 /*
2518  * TLB1 mapping notes:
2519  *
2520  * TLB1[0]	Kernel text and data.
2521  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2522  *		windows, other devices mappings.
2523  */
2524 
2525  /*
2526  * Read an entry from given TLB1 slot.
2527  */
2528 void
2529 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
2530 {
2531 	register_t msr;
2532 	uint32_t mas0;
2533 
2534 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
2535 
2536 	msr = mfmsr();
2537 	__asm __volatile("wrteei 0");
2538 
2539 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
2540 	mtspr(SPR_MAS0, mas0);
2541 	__asm __volatile("isync; tlbre");
2542 
2543 	entry->mas1 = mfspr(SPR_MAS1);
2544 	entry->mas2 = mfspr(SPR_MAS2);
2545 	entry->mas3 = mfspr(SPR_MAS3);
2546 
2547 	switch ((mfpvr() >> 16) & 0xFFFF) {
2548 	case FSL_E500v2:
2549 	case FSL_E500mc:
2550 	case FSL_E5500:
2551 	case FSL_E6500:
2552 		entry->mas7 = mfspr(SPR_MAS7);
2553 		break;
2554 	default:
2555 		entry->mas7 = 0;
2556 		break;
2557 	}
2558 	__asm __volatile("wrtee %0" :: "r"(msr));
2559 
2560 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
2561 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
2562 	    (entry->mas3 & MAS3_RPN);
2563 	entry->size =
2564 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
2565 }
2566 
2567 struct tlbwrite_args {
2568 	tlb_entry_t *e;
2569 	unsigned int idx;
2570 };
2571 
2572 static uint32_t
2573 tlb1_find_free(void)
2574 {
2575 	tlb_entry_t e;
2576 	int i;
2577 
2578 	for (i = 0; i < TLB1_ENTRIES; i++) {
2579 		tlb1_read_entry(&e, i);
2580 		if ((e.mas1 & MAS1_VALID) == 0)
2581 			return (i);
2582 	}
2583 	return (-1);
2584 }
2585 
2586 static void
2587 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
2588 {
2589 	tlb_entry_t e;
2590 	int i;
2591 
2592 	for (i = 0; i < TLB1_ENTRIES; i++) {
2593 		tlb1_read_entry(&e, i);
2594 		if ((e.mas1 & MAS1_VALID) == 0)
2595 			continue;
2596 		if ((e.mas2 & MAS2_EPN_MASK) >= va &&
2597 		    (e.mas2 & MAS2_EPN_MASK) < va + size) {
2598 			mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
2599 			__asm __volatile("isync; tlbwe; isync; msync");
2600 		}
2601 	}
2602 }
2603 
2604 static void
2605 tlb1_write_entry_int(void *arg)
2606 {
2607 	struct tlbwrite_args *args = arg;
2608 	uint32_t idx, mas0;
2609 
2610 	idx = args->idx;
2611 	if (idx == -1) {
2612 		tlb1_purge_va_range(args->e->virt, args->e->size);
2613 		idx = tlb1_find_free();
2614 		if (idx == -1)
2615 			panic("No free TLB1 entries!\n");
2616 	}
2617 	/* Select entry */
2618 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2619 
2620 	mtspr(SPR_MAS0, mas0);
2621 	mtspr(SPR_MAS1, args->e->mas1);
2622 	mtspr(SPR_MAS2, args->e->mas2);
2623 	mtspr(SPR_MAS3, args->e->mas3);
2624 	switch ((mfpvr() >> 16) & 0xFFFF) {
2625 	case FSL_E500mc:
2626 	case FSL_E5500:
2627 	case FSL_E6500:
2628 		mtspr(SPR_MAS8, 0);
2629 		/* FALLTHROUGH */
2630 	case FSL_E500v2:
2631 		mtspr(SPR_MAS7, args->e->mas7);
2632 		break;
2633 	default:
2634 		break;
2635 	}
2636 
2637 	__asm __volatile("isync; tlbwe; isync; msync");
2638 
2639 }
2640 
2641 static void
2642 tlb1_write_entry_sync(void *arg)
2643 {
2644 	/* Empty synchronization point for smp_rendezvous(). */
2645 }
2646 
2647 /*
2648  * Write given entry to TLB1 hardware.
2649  */
2650 static void
2651 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
2652 {
2653 	struct tlbwrite_args args;
2654 
2655 	args.e = e;
2656 	args.idx = idx;
2657 
2658 #ifdef SMP
2659 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
2660 		mb();
2661 		smp_rendezvous(tlb1_write_entry_sync,
2662 		    tlb1_write_entry_int,
2663 		    tlb1_write_entry_sync, &args);
2664 	} else
2665 #endif
2666 	{
2667 		register_t msr;
2668 
2669 		msr = mfmsr();
2670 		__asm __volatile("wrteei 0");
2671 		tlb1_write_entry_int(&args);
2672 		__asm __volatile("wrtee %0" :: "r"(msr));
2673 	}
2674 }
2675 
2676 /*
2677  * Convert TLB TSIZE value to mapped region size.
2678  */
2679 static vm_size_t
2680 tsize2size(unsigned int tsize)
2681 {
2682 
2683 	/*
2684 	 * size = 4^tsize KB
2685 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2686 	 */
2687 
2688 	return ((1 << (2 * tsize)) * 1024);
2689 }
2690 
2691 /*
2692  * Convert region size (must be power of 4) to TLB TSIZE value.
2693  */
2694 static unsigned int
2695 size2tsize(vm_size_t size)
2696 {
2697 
2698 	return (ilog2(size) / 2 - 5);
2699 }
2700 
2701 /*
2702  * Register permanent kernel mapping in TLB1.
2703  *
2704  * Entries are created starting from index 0 (current free entry is
2705  * kept in tlb1_idx) and are not supposed to be invalidated.
2706  */
2707 int
2708 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
2709     uint32_t flags)
2710 {
2711 	tlb_entry_t e;
2712 	uint32_t ts, tid;
2713 	int tsize, index;
2714 
2715 	/* First try to update an existing entry. */
2716 	for (index = 0; index < TLB1_ENTRIES; index++) {
2717 		tlb1_read_entry(&e, index);
2718 		/* Check if we're just updating the flags, and update them. */
2719 		if (e.phys == pa && e.virt == va && e.size == size) {
2720 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
2721 			tlb1_write_entry(&e, index);
2722 			return (0);
2723 		}
2724 	}
2725 
2726 	/* Convert size to TSIZE */
2727 	tsize = size2tsize(size);
2728 
2729 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2730 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2731 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2732 
2733 	e.phys = pa;
2734 	e.virt = va;
2735 	e.size = size;
2736 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2737 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2738 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
2739 
2740 	/* Set supervisor RWX permission bits */
2741 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2742 	e.mas7 = (pa >> 32) & MAS7_RPN;
2743 
2744 	tlb1_write_entry(&e, -1);
2745 
2746 	return (0);
2747 }
2748 
2749 /*
2750  * Map in contiguous RAM region into the TLB1.
2751  */
2752 static vm_size_t
2753 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
2754 {
2755 	vm_offset_t base;
2756 	vm_size_t mapped, sz, ssize;
2757 
2758 	mapped = 0;
2759 	base = va;
2760 	ssize = size;
2761 
2762 	while (size > 0) {
2763 		sz = 1UL << (ilog2(size) & ~1);
2764 		/* Align size to PA */
2765 		if (pa % sz != 0) {
2766 			do {
2767 				sz >>= 2;
2768 			} while (pa % sz != 0);
2769 		}
2770 		/* Now align from there to VA */
2771 		if (va % sz != 0) {
2772 			do {
2773 				sz >>= 2;
2774 			} while (va % sz != 0);
2775 		}
2776 #ifdef __powerpc64__
2777 		/*
2778 		 * Clamp TLB1 entries to 4G.
2779 		 *
2780 		 * While the e6500 supports up to 1TB mappings, the e5500
2781 		 * only supports up to 4G mappings. (0b1011)
2782 		 *
2783 		 * If any e6500 machines capable of supporting a very
2784 		 * large amount of memory appear in the future, we can
2785 		 * revisit this.
2786 		 *
2787 		 * For now, though, since we have plenty of space in TLB1,
2788 		 * always avoid creating entries larger than 4GB.
2789 		 */
2790 		sz = MIN(sz, 1UL << 32);
2791 #endif
2792 		if (bootverbose)
2793 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
2794 			    (void *)va, (uintmax_t)pa, (long)sz);
2795 		if (tlb1_set_entry(va, pa, sz,
2796 		    _TLB_ENTRY_SHARED | wimge) < 0)
2797 			return (mapped);
2798 		size -= sz;
2799 		pa += sz;
2800 		va += sz;
2801 	}
2802 
2803 	mapped = (va - base);
2804 	if (bootverbose)
2805 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
2806 		    mapped, mapped - ssize);
2807 
2808 	return (mapped);
2809 }
2810 
2811 /*
2812  * TLB1 initialization routine, to be called after the very first
2813  * assembler level setup done in locore.S.
2814  */
2815 void
2816 tlb1_init()
2817 {
2818 	vm_offset_t mas2;
2819 	uint32_t mas0, mas1, mas3, mas7;
2820 	uint32_t tsz;
2821 
2822 	tlb1_get_tlbconf();
2823 
2824 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
2825 	mtspr(SPR_MAS0, mas0);
2826 	__asm __volatile("isync; tlbre");
2827 
2828 	mas1 = mfspr(SPR_MAS1);
2829 	mas2 = mfspr(SPR_MAS2);
2830 	mas3 = mfspr(SPR_MAS3);
2831 	mas7 = mfspr(SPR_MAS7);
2832 
2833 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
2834 	    (mas3 & MAS3_RPN);
2835 
2836 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2837 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
2838 	kernstart = trunc_page(mas2);
2839 
2840 	/* Setup TLB miss defaults */
2841 	set_mas4_defaults();
2842 }
2843 
2844 /*
2845  * pmap_early_io_unmap() should be used in short conjunction with
2846  * pmap_early_io_map(), as in the following snippet:
2847  *
2848  * x = pmap_early_io_map(...);
2849  * <do something with x>
2850  * pmap_early_io_unmap(x, size);
2851  *
2852  * And avoiding more allocations between.
2853  */
2854 void
2855 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
2856 {
2857 	int i;
2858 	tlb_entry_t e;
2859 	vm_size_t isize;
2860 
2861 	size = roundup(size, PAGE_SIZE);
2862 	isize = size;
2863 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
2864 		tlb1_read_entry(&e, i);
2865 		if (!(e.mas1 & MAS1_VALID))
2866 			continue;
2867 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
2868 			size -= e.size;
2869 			e.mas1 &= ~MAS1_VALID;
2870 			tlb1_write_entry(&e, i);
2871 		}
2872 	}
2873 	if (tlb1_map_base == va + isize)
2874 		tlb1_map_base -= isize;
2875 }
2876 
2877 vm_offset_t
2878 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
2879 {
2880 	vm_paddr_t pa_base;
2881 	vm_offset_t va, sz;
2882 	int i;
2883 	tlb_entry_t e;
2884 
2885 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
2886 
2887 	for (i = 0; i < TLB1_ENTRIES; i++) {
2888 		tlb1_read_entry(&e, i);
2889 		if (!(e.mas1 & MAS1_VALID))
2890 			continue;
2891 		if (pa >= e.phys && (pa + size) <=
2892 		    (e.phys + e.size))
2893 			return (e.virt + (pa - e.phys));
2894 	}
2895 
2896 	pa_base = rounddown(pa, PAGE_SIZE);
2897 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
2898 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
2899 	va = tlb1_map_base + (pa - pa_base);
2900 
2901 	do {
2902 		sz = 1 << (ilog2(size) & ~1);
2903 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
2904 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
2905 		size -= sz;
2906 		pa_base += sz;
2907 		tlb1_map_base += sz;
2908 	} while (size > 0);
2909 
2910 	return (va);
2911 }
2912 
2913 void
2914 pmap_track_page(pmap_t pmap, vm_offset_t va)
2915 {
2916 	vm_paddr_t pa;
2917 	vm_page_t page;
2918 	struct pv_entry *pve;
2919 
2920 	va = trunc_page(va);
2921 	pa = pmap_kextract(va);
2922 	page = PHYS_TO_VM_PAGE(pa);
2923 
2924 	rw_wlock(&pvh_global_lock);
2925 	PMAP_LOCK(pmap);
2926 
2927 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
2928 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
2929 			goto out;
2930 		}
2931 	}
2932 	page->md.pv_tracked = true;
2933 	pv_insert(pmap, va, page);
2934 out:
2935 	PMAP_UNLOCK(pmap);
2936 	rw_wunlock(&pvh_global_lock);
2937 }
2938 
2939 /*
2940  * Setup MAS4 defaults.
2941  * These values are loaded to MAS0-2 on a TLB miss.
2942  */
2943 static void
2944 set_mas4_defaults(void)
2945 {
2946 	uint32_t mas4;
2947 
2948 	/* Defaults: TLB0, PID0, TSIZED=4K */
2949 	mas4 = MAS4_TLBSELD0;
2950 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2951 #ifdef SMP
2952 	mas4 |= MAS4_MD;
2953 #endif
2954 	mtspr(SPR_MAS4, mas4);
2955 	__asm __volatile("isync");
2956 }
2957 
2958 /*
2959  * Return 0 if the physical IO range is encompassed by one of the
2960  * the TLB1 entries, otherwise return related error code.
2961  */
2962 static int
2963 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2964 {
2965 	uint32_t prot;
2966 	vm_paddr_t pa_start;
2967 	vm_paddr_t pa_end;
2968 	unsigned int entry_tsize;
2969 	vm_size_t entry_size;
2970 	tlb_entry_t e;
2971 
2972 	*va = (vm_offset_t)NULL;
2973 
2974 	tlb1_read_entry(&e, i);
2975 	/* Skip invalid entries */
2976 	if (!(e.mas1 & MAS1_VALID))
2977 		return (EINVAL);
2978 
2979 	/*
2980 	 * The entry must be cache-inhibited, guarded, and r/w
2981 	 * so it can function as an i/o page
2982 	 */
2983 	prot = e.mas2 & (MAS2_I | MAS2_G);
2984 	if (prot != (MAS2_I | MAS2_G))
2985 		return (EPERM);
2986 
2987 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
2988 	if (prot != (MAS3_SR | MAS3_SW))
2989 		return (EPERM);
2990 
2991 	/* The address should be within the entry range. */
2992 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2993 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
2994 
2995 	entry_size = tsize2size(entry_tsize);
2996 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
2997 	    (e.mas3 & MAS3_RPN);
2998 	pa_end = pa_start + entry_size;
2999 
3000 	if ((pa < pa_start) || ((pa + size) > pa_end))
3001 		return (ERANGE);
3002 
3003 	/* Return virtual address of this mapping. */
3004 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3005 	return (0);
3006 }
3007 
3008 #ifdef DDB
3009 /* Print out contents of the MAS registers for each TLB0 entry */
3010 static void
3011 #ifdef __powerpc64__
3012 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
3013 #else
3014 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3015 #endif
3016     uint32_t mas7)
3017 {
3018 	int as;
3019 	char desc[3];
3020 	tlbtid_t tid;
3021 	vm_size_t size;
3022 	unsigned int tsize;
3023 
3024 	desc[2] = '\0';
3025 	if (mas1 & MAS1_VALID)
3026 		desc[0] = 'V';
3027 	else
3028 		desc[0] = ' ';
3029 
3030 	if (mas1 & MAS1_IPROT)
3031 		desc[1] = 'P';
3032 	else
3033 		desc[1] = ' ';
3034 
3035 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3036 	tid = MAS1_GETTID(mas1);
3037 
3038 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3039 	size = 0;
3040 	if (tsize)
3041 		size = tsize2size(tsize);
3042 
3043 	printf("%3d: (%s) [AS=%d] "
3044 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
3045 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3046 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
3047 }
3048 
3049 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
3050 {
3051 	uint32_t mas0, mas1, mas3, mas7;
3052 #ifdef __powerpc64__
3053 	uint64_t mas2;
3054 #else
3055 	uint32_t mas2;
3056 #endif
3057 	int entryidx, way, idx;
3058 
3059 	printf("TLB0 entries:\n");
3060 	for (way = 0; way < TLB0_WAYS; way ++)
3061 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3062 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3063 			mtspr(SPR_MAS0, mas0);
3064 
3065 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3066 			mtspr(SPR_MAS2, mas2);
3067 
3068 			__asm __volatile("isync; tlbre");
3069 
3070 			mas1 = mfspr(SPR_MAS1);
3071 			mas2 = mfspr(SPR_MAS2);
3072 			mas3 = mfspr(SPR_MAS3);
3073 			mas7 = mfspr(SPR_MAS7);
3074 
3075 			idx = tlb0_tableidx(mas2, way);
3076 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3077 		}
3078 }
3079 
3080 /*
3081  * Print out contents of the MAS registers for each TLB1 entry
3082  */
3083 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
3084 {
3085 	uint32_t mas0, mas1, mas3, mas7;
3086 #ifdef __powerpc64__
3087 	uint64_t mas2;
3088 #else
3089 	uint32_t mas2;
3090 #endif
3091 	int i;
3092 
3093 	printf("TLB1 entries:\n");
3094 	for (i = 0; i < TLB1_ENTRIES; i++) {
3095 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3096 		mtspr(SPR_MAS0, mas0);
3097 
3098 		__asm __volatile("isync; tlbre");
3099 
3100 		mas1 = mfspr(SPR_MAS1);
3101 		mas2 = mfspr(SPR_MAS2);
3102 		mas3 = mfspr(SPR_MAS3);
3103 		mas7 = mfspr(SPR_MAS7);
3104 
3105 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3106 	}
3107 }
3108 #endif
3109