xref: /freebsd/sys/powerpc/aim/slb.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/kernel.h>
31 #include <sys/lock.h>
32 #include <sys/malloc.h>
33 #include <sys/mutex.h>
34 #include <sys/proc.h>
35 #include <sys/systm.h>
36 
37 #include <vm/vm.h>
38 #include <vm/pmap.h>
39 #include <vm/uma.h>
40 #include <vm/vm.h>
41 #include <vm/vm_map.h>
42 #include <vm/vm_page.h>
43 #include <vm/vm_pageout.h>
44 
45 #include <machine/md_var.h>
46 #include <machine/platform.h>
47 #include <machine/vmparam.h>
48 #include <machine/trap.h>
49 
50 #include "mmu_oea64.h"
51 
52 uintptr_t moea64_get_unique_vsid(void);
53 void moea64_release_vsid(uint64_t vsid);
54 static void slb_zone_init(void *);
55 
56 static uma_zone_t slbt_zone;
57 static uma_zone_t slb_cache_zone;
58 int n_slbs = 64;
59 
60 SYSINIT(slb_zone_init, SI_SUB_KMEM, SI_ORDER_ANY, slb_zone_init, NULL);
61 
62 struct slbtnode {
63 	uint16_t	ua_alloc;
64 	uint8_t		ua_level;
65 	/* Only 36 bits needed for full 64-bit address space. */
66 	uint64_t	ua_base;
67 	union {
68 		struct slbtnode	*ua_child[16];
69 		struct slb	slb_entries[16];
70 	} u;
71 };
72 
73 /*
74  * For a full 64-bit address space, there are 36 bits in play in an
75  * esid, so 8 levels, with the leaf being at level 0.
76  *
77  * |3333|3322|2222|2222|1111|1111|11  |    |    |  esid
78  * |5432|1098|7654|3210|9876|5432|1098|7654|3210|  bits
79  * +----+----+----+----+----+----+----+----+----+--------
80  * | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | level
81  */
82 #define UAD_ROOT_LEVEL  8
83 #define UAD_LEAF_LEVEL  0
84 
85 static inline int
86 esid2idx(uint64_t esid, int level)
87 {
88 	int shift;
89 
90 	shift = level * 4;
91 	return ((esid >> shift) & 0xF);
92 }
93 
94 /*
95  * The ua_base field should have 0 bits after the first 4*(level+1)
96  * bits; i.e. only
97  */
98 #define uad_baseok(ua)                          \
99 	(esid2base(ua->ua_base, ua->ua_level) == ua->ua_base)
100 
101 static inline uint64_t
102 esid2base(uint64_t esid, int level)
103 {
104 	uint64_t mask;
105 	int shift;
106 
107 	shift = (level + 1) * 4;
108 	mask = ~((1ULL << shift) - 1);
109 	return (esid & mask);
110 }
111 
112 /*
113  * Allocate a new leaf node for the specified esid/vmhandle from the
114  * parent node.
115  */
116 static struct slb *
117 make_new_leaf(uint64_t esid, uint64_t slbv, struct slbtnode *parent)
118 {
119 	struct slbtnode *child;
120 	struct slb *retval;
121 	int idx;
122 
123 	idx = esid2idx(esid, parent->ua_level);
124 	KASSERT(parent->u.ua_child[idx] == NULL, ("Child already exists!"));
125 
126 	/* unlock and M_WAITOK and loop? */
127 	child = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
128 	KASSERT(child != NULL, ("unhandled NULL case"));
129 
130 	child->ua_level = UAD_LEAF_LEVEL;
131 	child->ua_base = esid2base(esid, child->ua_level);
132 	idx = esid2idx(esid, child->ua_level);
133 	child->u.slb_entries[idx].slbv = slbv;
134 	child->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
135 	setbit(&child->ua_alloc, idx);
136 
137 	retval = &child->u.slb_entries[idx];
138 
139 	/*
140 	 * The above stores must be visible before the next one, so
141 	 * that a lockless searcher always sees a valid path through
142 	 * the tree.
143 	 */
144 	powerpc_lwsync();
145 
146 	idx = esid2idx(esid, parent->ua_level);
147 	parent->u.ua_child[idx] = child;
148 	setbit(&parent->ua_alloc, idx);
149 
150 	return (retval);
151 }
152 
153 /*
154  * Allocate a new intermediate node to fit between the parent and
155  * esid.
156  */
157 static struct slbtnode*
158 make_intermediate(uint64_t esid, struct slbtnode *parent)
159 {
160 	struct slbtnode *child, *inter;
161 	int idx, level;
162 
163 	idx = esid2idx(esid, parent->ua_level);
164 	child = parent->u.ua_child[idx];
165 	KASSERT(esid2base(esid, child->ua_level) != child->ua_base,
166 	    ("No need for an intermediate node?"));
167 
168 	/*
169 	 * Find the level where the existing child and our new esid
170 	 * meet.  It must be lower than parent->ua_level or we would
171 	 * have chosen a different index in parent.
172 	 */
173 	level = child->ua_level + 1;
174 	while (esid2base(esid, level) !=
175 	    esid2base(child->ua_base, level))
176 		level++;
177 	KASSERT(level < parent->ua_level,
178 	    ("Found splitting level %d for %09jx and %09jx, "
179 	    "but it's the same as %p's",
180 	    level, esid, child->ua_base, parent));
181 
182 	/* unlock and M_WAITOK and loop? */
183 	inter = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
184 	KASSERT(inter != NULL, ("unhandled NULL case"));
185 
186 	/* Set up intermediate node to point to child ... */
187 	inter->ua_level = level;
188 	inter->ua_base = esid2base(esid, inter->ua_level);
189 	idx = esid2idx(child->ua_base, inter->ua_level);
190 	inter->u.ua_child[idx] = child;
191 	setbit(&inter->ua_alloc, idx);
192 	powerpc_lwsync();
193 
194 	/* Set up parent to point to intermediate node ... */
195 	idx = esid2idx(inter->ua_base, parent->ua_level);
196 	parent->u.ua_child[idx] = inter;
197 	setbit(&parent->ua_alloc, idx);
198 
199 	return (inter);
200 }
201 
202 uint64_t
203 kernel_va_to_slbv(vm_offset_t va)
204 {
205 	uint64_t slbv;
206 
207 	/* Set kernel VSID to deterministic value */
208 	slbv = (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)) << SLBV_VSID_SHIFT;
209 
210 	/*
211 	 * Figure out if this is a large-page mapping.
212 	 */
213 	if (hw_direct_map && va > DMAP_BASE_ADDRESS && va < DMAP_MAX_ADDRESS) {
214 		/*
215 		 * XXX: If we have set up a direct map, assumes
216 		 * all physical memory is mapped with large pages.
217 		 */
218 
219 		if (mem_valid(DMAP_TO_PHYS(va), 0) == 0)
220 			slbv |= SLBV_L;
221 	} else if (moea64_large_page_size != 0 &&
222 	    va >= (vm_offset_t)vm_page_array &&
223 	    va <= (uintptr_t)(&vm_page_array[vm_page_array_size]))
224 		slbv |= SLBV_L;
225 
226 	return (slbv);
227 }
228 
229 struct slb *
230 user_va_to_slb_entry(pmap_t pm, vm_offset_t va)
231 {
232 	uint64_t esid = va >> ADDR_SR_SHFT;
233 	struct slbtnode *ua;
234 	int idx;
235 
236 	ua = pm->pm_slb_tree_root;
237 
238 	for (;;) {
239 		KASSERT(uad_baseok(ua), ("uad base %016jx level %d bad!",
240 		    ua->ua_base, ua->ua_level));
241 		idx = esid2idx(esid, ua->ua_level);
242 
243 		/*
244 		 * This code is specific to ppc64 where a load is
245 		 * atomic, so no need for atomic_load macro.
246 		 */
247 		if (ua->ua_level == UAD_LEAF_LEVEL)
248 			return ((ua->u.slb_entries[idx].slbe & SLBE_VALID) ?
249 			    &ua->u.slb_entries[idx] : NULL);
250 
251 		/*
252 		 * The following accesses are implicitly ordered under the POWER
253 		 * ISA by load dependencies (the store ordering is provided by
254 		 * the powerpc_lwsync() calls elsewhere) and so are run without
255 		 * barriers.
256 		 */
257 		ua = ua->u.ua_child[idx];
258 		if (ua == NULL ||
259 		    esid2base(esid, ua->ua_level) != ua->ua_base)
260 			return (NULL);
261 	}
262 
263 	return (NULL);
264 }
265 
266 uint64_t
267 va_to_vsid(pmap_t pm, vm_offset_t va)
268 {
269 	struct slb *entry;
270 
271 	/* Shortcut kernel case */
272 	if (pm == kernel_pmap)
273 		return (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT));
274 
275 	/*
276 	 * If there is no vsid for this VA, we need to add a new entry
277 	 * to the PMAP's segment table.
278 	 */
279 
280 	entry = user_va_to_slb_entry(pm, va);
281 
282 	if (entry == NULL)
283 		return (allocate_user_vsid(pm,
284 		    (uintptr_t)va >> ADDR_SR_SHFT, 0));
285 
286 	return ((entry->slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT);
287 }
288 
289 uint64_t
290 allocate_user_vsid(pmap_t pm, uint64_t esid, int large)
291 {
292 	uint64_t vsid, slbv;
293 	struct slbtnode *ua, *next, *inter;
294 	struct slb *slb;
295 	int idx;
296 
297 	KASSERT(pm != kernel_pmap, ("Attempting to allocate a kernel VSID"));
298 
299 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
300 	vsid = moea64_get_unique_vsid();
301 
302 	slbv = vsid << SLBV_VSID_SHIFT;
303 	if (large)
304 		slbv |= SLBV_L;
305 
306 	ua = pm->pm_slb_tree_root;
307 
308 	/* Descend to the correct leaf or NULL pointer. */
309 	for (;;) {
310 		KASSERT(uad_baseok(ua),
311 		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
312 		idx = esid2idx(esid, ua->ua_level);
313 
314 		if (ua->ua_level == UAD_LEAF_LEVEL) {
315 			ua->u.slb_entries[idx].slbv = slbv;
316 			eieio();
317 			ua->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT)
318 			    | SLBE_VALID;
319 			setbit(&ua->ua_alloc, idx);
320 			slb = &ua->u.slb_entries[idx];
321 			break;
322 		}
323 
324 		next = ua->u.ua_child[idx];
325 		if (next == NULL) {
326 			slb = make_new_leaf(esid, slbv, ua);
327 			break;
328                 }
329 
330 		/*
331 		 * Check if the next item down has an okay ua_base.
332 		 * If not, we need to allocate an intermediate node.
333 		 */
334 		if (esid2base(esid, next->ua_level) != next->ua_base) {
335 			inter = make_intermediate(esid, ua);
336 			slb = make_new_leaf(esid, slbv, inter);
337 			break;
338 		}
339 
340 		ua = next;
341 	}
342 
343 	/*
344 	 * Someone probably wants this soon, and it may be a wired
345 	 * SLB mapping, so pre-spill this entry.
346 	 */
347 	eieio();
348 	slb_insert_user(pm, slb);
349 
350 	return (vsid);
351 }
352 
353 void
354 free_vsid(pmap_t pm, uint64_t esid, int large)
355 {
356 	struct slbtnode *ua;
357 	int idx;
358 
359 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
360 
361 	ua = pm->pm_slb_tree_root;
362 	/* Descend to the correct leaf. */
363 	for (;;) {
364 		KASSERT(uad_baseok(ua),
365 		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
366 
367 		idx = esid2idx(esid, ua->ua_level);
368 		if (ua->ua_level == UAD_LEAF_LEVEL) {
369 			ua->u.slb_entries[idx].slbv = 0;
370 			eieio();
371 			ua->u.slb_entries[idx].slbe = 0;
372 			clrbit(&ua->ua_alloc, idx);
373 			return;
374 		}
375 
376 		ua = ua->u.ua_child[idx];
377 		if (ua == NULL ||
378 		    esid2base(esid, ua->ua_level) != ua->ua_base) {
379 			/* Perhaps just return instead of assert? */
380 			KASSERT(0,
381 			    ("Asked to remove an entry that was never inserted!"));
382 			return;
383 		}
384 	}
385 }
386 
387 static void
388 free_slb_tree_node(struct slbtnode *ua)
389 {
390 	int idx;
391 
392 	for (idx = 0; idx < 16; idx++) {
393 		if (ua->ua_level != UAD_LEAF_LEVEL) {
394 			if (ua->u.ua_child[idx] != NULL)
395 				free_slb_tree_node(ua->u.ua_child[idx]);
396 		} else {
397 			if (ua->u.slb_entries[idx].slbv != 0)
398 				moea64_release_vsid(ua->u.slb_entries[idx].slbv
399 				    >> SLBV_VSID_SHIFT);
400 		}
401 	}
402 
403 	uma_zfree(slbt_zone, ua);
404 }
405 
406 void
407 slb_free_tree(pmap_t pm)
408 {
409 
410 	free_slb_tree_node(pm->pm_slb_tree_root);
411 }
412 
413 struct slbtnode *
414 slb_alloc_tree(void)
415 {
416 	struct slbtnode *root;
417 
418 	root = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
419 	KASSERT(root != NULL, ("unhandled NULL case"));
420 	root->ua_level = UAD_ROOT_LEVEL;
421 
422 	return (root);
423 }
424 
425 /* Lock entries mapping kernel text and stacks */
426 
427 void
428 slb_insert_kernel(uint64_t slbe, uint64_t slbv)
429 {
430 	struct slb *slbcache;
431 	int i;
432 
433 	/* We don't want to be preempted while modifying the kernel map */
434 	critical_enter();
435 
436 	slbcache = PCPU_GET(aim.slb);
437 
438 	/* Check for an unused slot, abusing the user slot as a full flag */
439 	if (slbcache[USER_SLB_SLOT].slbe == 0) {
440 		for (i = 0; i < n_slbs; i++) {
441 			if (i == USER_SLB_SLOT)
442 				continue;
443 			if (!(slbcache[i].slbe & SLBE_VALID))
444 				goto fillkernslb;
445 		}
446 
447 		if (i == n_slbs)
448 			slbcache[USER_SLB_SLOT].slbe = 1;
449 	}
450 
451 	i = mftb() % n_slbs;
452 	if (i == USER_SLB_SLOT)
453 			i = (i+1) % n_slbs;
454 
455 fillkernslb:
456 	KASSERT(i != USER_SLB_SLOT,
457 	    ("Filling user SLB slot with a kernel mapping"));
458 	slbcache[i].slbv = slbv;
459 	slbcache[i].slbe = slbe | (uint64_t)i;
460 
461 	/* If it is for this CPU, put it in the SLB right away */
462 	if (pmap_bootstrapped) {
463 		/* slbie not required */
464 		__asm __volatile ("slbmte %0, %1" ::
465 		    "r"(slbcache[i].slbv), "r"(slbcache[i].slbe));
466 	}
467 
468 	critical_exit();
469 }
470 
471 void
472 slb_insert_user(pmap_t pm, struct slb *slb)
473 {
474 	int i;
475 
476 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
477 
478 	if (pm->pm_slb_len < n_slbs) {
479 		i = pm->pm_slb_len;
480 		pm->pm_slb_len++;
481 	} else {
482 		i = mftb() % n_slbs;
483 	}
484 
485 	/* Note that this replacement is atomic with respect to trap_subr */
486 	pm->pm_slb[i] = slb;
487 }
488 
489 static void *
490 slb_uma_real_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
491     u_int8_t *flags, int wait)
492 {
493 	static vm_offset_t realmax = 0;
494 	void *va;
495 	vm_page_t m;
496 
497 	if (realmax == 0)
498 		realmax = platform_real_maxaddr();
499 
500 	*flags = UMA_SLAB_PRIV;
501 	m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
502 	    VM_ALLOC_WIRED, 1, 0, realmax, PAGE_SIZE, PAGE_SIZE,
503 	    VM_MEMATTR_DEFAULT);
504 	if (m == NULL)
505 		return (NULL);
506 
507 	if (hw_direct_map)
508 		va = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
509 	else {
510 		va = (void *)(VM_PAGE_TO_PHYS(m) | DMAP_BASE_ADDRESS);
511 		pmap_kenter((vm_offset_t)va, VM_PAGE_TO_PHYS(m));
512 	}
513 
514 	return (va);
515 }
516 
517 static void
518 slb_zone_init(void *dummy)
519 {
520 	slbt_zone = uma_zcreate("SLB tree node", sizeof(struct slbtnode),
521 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
522 	    UMA_ZONE_CONTIG | UMA_ZONE_VM);
523 	slb_cache_zone = uma_zcreate("SLB cache",
524 	    (n_slbs + 1)*sizeof(struct slb *), NULL, NULL, NULL, NULL,
525 	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG | UMA_ZONE_VM);
526 
527 	if (platform_real_maxaddr() != VM_MAX_ADDRESS) {
528 		uma_zone_set_allocf(slb_cache_zone, slb_uma_real_alloc);
529 		uma_zone_set_allocf(slbt_zone, slb_uma_real_alloc);
530 	}
531 }
532 
533 struct slb **
534 slb_alloc_user_cache(void)
535 {
536 	return (uma_zalloc(slb_cache_zone, M_WAITOK | M_ZERO));
537 }
538 
539 void
540 slb_free_user_cache(struct slb **slb)
541 {
542 	uma_zfree(slb_cache_zone, slb);
543 }
544 
545 /* Handle kernel SLB faults -- runs in real mode, all seat belts off */
546 void
547 handle_kernel_slb_spill(int type, register_t dar, register_t srr0)
548 {
549 	struct slb *slbcache;
550 	uint64_t slbe, slbv;
551 	uint64_t esid, addr;
552 	int i;
553 
554 	addr = (type == EXC_ISE) ? srr0 : dar;
555 	slbcache = PCPU_GET(aim.slb);
556 	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
557 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
558 
559 	/* See if the hardware flushed this somehow (can happen in LPARs) */
560 	for (i = 0; i < n_slbs; i++)
561 		if (slbcache[i].slbe == (slbe | (uint64_t)i))
562 			return;
563 
564 	/* Not in the map, needs to actually be added */
565 	slbv = kernel_va_to_slbv(addr);
566 	if (slbcache[USER_SLB_SLOT].slbe == 0) {
567 		for (i = 0; i < n_slbs; i++) {
568 			if (i == USER_SLB_SLOT)
569 				continue;
570 			if (!(slbcache[i].slbe & SLBE_VALID))
571 				goto fillkernslb;
572 		}
573 
574 		if (i == n_slbs)
575 			slbcache[USER_SLB_SLOT].slbe = 1;
576 	}
577 
578 	/* Sacrifice a random SLB entry that is not the user entry */
579 	i = mftb() % n_slbs;
580 	if (i == USER_SLB_SLOT)
581 		i = (i+1) % n_slbs;
582 
583 fillkernslb:
584 	/* Write new entry */
585 	slbcache[i].slbv = slbv;
586 	slbcache[i].slbe = slbe | (uint64_t)i;
587 
588 	/* Trap handler will restore from cache on exit */
589 }
590 
591 int
592 handle_user_slb_spill(pmap_t pm, vm_offset_t addr)
593 {
594 	struct slb *user_entry;
595 	uint64_t esid;
596 	int i;
597 
598 	if (pm->pm_slb == NULL)
599 		return (-1);
600 
601 	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
602 
603 	PMAP_LOCK(pm);
604 	user_entry = user_va_to_slb_entry(pm, addr);
605 
606 	if (user_entry == NULL) {
607 		/* allocate_vsid auto-spills it */
608 		(void)allocate_user_vsid(pm, esid, 0);
609 	} else {
610 		/*
611 		 * Check that another CPU has not already mapped this.
612 		 * XXX: Per-thread SLB caches would be better.
613 		 */
614 		for (i = 0; i < pm->pm_slb_len; i++)
615 			if (pm->pm_slb[i] == user_entry)
616 				break;
617 
618 		if (i == pm->pm_slb_len)
619 			slb_insert_user(pm, user_entry);
620 	}
621 	PMAP_UNLOCK(pm);
622 
623 	return (0);
624 }
625