xref: /freebsd/sys/powerpc/aim/slb.c (revision 780fb4a2fa9a9aee5ac48a60b790f567c0dc13e9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/param.h>
32 #include <sys/kernel.h>
33 #include <sys/lock.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/proc.h>
37 #include <sys/systm.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 #include <vm/uma.h>
42 #include <vm/vm.h>
43 #include <vm/vm_map.h>
44 #include <vm/vm_page.h>
45 #include <vm/vm_pageout.h>
46 
47 #include <machine/md_var.h>
48 #include <machine/platform.h>
49 #include <machine/vmparam.h>
50 
51 uintptr_t moea64_get_unique_vsid(void);
52 void moea64_release_vsid(uint64_t vsid);
53 static void slb_zone_init(void *);
54 
55 static uma_zone_t slbt_zone;
56 static uma_zone_t slb_cache_zone;
57 int n_slbs = 64;
58 
59 SYSINIT(slb_zone_init, SI_SUB_KMEM, SI_ORDER_ANY, slb_zone_init, NULL);
60 
61 struct slbtnode {
62 	uint16_t	ua_alloc;
63 	uint8_t		ua_level;
64 	/* Only 36 bits needed for full 64-bit address space. */
65 	uint64_t	ua_base;
66 	union {
67 		struct slbtnode	*ua_child[16];
68 		struct slb	slb_entries[16];
69 	} u;
70 };
71 
72 /*
73  * For a full 64-bit address space, there are 36 bits in play in an
74  * esid, so 8 levels, with the leaf being at level 0.
75  *
76  * |3333|3322|2222|2222|1111|1111|11  |    |    |  esid
77  * |5432|1098|7654|3210|9876|5432|1098|7654|3210|  bits
78  * +----+----+----+----+----+----+----+----+----+--------
79  * | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | level
80  */
81 #define UAD_ROOT_LEVEL  8
82 #define UAD_LEAF_LEVEL  0
83 
84 static inline int
85 esid2idx(uint64_t esid, int level)
86 {
87 	int shift;
88 
89 	shift = level * 4;
90 	return ((esid >> shift) & 0xF);
91 }
92 
93 /*
94  * The ua_base field should have 0 bits after the first 4*(level+1)
95  * bits; i.e. only
96  */
97 #define uad_baseok(ua)                          \
98 	(esid2base(ua->ua_base, ua->ua_level) == ua->ua_base)
99 
100 
101 static inline uint64_t
102 esid2base(uint64_t esid, int level)
103 {
104 	uint64_t mask;
105 	int shift;
106 
107 	shift = (level + 1) * 4;
108 	mask = ~((1ULL << shift) - 1);
109 	return (esid & mask);
110 }
111 
112 /*
113  * Allocate a new leaf node for the specified esid/vmhandle from the
114  * parent node.
115  */
116 static struct slb *
117 make_new_leaf(uint64_t esid, uint64_t slbv, struct slbtnode *parent)
118 {
119 	struct slbtnode *child;
120 	struct slb *retval;
121 	int idx;
122 
123 	idx = esid2idx(esid, parent->ua_level);
124 	KASSERT(parent->u.ua_child[idx] == NULL, ("Child already exists!"));
125 
126 	/* unlock and M_WAITOK and loop? */
127 	child = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
128 	KASSERT(child != NULL, ("unhandled NULL case"));
129 
130 	child->ua_level = UAD_LEAF_LEVEL;
131 	child->ua_base = esid2base(esid, child->ua_level);
132 	idx = esid2idx(esid, child->ua_level);
133 	child->u.slb_entries[idx].slbv = slbv;
134 	child->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
135 	setbit(&child->ua_alloc, idx);
136 
137 	retval = &child->u.slb_entries[idx];
138 
139 	/*
140 	 * The above stores must be visible before the next one, so
141 	 * that a lockless searcher always sees a valid path through
142 	 * the tree.
143 	 */
144 	powerpc_lwsync();
145 
146 	idx = esid2idx(esid, parent->ua_level);
147 	parent->u.ua_child[idx] = child;
148 	setbit(&parent->ua_alloc, idx);
149 
150 	return (retval);
151 }
152 
153 /*
154  * Allocate a new intermediate node to fit between the parent and
155  * esid.
156  */
157 static struct slbtnode*
158 make_intermediate(uint64_t esid, struct slbtnode *parent)
159 {
160 	struct slbtnode *child, *inter;
161 	int idx, level;
162 
163 	idx = esid2idx(esid, parent->ua_level);
164 	child = parent->u.ua_child[idx];
165 	KASSERT(esid2base(esid, child->ua_level) != child->ua_base,
166 	    ("No need for an intermediate node?"));
167 
168 	/*
169 	 * Find the level where the existing child and our new esid
170 	 * meet.  It must be lower than parent->ua_level or we would
171 	 * have chosen a different index in parent.
172 	 */
173 	level = child->ua_level + 1;
174 	while (esid2base(esid, level) !=
175 	    esid2base(child->ua_base, level))
176 		level++;
177 	KASSERT(level < parent->ua_level,
178 	    ("Found splitting level %d for %09jx and %09jx, "
179 	    "but it's the same as %p's",
180 	    level, esid, child->ua_base, parent));
181 
182 	/* unlock and M_WAITOK and loop? */
183 	inter = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
184 	KASSERT(inter != NULL, ("unhandled NULL case"));
185 
186 	/* Set up intermediate node to point to child ... */
187 	inter->ua_level = level;
188 	inter->ua_base = esid2base(esid, inter->ua_level);
189 	idx = esid2idx(child->ua_base, inter->ua_level);
190 	inter->u.ua_child[idx] = child;
191 	setbit(&inter->ua_alloc, idx);
192 	powerpc_lwsync();
193 
194 	/* Set up parent to point to intermediate node ... */
195 	idx = esid2idx(inter->ua_base, parent->ua_level);
196 	parent->u.ua_child[idx] = inter;
197 	setbit(&parent->ua_alloc, idx);
198 
199 	return (inter);
200 }
201 
202 uint64_t
203 kernel_va_to_slbv(vm_offset_t va)
204 {
205 	uint64_t slbv;
206 
207 	/* Set kernel VSID to deterministic value */
208 	slbv = (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)) << SLBV_VSID_SHIFT;
209 
210 	/*
211 	 * Figure out if this is a large-page mapping.
212 	 */
213 	if (hw_direct_map && va > DMAP_BASE_ADDRESS && va < DMAP_MAX_ADDRESS) {
214 		/*
215 		 * XXX: If we have set up a direct map, assumes
216 		 * all physical memory is mapped with large pages.
217 		 */
218 
219 		if (mem_valid(DMAP_TO_PHYS(va), 0) == 0)
220 			slbv |= SLBV_L;
221 	}
222 
223 	return (slbv);
224 }
225 
226 struct slb *
227 user_va_to_slb_entry(pmap_t pm, vm_offset_t va)
228 {
229 	uint64_t esid = va >> ADDR_SR_SHFT;
230 	struct slbtnode *ua;
231 	int idx;
232 
233 	ua = pm->pm_slb_tree_root;
234 
235 	for (;;) {
236 		KASSERT(uad_baseok(ua), ("uad base %016jx level %d bad!",
237 		    ua->ua_base, ua->ua_level));
238 		idx = esid2idx(esid, ua->ua_level);
239 
240 		/*
241 		 * This code is specific to ppc64 where a load is
242 		 * atomic, so no need for atomic_load macro.
243 		 */
244 		if (ua->ua_level == UAD_LEAF_LEVEL)
245 			return ((ua->u.slb_entries[idx].slbe & SLBE_VALID) ?
246 			    &ua->u.slb_entries[idx] : NULL);
247 
248 		/*
249 		 * The following accesses are implicitly ordered under the POWER
250 		 * ISA by load dependencies (the store ordering is provided by
251 		 * the powerpc_lwsync() calls elsewhere) and so are run without
252 		 * barriers.
253 		 */
254 		ua = ua->u.ua_child[idx];
255 		if (ua == NULL ||
256 		    esid2base(esid, ua->ua_level) != ua->ua_base)
257 			return (NULL);
258 	}
259 
260 	return (NULL);
261 }
262 
263 uint64_t
264 va_to_vsid(pmap_t pm, vm_offset_t va)
265 {
266 	struct slb *entry;
267 
268 	/* Shortcut kernel case */
269 	if (pm == kernel_pmap)
270 		return (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT));
271 
272 	/*
273 	 * If there is no vsid for this VA, we need to add a new entry
274 	 * to the PMAP's segment table.
275 	 */
276 
277 	entry = user_va_to_slb_entry(pm, va);
278 
279 	if (entry == NULL)
280 		return (allocate_user_vsid(pm,
281 		    (uintptr_t)va >> ADDR_SR_SHFT, 0));
282 
283 	return ((entry->slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT);
284 }
285 
286 uint64_t
287 allocate_user_vsid(pmap_t pm, uint64_t esid, int large)
288 {
289 	uint64_t vsid, slbv;
290 	struct slbtnode *ua, *next, *inter;
291 	struct slb *slb;
292 	int idx;
293 
294 	KASSERT(pm != kernel_pmap, ("Attempting to allocate a kernel VSID"));
295 
296 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
297 	vsid = moea64_get_unique_vsid();
298 
299 	slbv = vsid << SLBV_VSID_SHIFT;
300 	if (large)
301 		slbv |= SLBV_L;
302 
303 	ua = pm->pm_slb_tree_root;
304 
305 	/* Descend to the correct leaf or NULL pointer. */
306 	for (;;) {
307 		KASSERT(uad_baseok(ua),
308 		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
309 		idx = esid2idx(esid, ua->ua_level);
310 
311 		if (ua->ua_level == UAD_LEAF_LEVEL) {
312 			ua->u.slb_entries[idx].slbv = slbv;
313 			eieio();
314 			ua->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT)
315 			    | SLBE_VALID;
316 			setbit(&ua->ua_alloc, idx);
317 			slb = &ua->u.slb_entries[idx];
318 			break;
319 		}
320 
321 		next = ua->u.ua_child[idx];
322 		if (next == NULL) {
323 			slb = make_new_leaf(esid, slbv, ua);
324 			break;
325                 }
326 
327 		/*
328 		 * Check if the next item down has an okay ua_base.
329 		 * If not, we need to allocate an intermediate node.
330 		 */
331 		if (esid2base(esid, next->ua_level) != next->ua_base) {
332 			inter = make_intermediate(esid, ua);
333 			slb = make_new_leaf(esid, slbv, inter);
334 			break;
335 		}
336 
337 		ua = next;
338 	}
339 
340 	/*
341 	 * Someone probably wants this soon, and it may be a wired
342 	 * SLB mapping, so pre-spill this entry.
343 	 */
344 	eieio();
345 	slb_insert_user(pm, slb);
346 
347 	return (vsid);
348 }
349 
350 void
351 free_vsid(pmap_t pm, uint64_t esid, int large)
352 {
353 	struct slbtnode *ua;
354 	int idx;
355 
356 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
357 
358 	ua = pm->pm_slb_tree_root;
359 	/* Descend to the correct leaf. */
360 	for (;;) {
361 		KASSERT(uad_baseok(ua),
362 		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
363 
364 		idx = esid2idx(esid, ua->ua_level);
365 		if (ua->ua_level == UAD_LEAF_LEVEL) {
366 			ua->u.slb_entries[idx].slbv = 0;
367 			eieio();
368 			ua->u.slb_entries[idx].slbe = 0;
369 			clrbit(&ua->ua_alloc, idx);
370 			return;
371 		}
372 
373 		ua = ua->u.ua_child[idx];
374 		if (ua == NULL ||
375 		    esid2base(esid, ua->ua_level) != ua->ua_base) {
376 			/* Perhaps just return instead of assert? */
377 			KASSERT(0,
378 			    ("Asked to remove an entry that was never inserted!"));
379 			return;
380 		}
381 	}
382 }
383 
384 static void
385 free_slb_tree_node(struct slbtnode *ua)
386 {
387 	int idx;
388 
389 	for (idx = 0; idx < 16; idx++) {
390 		if (ua->ua_level != UAD_LEAF_LEVEL) {
391 			if (ua->u.ua_child[idx] != NULL)
392 				free_slb_tree_node(ua->u.ua_child[idx]);
393 		} else {
394 			if (ua->u.slb_entries[idx].slbv != 0)
395 				moea64_release_vsid(ua->u.slb_entries[idx].slbv
396 				    >> SLBV_VSID_SHIFT);
397 		}
398 	}
399 
400 	uma_zfree(slbt_zone, ua);
401 }
402 
403 void
404 slb_free_tree(pmap_t pm)
405 {
406 
407 	free_slb_tree_node(pm->pm_slb_tree_root);
408 }
409 
410 struct slbtnode *
411 slb_alloc_tree(void)
412 {
413 	struct slbtnode *root;
414 
415 	root = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
416 	root->ua_level = UAD_ROOT_LEVEL;
417 
418 	return (root);
419 }
420 
421 /* Lock entries mapping kernel text and stacks */
422 
423 void
424 slb_insert_kernel(uint64_t slbe, uint64_t slbv)
425 {
426 	struct slb *slbcache;
427 	int i;
428 
429 	/* We don't want to be preempted while modifying the kernel map */
430 	critical_enter();
431 
432 	slbcache = PCPU_GET(aim.slb);
433 
434 	/* Check for an unused slot, abusing the user slot as a full flag */
435 	if (slbcache[USER_SLB_SLOT].slbe == 0) {
436 		for (i = 0; i < n_slbs; i++) {
437 			if (i == USER_SLB_SLOT)
438 				continue;
439 			if (!(slbcache[i].slbe & SLBE_VALID))
440 				goto fillkernslb;
441 		}
442 
443 		if (i == n_slbs)
444 			slbcache[USER_SLB_SLOT].slbe = 1;
445 	}
446 
447 	i = mftb() % n_slbs;
448 	if (i == USER_SLB_SLOT)
449 			i = (i+1) % n_slbs;
450 
451 fillkernslb:
452 	KASSERT(i != USER_SLB_SLOT,
453 	    ("Filling user SLB slot with a kernel mapping"));
454 	slbcache[i].slbv = slbv;
455 	slbcache[i].slbe = slbe | (uint64_t)i;
456 
457 	/* If it is for this CPU, put it in the SLB right away */
458 	if (pmap_bootstrapped) {
459 		/* slbie not required */
460 		__asm __volatile ("slbmte %0, %1" ::
461 		    "r"(slbcache[i].slbv), "r"(slbcache[i].slbe));
462 	}
463 
464 	critical_exit();
465 }
466 
467 void
468 slb_insert_user(pmap_t pm, struct slb *slb)
469 {
470 	int i;
471 
472 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
473 
474 	if (pm->pm_slb_len < n_slbs) {
475 		i = pm->pm_slb_len;
476 		pm->pm_slb_len++;
477 	} else {
478 		i = mftb() % n_slbs;
479 	}
480 
481 	/* Note that this replacement is atomic with respect to trap_subr */
482 	pm->pm_slb[i] = slb;
483 }
484 
485 static void *
486 slb_uma_real_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
487     u_int8_t *flags, int wait)
488 {
489 	static vm_offset_t realmax = 0;
490 	void *va;
491 	vm_page_t m;
492 
493 	if (realmax == 0)
494 		realmax = platform_real_maxaddr();
495 
496 	*flags = UMA_SLAB_PRIV;
497 	m = vm_page_alloc_contig_domain(NULL, 0, domain,
498 	    malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED,
499 	    1, 0, realmax, PAGE_SIZE, PAGE_SIZE, VM_MEMATTR_DEFAULT);
500 	if (m == NULL)
501 		return (NULL);
502 
503 	va = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
504 
505 	if (!hw_direct_map)
506 		pmap_kenter((vm_offset_t)va, VM_PAGE_TO_PHYS(m));
507 
508 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
509 		bzero(va, PAGE_SIZE);
510 
511 	return (va);
512 }
513 
514 static void
515 slb_zone_init(void *dummy)
516 {
517 
518 	slbt_zone = uma_zcreate("SLB tree node", sizeof(struct slbtnode),
519 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
520 	slb_cache_zone = uma_zcreate("SLB cache",
521 	    (n_slbs + 1)*sizeof(struct slb *), NULL, NULL, NULL, NULL,
522 	    UMA_ALIGN_PTR, UMA_ZONE_VM);
523 
524 	if (platform_real_maxaddr() != VM_MAX_ADDRESS) {
525 		uma_zone_set_allocf(slb_cache_zone, slb_uma_real_alloc);
526 		uma_zone_set_allocf(slbt_zone, slb_uma_real_alloc);
527 	}
528 }
529 
530 struct slb **
531 slb_alloc_user_cache(void)
532 {
533 	return (uma_zalloc(slb_cache_zone, M_ZERO));
534 }
535 
536 void
537 slb_free_user_cache(struct slb **slb)
538 {
539 	uma_zfree(slb_cache_zone, slb);
540 }
541