1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Nathan Whitehorn 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/kernel.h> 33 #include <sys/lock.h> 34 #include <sys/malloc.h> 35 #include <sys/mutex.h> 36 #include <sys/proc.h> 37 #include <sys/systm.h> 38 39 #include <vm/vm.h> 40 #include <vm/pmap.h> 41 #include <vm/uma.h> 42 #include <vm/vm.h> 43 #include <vm/vm_map.h> 44 #include <vm/vm_page.h> 45 #include <vm/vm_pageout.h> 46 47 #include <machine/md_var.h> 48 #include <machine/platform.h> 49 #include <machine/vmparam.h> 50 51 uintptr_t moea64_get_unique_vsid(void); 52 void moea64_release_vsid(uint64_t vsid); 53 static void slb_zone_init(void *); 54 55 static uma_zone_t slbt_zone; 56 static uma_zone_t slb_cache_zone; 57 int n_slbs = 64; 58 59 SYSINIT(slb_zone_init, SI_SUB_KMEM, SI_ORDER_ANY, slb_zone_init, NULL); 60 61 struct slbtnode { 62 uint16_t ua_alloc; 63 uint8_t ua_level; 64 /* Only 36 bits needed for full 64-bit address space. */ 65 uint64_t ua_base; 66 union { 67 struct slbtnode *ua_child[16]; 68 struct slb slb_entries[16]; 69 } u; 70 }; 71 72 /* 73 * For a full 64-bit address space, there are 36 bits in play in an 74 * esid, so 8 levels, with the leaf being at level 0. 75 * 76 * |3333|3322|2222|2222|1111|1111|11 | | | esid 77 * |5432|1098|7654|3210|9876|5432|1098|7654|3210| bits 78 * +----+----+----+----+----+----+----+----+----+-------- 79 * | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | level 80 */ 81 #define UAD_ROOT_LEVEL 8 82 #define UAD_LEAF_LEVEL 0 83 84 static inline int 85 esid2idx(uint64_t esid, int level) 86 { 87 int shift; 88 89 shift = level * 4; 90 return ((esid >> shift) & 0xF); 91 } 92 93 /* 94 * The ua_base field should have 0 bits after the first 4*(level+1) 95 * bits; i.e. only 96 */ 97 #define uad_baseok(ua) \ 98 (esid2base(ua->ua_base, ua->ua_level) == ua->ua_base) 99 100 101 static inline uint64_t 102 esid2base(uint64_t esid, int level) 103 { 104 uint64_t mask; 105 int shift; 106 107 shift = (level + 1) * 4; 108 mask = ~((1ULL << shift) - 1); 109 return (esid & mask); 110 } 111 112 /* 113 * Allocate a new leaf node for the specified esid/vmhandle from the 114 * parent node. 115 */ 116 static struct slb * 117 make_new_leaf(uint64_t esid, uint64_t slbv, struct slbtnode *parent) 118 { 119 struct slbtnode *child; 120 struct slb *retval; 121 int idx; 122 123 idx = esid2idx(esid, parent->ua_level); 124 KASSERT(parent->u.ua_child[idx] == NULL, ("Child already exists!")); 125 126 /* unlock and M_WAITOK and loop? */ 127 child = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO); 128 KASSERT(child != NULL, ("unhandled NULL case")); 129 130 child->ua_level = UAD_LEAF_LEVEL; 131 child->ua_base = esid2base(esid, child->ua_level); 132 idx = esid2idx(esid, child->ua_level); 133 child->u.slb_entries[idx].slbv = slbv; 134 child->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; 135 setbit(&child->ua_alloc, idx); 136 137 retval = &child->u.slb_entries[idx]; 138 139 /* 140 * The above stores must be visible before the next one, so 141 * that a lockless searcher always sees a valid path through 142 * the tree. 143 */ 144 powerpc_lwsync(); 145 146 idx = esid2idx(esid, parent->ua_level); 147 parent->u.ua_child[idx] = child; 148 setbit(&parent->ua_alloc, idx); 149 150 return (retval); 151 } 152 153 /* 154 * Allocate a new intermediate node to fit between the parent and 155 * esid. 156 */ 157 static struct slbtnode* 158 make_intermediate(uint64_t esid, struct slbtnode *parent) 159 { 160 struct slbtnode *child, *inter; 161 int idx, level; 162 163 idx = esid2idx(esid, parent->ua_level); 164 child = parent->u.ua_child[idx]; 165 KASSERT(esid2base(esid, child->ua_level) != child->ua_base, 166 ("No need for an intermediate node?")); 167 168 /* 169 * Find the level where the existing child and our new esid 170 * meet. It must be lower than parent->ua_level or we would 171 * have chosen a different index in parent. 172 */ 173 level = child->ua_level + 1; 174 while (esid2base(esid, level) != 175 esid2base(child->ua_base, level)) 176 level++; 177 KASSERT(level < parent->ua_level, 178 ("Found splitting level %d for %09jx and %09jx, " 179 "but it's the same as %p's", 180 level, esid, child->ua_base, parent)); 181 182 /* unlock and M_WAITOK and loop? */ 183 inter = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO); 184 KASSERT(inter != NULL, ("unhandled NULL case")); 185 186 /* Set up intermediate node to point to child ... */ 187 inter->ua_level = level; 188 inter->ua_base = esid2base(esid, inter->ua_level); 189 idx = esid2idx(child->ua_base, inter->ua_level); 190 inter->u.ua_child[idx] = child; 191 setbit(&inter->ua_alloc, idx); 192 powerpc_lwsync(); 193 194 /* Set up parent to point to intermediate node ... */ 195 idx = esid2idx(inter->ua_base, parent->ua_level); 196 parent->u.ua_child[idx] = inter; 197 setbit(&parent->ua_alloc, idx); 198 199 return (inter); 200 } 201 202 uint64_t 203 kernel_va_to_slbv(vm_offset_t va) 204 { 205 uint64_t slbv; 206 207 /* Set kernel VSID to deterministic value */ 208 slbv = (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)) << SLBV_VSID_SHIFT; 209 210 /* Figure out if this is a large-page mapping */ 211 if (hw_direct_map && va < VM_MIN_KERNEL_ADDRESS) { 212 /* 213 * XXX: If we have set up a direct map, assumes 214 * all physical memory is mapped with large pages. 215 */ 216 if (mem_valid(va, 0) == 0) 217 slbv |= SLBV_L; 218 } 219 220 return (slbv); 221 } 222 223 struct slb * 224 user_va_to_slb_entry(pmap_t pm, vm_offset_t va) 225 { 226 uint64_t esid = va >> ADDR_SR_SHFT; 227 struct slbtnode *ua; 228 int idx; 229 230 ua = pm->pm_slb_tree_root; 231 232 for (;;) { 233 KASSERT(uad_baseok(ua), ("uad base %016jx level %d bad!", 234 ua->ua_base, ua->ua_level)); 235 idx = esid2idx(esid, ua->ua_level); 236 237 /* 238 * This code is specific to ppc64 where a load is 239 * atomic, so no need for atomic_load macro. 240 */ 241 if (ua->ua_level == UAD_LEAF_LEVEL) 242 return ((ua->u.slb_entries[idx].slbe & SLBE_VALID) ? 243 &ua->u.slb_entries[idx] : NULL); 244 245 /* 246 * The following accesses are implicitly ordered under the POWER 247 * ISA by load dependencies (the store ordering is provided by 248 * the powerpc_lwsync() calls elsewhere) and so are run without 249 * barriers. 250 */ 251 ua = ua->u.ua_child[idx]; 252 if (ua == NULL || 253 esid2base(esid, ua->ua_level) != ua->ua_base) 254 return (NULL); 255 } 256 257 return (NULL); 258 } 259 260 uint64_t 261 va_to_vsid(pmap_t pm, vm_offset_t va) 262 { 263 struct slb *entry; 264 265 /* Shortcut kernel case */ 266 if (pm == kernel_pmap) 267 return (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)); 268 269 /* 270 * If there is no vsid for this VA, we need to add a new entry 271 * to the PMAP's segment table. 272 */ 273 274 entry = user_va_to_slb_entry(pm, va); 275 276 if (entry == NULL) 277 return (allocate_user_vsid(pm, 278 (uintptr_t)va >> ADDR_SR_SHFT, 0)); 279 280 return ((entry->slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT); 281 } 282 283 uint64_t 284 allocate_user_vsid(pmap_t pm, uint64_t esid, int large) 285 { 286 uint64_t vsid, slbv; 287 struct slbtnode *ua, *next, *inter; 288 struct slb *slb; 289 int idx; 290 291 KASSERT(pm != kernel_pmap, ("Attempting to allocate a kernel VSID")); 292 293 PMAP_LOCK_ASSERT(pm, MA_OWNED); 294 vsid = moea64_get_unique_vsid(); 295 296 slbv = vsid << SLBV_VSID_SHIFT; 297 if (large) 298 slbv |= SLBV_L; 299 300 ua = pm->pm_slb_tree_root; 301 302 /* Descend to the correct leaf or NULL pointer. */ 303 for (;;) { 304 KASSERT(uad_baseok(ua), 305 ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level)); 306 idx = esid2idx(esid, ua->ua_level); 307 308 if (ua->ua_level == UAD_LEAF_LEVEL) { 309 ua->u.slb_entries[idx].slbv = slbv; 310 eieio(); 311 ua->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) 312 | SLBE_VALID; 313 setbit(&ua->ua_alloc, idx); 314 slb = &ua->u.slb_entries[idx]; 315 break; 316 } 317 318 next = ua->u.ua_child[idx]; 319 if (next == NULL) { 320 slb = make_new_leaf(esid, slbv, ua); 321 break; 322 } 323 324 /* 325 * Check if the next item down has an okay ua_base. 326 * If not, we need to allocate an intermediate node. 327 */ 328 if (esid2base(esid, next->ua_level) != next->ua_base) { 329 inter = make_intermediate(esid, ua); 330 slb = make_new_leaf(esid, slbv, inter); 331 break; 332 } 333 334 ua = next; 335 } 336 337 /* 338 * Someone probably wants this soon, and it may be a wired 339 * SLB mapping, so pre-spill this entry. 340 */ 341 eieio(); 342 slb_insert_user(pm, slb); 343 344 return (vsid); 345 } 346 347 void 348 free_vsid(pmap_t pm, uint64_t esid, int large) 349 { 350 struct slbtnode *ua; 351 int idx; 352 353 PMAP_LOCK_ASSERT(pm, MA_OWNED); 354 355 ua = pm->pm_slb_tree_root; 356 /* Descend to the correct leaf. */ 357 for (;;) { 358 KASSERT(uad_baseok(ua), 359 ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level)); 360 361 idx = esid2idx(esid, ua->ua_level); 362 if (ua->ua_level == UAD_LEAF_LEVEL) { 363 ua->u.slb_entries[idx].slbv = 0; 364 eieio(); 365 ua->u.slb_entries[idx].slbe = 0; 366 clrbit(&ua->ua_alloc, idx); 367 return; 368 } 369 370 ua = ua->u.ua_child[idx]; 371 if (ua == NULL || 372 esid2base(esid, ua->ua_level) != ua->ua_base) { 373 /* Perhaps just return instead of assert? */ 374 KASSERT(0, 375 ("Asked to remove an entry that was never inserted!")); 376 return; 377 } 378 } 379 } 380 381 static void 382 free_slb_tree_node(struct slbtnode *ua) 383 { 384 int idx; 385 386 for (idx = 0; idx < 16; idx++) { 387 if (ua->ua_level != UAD_LEAF_LEVEL) { 388 if (ua->u.ua_child[idx] != NULL) 389 free_slb_tree_node(ua->u.ua_child[idx]); 390 } else { 391 if (ua->u.slb_entries[idx].slbv != 0) 392 moea64_release_vsid(ua->u.slb_entries[idx].slbv 393 >> SLBV_VSID_SHIFT); 394 } 395 } 396 397 uma_zfree(slbt_zone, ua); 398 } 399 400 void 401 slb_free_tree(pmap_t pm) 402 { 403 404 free_slb_tree_node(pm->pm_slb_tree_root); 405 } 406 407 struct slbtnode * 408 slb_alloc_tree(void) 409 { 410 struct slbtnode *root; 411 412 root = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO); 413 root->ua_level = UAD_ROOT_LEVEL; 414 415 return (root); 416 } 417 418 /* Lock entries mapping kernel text and stacks */ 419 420 void 421 slb_insert_kernel(uint64_t slbe, uint64_t slbv) 422 { 423 struct slb *slbcache; 424 int i; 425 426 /* We don't want to be preempted while modifying the kernel map */ 427 critical_enter(); 428 429 slbcache = PCPU_GET(slb); 430 431 /* Check for an unused slot, abusing the user slot as a full flag */ 432 if (slbcache[USER_SLB_SLOT].slbe == 0) { 433 for (i = 0; i < n_slbs; i++) { 434 if (i == USER_SLB_SLOT) 435 continue; 436 if (!(slbcache[i].slbe & SLBE_VALID)) 437 goto fillkernslb; 438 } 439 440 if (i == n_slbs) 441 slbcache[USER_SLB_SLOT].slbe = 1; 442 } 443 444 i = mftb() % n_slbs; 445 if (i == USER_SLB_SLOT) 446 i = (i+1) % n_slbs; 447 448 fillkernslb: 449 KASSERT(i != USER_SLB_SLOT, 450 ("Filling user SLB slot with a kernel mapping")); 451 slbcache[i].slbv = slbv; 452 slbcache[i].slbe = slbe | (uint64_t)i; 453 454 /* If it is for this CPU, put it in the SLB right away */ 455 if (pmap_bootstrapped) { 456 /* slbie not required */ 457 __asm __volatile ("slbmte %0, %1" :: 458 "r"(slbcache[i].slbv), "r"(slbcache[i].slbe)); 459 } 460 461 critical_exit(); 462 } 463 464 void 465 slb_insert_user(pmap_t pm, struct slb *slb) 466 { 467 int i; 468 469 PMAP_LOCK_ASSERT(pm, MA_OWNED); 470 471 if (pm->pm_slb_len < n_slbs) { 472 i = pm->pm_slb_len; 473 pm->pm_slb_len++; 474 } else { 475 i = mftb() % n_slbs; 476 } 477 478 /* Note that this replacement is atomic with respect to trap_subr */ 479 pm->pm_slb[i] = slb; 480 } 481 482 static void * 483 slb_uma_real_alloc(uma_zone_t zone, vm_size_t bytes, u_int8_t *flags, int wait) 484 { 485 static vm_offset_t realmax = 0; 486 void *va; 487 vm_page_t m; 488 489 if (realmax == 0) 490 realmax = platform_real_maxaddr(); 491 492 *flags = UMA_SLAB_PRIV; 493 m = vm_page_alloc_contig(NULL, 0, 494 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, 495 1, 0, realmax, PAGE_SIZE, PAGE_SIZE, VM_MEMATTR_DEFAULT); 496 if (m == NULL) 497 return (NULL); 498 499 va = (void *) VM_PAGE_TO_PHYS(m); 500 501 if (!hw_direct_map) 502 pmap_kenter((vm_offset_t)va, VM_PAGE_TO_PHYS(m)); 503 504 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) 505 bzero(va, PAGE_SIZE); 506 507 return (va); 508 } 509 510 static void 511 slb_zone_init(void *dummy) 512 { 513 514 slbt_zone = uma_zcreate("SLB tree node", sizeof(struct slbtnode), 515 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM); 516 slb_cache_zone = uma_zcreate("SLB cache", 517 (n_slbs + 1)*sizeof(struct slb *), NULL, NULL, NULL, NULL, 518 UMA_ALIGN_PTR, UMA_ZONE_VM); 519 520 if (platform_real_maxaddr() != VM_MAX_ADDRESS) { 521 uma_zone_set_allocf(slb_cache_zone, slb_uma_real_alloc); 522 uma_zone_set_allocf(slbt_zone, slb_uma_real_alloc); 523 } 524 } 525 526 struct slb ** 527 slb_alloc_user_cache(void) 528 { 529 return (uma_zalloc(slb_cache_zone, M_ZERO)); 530 } 531 532 void 533 slb_free_user_cache(struct slb **slb) 534 { 535 uma_zfree(slb_cache_zone, slb); 536 } 537