xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision cd8537910406e68d4719136a5b0cf6d23bb1b23b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/kernel.h>
33 #include <sys/systm.h>
34 #include <sys/conf.h>
35 #include <sys/bitstring.h>
36 #include <sys/queue.h>
37 #include <sys/cpuset.h>
38 #include <sys/endian.h>
39 #include <sys/kerneldump.h>
40 #include <sys/ktr.h>
41 #include <sys/lock.h>
42 #include <sys/syslog.h>
43 #include <sys/msgbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/mman.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/rwlock.h>
49 #include <sys/sched.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/vmem.h>
53 #include <sys/vmmeter.h>
54 #include <sys/smp.h>
55 
56 #include <sys/kdb.h>
57 
58 #include <dev/ofw/openfirm.h>
59 
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_reserv.h>
71 #include <vm/vm_dumpset.h>
72 #include <vm/uma.h>
73 
74 #include <machine/_inttypes.h>
75 #include <machine/cpu.h>
76 #include <machine/platform.h>
77 #include <machine/frame.h>
78 #include <machine/md_var.h>
79 #include <machine/psl.h>
80 #include <machine/bat.h>
81 #include <machine/hid.h>
82 #include <machine/pte.h>
83 #include <machine/sr.h>
84 #include <machine/trap.h>
85 #include <machine/mmuvar.h>
86 
87 #ifdef INVARIANTS
88 #include <vm/uma_dbg.h>
89 #endif
90 
91 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
92 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
93 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
94 
95 #include "opt_ddb.h"
96 #ifdef DDB
97 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
98 #endif
99 
100 #define PG_W	RPTE_WIRED
101 #define PG_V	RPTE_VALID
102 #define PG_MANAGED	RPTE_MANAGED
103 #define PG_PROMOTED	RPTE_PROMOTED
104 #define PG_M	RPTE_C
105 #define PG_A	RPTE_R
106 #define PG_X	RPTE_EAA_X
107 #define PG_RW	RPTE_EAA_W
108 #define PG_PTE_CACHE RPTE_ATTR_MASK
109 
110 #define RPTE_SHIFT 9
111 #define NLS_MASK ((1UL<<5)-1)
112 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
113 #define RPTE_MASK (RPTE_ENTRIES-1)
114 
115 #define NLB_SHIFT 0
116 #define NLB_MASK (((1UL<<52)-1) << 8)
117 
118 extern int nkpt;
119 extern caddr_t crashdumpmap;
120 
121 #define RIC_FLUSH_TLB 0
122 #define RIC_FLUSH_PWC 1
123 #define RIC_FLUSH_ALL 2
124 
125 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
126 
127 #define PPC_INST_TLBIE			0x7c000264
128 #define PPC_INST_TLBIEL			0x7c000224
129 #define PPC_INST_SLBIA			0x7c0003e4
130 
131 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
132 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
133 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
134 #define ___PPC_RT(t)	___PPC_RS(t)
135 #define ___PPC_R(r)	(((r) & 0x1) << 16)
136 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
137 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
138 
139 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
140 				       ((IH & 0x7) << 21))
141 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
142 	__XSTRING(.long PPC_INST_TLBIE |			\
143 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
144 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
145 			  ___PPC_R(r))
146 
147 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
148 	 __XSTRING(.long PPC_INST_TLBIEL | \
149 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
150 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
151 			   ___PPC_R(r))
152 
153 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
154 
155 static __inline void
156 ttusync(void)
157 {
158 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
159 }
160 
161 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
162 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
163 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
164 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
165 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
166 
167 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
168 #define  TLBIE_ACTUAL_PAGE_4K		0x00
169 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
170 #define  TLBIE_ACTUAL_PAGE_2M		0x20
171 #define  TLBIE_ACTUAL_PAGE_1G		0x40
172 
173 #define TLBIE_PRS_PARTITION_SCOPE	0x0
174 #define TLBIE_PRS_PROCESS_SCOPE	0x1
175 
176 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
177 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
178 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
179 						 * cached {proc, part}tab entries
180 						 */
181 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
182 						 * Invalidate a range of translations
183 						 */
184 
185 static __always_inline void
186 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
187 			vm_offset_t va, uint16_t ap)
188 {
189 	uint64_t rb, rs;
190 
191 	MPASS((va & PAGE_MASK) == 0);
192 
193 	rs = ((uint64_t)pid << 32) | lpid;
194 	rb = va | is | ap;
195 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
196 		"r" (rb), "r" (rs), "i" (ric), "i" (prs));
197 }
198 
199 static __inline void
200 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
201 {
202 
203 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
204 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
205 }
206 
207 static __inline void
208 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
209 {
210 
211 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
212 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
213 }
214 
215 static __inline void
216 radix_tlbie_invlpwc_user(uint32_t pid)
217 {
218 
219 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
220 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
221 }
222 
223 static __inline void
224 radix_tlbie_flush_user(uint32_t pid)
225 {
226 
227 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
228 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
229 }
230 
231 static __inline void
232 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
233 {
234 
235 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
236 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
237 }
238 
239 static __inline void
240 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
241 {
242 
243 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
244 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
245 }
246 
247 /* 1GB pages aren't currently supported. */
248 static __inline __unused void
249 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
250 {
251 
252 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
253 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
254 }
255 
256 static __inline void
257 radix_tlbie_invlpwc_kernel(void)
258 {
259 
260 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
261 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
262 }
263 
264 static __inline void
265 radix_tlbie_flush_kernel(void)
266 {
267 
268 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
269 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
270 }
271 
272 static __inline vm_pindex_t
273 pmap_l3e_pindex(vm_offset_t va)
274 {
275 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
276 }
277 
278 static __inline vm_pindex_t
279 pmap_pml3e_index(vm_offset_t va)
280 {
281 
282 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
283 }
284 
285 static __inline vm_pindex_t
286 pmap_pml2e_index(vm_offset_t va)
287 {
288 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
289 }
290 
291 static __inline vm_pindex_t
292 pmap_pml1e_index(vm_offset_t va)
293 {
294 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
295 }
296 
297 /* Return various clipped indexes for a given VA */
298 static __inline vm_pindex_t
299 pmap_pte_index(vm_offset_t va)
300 {
301 
302 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
303 }
304 
305 /* Return a pointer to the PT slot that corresponds to a VA */
306 static __inline pt_entry_t *
307 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
308 {
309 	pt_entry_t *pte;
310 	vm_paddr_t ptepa;
311 
312 	ptepa = (be64toh(*l3e) & NLB_MASK);
313 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
314 	return (&pte[pmap_pte_index(va)]);
315 }
316 
317 /* Return a pointer to the PD slot that corresponds to a VA */
318 static __inline pt_entry_t *
319 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
320 {
321 	pt_entry_t *l3e;
322 	vm_paddr_t l3pa;
323 
324 	l3pa = (be64toh(*l2e) & NLB_MASK);
325 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
326 	return (&l3e[pmap_pml3e_index(va)]);
327 }
328 
329 /* Return a pointer to the PD slot that corresponds to a VA */
330 static __inline pt_entry_t *
331 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
332 {
333 	pt_entry_t *l2e;
334 	vm_paddr_t l2pa;
335 
336 	l2pa = (be64toh(*l1e) & NLB_MASK);
337 
338 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
339 	return (&l2e[pmap_pml2e_index(va)]);
340 }
341 
342 static __inline pml1_entry_t *
343 pmap_pml1e(pmap_t pmap, vm_offset_t va)
344 {
345 
346 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
347 }
348 
349 static pt_entry_t *
350 pmap_pml2e(pmap_t pmap, vm_offset_t va)
351 {
352 	pt_entry_t *l1e;
353 
354 	l1e = pmap_pml1e(pmap, va);
355 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
356 		return (NULL);
357 	return (pmap_l1e_to_l2e(l1e, va));
358 }
359 
360 static __inline pt_entry_t *
361 pmap_pml3e(pmap_t pmap, vm_offset_t va)
362 {
363 	pt_entry_t *l2e;
364 
365 	l2e = pmap_pml2e(pmap, va);
366 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
367 		return (NULL);
368 	return (pmap_l2e_to_l3e(l2e, va));
369 }
370 
371 static __inline pt_entry_t *
372 pmap_pte(pmap_t pmap, vm_offset_t va)
373 {
374 	pt_entry_t *l3e;
375 
376 	l3e = pmap_pml3e(pmap, va);
377 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
378 		return (NULL);
379 	return (pmap_l3e_to_pte(l3e, va));
380 }
381 
382 int nkpt = 64;
383 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
384     "Number of kernel page table pages allocated on bootup");
385 
386 vm_paddr_t dmaplimit;
387 
388 SYSCTL_DECL(_vm_pmap);
389 
390 #ifdef INVARIANTS
391 #define VERBOSE_PMAP 0
392 #define VERBOSE_PROTECT 0
393 static int pmap_logging;
394 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
395     &pmap_logging, 0, "verbose debug logging");
396 #endif
397 
398 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
399 
400 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
401 
402 static vm_offset_t qframe = 0;
403 static struct mtx qframe_mtx;
404 
405 void mmu_radix_activate(struct thread *);
406 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
407 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
408     vm_size_t);
409 void mmu_radix_clear_modify(vm_page_t);
410 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
411 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
412 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
413 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
414 	vm_prot_t);
415 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
416 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
417 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
418 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
419 vm_paddr_t mmu_radix_kextract(vm_offset_t);
420 void mmu_radix_kremove(vm_offset_t);
421 boolean_t mmu_radix_is_modified(vm_page_t);
422 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
423 boolean_t mmu_radix_is_referenced(vm_page_t);
424 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
425 	vm_pindex_t, vm_size_t);
426 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
427 void mmu_radix_page_init(vm_page_t);
428 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
429 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
430 int mmu_radix_page_wired_mappings(vm_page_t);
431 int mmu_radix_pinit(pmap_t);
432 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
433 bool mmu_radix_ps_enabled(pmap_t);
434 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
435 void mmu_radix_qremove(vm_offset_t, int);
436 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
437 void mmu_radix_quick_remove_page(vm_offset_t);
438 boolean_t mmu_radix_ts_referenced(vm_page_t);
439 void mmu_radix_release(pmap_t);
440 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
441 void mmu_radix_remove_all(vm_page_t);
442 void mmu_radix_remove_pages(pmap_t);
443 void mmu_radix_remove_write(vm_page_t);
444 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
445 void mmu_radix_zero_page(vm_page_t);
446 void mmu_radix_zero_page_area(vm_page_t, int, int);
447 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
448 void mmu_radix_page_array_startup(long pages);
449 
450 #include "mmu_oea64.h"
451 
452 /*
453  * Kernel MMU interface
454  */
455 
456 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
457 
458 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
459 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
460     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
461 static void mmu_radix_growkernel(vm_offset_t);
462 static void mmu_radix_init(void);
463 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
464 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
465 static void mmu_radix_pinit0(pmap_t);
466 
467 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
468 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
469 static void mmu_radix_unmapdev(vm_offset_t, vm_size_t);
470 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
471 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
472 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
473 static void mmu_radix_scan_init(void);
474 static void	mmu_radix_cpu_bootstrap(int ap);
475 static void	mmu_radix_tlbie_all(void);
476 
477 static struct pmap_funcs mmu_radix_methods = {
478 	.bootstrap = mmu_radix_bootstrap,
479 	.copy_page = mmu_radix_copy_page,
480 	.copy_pages = mmu_radix_copy_pages,
481 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
482 	.growkernel = mmu_radix_growkernel,
483 	.init = mmu_radix_init,
484 	.map =      		mmu_radix_map,
485 	.mincore =      	mmu_radix_mincore,
486 	.pinit = mmu_radix_pinit,
487 	.pinit0 = mmu_radix_pinit0,
488 
489 	.mapdev = mmu_radix_mapdev,
490 	.mapdev_attr = mmu_radix_mapdev_attr,
491 	.unmapdev = mmu_radix_unmapdev,
492 	.kenter_attr = mmu_radix_kenter_attr,
493 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
494 	.dumpsys_pa_init = mmu_radix_scan_init,
495 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
496 	.page_is_mapped = mmu_radix_page_is_mapped,
497 	.ps_enabled = mmu_radix_ps_enabled,
498 	.object_init_pt = mmu_radix_object_init_pt,
499 	.protect = mmu_radix_protect,
500 	/* pmap dispatcher interface */
501 	.clear_modify = mmu_radix_clear_modify,
502 	.copy = mmu_radix_copy,
503 	.enter = mmu_radix_enter,
504 	.enter_object = mmu_radix_enter_object,
505 	.enter_quick = mmu_radix_enter_quick,
506 	.extract = mmu_radix_extract,
507 	.extract_and_hold = mmu_radix_extract_and_hold,
508 	.is_modified = mmu_radix_is_modified,
509 	.is_prefaultable = mmu_radix_is_prefaultable,
510 	.is_referenced = mmu_radix_is_referenced,
511 	.ts_referenced = mmu_radix_ts_referenced,
512 	.page_exists_quick = mmu_radix_page_exists_quick,
513 	.page_init = mmu_radix_page_init,
514 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
515 	.qenter = mmu_radix_qenter,
516 	.qremove = mmu_radix_qremove,
517 	.release = mmu_radix_release,
518 	.remove = mmu_radix_remove,
519 	.remove_all = mmu_radix_remove_all,
520 	.remove_write = mmu_radix_remove_write,
521 	.unwire = mmu_radix_unwire,
522 	.zero_page = mmu_radix_zero_page,
523 	.zero_page_area = mmu_radix_zero_page_area,
524 	.activate = mmu_radix_activate,
525 	.quick_enter_page =  mmu_radix_quick_enter_page,
526 	.quick_remove_page =  mmu_radix_quick_remove_page,
527 	.page_set_memattr = mmu_radix_page_set_memattr,
528 	.page_array_startup =  mmu_radix_page_array_startup,
529 
530 	/* Internal interfaces */
531 	.kenter = mmu_radix_kenter,
532 	.kextract = mmu_radix_kextract,
533 	.kremove = mmu_radix_kremove,
534 	.change_attr = mmu_radix_change_attr,
535 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
536 
537 	.tlbie_all = mmu_radix_tlbie_all,
538 };
539 
540 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
541 
542 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
543 	struct rwlock **lockp);
544 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
545 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
546 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
547     struct spglist *free, struct rwlock **lockp);
548 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
549     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
550 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
551 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
552     struct spglist *free);
553 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
554 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
555 
556 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
557 		    u_int flags, struct rwlock **lockp);
558 #if VM_NRESERVLEVEL > 0
559 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
560 	struct rwlock **lockp);
561 #endif
562 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
563 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
564 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
565 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
566 
567 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
568 	vm_prot_t prot, struct rwlock **lockp);
569 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
570 	u_int flags, vm_page_t m, struct rwlock **lockp);
571 
572 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
573 static void free_pv_chunk(struct pv_chunk *pc);
574 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
575 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
576 	struct rwlock **lockp);
577 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
578 	struct rwlock **lockp);
579 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
580     struct spglist *free);
581 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
582 
583 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
584 static void pmap_invalidate_all(pmap_t pmap);
585 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
586 
587 /*
588  * Internal flags for pmap_enter()'s helper functions.
589  */
590 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
591 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
592 
593 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
594 #define UNTESTED() panic("%s not yet tested", __func__)
595 
596 /* Number of supported PID bits */
597 static unsigned int isa3_pid_bits;
598 
599 /* PID to start allocating from */
600 static unsigned int isa3_base_pid;
601 
602 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
603 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
604 
605 /*
606  * Map of physical memory regions.
607  */
608 static struct	mem_region *regions, *pregions;
609 static struct	numa_mem_region *numa_pregions;
610 static u_int	phys_avail_count;
611 static int	regions_sz, pregions_sz, numa_pregions_sz;
612 static struct pate *isa3_parttab;
613 static struct prte *isa3_proctab;
614 static vmem_t *asid_arena;
615 
616 extern void bs_remap_earlyboot(void);
617 
618 #define	RADIX_PGD_SIZE_SHIFT	16
619 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
620 
621 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
622 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
623 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
624 
625 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
626 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
627 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
628 
629 /* POWER9 only permits a 64k partition table size. */
630 #define	PARTTAB_SIZE_SHIFT	16
631 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
632 
633 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
634 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
635 
636 /* TLB flush actions. Used as argument to tlbiel_all() */
637 enum {
638 	TLB_INVAL_SCOPE_LPID = 0,	/* invalidate TLBs for current LPID */
639 	TLB_INVAL_SCOPE_GLOBAL = 1,	/* invalidate all TLBs */
640 };
641 
642 #define	NPV_LIST_LOCKS	MAXCPU
643 static int pmap_initialized;
644 static vm_paddr_t proctab0pa;
645 static vm_paddr_t parttab_phys;
646 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
647 
648 /*
649  * Data for the pv entry allocation mechanism.
650  * Updates to pv_invl_gen are protected by the pv_list_locks[]
651  * elements, but reads are not.
652  */
653 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
654 static struct mtx __exclusive_cache_line pv_chunks_mutex;
655 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
656 static struct md_page *pv_table;
657 static struct md_page pv_dummy;
658 
659 #ifdef PV_STATS
660 #define PV_STAT(x)	do { x ; } while (0)
661 #else
662 #define PV_STAT(x)	do { } while (0)
663 #endif
664 
665 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
666 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
667 
668 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
669 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
670 
671 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
672 	struct rwlock **_lockp = (lockp);		\
673 	struct rwlock *_new_lock;			\
674 							\
675 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
676 	if (_new_lock != *_lockp) {			\
677 		if (*_lockp != NULL)			\
678 			rw_wunlock(*_lockp);		\
679 		*_lockp = _new_lock;			\
680 		rw_wlock(*_lockp);			\
681 	}						\
682 } while (0)
683 
684 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
685 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
686 
687 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
688 	struct rwlock **_lockp = (lockp);		\
689 							\
690 	if (*_lockp != NULL) {				\
691 		rw_wunlock(*_lockp);			\
692 		*_lockp = NULL;				\
693 	}						\
694 } while (0)
695 
696 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
697 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
698 
699 /*
700  * We support 52 bits, hence:
701  * bits 52 - 31 = 21, 0b10101
702  * RTS encoding details
703  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
704  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
705  */
706 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
707 
708 static int powernv_enabled = 1;
709 
710 static __always_inline void
711 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
712 	uint32_t pid, uint32_t ric, uint32_t prs)
713 {
714 	uint64_t rb;
715 	uint64_t rs;
716 
717 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
718 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
719 
720 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
721 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
722 		     : "memory");
723 }
724 
725 static void
726 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
727 {
728 	uint32_t set;
729 
730 	__asm __volatile("ptesync": : :"memory");
731 
732 	/*
733 	 * Flush the first set of the TLB, and the entire Page Walk Cache
734 	 * and partition table entries. Then flush the remaining sets of the
735 	 * TLB.
736 	 */
737 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
738 	for (set = 1; set < num_sets; set++)
739 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
740 
741 	/* Do the same for process scoped entries. */
742 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
743 	for (set = 1; set < num_sets; set++)
744 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
745 
746 	__asm __volatile("ptesync": : :"memory");
747 }
748 
749 static void
750 mmu_radix_tlbiel_flush(int scope)
751 {
752 	int is;
753 
754 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
755 		  scope == TLB_INVAL_SCOPE_GLOBAL);
756 	is = scope + 2;
757 
758 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, is);
759 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
760 }
761 
762 static void
763 mmu_radix_tlbie_all()
764 {
765 	/* TODO: LPID invalidate */
766 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
767 }
768 
769 static void
770 mmu_radix_init_amor(void)
771 {
772 	/*
773 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
774 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
775 	* Register), enable key 0 and set it to 1.
776 	*
777 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
778 	*/
779 	mtspr(SPR_AMOR, (3ul << 62));
780 }
781 
782 static void
783 mmu_radix_init_iamr(void)
784 {
785 	/*
786 	 * Radix always uses key0 of the IAMR to determine if an access is
787 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
788 	 * fetch.
789 	 */
790 	mtspr(SPR_IAMR, (1ul << 62));
791 }
792 
793 static void
794 mmu_radix_pid_set(pmap_t pmap)
795 {
796 
797 	mtspr(SPR_PID, pmap->pm_pid);
798 	isync();
799 }
800 
801 /* Quick sort callout for comparing physical addresses. */
802 static int
803 pa_cmp(const void *a, const void *b)
804 {
805 	const vm_paddr_t *pa = a, *pb = b;
806 
807 	if (*pa < *pb)
808 		return (-1);
809 	else if (*pa > *pb)
810 		return (1);
811 	else
812 		return (0);
813 }
814 
815 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
816 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
817 #define	pte_store(ptep, pte) do {	   \
818 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
819 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
820 } while (0)
821 /*
822  * NB: should only be used for adding directories - not for direct mappings
823  */
824 #define	pde_store(ptep, pa) do {				\
825 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
826 } while (0)
827 
828 #define	pte_clear(ptep) do {					\
829 		*(u_long *)(ptep) = (u_long)(0);		\
830 } while (0)
831 
832 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
833 
834 /*
835  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
836  * (PTE) page mappings have identical settings for the following fields:
837  */
838 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
839 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
840 
841 static __inline void
842 pmap_resident_count_inc(pmap_t pmap, int count)
843 {
844 
845 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
846 	pmap->pm_stats.resident_count += count;
847 }
848 
849 static __inline void
850 pmap_resident_count_dec(pmap_t pmap, int count)
851 {
852 
853 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
854 	KASSERT(pmap->pm_stats.resident_count >= count,
855 	    ("pmap %p resident count underflow %ld %d", pmap,
856 	    pmap->pm_stats.resident_count, count));
857 	pmap->pm_stats.resident_count -= count;
858 }
859 
860 static void
861 pagezero(vm_offset_t va)
862 {
863 	va = trunc_page(va);
864 
865 	bzero((void *)va, PAGE_SIZE);
866 }
867 
868 static uint64_t
869 allocpages(int n)
870 {
871 	u_int64_t ret;
872 
873 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
874 	for (int i = 0; i < n; i++)
875 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
876 	return (ret);
877 }
878 
879 static pt_entry_t *
880 kvtopte(vm_offset_t va)
881 {
882 	pt_entry_t *l3e;
883 
884 	l3e = pmap_pml3e(kernel_pmap, va);
885 	if ((be64toh(*l3e) & RPTE_VALID) == 0)
886 		return (NULL);
887 	return (pmap_l3e_to_pte(l3e, va));
888 }
889 
890 void
891 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
892 {
893 	pt_entry_t *pte;
894 
895 	pte = kvtopte(va);
896 	MPASS(pte != NULL);
897 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
898 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
899 }
900 
901 bool
902 mmu_radix_ps_enabled(pmap_t pmap)
903 {
904 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
905 }
906 
907 static pt_entry_t *
908 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
909 {
910 	pml3_entry_t *l3e;
911 	pt_entry_t *pte;
912 
913 	va &= PG_PS_FRAME;
914 	l3e = pmap_pml3e(pmap, va);
915 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
916 		return (NULL);
917 
918 	if (be64toh(*l3e) & RPTE_LEAF) {
919 		*is_l3e = 1;
920 		return (l3e);
921 	}
922 	*is_l3e = 0;
923 	va &= PG_FRAME;
924 	pte = pmap_l3e_to_pte(l3e, va);
925 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
926 		return (NULL);
927 	return (pte);
928 }
929 
930 int
931 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
932 {
933 	pt_entry_t *pte;
934 	pt_entry_t startpte, origpte, newpte;
935 	vm_page_t m;
936 	int is_l3e;
937 
938 	startpte = 0;
939  retry:
940 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
941 		return (KERN_INVALID_ADDRESS);
942 	origpte = newpte = be64toh(*pte);
943 	if (startpte == 0) {
944 		startpte = origpte;
945 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
946 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
947 			pmap_invalidate_all(pmap);
948 #ifdef INVARIANTS
949 			if (VERBOSE_PMAP || pmap_logging)
950 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
951 				    __func__, pmap, va, flags, origpte);
952 #endif
953 			return (KERN_FAILURE);
954 		}
955 	}
956 #ifdef INVARIANTS
957 	if (VERBOSE_PMAP || pmap_logging)
958 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
959 		    flags, origpte);
960 #endif
961 	PMAP_LOCK(pmap);
962 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
963 	    be64toh(*pte) != origpte) {
964 		PMAP_UNLOCK(pmap);
965 		return (KERN_FAILURE);
966 	}
967 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
968 	MPASS(m != NULL);
969 	switch (flags) {
970 	case VM_PROT_READ:
971 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
972 			goto protfail;
973 		newpte |= PG_A;
974 		vm_page_aflag_set(m, PGA_REFERENCED);
975 		break;
976 	case VM_PROT_WRITE:
977 		if ((newpte & RPTE_EAA_W) == 0)
978 			goto protfail;
979 		if (is_l3e)
980 			goto protfail;
981 		newpte |= PG_M;
982 		vm_page_dirty(m);
983 		break;
984 	case VM_PROT_EXECUTE:
985 		if ((newpte & RPTE_EAA_X) == 0)
986 			goto protfail;
987 		newpte |= PG_A;
988 		vm_page_aflag_set(m, PGA_REFERENCED);
989 		break;
990 	}
991 
992 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
993 		goto retry;
994 	ptesync();
995 	PMAP_UNLOCK(pmap);
996 	if (startpte == newpte)
997 		return (KERN_FAILURE);
998 	return (0);
999  protfail:
1000 	PMAP_UNLOCK(pmap);
1001 	return (KERN_PROTECTION_FAILURE);
1002 }
1003 
1004 /*
1005  * Returns TRUE if the given page is mapped individually or as part of
1006  * a 2mpage.  Otherwise, returns FALSE.
1007  */
1008 boolean_t
1009 mmu_radix_page_is_mapped(vm_page_t m)
1010 {
1011 	struct rwlock *lock;
1012 	boolean_t rv;
1013 
1014 	if ((m->oflags & VPO_UNMANAGED) != 0)
1015 		return (FALSE);
1016 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1017 	rw_rlock(lock);
1018 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1019 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1020 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1021 	rw_runlock(lock);
1022 	return (rv);
1023 }
1024 
1025 /*
1026  * Determine the appropriate bits to set in a PTE or PDE for a specified
1027  * caching mode.
1028  */
1029 static int
1030 pmap_cache_bits(vm_memattr_t ma)
1031 {
1032 	if (ma != VM_MEMATTR_DEFAULT) {
1033 		switch (ma) {
1034 		case VM_MEMATTR_UNCACHEABLE:
1035 			return (RPTE_ATTR_GUARDEDIO);
1036 		case VM_MEMATTR_CACHEABLE:
1037 			return (RPTE_ATTR_MEM);
1038 		case VM_MEMATTR_WRITE_BACK:
1039 		case VM_MEMATTR_PREFETCHABLE:
1040 		case VM_MEMATTR_WRITE_COMBINING:
1041 			return (RPTE_ATTR_UNGUARDEDIO);
1042 		}
1043 	}
1044 	return (0);
1045 }
1046 
1047 static void
1048 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1049 {
1050 	ptesync();
1051 	if (pmap == kernel_pmap)
1052 		radix_tlbie_invlpg_kernel_4k(start);
1053 	else
1054 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1055 	ttusync();
1056 }
1057 
1058 static void
1059 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1060 {
1061 	ptesync();
1062 	if (pmap == kernel_pmap)
1063 		radix_tlbie_invlpg_kernel_2m(start);
1064 	else
1065 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1066 	ttusync();
1067 }
1068 
1069 static void
1070 pmap_invalidate_pwc(pmap_t pmap)
1071 {
1072 	ptesync();
1073 	if (pmap == kernel_pmap)
1074 		radix_tlbie_invlpwc_kernel();
1075 	else
1076 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1077 	ttusync();
1078 }
1079 
1080 static void
1081 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1082 {
1083 	if (((start - end) >> PAGE_SHIFT) > 8) {
1084 		pmap_invalidate_all(pmap);
1085 		return;
1086 	}
1087 	ptesync();
1088 	if (pmap == kernel_pmap) {
1089 		while (start < end) {
1090 			radix_tlbie_invlpg_kernel_4k(start);
1091 			start += PAGE_SIZE;
1092 		}
1093 	} else {
1094 		while (start < end) {
1095 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1096 			start += PAGE_SIZE;
1097 		}
1098 	}
1099 	ttusync();
1100 }
1101 
1102 static void
1103 pmap_invalidate_all(pmap_t pmap)
1104 {
1105 	ptesync();
1106 	if (pmap == kernel_pmap)
1107 		radix_tlbie_flush_kernel();
1108 	else
1109 		radix_tlbie_flush_user(pmap->pm_pid);
1110 	ttusync();
1111 }
1112 
1113 static void
1114 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1115 {
1116 
1117 	/*
1118 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1119 	 * by a promotion that did not invalidate the 512 4KB page mappings
1120 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1121 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1122 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1123 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1124 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1125 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1126 	 * TLB.
1127 	 */
1128 	ptesync();
1129 	if ((l3e & PG_PROMOTED) != 0)
1130 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1131 	else
1132 		pmap_invalidate_page_2m(pmap, va);
1133 
1134 	pmap_invalidate_pwc(pmap);
1135 }
1136 
1137 static __inline struct pv_chunk *
1138 pv_to_chunk(pv_entry_t pv)
1139 {
1140 
1141 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1142 }
1143 
1144 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1145 
1146 #define	PC_FREE0	0xfffffffffffffffful
1147 #define	PC_FREE1	0x3ffffffffffffffful
1148 
1149 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1150 
1151 /*
1152  * Ensure that the number of spare PV entries in the specified pmap meets or
1153  * exceeds the given count, "needed".
1154  *
1155  * The given PV list lock may be released.
1156  */
1157 static void
1158 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1159 {
1160 	struct pch new_tail;
1161 	struct pv_chunk *pc;
1162 	vm_page_t m;
1163 	int avail, free;
1164 	bool reclaimed;
1165 
1166 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1167 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1168 
1169 	/*
1170 	 * Newly allocated PV chunks must be stored in a private list until
1171 	 * the required number of PV chunks have been allocated.  Otherwise,
1172 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1173 	 * contrast, these chunks must be added to the pmap upon allocation.
1174 	 */
1175 	TAILQ_INIT(&new_tail);
1176 retry:
1177 	avail = 0;
1178 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1179 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1180 		bit_count((bitstr_t *)pc->pc_map, 0,
1181 				  sizeof(pc->pc_map) * NBBY, &free);
1182 #if 0
1183 		free = popcnt_pc_map_pq(pc->pc_map);
1184 #endif
1185 		if (free == 0)
1186 			break;
1187 		avail += free;
1188 		if (avail >= needed)
1189 			break;
1190 	}
1191 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1192 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1193 		    VM_ALLOC_WIRED);
1194 		if (m == NULL) {
1195 			m = reclaim_pv_chunk(pmap, lockp);
1196 			if (m == NULL)
1197 				goto retry;
1198 			reclaimed = true;
1199 		}
1200 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1201 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1202 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1203 		pc->pc_pmap = pmap;
1204 		pc->pc_map[0] = PC_FREE0;
1205 		pc->pc_map[1] = PC_FREE1;
1206 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1207 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1208 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1209 
1210 		/*
1211 		 * The reclaim might have freed a chunk from the current pmap.
1212 		 * If that chunk contained available entries, we need to
1213 		 * re-count the number of available entries.
1214 		 */
1215 		if (reclaimed)
1216 			goto retry;
1217 	}
1218 	if (!TAILQ_EMPTY(&new_tail)) {
1219 		mtx_lock(&pv_chunks_mutex);
1220 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1221 		mtx_unlock(&pv_chunks_mutex);
1222 	}
1223 }
1224 
1225 /*
1226  * First find and then remove the pv entry for the specified pmap and virtual
1227  * address from the specified pv list.  Returns the pv entry if found and NULL
1228  * otherwise.  This operation can be performed on pv lists for either 4KB or
1229  * 2MB page mappings.
1230  */
1231 static __inline pv_entry_t
1232 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1233 {
1234 	pv_entry_t pv;
1235 
1236 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1237 #ifdef INVARIANTS
1238 		if (PV_PMAP(pv) == NULL) {
1239 			printf("corrupted pv_chunk/pv %p\n", pv);
1240 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1241 		}
1242 		MPASS(PV_PMAP(pv) != NULL);
1243 		MPASS(pv->pv_va != 0);
1244 #endif
1245 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1246 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1247 			pvh->pv_gen++;
1248 			break;
1249 		}
1250 	}
1251 	return (pv);
1252 }
1253 
1254 /*
1255  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1256  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1257  * entries for each of the 4KB page mappings.
1258  */
1259 static void
1260 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1261     struct rwlock **lockp)
1262 {
1263 	struct md_page *pvh;
1264 	struct pv_chunk *pc;
1265 	pv_entry_t pv;
1266 	vm_offset_t va_last;
1267 	vm_page_t m;
1268 	int bit, field;
1269 
1270 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1271 	KASSERT((pa & L3_PAGE_MASK) == 0,
1272 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1273 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1274 
1275 	/*
1276 	 * Transfer the 2mpage's pv entry for this mapping to the first
1277 	 * page's pv list.  Once this transfer begins, the pv list lock
1278 	 * must not be released until the last pv entry is reinstantiated.
1279 	 */
1280 	pvh = pa_to_pvh(pa);
1281 	va = trunc_2mpage(va);
1282 	pv = pmap_pvh_remove(pvh, pmap, va);
1283 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1284 	m = PHYS_TO_VM_PAGE(pa);
1285 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1286 
1287 	m->md.pv_gen++;
1288 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1289 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1290 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1291 	for (;;) {
1292 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1293 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1294 		    , ("pmap_pv_demote_pde: missing spare"));
1295 		for (field = 0; field < _NPCM; field++) {
1296 			while (pc->pc_map[field]) {
1297 				bit = cnttzd(pc->pc_map[field]);
1298 				pc->pc_map[field] &= ~(1ul << bit);
1299 				pv = &pc->pc_pventry[field * 64 + bit];
1300 				va += PAGE_SIZE;
1301 				pv->pv_va = va;
1302 				m++;
1303 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1304 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1305 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1306 
1307 				m->md.pv_gen++;
1308 				if (va == va_last)
1309 					goto out;
1310 			}
1311 		}
1312 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1313 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1314 	}
1315 out:
1316 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1317 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1318 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1319 	}
1320 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1321 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1322 }
1323 
1324 static void
1325 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1326 {
1327 
1328 	if (pmap == NULL)
1329 		return;
1330 	pmap_invalidate_all(pmap);
1331 	if (pmap != locked_pmap)
1332 		PMAP_UNLOCK(pmap);
1333 }
1334 
1335 /*
1336  * We are in a serious low memory condition.  Resort to
1337  * drastic measures to free some pages so we can allocate
1338  * another pv entry chunk.
1339  *
1340  * Returns NULL if PV entries were reclaimed from the specified pmap.
1341  *
1342  * We do not, however, unmap 2mpages because subsequent accesses will
1343  * allocate per-page pv entries until repromotion occurs, thereby
1344  * exacerbating the shortage of free pv entries.
1345  */
1346 static int active_reclaims = 0;
1347 static vm_page_t
1348 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1349 {
1350 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1351 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1352 	struct md_page *pvh;
1353 	pml3_entry_t *l3e;
1354 	pmap_t next_pmap, pmap;
1355 	pt_entry_t *pte, tpte;
1356 	pv_entry_t pv;
1357 	vm_offset_t va;
1358 	vm_page_t m, m_pc;
1359 	struct spglist free;
1360 	uint64_t inuse;
1361 	int bit, field, freed;
1362 
1363 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1364 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1365 	pmap = NULL;
1366 	m_pc = NULL;
1367 	SLIST_INIT(&free);
1368 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1369 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1370 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1371 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1372 
1373 	mtx_lock(&pv_chunks_mutex);
1374 	active_reclaims++;
1375 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1376 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1377 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1378 	    SLIST_EMPTY(&free)) {
1379 		next_pmap = pc->pc_pmap;
1380 		if (next_pmap == NULL) {
1381 			/*
1382 			 * The next chunk is a marker.  However, it is
1383 			 * not our marker, so active_reclaims must be
1384 			 * > 1.  Consequently, the next_chunk code
1385 			 * will not rotate the pv_chunks list.
1386 			 */
1387 			goto next_chunk;
1388 		}
1389 		mtx_unlock(&pv_chunks_mutex);
1390 
1391 		/*
1392 		 * A pv_chunk can only be removed from the pc_lru list
1393 		 * when both pc_chunks_mutex is owned and the
1394 		 * corresponding pmap is locked.
1395 		 */
1396 		if (pmap != next_pmap) {
1397 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1398 			pmap = next_pmap;
1399 			/* Avoid deadlock and lock recursion. */
1400 			if (pmap > locked_pmap) {
1401 				RELEASE_PV_LIST_LOCK(lockp);
1402 				PMAP_LOCK(pmap);
1403 				mtx_lock(&pv_chunks_mutex);
1404 				continue;
1405 			} else if (pmap != locked_pmap) {
1406 				if (PMAP_TRYLOCK(pmap)) {
1407 					mtx_lock(&pv_chunks_mutex);
1408 					continue;
1409 				} else {
1410 					pmap = NULL; /* pmap is not locked */
1411 					mtx_lock(&pv_chunks_mutex);
1412 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1413 					if (pc == NULL ||
1414 					    pc->pc_pmap != next_pmap)
1415 						continue;
1416 					goto next_chunk;
1417 				}
1418 			}
1419 		}
1420 
1421 		/*
1422 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1423 		 */
1424 		freed = 0;
1425 		for (field = 0; field < _NPCM; field++) {
1426 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1427 			    inuse != 0; inuse &= ~(1UL << bit)) {
1428 				bit = cnttzd(inuse);
1429 				pv = &pc->pc_pventry[field * 64 + bit];
1430 				va = pv->pv_va;
1431 				l3e = pmap_pml3e(pmap, va);
1432 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1433 					continue;
1434 				pte = pmap_l3e_to_pte(l3e, va);
1435 				if ((be64toh(*pte) & PG_W) != 0)
1436 					continue;
1437 				tpte = be64toh(pte_load_clear(pte));
1438 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1439 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1440 					vm_page_dirty(m);
1441 				if ((tpte & PG_A) != 0)
1442 					vm_page_aflag_set(m, PGA_REFERENCED);
1443 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1444 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1445 
1446 				m->md.pv_gen++;
1447 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1448 				    (m->flags & PG_FICTITIOUS) == 0) {
1449 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1450 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1451 						vm_page_aflag_clear(m,
1452 						    PGA_WRITEABLE);
1453 					}
1454 				}
1455 				pc->pc_map[field] |= 1UL << bit;
1456 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1457 				freed++;
1458 			}
1459 		}
1460 		if (freed == 0) {
1461 			mtx_lock(&pv_chunks_mutex);
1462 			goto next_chunk;
1463 		}
1464 		/* Every freed mapping is for a 4 KB page. */
1465 		pmap_resident_count_dec(pmap, freed);
1466 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1467 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1468 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1469 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1470 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1471 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1472 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1473 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1474 			/* Entire chunk is free; return it. */
1475 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1476 			mtx_lock(&pv_chunks_mutex);
1477 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1478 			break;
1479 		}
1480 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1481 		mtx_lock(&pv_chunks_mutex);
1482 		/* One freed pv entry in locked_pmap is sufficient. */
1483 		if (pmap == locked_pmap)
1484 			break;
1485 next_chunk:
1486 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1487 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1488 		if (active_reclaims == 1 && pmap != NULL) {
1489 			/*
1490 			 * Rotate the pv chunks list so that we do not
1491 			 * scan the same pv chunks that could not be
1492 			 * freed (because they contained a wired
1493 			 * and/or superpage mapping) on every
1494 			 * invocation of reclaim_pv_chunk().
1495 			 */
1496 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1497 				MPASS(pc->pc_pmap != NULL);
1498 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1499 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1500 			}
1501 		}
1502 	}
1503 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1504 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1505 	active_reclaims--;
1506 	mtx_unlock(&pv_chunks_mutex);
1507 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1508 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1509 		m_pc = SLIST_FIRST(&free);
1510 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1511 		/* Recycle a freed page table page. */
1512 		m_pc->ref_count = 1;
1513 	}
1514 	vm_page_free_pages_toq(&free, true);
1515 	return (m_pc);
1516 }
1517 
1518 /*
1519  * free the pv_entry back to the free list
1520  */
1521 static void
1522 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1523 {
1524 	struct pv_chunk *pc;
1525 	int idx, field, bit;
1526 
1527 #ifdef VERBOSE_PV
1528 	if (pmap != kernel_pmap)
1529 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1530 #endif
1531 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1532 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1533 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1534 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1535 	pc = pv_to_chunk(pv);
1536 	idx = pv - &pc->pc_pventry[0];
1537 	field = idx / 64;
1538 	bit = idx % 64;
1539 	pc->pc_map[field] |= 1ul << bit;
1540 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1541 		/* 98% of the time, pc is already at the head of the list. */
1542 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1543 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1544 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1545 		}
1546 		return;
1547 	}
1548 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1549 	free_pv_chunk(pc);
1550 }
1551 
1552 static void
1553 free_pv_chunk(struct pv_chunk *pc)
1554 {
1555 	vm_page_t m;
1556 
1557 	mtx_lock(&pv_chunks_mutex);
1558  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1559 	mtx_unlock(&pv_chunks_mutex);
1560 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1561 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1562 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1563 	/* entire chunk is free, return it */
1564 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1565 	vm_page_unwire_noq(m);
1566 	vm_page_free(m);
1567 }
1568 
1569 /*
1570  * Returns a new PV entry, allocating a new PV chunk from the system when
1571  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1572  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1573  * returned.
1574  *
1575  * The given PV list lock may be released.
1576  */
1577 static pv_entry_t
1578 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1579 {
1580 	int bit, field;
1581 	pv_entry_t pv;
1582 	struct pv_chunk *pc;
1583 	vm_page_t m;
1584 
1585 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1586 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1587 retry:
1588 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1589 	if (pc != NULL) {
1590 		for (field = 0; field < _NPCM; field++) {
1591 			if (pc->pc_map[field]) {
1592 				bit = cnttzd(pc->pc_map[field]);
1593 				break;
1594 			}
1595 		}
1596 		if (field < _NPCM) {
1597 			pv = &pc->pc_pventry[field * 64 + bit];
1598 			pc->pc_map[field] &= ~(1ul << bit);
1599 			/* If this was the last item, move it to tail */
1600 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1601 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1602 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1603 				    pc_list);
1604 			}
1605 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1606 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1607 			MPASS(PV_PMAP(pv) != NULL);
1608 			return (pv);
1609 		}
1610 	}
1611 	/* No free items, allocate another chunk */
1612 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1613 	    VM_ALLOC_WIRED);
1614 	if (m == NULL) {
1615 		if (lockp == NULL) {
1616 			PV_STAT(pc_chunk_tryfail++);
1617 			return (NULL);
1618 		}
1619 		m = reclaim_pv_chunk(pmap, lockp);
1620 		if (m == NULL)
1621 			goto retry;
1622 	}
1623 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1624 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1625 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1626 	pc->pc_pmap = pmap;
1627 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1628 	pc->pc_map[1] = PC_FREE1;
1629 	mtx_lock(&pv_chunks_mutex);
1630 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1631 	mtx_unlock(&pv_chunks_mutex);
1632 	pv = &pc->pc_pventry[0];
1633 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1634 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1635 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1636 	MPASS(PV_PMAP(pv) != NULL);
1637 	return (pv);
1638 }
1639 
1640 #if VM_NRESERVLEVEL > 0
1641 /*
1642  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1643  * replace the many pv entries for the 4KB page mappings by a single pv entry
1644  * for the 2MB page mapping.
1645  */
1646 static void
1647 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1648     struct rwlock **lockp)
1649 {
1650 	struct md_page *pvh;
1651 	pv_entry_t pv;
1652 	vm_offset_t va_last;
1653 	vm_page_t m;
1654 
1655 	KASSERT((pa & L3_PAGE_MASK) == 0,
1656 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1657 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1658 
1659 	/*
1660 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1661 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1662 	 * a transfer avoids the possibility that get_pv_entry() calls
1663 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1664 	 * mappings that is being promoted.
1665 	 */
1666 	m = PHYS_TO_VM_PAGE(pa);
1667 	va = trunc_2mpage(va);
1668 	pv = pmap_pvh_remove(&m->md, pmap, va);
1669 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1670 	pvh = pa_to_pvh(pa);
1671 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1672 	pvh->pv_gen++;
1673 	/* Free the remaining NPTEPG - 1 pv entries. */
1674 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1675 	do {
1676 		m++;
1677 		va += PAGE_SIZE;
1678 		pmap_pvh_free(&m->md, pmap, va);
1679 	} while (va < va_last);
1680 }
1681 #endif /* VM_NRESERVLEVEL > 0 */
1682 
1683 /*
1684  * First find and then destroy the pv entry for the specified pmap and virtual
1685  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1686  * page mappings.
1687  */
1688 static void
1689 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1690 {
1691 	pv_entry_t pv;
1692 
1693 	pv = pmap_pvh_remove(pvh, pmap, va);
1694 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1695 	free_pv_entry(pmap, pv);
1696 }
1697 
1698 /*
1699  * Conditionally create the PV entry for a 4KB page mapping if the required
1700  * memory can be allocated without resorting to reclamation.
1701  */
1702 static boolean_t
1703 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1704     struct rwlock **lockp)
1705 {
1706 	pv_entry_t pv;
1707 
1708 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1709 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1710 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1711 		pv->pv_va = va;
1712 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1713 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1714 		m->md.pv_gen++;
1715 		return (TRUE);
1716 	} else
1717 		return (FALSE);
1718 }
1719 
1720 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1721 #ifdef INVARIANTS
1722 static void
1723 validate_addr(vm_paddr_t addr, vm_size_t size)
1724 {
1725 	vm_paddr_t end = addr + size;
1726 	bool found = false;
1727 
1728 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1729 		if (addr >= phys_avail_debug[i] &&
1730 			end <= phys_avail_debug[i + 1]) {
1731 			found = true;
1732 			break;
1733 		}
1734 	}
1735 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1736 					addr, end));
1737 }
1738 #else
1739 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1740 #endif
1741 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1742 
1743 static vm_paddr_t
1744 alloc_pt_page(void)
1745 {
1746 	vm_paddr_t page;
1747 
1748 	page = allocpages(1);
1749 	pagezero(PHYS_TO_DMAP(page));
1750 	return (page);
1751 }
1752 
1753 static void
1754 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1755 {
1756 	pt_entry_t *pte, pteval;
1757 	vm_paddr_t page;
1758 
1759 	if (bootverbose)
1760 		printf("%s %lx -> %lx\n", __func__, start, end);
1761 	while (start < end) {
1762 		pteval = start | DMAP_PAGE_BITS;
1763 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1764 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1765 			page = alloc_pt_page();
1766 			pde_store(pte, page);
1767 		}
1768 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1769 		if ((start & L2_PAGE_MASK) == 0 &&
1770 			end - start >= L2_PAGE_SIZE) {
1771 			start += L2_PAGE_SIZE;
1772 			goto done;
1773 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1774 			page = alloc_pt_page();
1775 			pde_store(pte, page);
1776 		}
1777 
1778 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1779 		if ((start & L3_PAGE_MASK) == 0 &&
1780 			end - start >= L3_PAGE_SIZE) {
1781 			start += L3_PAGE_SIZE;
1782 			goto done;
1783 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1784 			page = alloc_pt_page();
1785 			pde_store(pte, page);
1786 		}
1787 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1788 		start += PAGE_SIZE;
1789 	done:
1790 		pte_store(pte, pteval);
1791 	}
1792 }
1793 
1794 static void
1795 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1796 {
1797 	vm_paddr_t start, end;
1798 
1799 	for (int i = 0; i < pregions_sz; i++) {
1800 		start = pregions[i].mr_start;
1801 		end = start + pregions[i].mr_size;
1802 		if (hwphyssz && start >= hwphyssz)
1803 			break;
1804 		if (hwphyssz && hwphyssz < end)
1805 			end = hwphyssz;
1806 		mmu_radix_dmap_range(start, end);
1807 	}
1808 }
1809 
1810 static void
1811 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1812 {
1813 	vm_paddr_t ptpages, pages;
1814 	pt_entry_t *pte;
1815 	vm_paddr_t l1phys;
1816 
1817 	bzero(kernel_pmap, sizeof(struct pmap));
1818 	PMAP_LOCK_INIT(kernel_pmap);
1819 
1820 	ptpages = allocpages(3);
1821 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1822 	validate_addr(l1phys, RADIX_PGD_SIZE);
1823 	if (bootverbose)
1824 		printf("l1phys=%lx\n", l1phys);
1825 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1826 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1827 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1828 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1829 
1830 	mmu_radix_dmap_populate(hwphyssz);
1831 
1832 	/*
1833 	 * Create page tables for first 128MB of KVA
1834 	 */
1835 	pages = ptpages;
1836 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1837 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1838 	pages += PAGE_SIZE;
1839 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1840 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1841 	pages += PAGE_SIZE;
1842 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1843 	/*
1844 	 * the kernel page table pages need to be preserved in
1845 	 * phys_avail and not overlap with previous  allocations
1846 	 */
1847 	pages = allocpages(nkpt);
1848 	if (bootverbose) {
1849 		printf("phys_avail after dmap populate and nkpt allocation\n");
1850 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1851 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1852 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1853 	}
1854 	KPTphys = pages;
1855 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1856 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1857 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1858 	if (bootverbose)
1859 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1860 	/*
1861 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1862 	 * preallocated kernel page table pages so that vm_page structures
1863 	 * representing these pages will be created.  The vm_page structures
1864 	 * are required for promotion of the corresponding kernel virtual
1865 	 * addresses to superpage mappings.
1866 	 */
1867 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1868 }
1869 
1870 static void
1871 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1872 {
1873 	vm_paddr_t	kpstart, kpend;
1874 	vm_size_t	physsz, hwphyssz;
1875 	//uint64_t	l2virt;
1876 	int		rm_pavail, proctab_size;
1877 	int		i, j;
1878 
1879 	kpstart = start & ~DMAP_BASE_ADDRESS;
1880 	kpend = end & ~DMAP_BASE_ADDRESS;
1881 
1882 	/* Get physical memory regions from firmware */
1883 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1884 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1885 
1886 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1887 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1888 
1889 	if (bootverbose)
1890 		for (int i = 0; i < regions_sz; i++)
1891 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1892 			    i, regions[i].mr_start, i, regions[i].mr_size);
1893 	/*
1894 	 * XXX workaround a simulator bug
1895 	 */
1896 	for (int i = 0; i < regions_sz; i++)
1897 		if (regions[i].mr_start & PAGE_MASK) {
1898 			regions[i].mr_start += PAGE_MASK;
1899 			regions[i].mr_start &= ~PAGE_MASK;
1900 			regions[i].mr_size &= ~PAGE_MASK;
1901 		}
1902 	if (bootverbose)
1903 		for (int i = 0; i < pregions_sz; i++)
1904 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1905 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1906 
1907 	phys_avail_count = 0;
1908 	physsz = 0;
1909 	hwphyssz = 0;
1910 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1911 	for (i = 0, j = 0; i < regions_sz; i++) {
1912 		if (bootverbose)
1913 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1914 			    i, regions[i].mr_start, i, regions[i].mr_size);
1915 
1916 		if (regions[i].mr_size < PAGE_SIZE)
1917 			continue;
1918 
1919 		if (hwphyssz != 0 &&
1920 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1921 			if (physsz < hwphyssz) {
1922 				phys_avail[j] = regions[i].mr_start;
1923 				phys_avail[j + 1] = regions[i].mr_start +
1924 				    (hwphyssz - physsz);
1925 				physsz = hwphyssz;
1926 				phys_avail_count++;
1927 				dump_avail[j] = phys_avail[j];
1928 				dump_avail[j + 1] = phys_avail[j + 1];
1929 			}
1930 			break;
1931 		}
1932 		phys_avail[j] = regions[i].mr_start;
1933 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1934 		dump_avail[j] = phys_avail[j];
1935 		dump_avail[j + 1] = phys_avail[j + 1];
1936 
1937 		phys_avail_count++;
1938 		physsz += regions[i].mr_size;
1939 		j += 2;
1940 	}
1941 
1942 	/* Check for overlap with the kernel and exception vectors */
1943 	rm_pavail = 0;
1944 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1945 		if (phys_avail[j] < EXC_LAST)
1946 			phys_avail[j] += EXC_LAST;
1947 
1948 		if (phys_avail[j] >= kpstart &&
1949 		    phys_avail[j + 1] <= kpend) {
1950 			phys_avail[j] = phys_avail[j + 1] = ~0;
1951 			rm_pavail++;
1952 			continue;
1953 		}
1954 
1955 		if (kpstart >= phys_avail[j] &&
1956 		    kpstart < phys_avail[j + 1]) {
1957 			if (kpend < phys_avail[j + 1]) {
1958 				phys_avail[2 * phys_avail_count] =
1959 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1960 				phys_avail[2 * phys_avail_count + 1] =
1961 				    phys_avail[j + 1];
1962 				phys_avail_count++;
1963 			}
1964 
1965 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1966 		}
1967 
1968 		if (kpend >= phys_avail[j] &&
1969 		    kpend < phys_avail[j + 1]) {
1970 			if (kpstart > phys_avail[j]) {
1971 				phys_avail[2 * phys_avail_count] = phys_avail[j];
1972 				phys_avail[2 * phys_avail_count + 1] =
1973 				    kpstart & ~PAGE_MASK;
1974 				phys_avail_count++;
1975 			}
1976 
1977 			phys_avail[j] = (kpend & ~PAGE_MASK) +
1978 			    PAGE_SIZE;
1979 		}
1980 	}
1981 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
1982 	for (i = 0; i < 2 * phys_avail_count; i++)
1983 		phys_avail_debug[i] = phys_avail[i];
1984 
1985 	/* Remove physical available regions marked for removal (~0) */
1986 	if (rm_pavail) {
1987 		phys_avail_count -= rm_pavail;
1988 		for (i = 2 * phys_avail_count;
1989 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1990 			phys_avail[i] = phys_avail[i + 1] = 0;
1991 	}
1992 	if (bootverbose) {
1993 		printf("phys_avail ranges after filtering:\n");
1994 		for (j = 0; j < 2 * phys_avail_count; j+=2)
1995 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1996 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1997 	}
1998 	physmem = btoc(physsz);
1999 
2000 	/* XXX assume we're running non-virtualized and
2001 	 * we don't support BHYVE
2002 	 */
2003 	if (isa3_pid_bits == 0)
2004 		isa3_pid_bits = 20;
2005 	parttab_phys = moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2006 	validate_addr(parttab_phys, PARTTAB_SIZE);
2007 	for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2008 		pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2009 
2010 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2011 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2012 	validate_addr(proctab0pa, proctab_size);
2013 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2014 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2015 
2016 	mmu_radix_setup_pagetables(hwphyssz);
2017 }
2018 
2019 static void
2020 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2021 {
2022 	int		i;
2023 	vm_paddr_t	pa;
2024 	void		*dpcpu;
2025 	vm_offset_t va;
2026 
2027 	/*
2028 	 * Set up the Open Firmware pmap and add its mappings if not in real
2029 	 * mode.
2030 	 */
2031 	if (bootverbose)
2032 		printf("%s enter\n", __func__);
2033 
2034 	/*
2035 	 * Calculate the last available physical address, and reserve the
2036 	 * vm_page_array (upper bound).
2037 	 */
2038 	Maxmem = 0;
2039 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
2040 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2041 
2042 	/*
2043 	 * Set the start and end of kva.
2044 	 */
2045 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
2046 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
2047 
2048 	/*
2049 	 * Remap any early IO mappings (console framebuffer, etc.)
2050 	 */
2051 	bs_remap_earlyboot();
2052 
2053 	/*
2054 	 * Allocate a kernel stack with a guard page for thread0 and map it
2055 	 * into the kernel page map.
2056 	 */
2057 	pa = allocpages(kstack_pages);
2058 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2059 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2060 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2061 	thread0.td_kstack = va;
2062 	for (i = 0; i < kstack_pages; i++) {
2063 		mmu_radix_kenter(va, pa);
2064 		pa += PAGE_SIZE;
2065 		va += PAGE_SIZE;
2066 	}
2067 	thread0.td_kstack_pages = kstack_pages;
2068 
2069 	/*
2070 	 * Allocate virtual address space for the message buffer.
2071 	 */
2072 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2073 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2074 
2075 	/*
2076 	 * Allocate virtual address space for the dynamic percpu area.
2077 	 */
2078 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2079 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2080 	dpcpu_init(dpcpu, curcpu);
2081 	/*
2082 	 * Reserve some special page table entries/VA space for temporary
2083 	 * mapping of pages.
2084 	 */
2085 }
2086 
2087 static void
2088 mmu_parttab_init(void)
2089 {
2090 	uint64_t ptcr;
2091 
2092 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2093 
2094 	if (bootverbose)
2095 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2096 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2097 	if (bootverbose)
2098 		printf("setting ptcr %lx\n", ptcr);
2099 	mtspr(SPR_PTCR, ptcr);
2100 }
2101 
2102 static void
2103 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2104 {
2105 	uint64_t prev;
2106 
2107 	if (bootverbose)
2108 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2109 			   lpid, pagetab, proctab);
2110 	prev = be64toh(isa3_parttab[lpid].pagetab);
2111 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2112 	isa3_parttab[lpid].proctab = htobe64(proctab);
2113 
2114 	if (prev & PARTTAB_HR) {
2115 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2116 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2117 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2118 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2119 	} else {
2120 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2121 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2122 	}
2123 	ttusync();
2124 }
2125 
2126 static void
2127 mmu_radix_parttab_init(void)
2128 {
2129 	uint64_t pagetab;
2130 
2131 	mmu_parttab_init();
2132 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2133 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2134 	mmu_parttab_update(0, pagetab, 0);
2135 }
2136 
2137 static void
2138 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2139 {
2140 	uint64_t pagetab, proctab;
2141 
2142 	pagetab = be64toh(isa3_parttab[0].pagetab);
2143 	proctab = proctabpa | table_size | PARTTAB_GR;
2144 	mmu_parttab_update(0, pagetab, proctab);
2145 }
2146 
2147 static void
2148 mmu_radix_proctab_init(void)
2149 {
2150 
2151 	isa3_base_pid = 1;
2152 
2153 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2154 	isa3_proctab->proctab0 =
2155 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2156 		RADIX_PGD_INDEX_SHIFT);
2157 
2158 	mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2159 
2160 	__asm __volatile("ptesync" : : : "memory");
2161 	__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2162 		     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2163 	__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2164 	if (bootverbose)
2165 		printf("process table %p and kernel radix PDE: %p\n",
2166 			   isa3_proctab, kernel_pmap->pm_pml1);
2167 	mtmsr(mfmsr() | PSL_DR );
2168 	mtmsr(mfmsr() &  ~PSL_DR);
2169 	kernel_pmap->pm_pid = isa3_base_pid;
2170 	isa3_base_pid++;
2171 }
2172 
2173 void
2174 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2175     int advice)
2176 {
2177 	struct rwlock *lock;
2178 	pml1_entry_t *l1e;
2179 	pml2_entry_t *l2e;
2180 	pml3_entry_t oldl3e, *l3e;
2181 	pt_entry_t *pte;
2182 	vm_offset_t va, va_next;
2183 	vm_page_t m;
2184 	boolean_t anychanged;
2185 
2186 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2187 		return;
2188 	anychanged = FALSE;
2189 	PMAP_LOCK(pmap);
2190 	for (; sva < eva; sva = va_next) {
2191 		l1e = pmap_pml1e(pmap, sva);
2192 		if ((be64toh(*l1e) & PG_V) == 0) {
2193 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2194 			if (va_next < sva)
2195 				va_next = eva;
2196 			continue;
2197 		}
2198 		l2e = pmap_l1e_to_l2e(l1e, sva);
2199 		if ((be64toh(*l2e) & PG_V) == 0) {
2200 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2201 			if (va_next < sva)
2202 				va_next = eva;
2203 			continue;
2204 		}
2205 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2206 		if (va_next < sva)
2207 			va_next = eva;
2208 		l3e = pmap_l2e_to_l3e(l2e, sva);
2209 		oldl3e = be64toh(*l3e);
2210 		if ((oldl3e & PG_V) == 0)
2211 			continue;
2212 		else if ((oldl3e & RPTE_LEAF) != 0) {
2213 			if ((oldl3e & PG_MANAGED) == 0)
2214 				continue;
2215 			lock = NULL;
2216 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2217 				if (lock != NULL)
2218 					rw_wunlock(lock);
2219 
2220 				/*
2221 				 * The large page mapping was destroyed.
2222 				 */
2223 				continue;
2224 			}
2225 
2226 			/*
2227 			 * Unless the page mappings are wired, remove the
2228 			 * mapping to a single page so that a subsequent
2229 			 * access may repromote.  Since the underlying page
2230 			 * table page is fully populated, this removal never
2231 			 * frees a page table page.
2232 			 */
2233 			if ((oldl3e & PG_W) == 0) {
2234 				pte = pmap_l3e_to_pte(l3e, sva);
2235 				KASSERT((be64toh(*pte) & PG_V) != 0,
2236 				    ("pmap_advise: invalid PTE"));
2237 				pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), NULL,
2238 				    &lock);
2239 				anychanged = TRUE;
2240 			}
2241 			if (lock != NULL)
2242 				rw_wunlock(lock);
2243 		}
2244 		if (va_next > eva)
2245 			va_next = eva;
2246 		va = va_next;
2247 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2248 			 pte++, sva += PAGE_SIZE) {
2249 			MPASS(pte == pmap_pte(pmap, sva));
2250 
2251 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2252 				goto maybe_invlrng;
2253 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2254 				if (advice == MADV_DONTNEED) {
2255 					/*
2256 					 * Future calls to pmap_is_modified()
2257 					 * can be avoided by making the page
2258 					 * dirty now.
2259 					 */
2260 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2261 					vm_page_dirty(m);
2262 				}
2263 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2264 			} else if ((be64toh(*pte) & PG_A) != 0)
2265 				atomic_clear_long(pte, htobe64(PG_A));
2266 			else
2267 				goto maybe_invlrng;
2268 			anychanged = TRUE;
2269 			continue;
2270 maybe_invlrng:
2271 			if (va != va_next) {
2272 				anychanged = true;
2273 				va = va_next;
2274 			}
2275 		}
2276 		if (va != va_next)
2277 			anychanged = true;
2278 	}
2279 	if (anychanged)
2280 		pmap_invalidate_all(pmap);
2281 	PMAP_UNLOCK(pmap);
2282 }
2283 
2284 /*
2285  * Routines used in machine-dependent code
2286  */
2287 static void
2288 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2289 {
2290 	uint64_t lpcr;
2291 
2292 	if (bootverbose)
2293 		printf("%s\n", __func__);
2294 	hw_direct_map = 1;
2295 	mmu_radix_early_bootstrap(start, end);
2296 	if (bootverbose)
2297 		printf("early bootstrap complete\n");
2298 	if (powernv_enabled) {
2299 		lpcr = mfspr(SPR_LPCR);
2300 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2301 		mmu_radix_parttab_init();
2302 		mmu_radix_init_amor();
2303 		if (bootverbose)
2304 			printf("powernv init complete\n");
2305 	}
2306 	mmu_radix_init_iamr();
2307 	mmu_radix_proctab_init();
2308 	mmu_radix_pid_set(kernel_pmap);
2309 	/* XXX assume CPU_FTR_HVMODE */
2310 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2311 
2312 	mmu_radix_late_bootstrap(start, end);
2313 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2314 	if (bootverbose)
2315 		printf("%s done\n", __func__);
2316 	pmap_bootstrapped = 1;
2317 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2318 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2319 }
2320 
2321 static void
2322 mmu_radix_cpu_bootstrap(int ap)
2323 {
2324 	uint64_t lpcr;
2325 	uint64_t ptcr;
2326 
2327 	if (powernv_enabled) {
2328 		lpcr = mfspr(SPR_LPCR);
2329 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2330 
2331 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2332 		mtspr(SPR_PTCR, ptcr);
2333 		mmu_radix_init_amor();
2334 	}
2335 	mmu_radix_init_iamr();
2336 	mmu_radix_pid_set(kernel_pmap);
2337 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2338 }
2339 
2340 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2341     "2MB page mapping counters");
2342 
2343 static u_long pmap_l3e_demotions;
2344 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2345     &pmap_l3e_demotions, 0, "2MB page demotions");
2346 
2347 static u_long pmap_l3e_mappings;
2348 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2349     &pmap_l3e_mappings, 0, "2MB page mappings");
2350 
2351 static u_long pmap_l3e_p_failures;
2352 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2353     &pmap_l3e_p_failures, 0, "2MB page promotion failures");
2354 
2355 static u_long pmap_l3e_promotions;
2356 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2357     &pmap_l3e_promotions, 0, "2MB page promotions");
2358 
2359 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2360     "1GB page mapping counters");
2361 
2362 static u_long pmap_l2e_demotions;
2363 SYSCTL_ULONG(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2364     &pmap_l2e_demotions, 0, "1GB page demotions");
2365 
2366 void
2367 mmu_radix_clear_modify(vm_page_t m)
2368 {
2369 	struct md_page *pvh;
2370 	pmap_t pmap;
2371 	pv_entry_t next_pv, pv;
2372 	pml3_entry_t oldl3e, *l3e;
2373 	pt_entry_t oldpte, *pte;
2374 	struct rwlock *lock;
2375 	vm_offset_t va;
2376 	int md_gen, pvh_gen;
2377 
2378 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2379 	    ("pmap_clear_modify: page %p is not managed", m));
2380 	vm_page_assert_busied(m);
2381 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2382 
2383 	/*
2384 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2385 	 * If the object containing the page is locked and the page is not
2386 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2387 	 */
2388 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2389 		return;
2390 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2391 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2392 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2393 	rw_wlock(lock);
2394 restart:
2395 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2396 		pmap = PV_PMAP(pv);
2397 		if (!PMAP_TRYLOCK(pmap)) {
2398 			pvh_gen = pvh->pv_gen;
2399 			rw_wunlock(lock);
2400 			PMAP_LOCK(pmap);
2401 			rw_wlock(lock);
2402 			if (pvh_gen != pvh->pv_gen) {
2403 				PMAP_UNLOCK(pmap);
2404 				goto restart;
2405 			}
2406 		}
2407 		va = pv->pv_va;
2408 		l3e = pmap_pml3e(pmap, va);
2409 		oldl3e = be64toh(*l3e);
2410 		if ((oldl3e & PG_RW) != 0) {
2411 			if (pmap_demote_l3e_locked(pmap, l3e, va, &lock)) {
2412 				if ((oldl3e & PG_W) == 0) {
2413 					/*
2414 					 * Write protect the mapping to a
2415 					 * single page so that a subsequent
2416 					 * write access may repromote.
2417 					 */
2418 					va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2419 					    PG_PS_FRAME);
2420 					pte = pmap_l3e_to_pte(l3e, va);
2421 					oldpte = be64toh(*pte);
2422 					if ((oldpte & PG_V) != 0) {
2423 						while (!atomic_cmpset_long(pte,
2424 						    htobe64(oldpte),
2425 							htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2426 							   oldpte = be64toh(*pte);
2427 						vm_page_dirty(m);
2428 						pmap_invalidate_page(pmap, va);
2429 					}
2430 				}
2431 			}
2432 		}
2433 		PMAP_UNLOCK(pmap);
2434 	}
2435 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2436 		pmap = PV_PMAP(pv);
2437 		if (!PMAP_TRYLOCK(pmap)) {
2438 			md_gen = m->md.pv_gen;
2439 			pvh_gen = pvh->pv_gen;
2440 			rw_wunlock(lock);
2441 			PMAP_LOCK(pmap);
2442 			rw_wlock(lock);
2443 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2444 				PMAP_UNLOCK(pmap);
2445 				goto restart;
2446 			}
2447 		}
2448 		l3e = pmap_pml3e(pmap, pv->pv_va);
2449 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2450 		    " a 2mpage in page %p's pv list", m));
2451 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2452 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2453 			atomic_clear_long(pte, htobe64(PG_M));
2454 			pmap_invalidate_page(pmap, pv->pv_va);
2455 		}
2456 		PMAP_UNLOCK(pmap);
2457 	}
2458 	rw_wunlock(lock);
2459 }
2460 
2461 void
2462 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2463     vm_size_t len, vm_offset_t src_addr)
2464 {
2465 	struct rwlock *lock;
2466 	struct spglist free;
2467 	vm_offset_t addr;
2468 	vm_offset_t end_addr = src_addr + len;
2469 	vm_offset_t va_next;
2470 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2471 	bool invalidate_all;
2472 
2473 	CTR6(KTR_PMAP,
2474 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2475 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2476 
2477 	if (dst_addr != src_addr)
2478 		return;
2479 	lock = NULL;
2480 	invalidate_all = false;
2481 	if (dst_pmap < src_pmap) {
2482 		PMAP_LOCK(dst_pmap);
2483 		PMAP_LOCK(src_pmap);
2484 	} else {
2485 		PMAP_LOCK(src_pmap);
2486 		PMAP_LOCK(dst_pmap);
2487 	}
2488 
2489 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2490 		pml1_entry_t *l1e;
2491 		pml2_entry_t *l2e;
2492 		pml3_entry_t srcptepaddr, *l3e;
2493 		pt_entry_t *src_pte, *dst_pte;
2494 
2495 		l1e = pmap_pml1e(src_pmap, addr);
2496 		if ((be64toh(*l1e) & PG_V) == 0) {
2497 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2498 			if (va_next < addr)
2499 				va_next = end_addr;
2500 			continue;
2501 		}
2502 
2503 		l2e = pmap_l1e_to_l2e(l1e, addr);
2504 		if ((be64toh(*l2e) & PG_V) == 0) {
2505 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2506 			if (va_next < addr)
2507 				va_next = end_addr;
2508 			continue;
2509 		}
2510 
2511 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2512 		if (va_next < addr)
2513 			va_next = end_addr;
2514 
2515 		l3e = pmap_l2e_to_l3e(l2e, addr);
2516 		srcptepaddr = be64toh(*l3e);
2517 		if (srcptepaddr == 0)
2518 			continue;
2519 
2520 		if (srcptepaddr & RPTE_LEAF) {
2521 			if ((addr & L3_PAGE_MASK) != 0 ||
2522 			    addr + L3_PAGE_SIZE > end_addr)
2523 				continue;
2524 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2525 			if (dst_pdpg == NULL)
2526 				break;
2527 			l3e = (pml3_entry_t *)
2528 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2529 			l3e = &l3e[pmap_pml3e_index(addr)];
2530 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2531 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2532 			    PMAP_ENTER_NORECLAIM, &lock))) {
2533 				*l3e = htobe64(srcptepaddr & ~PG_W);
2534 				pmap_resident_count_inc(dst_pmap,
2535 				    L3_PAGE_SIZE / PAGE_SIZE);
2536 				atomic_add_long(&pmap_l3e_mappings, 1);
2537 			} else
2538 				dst_pdpg->ref_count--;
2539 			continue;
2540 		}
2541 
2542 		srcptepaddr &= PG_FRAME;
2543 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2544 		KASSERT(srcmpte->ref_count > 0,
2545 		    ("pmap_copy: source page table page is unused"));
2546 
2547 		if (va_next > end_addr)
2548 			va_next = end_addr;
2549 
2550 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2551 		src_pte = &src_pte[pmap_pte_index(addr)];
2552 		dstmpte = NULL;
2553 		while (addr < va_next) {
2554 			pt_entry_t ptetemp;
2555 			ptetemp = be64toh(*src_pte);
2556 			/*
2557 			 * we only virtual copy managed pages
2558 			 */
2559 			if ((ptetemp & PG_MANAGED) != 0) {
2560 				if (dstmpte != NULL &&
2561 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2562 					dstmpte->ref_count++;
2563 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2564 				    addr, NULL)) == NULL)
2565 					goto out;
2566 				dst_pte = (pt_entry_t *)
2567 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2568 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2569 				if (be64toh(*dst_pte) == 0 &&
2570 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2571 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2572 				    &lock)) {
2573 					/*
2574 					 * Clear the wired, modified, and
2575 					 * accessed (referenced) bits
2576 					 * during the copy.
2577 					 */
2578 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2579 					    PG_A));
2580 					pmap_resident_count_inc(dst_pmap, 1);
2581 				} else {
2582 					SLIST_INIT(&free);
2583 					if (pmap_unwire_ptp(dst_pmap, addr,
2584 					    dstmpte, &free)) {
2585 						/*
2586 						 * Although "addr" is not
2587 						 * mapped, paging-structure
2588 						 * caches could nonetheless
2589 						 * have entries that refer to
2590 						 * the freed page table pages.
2591 						 * Invalidate those entries.
2592 						 */
2593 						invalidate_all = true;
2594 						vm_page_free_pages_toq(&free,
2595 						    true);
2596 					}
2597 					goto out;
2598 				}
2599 				if (dstmpte->ref_count >= srcmpte->ref_count)
2600 					break;
2601 			}
2602 			addr += PAGE_SIZE;
2603 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2604 				src_pte = pmap_pte(src_pmap, addr);
2605 			else
2606 				src_pte++;
2607 		}
2608 	}
2609 out:
2610 	if (invalidate_all)
2611 		pmap_invalidate_all(dst_pmap);
2612 	if (lock != NULL)
2613 		rw_wunlock(lock);
2614 	PMAP_UNLOCK(src_pmap);
2615 	PMAP_UNLOCK(dst_pmap);
2616 }
2617 
2618 static void
2619 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2620 {
2621 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2622 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2623 
2624 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2625 	/*
2626 	 * XXX slow
2627 	 */
2628 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2629 }
2630 
2631 static void
2632 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2633     vm_offset_t b_offset, int xfersize)
2634 {
2635         void *a_cp, *b_cp;
2636         vm_offset_t a_pg_offset, b_pg_offset;
2637         int cnt;
2638 
2639 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2640 	    a_offset, mb, b_offset, xfersize);
2641 
2642         while (xfersize > 0) {
2643                 a_pg_offset = a_offset & PAGE_MASK;
2644                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2645                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2646                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2647                     a_pg_offset;
2648                 b_pg_offset = b_offset & PAGE_MASK;
2649                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2650                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2651                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2652                     b_pg_offset;
2653                 bcopy(a_cp, b_cp, cnt);
2654                 a_offset += cnt;
2655                 b_offset += cnt;
2656                 xfersize -= cnt;
2657         }
2658 }
2659 
2660 #if VM_NRESERVLEVEL > 0
2661 /*
2662  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2663  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2664  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2665  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2666  * identical characteristics.
2667  */
2668 static int
2669 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2670     struct rwlock **lockp)
2671 {
2672 	pml3_entry_t newpde;
2673 	pt_entry_t *firstpte, oldpte, pa, *pte;
2674 	vm_page_t mpte;
2675 
2676 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2677 
2678 	/*
2679 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2680 	 * either invalid, unused, or does not map the first 4KB physical page
2681 	 * within a 2MB page.
2682 	 */
2683 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2684 setpde:
2685 	newpde = *firstpte;
2686 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2687 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2688 		    " in pmap %p", va, pmap);
2689 		goto fail;
2690 	}
2691 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2692 		/*
2693 		 * When PG_M is already clear, PG_RW can be cleared without
2694 		 * a TLB invalidation.
2695 		 */
2696 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2697 			goto setpde;
2698 		newpde &= ~RPTE_EAA_W;
2699 	}
2700 
2701 	/*
2702 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2703 	 * PTE maps an unexpected 4KB physical page or does not have identical
2704 	 * characteristics to the first PTE.
2705 	 */
2706 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2707 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2708 setpte:
2709 		oldpte = be64toh(*pte);
2710 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2711 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2712 			    " in pmap %p", va, pmap);
2713 			goto fail;
2714 		}
2715 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2716 			/*
2717 			 * When PG_M is already clear, PG_RW can be cleared
2718 			 * without a TLB invalidation.
2719 			 */
2720 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2721 				goto setpte;
2722 			oldpte &= ~RPTE_EAA_W;
2723 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2724 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2725 			    (va & ~L3_PAGE_MASK), pmap);
2726 		}
2727 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2728 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2729 			    " in pmap %p", va, pmap);
2730 			goto fail;
2731 		}
2732 		pa -= PAGE_SIZE;
2733 	}
2734 
2735 	/*
2736 	 * Save the page table page in its current state until the PDE
2737 	 * mapping the superpage is demoted by pmap_demote_pde() or
2738 	 * destroyed by pmap_remove_pde().
2739 	 */
2740 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2741 	KASSERT(mpte >= vm_page_array &&
2742 	    mpte < &vm_page_array[vm_page_array_size],
2743 	    ("pmap_promote_l3e: page table page is out of range"));
2744 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2745 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2746 	if (pmap_insert_pt_page(pmap, mpte)) {
2747 		CTR2(KTR_PMAP,
2748 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2749 		    pmap);
2750 		goto fail;
2751 	}
2752 
2753 	/*
2754 	 * Promote the pv entries.
2755 	 */
2756 	if ((newpde & PG_MANAGED) != 0)
2757 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2758 
2759 	pte_store(pde, PG_PROMOTED | newpde);
2760 	atomic_add_long(&pmap_l3e_promotions, 1);
2761 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2762 	    " in pmap %p", va, pmap);
2763 	return (0);
2764  fail:
2765 	atomic_add_long(&pmap_l3e_p_failures, 1);
2766 	return (KERN_FAILURE);
2767 }
2768 #endif /* VM_NRESERVLEVEL > 0 */
2769 
2770 int
2771 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2772     vm_prot_t prot, u_int flags, int8_t psind)
2773 {
2774 	struct rwlock *lock;
2775 	pml3_entry_t *l3e;
2776 	pt_entry_t *pte;
2777 	pt_entry_t newpte, origpte;
2778 	pv_entry_t pv;
2779 	vm_paddr_t opa, pa;
2780 	vm_page_t mpte, om;
2781 	int rv, retrycount;
2782 	boolean_t nosleep, invalidate_all, invalidate_page;
2783 
2784 	va = trunc_page(va);
2785 	retrycount = 0;
2786 	invalidate_page = invalidate_all = false;
2787 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2788 	    m, prot, flags, psind);
2789 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2790 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
2791 	    va >= kmi.clean_eva,
2792 	    ("pmap_enter: managed mapping within the clean submap"));
2793 	if ((m->oflags & VPO_UNMANAGED) == 0)
2794 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2795 
2796 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2797 	    ("pmap_enter: flags %u has reserved bits set", flags));
2798 	pa = VM_PAGE_TO_PHYS(m);
2799 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2800 	if ((flags & VM_PROT_WRITE) != 0)
2801 		newpte |= PG_M;
2802 	if ((flags & VM_PROT_READ) != 0)
2803 		newpte |= PG_A;
2804 	if (prot & VM_PROT_READ)
2805 		newpte |= RPTE_EAA_R;
2806 	if ((prot & VM_PROT_WRITE) != 0)
2807 		newpte |= RPTE_EAA_W;
2808 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2809 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2810 
2811 	if (prot & VM_PROT_EXECUTE)
2812 		newpte |= PG_X;
2813 	if ((flags & PMAP_ENTER_WIRED) != 0)
2814 		newpte |= PG_W;
2815 	if (va >= DMAP_MIN_ADDRESS)
2816 		newpte |= RPTE_EAA_P;
2817 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2818 	/*
2819 	 * Set modified bit gratuitously for writeable mappings if
2820 	 * the page is unmanaged. We do not want to take a fault
2821 	 * to do the dirty bit accounting for these mappings.
2822 	 */
2823 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2824 		if ((newpte & PG_RW) != 0)
2825 			newpte |= PG_M;
2826 	} else
2827 		newpte |= PG_MANAGED;
2828 
2829 	lock = NULL;
2830 	PMAP_LOCK(pmap);
2831 	if (psind == 1) {
2832 		/* Assert the required virtual and physical alignment. */
2833 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2834 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2835 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2836 		goto out;
2837 	}
2838 	mpte = NULL;
2839 
2840 	/*
2841 	 * In the case that a page table page is not
2842 	 * resident, we are creating it here.
2843 	 */
2844 retry:
2845 	l3e = pmap_pml3e(pmap, va);
2846 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2847 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2848 		pte = pmap_l3e_to_pte(l3e, va);
2849 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2850 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2851 			mpte->ref_count++;
2852 		}
2853 	} else if (va < VM_MAXUSER_ADDRESS) {
2854 		/*
2855 		 * Here if the pte page isn't mapped, or if it has been
2856 		 * deallocated.
2857 		 */
2858 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2859 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2860 		    nosleep ? NULL : &lock);
2861 		if (mpte == NULL && nosleep) {
2862 			rv = KERN_RESOURCE_SHORTAGE;
2863 			goto out;
2864 		}
2865 		if (__predict_false(retrycount++ == 6))
2866 			panic("too many retries");
2867 		invalidate_all = true;
2868 		goto retry;
2869 	} else
2870 		panic("pmap_enter: invalid page directory va=%#lx", va);
2871 
2872 	origpte = be64toh(*pte);
2873 	pv = NULL;
2874 
2875 	/*
2876 	 * Is the specified virtual address already mapped?
2877 	 */
2878 	if ((origpte & PG_V) != 0) {
2879 #ifdef INVARIANTS
2880 		if (VERBOSE_PMAP || pmap_logging) {
2881 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2882 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2883 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2884 			    curproc->p_pid, curproc->p_comm, origpte);
2885 			pmap_pte_walk(pmap->pm_pml1, va);
2886 		}
2887 #endif
2888 		/*
2889 		 * Wiring change, just update stats. We don't worry about
2890 		 * wiring PT pages as they remain resident as long as there
2891 		 * are valid mappings in them. Hence, if a user page is wired,
2892 		 * the PT page will be also.
2893 		 */
2894 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2895 			pmap->pm_stats.wired_count++;
2896 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2897 			pmap->pm_stats.wired_count--;
2898 
2899 		/*
2900 		 * Remove the extra PT page reference.
2901 		 */
2902 		if (mpte != NULL) {
2903 			mpte->ref_count--;
2904 			KASSERT(mpte->ref_count > 0,
2905 			    ("pmap_enter: missing reference to page table page,"
2906 			     " va: 0x%lx", va));
2907 		}
2908 
2909 		/*
2910 		 * Has the physical page changed?
2911 		 */
2912 		opa = origpte & PG_FRAME;
2913 		if (opa == pa) {
2914 			/*
2915 			 * No, might be a protection or wiring change.
2916 			 */
2917 			if ((origpte & PG_MANAGED) != 0 &&
2918 			    (newpte & PG_RW) != 0)
2919 				vm_page_aflag_set(m, PGA_WRITEABLE);
2920 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2921 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2922 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2923 						goto retry;
2924 					if ((newpte & PG_M) != (origpte & PG_M))
2925 						vm_page_dirty(m);
2926 					if ((newpte & PG_A) != (origpte & PG_A))
2927 						vm_page_aflag_set(m, PGA_REFERENCED);
2928 					ptesync();
2929 				} else
2930 					invalidate_all = true;
2931 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2932 					goto unchanged;
2933 			}
2934 			goto validate;
2935 		}
2936 
2937 		/*
2938 		 * The physical page has changed.  Temporarily invalidate
2939 		 * the mapping.  This ensures that all threads sharing the
2940 		 * pmap keep a consistent view of the mapping, which is
2941 		 * necessary for the correct handling of COW faults.  It
2942 		 * also permits reuse of the old mapping's PV entry,
2943 		 * avoiding an allocation.
2944 		 *
2945 		 * For consistency, handle unmanaged mappings the same way.
2946 		 */
2947 		origpte = be64toh(pte_load_clear(pte));
2948 		KASSERT((origpte & PG_FRAME) == opa,
2949 		    ("pmap_enter: unexpected pa update for %#lx", va));
2950 		if ((origpte & PG_MANAGED) != 0) {
2951 			om = PHYS_TO_VM_PAGE(opa);
2952 
2953 			/*
2954 			 * The pmap lock is sufficient to synchronize with
2955 			 * concurrent calls to pmap_page_test_mappings() and
2956 			 * pmap_ts_referenced().
2957 			 */
2958 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2959 				vm_page_dirty(om);
2960 			if ((origpte & PG_A) != 0)
2961 				vm_page_aflag_set(om, PGA_REFERENCED);
2962 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
2963 			pv = pmap_pvh_remove(&om->md, pmap, va);
2964 			if ((newpte & PG_MANAGED) == 0)
2965 				free_pv_entry(pmap, pv);
2966 #ifdef INVARIANTS
2967 			else if (origpte & PG_MANAGED) {
2968 				if (pv == NULL) {
2969 					pmap_page_print_mappings(om);
2970 					MPASS(pv != NULL);
2971 				}
2972 			}
2973 #endif
2974 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
2975 			    TAILQ_EMPTY(&om->md.pv_list) &&
2976 			    ((om->flags & PG_FICTITIOUS) != 0 ||
2977 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
2978 				vm_page_aflag_clear(om, PGA_WRITEABLE);
2979 		}
2980 		if ((origpte & PG_A) != 0)
2981 			invalidate_page = true;
2982 		origpte = 0;
2983 	} else {
2984 		if (pmap != kernel_pmap) {
2985 #ifdef INVARIANTS
2986 			if (VERBOSE_PMAP || pmap_logging)
2987 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
2988 				    pmap, va, m, prot, flags, psind,
2989 				    pmap->pm_pid, curproc->p_pid,
2990 				    curproc->p_comm);
2991 #endif
2992 		}
2993 
2994 		/*
2995 		 * Increment the counters.
2996 		 */
2997 		if ((newpte & PG_W) != 0)
2998 			pmap->pm_stats.wired_count++;
2999 		pmap_resident_count_inc(pmap, 1);
3000 	}
3001 
3002 	/*
3003 	 * Enter on the PV list if part of our managed memory.
3004 	 */
3005 	if ((newpte & PG_MANAGED) != 0) {
3006 		if (pv == NULL) {
3007 			pv = get_pv_entry(pmap, &lock);
3008 			pv->pv_va = va;
3009 		}
3010 #ifdef VERBOSE_PV
3011 		else
3012 			printf("reassigning pv: %p to pmap: %p\n",
3013 				   pv, pmap);
3014 #endif
3015 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3016 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3017 		m->md.pv_gen++;
3018 		if ((newpte & PG_RW) != 0)
3019 			vm_page_aflag_set(m, PGA_WRITEABLE);
3020 	}
3021 
3022 	/*
3023 	 * Update the PTE.
3024 	 */
3025 	if ((origpte & PG_V) != 0) {
3026 validate:
3027 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3028 		KASSERT((origpte & PG_FRAME) == pa,
3029 		    ("pmap_enter: unexpected pa update for %#lx", va));
3030 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3031 		    (PG_M | PG_RW)) {
3032 			if ((origpte & PG_MANAGED) != 0)
3033 				vm_page_dirty(m);
3034 			invalidate_page = true;
3035 
3036 			/*
3037 			 * Although the PTE may still have PG_RW set, TLB
3038 			 * invalidation may nonetheless be required because
3039 			 * the PTE no longer has PG_M set.
3040 			 */
3041 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3042 			/*
3043 			 * Removing capabilities requires invalidation on POWER
3044 			 */
3045 			invalidate_page = true;
3046 			goto unchanged;
3047 		}
3048 		if ((origpte & PG_A) != 0)
3049 			invalidate_page = true;
3050 	} else {
3051 		pte_store(pte, newpte);
3052 		ptesync();
3053 	}
3054 unchanged:
3055 
3056 #if VM_NRESERVLEVEL > 0
3057 	/*
3058 	 * If both the page table page and the reservation are fully
3059 	 * populated, then attempt promotion.
3060 	 */
3061 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3062 	    mmu_radix_ps_enabled(pmap) &&
3063 	    (m->flags & PG_FICTITIOUS) == 0 &&
3064 	    vm_reserv_level_iffullpop(m) == 0 &&
3065 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3066 		invalidate_all = true;
3067 #endif
3068 	if (invalidate_all)
3069 		pmap_invalidate_all(pmap);
3070 	else if (invalidate_page)
3071 		pmap_invalidate_page(pmap, va);
3072 
3073 	rv = KERN_SUCCESS;
3074 out:
3075 	if (lock != NULL)
3076 		rw_wunlock(lock);
3077 	PMAP_UNLOCK(pmap);
3078 
3079 	return (rv);
3080 }
3081 
3082 /*
3083  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3084  * if successful.  Returns false if (1) a page table page cannot be allocated
3085  * without sleeping, (2) a mapping already exists at the specified virtual
3086  * address, or (3) a PV entry cannot be allocated without reclaiming another
3087  * PV entry.
3088  */
3089 static bool
3090 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3091     struct rwlock **lockp)
3092 {
3093 	pml3_entry_t newpde;
3094 
3095 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3096 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3097 	    RPTE_LEAF | PG_V;
3098 	if ((m->oflags & VPO_UNMANAGED) == 0)
3099 		newpde |= PG_MANAGED;
3100 	if (prot & VM_PROT_EXECUTE)
3101 		newpde |= PG_X;
3102 	if (prot & VM_PROT_READ)
3103 		newpde |= RPTE_EAA_R;
3104 	if (va >= DMAP_MIN_ADDRESS)
3105 		newpde |= RPTE_EAA_P;
3106 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3107 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3108 	    KERN_SUCCESS);
3109 }
3110 
3111 /*
3112  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3113  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3114  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3115  * a mapping already exists at the specified virtual address.  Returns
3116  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3117  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3118  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3119  *
3120  * The parameter "m" is only used when creating a managed, writeable mapping.
3121  */
3122 static int
3123 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3124     vm_page_t m, struct rwlock **lockp)
3125 {
3126 	struct spglist free;
3127 	pml3_entry_t oldl3e, *l3e;
3128 	vm_page_t mt, pdpg;
3129 
3130 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3131 	    ("pmap_enter_pde: newpde is missing PG_M"));
3132 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3133 
3134 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3135 	    NULL : lockp)) == NULL) {
3136 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3137 		    " in pmap %p", va, pmap);
3138 		return (KERN_RESOURCE_SHORTAGE);
3139 	}
3140 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3141 	l3e = &l3e[pmap_pml3e_index(va)];
3142 	oldl3e = be64toh(*l3e);
3143 	if ((oldl3e & PG_V) != 0) {
3144 		KASSERT(pdpg->ref_count > 1,
3145 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3146 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3147 			pdpg->ref_count--;
3148 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3149 			    " in pmap %p", va, pmap);
3150 			return (KERN_FAILURE);
3151 		}
3152 		/* Break the existing mapping(s). */
3153 		SLIST_INIT(&free);
3154 		if ((oldl3e & RPTE_LEAF) != 0) {
3155 			/*
3156 			 * The reference to the PD page that was acquired by
3157 			 * pmap_allocl3e() ensures that it won't be freed.
3158 			 * However, if the PDE resulted from a promotion, then
3159 			 * a reserved PT page could be freed.
3160 			 */
3161 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3162 		} else {
3163 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3164 			    &free, lockp))
3165 		               pmap_invalidate_all(pmap);
3166 		}
3167 		vm_page_free_pages_toq(&free, true);
3168 		if (va >= VM_MAXUSER_ADDRESS) {
3169 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3170 			if (pmap_insert_pt_page(pmap, mt)) {
3171 				/*
3172 				 * XXX Currently, this can't happen because
3173 				 * we do not perform pmap_enter(psind == 1)
3174 				 * on the kernel pmap.
3175 				 */
3176 				panic("pmap_enter_pde: trie insert failed");
3177 			}
3178 		} else
3179 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3180 			    l3e));
3181 	}
3182 	if ((newpde & PG_MANAGED) != 0) {
3183 		/*
3184 		 * Abort this mapping if its PV entry could not be created.
3185 		 */
3186 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3187 			SLIST_INIT(&free);
3188 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3189 				/*
3190 				 * Although "va" is not mapped, paging-
3191 				 * structure caches could nonetheless have
3192 				 * entries that refer to the freed page table
3193 				 * pages.  Invalidate those entries.
3194 				 */
3195 				pmap_invalidate_page(pmap, va);
3196 				vm_page_free_pages_toq(&free, true);
3197 			}
3198 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3199 			    " in pmap %p", va, pmap);
3200 			return (KERN_RESOURCE_SHORTAGE);
3201 		}
3202 		if ((newpde & PG_RW) != 0) {
3203 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3204 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3205 		}
3206 	}
3207 
3208 	/*
3209 	 * Increment counters.
3210 	 */
3211 	if ((newpde & PG_W) != 0)
3212 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3213 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3214 
3215 	/*
3216 	 * Map the superpage.  (This is not a promoted mapping; there will not
3217 	 * be any lingering 4KB page mappings in the TLB.)
3218 	 */
3219 	pte_store(l3e, newpde);
3220 
3221 	atomic_add_long(&pmap_l3e_mappings, 1);
3222 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3223 	    " in pmap %p", va, pmap);
3224 	return (KERN_SUCCESS);
3225 }
3226 
3227 void
3228 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3229     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3230 {
3231 
3232 	struct rwlock *lock;
3233 	vm_offset_t va;
3234 	vm_page_t m, mpte;
3235 	vm_pindex_t diff, psize;
3236 	bool invalidate;
3237 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3238 
3239 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3240 	    end, m_start, prot);
3241 
3242 	invalidate = false;
3243 	psize = atop(end - start);
3244 	mpte = NULL;
3245 	m = m_start;
3246 	lock = NULL;
3247 	PMAP_LOCK(pmap);
3248 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3249 		va = start + ptoa(diff);
3250 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3251 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3252 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3253 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3254 		else
3255 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3256 			    mpte, &lock, &invalidate);
3257 		m = TAILQ_NEXT(m, listq);
3258 	}
3259 	ptesync();
3260 	if (lock != NULL)
3261 		rw_wunlock(lock);
3262 	if (invalidate)
3263 		pmap_invalidate_all(pmap);
3264 	PMAP_UNLOCK(pmap);
3265 }
3266 
3267 static vm_page_t
3268 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3269     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3270 {
3271 	struct spglist free;
3272 	pt_entry_t *pte;
3273 	vm_paddr_t pa;
3274 
3275 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3276 	    (m->oflags & VPO_UNMANAGED) != 0,
3277 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3278 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3279 
3280 	/*
3281 	 * In the case that a page table page is not
3282 	 * resident, we are creating it here.
3283 	 */
3284 	if (va < VM_MAXUSER_ADDRESS) {
3285 		vm_pindex_t ptepindex;
3286 		pml3_entry_t *ptepa;
3287 
3288 		/*
3289 		 * Calculate pagetable page index
3290 		 */
3291 		ptepindex = pmap_l3e_pindex(va);
3292 		if (mpte && (mpte->pindex == ptepindex)) {
3293 			mpte->ref_count++;
3294 		} else {
3295 			/*
3296 			 * Get the page directory entry
3297 			 */
3298 			ptepa = pmap_pml3e(pmap, va);
3299 
3300 			/*
3301 			 * If the page table page is mapped, we just increment
3302 			 * the hold count, and activate it.  Otherwise, we
3303 			 * attempt to allocate a page table page.  If this
3304 			 * attempt fails, we don't retry.  Instead, we give up.
3305 			 */
3306 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3307 				if (be64toh(*ptepa) & RPTE_LEAF)
3308 					return (NULL);
3309 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3310 				mpte->ref_count++;
3311 			} else {
3312 				/*
3313 				 * Pass NULL instead of the PV list lock
3314 				 * pointer, because we don't intend to sleep.
3315 				 */
3316 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3317 				if (mpte == NULL)
3318 					return (mpte);
3319 			}
3320 		}
3321 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3322 		pte = &pte[pmap_pte_index(va)];
3323 	} else {
3324 		mpte = NULL;
3325 		pte = pmap_pte(pmap, va);
3326 	}
3327 	if (be64toh(*pte)) {
3328 		if (mpte != NULL) {
3329 			mpte->ref_count--;
3330 			mpte = NULL;
3331 		}
3332 		return (mpte);
3333 	}
3334 
3335 	/*
3336 	 * Enter on the PV list if part of our managed memory.
3337 	 */
3338 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3339 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3340 		if (mpte != NULL) {
3341 			SLIST_INIT(&free);
3342 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3343 				/*
3344 				 * Although "va" is not mapped, paging-
3345 				 * structure caches could nonetheless have
3346 				 * entries that refer to the freed page table
3347 				 * pages.  Invalidate those entries.
3348 				 */
3349 				*invalidate = true;
3350 				vm_page_free_pages_toq(&free, true);
3351 			}
3352 			mpte = NULL;
3353 		}
3354 		return (mpte);
3355 	}
3356 
3357 	/*
3358 	 * Increment counters
3359 	 */
3360 	pmap_resident_count_inc(pmap, 1);
3361 
3362 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3363 	if (prot & VM_PROT_EXECUTE)
3364 		pa |= PG_X;
3365 	else
3366 		pa |= RPTE_EAA_R;
3367 	if ((m->oflags & VPO_UNMANAGED) == 0)
3368 		pa |= PG_MANAGED;
3369 
3370 	pte_store(pte, pa);
3371 	return (mpte);
3372 }
3373 
3374 void
3375 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3376     vm_prot_t prot)
3377 {
3378 	struct rwlock *lock;
3379 	bool invalidate;
3380 
3381 	lock = NULL;
3382 	invalidate = false;
3383 	PMAP_LOCK(pmap);
3384 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3385 	    &invalidate);
3386 	ptesync();
3387 	if (lock != NULL)
3388 		rw_wunlock(lock);
3389 	if (invalidate)
3390 		pmap_invalidate_all(pmap);
3391 	PMAP_UNLOCK(pmap);
3392 }
3393 
3394 vm_paddr_t
3395 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3396 {
3397 	pml3_entry_t *l3e;
3398 	pt_entry_t *pte;
3399 	vm_paddr_t pa;
3400 
3401 	l3e = pmap_pml3e(pmap, va);
3402 	if (__predict_false(l3e == NULL))
3403 		return (0);
3404 	if (be64toh(*l3e) & RPTE_LEAF) {
3405 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3406 		pa |= (va & L3_PAGE_MASK);
3407 	} else {
3408 		/*
3409 		 * Beware of a concurrent promotion that changes the
3410 		 * PDE at this point!  For example, vtopte() must not
3411 		 * be used to access the PTE because it would use the
3412 		 * new PDE.  It is, however, safe to use the old PDE
3413 		 * because the page table page is preserved by the
3414 		 * promotion.
3415 		 */
3416 		pte = pmap_l3e_to_pte(l3e, va);
3417 		if (__predict_false(pte == NULL))
3418 			return (0);
3419 		pa = be64toh(*pte);
3420 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3421 		pa |= (va & PAGE_MASK);
3422 	}
3423 	return (pa);
3424 }
3425 
3426 vm_page_t
3427 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3428 {
3429 	pml3_entry_t l3e, *l3ep;
3430 	pt_entry_t pte;
3431 	vm_paddr_t pa;
3432 	vm_page_t m;
3433 
3434 	pa = 0;
3435 	m = NULL;
3436 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3437 	PMAP_LOCK(pmap);
3438 	l3ep = pmap_pml3e(pmap, va);
3439 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3440 		if (l3e & RPTE_LEAF) {
3441 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3442 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3443 				    (va & L3_PAGE_MASK));
3444 		} else {
3445 			/* Native endian PTE, do not pass to pmap functions */
3446 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3447 			if ((pte & PG_V) &&
3448 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3449 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3450 		}
3451 		if (m != NULL && !vm_page_wire_mapped(m))
3452 			m = NULL;
3453 	}
3454 	PMAP_UNLOCK(pmap);
3455 	return (m);
3456 }
3457 
3458 static void
3459 mmu_radix_growkernel(vm_offset_t addr)
3460 {
3461 	vm_paddr_t paddr;
3462 	vm_page_t nkpg;
3463 	pml3_entry_t *l3e;
3464 	pml2_entry_t *l2e;
3465 
3466 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3467 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3468 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3469 		return;
3470 
3471 	addr = roundup2(addr, L3_PAGE_SIZE);
3472 	if (addr - 1 >= vm_map_max(kernel_map))
3473 		addr = vm_map_max(kernel_map);
3474 	while (kernel_vm_end < addr) {
3475 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3476 		if ((be64toh(*l2e) & PG_V) == 0) {
3477 			/* We need a new PDP entry */
3478 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT,
3479 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
3480 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3481 			if (nkpg == NULL)
3482 				panic("pmap_growkernel: no memory to grow kernel");
3483 			if ((nkpg->flags & PG_ZERO) == 0)
3484 				mmu_radix_zero_page(nkpg);
3485 			paddr = VM_PAGE_TO_PHYS(nkpg);
3486 			pde_store(l2e, paddr);
3487 			continue; /* try again */
3488 		}
3489 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3490 		if ((be64toh(*l3e) & PG_V) != 0) {
3491 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3492 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3493 				kernel_vm_end = vm_map_max(kernel_map);
3494 				break;
3495 			}
3496 			continue;
3497 		}
3498 
3499 		nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end),
3500 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3501 		    VM_ALLOC_ZERO);
3502 		if (nkpg == NULL)
3503 			panic("pmap_growkernel: no memory to grow kernel");
3504 		if ((nkpg->flags & PG_ZERO) == 0)
3505 			mmu_radix_zero_page(nkpg);
3506 		paddr = VM_PAGE_TO_PHYS(nkpg);
3507 		pde_store(l3e, paddr);
3508 
3509 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3510 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3511 			kernel_vm_end = vm_map_max(kernel_map);
3512 			break;
3513 		}
3514 	}
3515 	ptesync();
3516 }
3517 
3518 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3519 static uma_zone_t zone_radix_pgd;
3520 
3521 static int
3522 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3523     int flags)
3524 {
3525 
3526 	for (int i = 0; i < count; i++) {
3527 		vm_page_t m = vm_page_alloc_contig(NULL, 0,
3528 		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3529 		    VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE,
3530 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3531 		    VM_MEMATTR_DEFAULT);
3532 		/* XXX zero on alloc here so we don't have to later */
3533 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3534 	}
3535 	return (count);
3536 }
3537 
3538 static void
3539 radix_pgd_release(void *arg __unused, void **store, int count)
3540 {
3541 	vm_page_t m;
3542 	struct spglist free;
3543 	int page_count;
3544 
3545 	SLIST_INIT(&free);
3546 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3547 
3548 	for (int i = 0; i < count; i++) {
3549 		/*
3550 		 * XXX selectively remove dmap and KVA entries so we don't
3551 		 * need to bzero
3552 		 */
3553 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3554 		for (int j = page_count-1; j >= 0; j--) {
3555 			vm_page_unwire_noq(&m[j]);
3556 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3557 		}
3558 		vm_page_free_pages_toq(&free, false);
3559 	}
3560 }
3561 
3562 static void
3563 mmu_radix_init()
3564 {
3565 	vm_page_t mpte;
3566 	vm_size_t s;
3567 	int error, i, pv_npg;
3568 
3569 	/* XXX is this really needed for POWER? */
3570 	/* L1TF, reserve page @0 unconditionally */
3571 	vm_page_blacklist_add(0, bootverbose);
3572 
3573 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3574 		RADIX_PGD_SIZE, NULL, NULL,
3575 #ifdef INVARIANTS
3576 	    trash_init, trash_fini,
3577 #else
3578 	    NULL, NULL,
3579 #endif
3580 		radix_pgd_import, radix_pgd_release,
3581 		NULL, UMA_ZONE_NOBUCKET);
3582 
3583 	/*
3584 	 * Initialize the vm page array entries for the kernel pmap's
3585 	 * page table pages.
3586 	 */
3587 	PMAP_LOCK(kernel_pmap);
3588 	for (i = 0; i < nkpt; i++) {
3589 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3590 		KASSERT(mpte >= vm_page_array &&
3591 		    mpte < &vm_page_array[vm_page_array_size],
3592 		    ("pmap_init: page table page is out of range size: %lu",
3593 		     vm_page_array_size));
3594 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3595 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3596 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3597 		//pmap_insert_pt_page(kernel_pmap, mpte);
3598 		mpte->ref_count = 1;
3599 	}
3600 	PMAP_UNLOCK(kernel_pmap);
3601 	vm_wire_add(nkpt);
3602 
3603 	CTR1(KTR_PMAP, "%s()", __func__);
3604 	TAILQ_INIT(&pv_dummy.pv_list);
3605 
3606 	/*
3607 	 * Are large page mappings enabled?
3608 	 */
3609 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3610 	if (superpages_enabled) {
3611 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3612 		    ("pmap_init: can't assign to pagesizes[1]"));
3613 		pagesizes[1] = L3_PAGE_SIZE;
3614 	}
3615 
3616 	/*
3617 	 * Initialize the pv chunk list mutex.
3618 	 */
3619 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3620 
3621 	/*
3622 	 * Initialize the pool of pv list locks.
3623 	 */
3624 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3625 		rw_init(&pv_list_locks[i], "pmap pv list");
3626 
3627 	/*
3628 	 * Calculate the size of the pv head table for superpages.
3629 	 */
3630 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3631 
3632 	/*
3633 	 * Allocate memory for the pv head table for superpages.
3634 	 */
3635 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3636 	s = round_page(s);
3637 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
3638 	for (i = 0; i < pv_npg; i++)
3639 		TAILQ_INIT(&pv_table[i].pv_list);
3640 	TAILQ_INIT(&pv_dummy.pv_list);
3641 
3642 	pmap_initialized = 1;
3643 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3644 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3645 	    (vmem_addr_t *)&qframe);
3646 
3647 	if (error != 0)
3648 		panic("qframe allocation failed");
3649 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3650 	    1, 1, M_WAITOK);
3651 }
3652 
3653 static boolean_t
3654 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3655 {
3656 	struct rwlock *lock;
3657 	pv_entry_t pv;
3658 	struct md_page *pvh;
3659 	pt_entry_t *pte, mask;
3660 	pmap_t pmap;
3661 	int md_gen, pvh_gen;
3662 	boolean_t rv;
3663 
3664 	rv = FALSE;
3665 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3666 	rw_rlock(lock);
3667 restart:
3668 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3669 		pmap = PV_PMAP(pv);
3670 		if (!PMAP_TRYLOCK(pmap)) {
3671 			md_gen = m->md.pv_gen;
3672 			rw_runlock(lock);
3673 			PMAP_LOCK(pmap);
3674 			rw_rlock(lock);
3675 			if (md_gen != m->md.pv_gen) {
3676 				PMAP_UNLOCK(pmap);
3677 				goto restart;
3678 			}
3679 		}
3680 		pte = pmap_pte(pmap, pv->pv_va);
3681 		mask = 0;
3682 		if (modified)
3683 			mask |= PG_RW | PG_M;
3684 		if (accessed)
3685 			mask |= PG_V | PG_A;
3686 		rv = (be64toh(*pte) & mask) == mask;
3687 		PMAP_UNLOCK(pmap);
3688 		if (rv)
3689 			goto out;
3690 	}
3691 	if ((m->flags & PG_FICTITIOUS) == 0) {
3692 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3693 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3694 			pmap = PV_PMAP(pv);
3695 			if (!PMAP_TRYLOCK(pmap)) {
3696 				md_gen = m->md.pv_gen;
3697 				pvh_gen = pvh->pv_gen;
3698 				rw_runlock(lock);
3699 				PMAP_LOCK(pmap);
3700 				rw_rlock(lock);
3701 				if (md_gen != m->md.pv_gen ||
3702 				    pvh_gen != pvh->pv_gen) {
3703 					PMAP_UNLOCK(pmap);
3704 					goto restart;
3705 				}
3706 			}
3707 			pte = pmap_pml3e(pmap, pv->pv_va);
3708 			mask = 0;
3709 			if (modified)
3710 				mask |= PG_RW | PG_M;
3711 			if (accessed)
3712 				mask |= PG_V | PG_A;
3713 			rv = (be64toh(*pte) & mask) == mask;
3714 			PMAP_UNLOCK(pmap);
3715 			if (rv)
3716 				goto out;
3717 		}
3718 	}
3719 out:
3720 	rw_runlock(lock);
3721 	return (rv);
3722 }
3723 
3724 /*
3725  *	pmap_is_modified:
3726  *
3727  *	Return whether or not the specified physical page was modified
3728  *	in any physical maps.
3729  */
3730 boolean_t
3731 mmu_radix_is_modified(vm_page_t m)
3732 {
3733 
3734 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3735 	    ("pmap_is_modified: page %p is not managed", m));
3736 
3737 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3738 	/*
3739 	 * If the page is not busied then this check is racy.
3740 	 */
3741 	if (!pmap_page_is_write_mapped(m))
3742 		return (FALSE);
3743 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3744 }
3745 
3746 boolean_t
3747 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3748 {
3749 	pml3_entry_t *l3e;
3750 	pt_entry_t *pte;
3751 	boolean_t rv;
3752 
3753 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3754 	rv = FALSE;
3755 	PMAP_LOCK(pmap);
3756 	l3e = pmap_pml3e(pmap, addr);
3757 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3758 		pte = pmap_l3e_to_pte(l3e, addr);
3759 		rv = (be64toh(*pte) & PG_V) == 0;
3760 	}
3761 	PMAP_UNLOCK(pmap);
3762 	return (rv);
3763 }
3764 
3765 boolean_t
3766 mmu_radix_is_referenced(vm_page_t m)
3767 {
3768 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3769 	    ("pmap_is_referenced: page %p is not managed", m));
3770 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3771 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3772 }
3773 
3774 /*
3775  *	pmap_ts_referenced:
3776  *
3777  *	Return a count of reference bits for a page, clearing those bits.
3778  *	It is not necessary for every reference bit to be cleared, but it
3779  *	is necessary that 0 only be returned when there are truly no
3780  *	reference bits set.
3781  *
3782  *	As an optimization, update the page's dirty field if a modified bit is
3783  *	found while counting reference bits.  This opportunistic update can be
3784  *	performed at low cost and can eliminate the need for some future calls
3785  *	to pmap_is_modified().  However, since this function stops after
3786  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3787  *	dirty pages.  Those dirty pages will only be detected by a future call
3788  *	to pmap_is_modified().
3789  *
3790  *	A DI block is not needed within this function, because
3791  *	invalidations are performed before the PV list lock is
3792  *	released.
3793  */
3794 boolean_t
3795 mmu_radix_ts_referenced(vm_page_t m)
3796 {
3797 	struct md_page *pvh;
3798 	pv_entry_t pv, pvf;
3799 	pmap_t pmap;
3800 	struct rwlock *lock;
3801 	pml3_entry_t oldl3e, *l3e;
3802 	pt_entry_t *pte;
3803 	vm_paddr_t pa;
3804 	int cleared, md_gen, not_cleared, pvh_gen;
3805 	struct spglist free;
3806 
3807 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3808 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3809 	    ("pmap_ts_referenced: page %p is not managed", m));
3810 	SLIST_INIT(&free);
3811 	cleared = 0;
3812 	pa = VM_PAGE_TO_PHYS(m);
3813 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3814 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3815 	rw_wlock(lock);
3816 retry:
3817 	not_cleared = 0;
3818 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3819 		goto small_mappings;
3820 	pv = pvf;
3821 	do {
3822 		if (pvf == NULL)
3823 			pvf = pv;
3824 		pmap = PV_PMAP(pv);
3825 		if (!PMAP_TRYLOCK(pmap)) {
3826 			pvh_gen = pvh->pv_gen;
3827 			rw_wunlock(lock);
3828 			PMAP_LOCK(pmap);
3829 			rw_wlock(lock);
3830 			if (pvh_gen != pvh->pv_gen) {
3831 				PMAP_UNLOCK(pmap);
3832 				goto retry;
3833 			}
3834 		}
3835 		l3e = pmap_pml3e(pmap, pv->pv_va);
3836 		oldl3e = be64toh(*l3e);
3837 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3838 			/*
3839 			 * Although "oldpde" is mapping a 2MB page, because
3840 			 * this function is called at a 4KB page granularity,
3841 			 * we only update the 4KB page under test.
3842 			 */
3843 			vm_page_dirty(m);
3844 		}
3845 		if ((oldl3e & PG_A) != 0) {
3846 			/*
3847 			 * Since this reference bit is shared by 512 4KB
3848 			 * pages, it should not be cleared every time it is
3849 			 * tested.  Apply a simple "hash" function on the
3850 			 * physical page number, the virtual superpage number,
3851 			 * and the pmap address to select one 4KB page out of
3852 			 * the 512 on which testing the reference bit will
3853 			 * result in clearing that reference bit.  This
3854 			 * function is designed to avoid the selection of the
3855 			 * same 4KB page for every 2MB page mapping.
3856 			 *
3857 			 * On demotion, a mapping that hasn't been referenced
3858 			 * is simply destroyed.  To avoid the possibility of a
3859 			 * subsequent page fault on a demoted wired mapping,
3860 			 * always leave its reference bit set.  Moreover,
3861 			 * since the superpage is wired, the current state of
3862 			 * its reference bit won't affect page replacement.
3863 			 */
3864 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3865 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3866 			    (oldl3e & PG_W) == 0) {
3867 				atomic_clear_long(l3e, htobe64(PG_A));
3868 				pmap_invalidate_page(pmap, pv->pv_va);
3869 				cleared++;
3870 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3871 				    ("inconsistent pv lock %p %p for page %p",
3872 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3873 			} else
3874 				not_cleared++;
3875 		}
3876 		PMAP_UNLOCK(pmap);
3877 		/* Rotate the PV list if it has more than one entry. */
3878 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3879 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3880 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3881 			pvh->pv_gen++;
3882 		}
3883 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3884 			goto out;
3885 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3886 small_mappings:
3887 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3888 		goto out;
3889 	pv = pvf;
3890 	do {
3891 		if (pvf == NULL)
3892 			pvf = pv;
3893 		pmap = PV_PMAP(pv);
3894 		if (!PMAP_TRYLOCK(pmap)) {
3895 			pvh_gen = pvh->pv_gen;
3896 			md_gen = m->md.pv_gen;
3897 			rw_wunlock(lock);
3898 			PMAP_LOCK(pmap);
3899 			rw_wlock(lock);
3900 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3901 				PMAP_UNLOCK(pmap);
3902 				goto retry;
3903 			}
3904 		}
3905 		l3e = pmap_pml3e(pmap, pv->pv_va);
3906 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3907 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3908 		    m));
3909 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3910 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3911 			vm_page_dirty(m);
3912 		if ((be64toh(*pte) & PG_A) != 0) {
3913 			atomic_clear_long(pte, htobe64(PG_A));
3914 			pmap_invalidate_page(pmap, pv->pv_va);
3915 			cleared++;
3916 		}
3917 		PMAP_UNLOCK(pmap);
3918 		/* Rotate the PV list if it has more than one entry. */
3919 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3920 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3921 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3922 			m->md.pv_gen++;
3923 		}
3924 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3925 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3926 out:
3927 	rw_wunlock(lock);
3928 	vm_page_free_pages_toq(&free, true);
3929 	return (cleared + not_cleared);
3930 }
3931 
3932 static vm_offset_t
3933 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3934     vm_paddr_t end, int prot __unused)
3935 {
3936 
3937 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3938 		 prot);
3939 	return (PHYS_TO_DMAP(start));
3940 }
3941 
3942 void
3943 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3944     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3945 {
3946 	pml3_entry_t *l3e;
3947 	vm_paddr_t pa, ptepa;
3948 	vm_page_t p, pdpg;
3949 	vm_memattr_t ma;
3950 
3951 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
3952 	    object, pindex, size);
3953 	VM_OBJECT_ASSERT_WLOCKED(object);
3954 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3955 			("pmap_object_init_pt: non-device object"));
3956 	/* NB: size can be logically ored with addr here */
3957 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
3958 		if (!mmu_radix_ps_enabled(pmap))
3959 			return;
3960 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3961 			return;
3962 		p = vm_page_lookup(object, pindex);
3963 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3964 		    ("pmap_object_init_pt: invalid page %p", p));
3965 		ma = p->md.mdpg_cache_attrs;
3966 
3967 		/*
3968 		 * Abort the mapping if the first page is not physically
3969 		 * aligned to a 2MB page boundary.
3970 		 */
3971 		ptepa = VM_PAGE_TO_PHYS(p);
3972 		if (ptepa & L3_PAGE_MASK)
3973 			return;
3974 
3975 		/*
3976 		 * Skip the first page.  Abort the mapping if the rest of
3977 		 * the pages are not physically contiguous or have differing
3978 		 * memory attributes.
3979 		 */
3980 		p = TAILQ_NEXT(p, listq);
3981 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3982 		    pa += PAGE_SIZE) {
3983 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3984 			    ("pmap_object_init_pt: invalid page %p", p));
3985 			if (pa != VM_PAGE_TO_PHYS(p) ||
3986 			    ma != p->md.mdpg_cache_attrs)
3987 				return;
3988 			p = TAILQ_NEXT(p, listq);
3989 		}
3990 
3991 		PMAP_LOCK(pmap);
3992 		for (pa = ptepa | pmap_cache_bits(ma);
3993 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
3994 			pdpg = pmap_allocl3e(pmap, addr, NULL);
3995 			if (pdpg == NULL) {
3996 				/*
3997 				 * The creation of mappings below is only an
3998 				 * optimization.  If a page directory page
3999 				 * cannot be allocated without blocking,
4000 				 * continue on to the next mapping rather than
4001 				 * blocking.
4002 				 */
4003 				addr += L3_PAGE_SIZE;
4004 				continue;
4005 			}
4006 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4007 			l3e = &l3e[pmap_pml3e_index(addr)];
4008 			if ((be64toh(*l3e) & PG_V) == 0) {
4009 				pa |= PG_M | PG_A | PG_RW;
4010 				pte_store(l3e, pa);
4011 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4012 				atomic_add_long(&pmap_l3e_mappings, 1);
4013 			} else {
4014 				/* Continue on if the PDE is already valid. */
4015 				pdpg->ref_count--;
4016 				KASSERT(pdpg->ref_count > 0,
4017 				    ("pmap_object_init_pt: missing reference "
4018 				    "to page directory page, va: 0x%lx", addr));
4019 			}
4020 			addr += L3_PAGE_SIZE;
4021 		}
4022 		ptesync();
4023 		PMAP_UNLOCK(pmap);
4024 	}
4025 }
4026 
4027 boolean_t
4028 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4029 {
4030 	struct md_page *pvh;
4031 	struct rwlock *lock;
4032 	pv_entry_t pv;
4033 	int loops = 0;
4034 	boolean_t rv;
4035 
4036 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4037 	    ("pmap_page_exists_quick: page %p is not managed", m));
4038 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4039 	rv = FALSE;
4040 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4041 	rw_rlock(lock);
4042 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4043 		if (PV_PMAP(pv) == pmap) {
4044 			rv = TRUE;
4045 			break;
4046 		}
4047 		loops++;
4048 		if (loops >= 16)
4049 			break;
4050 	}
4051 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4052 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4053 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4054 			if (PV_PMAP(pv) == pmap) {
4055 				rv = TRUE;
4056 				break;
4057 			}
4058 			loops++;
4059 			if (loops >= 16)
4060 				break;
4061 		}
4062 	}
4063 	rw_runlock(lock);
4064 	return (rv);
4065 }
4066 
4067 void
4068 mmu_radix_page_init(vm_page_t m)
4069 {
4070 
4071 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4072 	TAILQ_INIT(&m->md.pv_list);
4073 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4074 }
4075 
4076 int
4077 mmu_radix_page_wired_mappings(vm_page_t m)
4078 {
4079 	struct rwlock *lock;
4080 	struct md_page *pvh;
4081 	pmap_t pmap;
4082 	pt_entry_t *pte;
4083 	pv_entry_t pv;
4084 	int count, md_gen, pvh_gen;
4085 
4086 	if ((m->oflags & VPO_UNMANAGED) != 0)
4087 		return (0);
4088 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4089 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4090 	rw_rlock(lock);
4091 restart:
4092 	count = 0;
4093 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4094 		pmap = PV_PMAP(pv);
4095 		if (!PMAP_TRYLOCK(pmap)) {
4096 			md_gen = m->md.pv_gen;
4097 			rw_runlock(lock);
4098 			PMAP_LOCK(pmap);
4099 			rw_rlock(lock);
4100 			if (md_gen != m->md.pv_gen) {
4101 				PMAP_UNLOCK(pmap);
4102 				goto restart;
4103 			}
4104 		}
4105 		pte = pmap_pte(pmap, pv->pv_va);
4106 		if ((be64toh(*pte) & PG_W) != 0)
4107 			count++;
4108 		PMAP_UNLOCK(pmap);
4109 	}
4110 	if ((m->flags & PG_FICTITIOUS) == 0) {
4111 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4112 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4113 			pmap = PV_PMAP(pv);
4114 			if (!PMAP_TRYLOCK(pmap)) {
4115 				md_gen = m->md.pv_gen;
4116 				pvh_gen = pvh->pv_gen;
4117 				rw_runlock(lock);
4118 				PMAP_LOCK(pmap);
4119 				rw_rlock(lock);
4120 				if (md_gen != m->md.pv_gen ||
4121 				    pvh_gen != pvh->pv_gen) {
4122 					PMAP_UNLOCK(pmap);
4123 					goto restart;
4124 				}
4125 			}
4126 			pte = pmap_pml3e(pmap, pv->pv_va);
4127 			if ((be64toh(*pte) & PG_W) != 0)
4128 				count++;
4129 			PMAP_UNLOCK(pmap);
4130 		}
4131 	}
4132 	rw_runlock(lock);
4133 	return (count);
4134 }
4135 
4136 static void
4137 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4138 {
4139 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4140 }
4141 
4142 int
4143 mmu_radix_pinit(pmap_t pmap)
4144 {
4145 	vmem_addr_t pid;
4146 	vm_paddr_t l1pa;
4147 
4148 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4149 
4150 	/*
4151 	 * allocate the page directory page
4152 	 */
4153 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4154 
4155 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4156 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4157 	pmap->pm_radix.rt_root = 0;
4158 	TAILQ_INIT(&pmap->pm_pvchunk);
4159 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4160 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4161 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4162 
4163 	pmap->pm_pid = pid;
4164 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4165 	mmu_radix_update_proctab(pid, l1pa);
4166 	__asm __volatile("ptesync;isync" : : : "memory");
4167 
4168 	return (1);
4169 }
4170 
4171 /*
4172  * This routine is called if the desired page table page does not exist.
4173  *
4174  * If page table page allocation fails, this routine may sleep before
4175  * returning NULL.  It sleeps only if a lock pointer was given.
4176  *
4177  * Note: If a page allocation fails at page table level two or three,
4178  * one or two pages may be held during the wait, only to be released
4179  * afterwards.  This conservative approach is easily argued to avoid
4180  * race conditions.
4181  */
4182 static vm_page_t
4183 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4184 {
4185 	vm_page_t m, pdppg, pdpg;
4186 
4187 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4188 
4189 	/*
4190 	 * Allocate a page table page.
4191 	 */
4192 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4193 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4194 		if (lockp != NULL) {
4195 			RELEASE_PV_LIST_LOCK(lockp);
4196 			PMAP_UNLOCK(pmap);
4197 			vm_wait(NULL);
4198 			PMAP_LOCK(pmap);
4199 		}
4200 		/*
4201 		 * Indicate the need to retry.  While waiting, the page table
4202 		 * page may have been allocated.
4203 		 */
4204 		return (NULL);
4205 	}
4206 	if ((m->flags & PG_ZERO) == 0)
4207 		mmu_radix_zero_page(m);
4208 
4209 	/*
4210 	 * Map the pagetable page into the process address space, if
4211 	 * it isn't already there.
4212 	 */
4213 
4214 	if (ptepindex >= (NUPDE + NUPDPE)) {
4215 		pml1_entry_t *l1e;
4216 		vm_pindex_t pml1index;
4217 
4218 		/* Wire up a new PDPE page */
4219 		pml1index = ptepindex - (NUPDE + NUPDPE);
4220 		l1e = &pmap->pm_pml1[pml1index];
4221 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4222 
4223 	} else if (ptepindex >= NUPDE) {
4224 		vm_pindex_t pml1index;
4225 		vm_pindex_t pdpindex;
4226 		pml1_entry_t *l1e;
4227 		pml2_entry_t *l2e;
4228 
4229 		/* Wire up a new l2e page */
4230 		pdpindex = ptepindex - NUPDE;
4231 		pml1index = pdpindex >> RPTE_SHIFT;
4232 
4233 		l1e = &pmap->pm_pml1[pml1index];
4234 		if ((be64toh(*l1e) & PG_V) == 0) {
4235 			/* Have to allocate a new pdp, recurse */
4236 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4237 				lockp) == NULL) {
4238 				vm_page_unwire_noq(m);
4239 				vm_page_free_zero(m);
4240 				return (NULL);
4241 			}
4242 		} else {
4243 			/* Add reference to l2e page */
4244 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4245 			pdppg->ref_count++;
4246 		}
4247 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4248 
4249 		/* Now find the pdp page */
4250 		l2e = &l2e[pdpindex & RPTE_MASK];
4251 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4252 
4253 	} else {
4254 		vm_pindex_t pml1index;
4255 		vm_pindex_t pdpindex;
4256 		pml1_entry_t *l1e;
4257 		pml2_entry_t *l2e;
4258 		pml3_entry_t *l3e;
4259 
4260 		/* Wire up a new PTE page */
4261 		pdpindex = ptepindex >> RPTE_SHIFT;
4262 		pml1index = pdpindex >> RPTE_SHIFT;
4263 
4264 		/* First, find the pdp and check that its valid. */
4265 		l1e = &pmap->pm_pml1[pml1index];
4266 		if ((be64toh(*l1e) & PG_V) == 0) {
4267 			/* Have to allocate a new pd, recurse */
4268 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4269 			    lockp) == NULL) {
4270 				vm_page_unwire_noq(m);
4271 				vm_page_free_zero(m);
4272 				return (NULL);
4273 			}
4274 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4275 			l2e = &l2e[pdpindex & RPTE_MASK];
4276 		} else {
4277 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4278 			l2e = &l2e[pdpindex & RPTE_MASK];
4279 			if ((be64toh(*l2e) & PG_V) == 0) {
4280 				/* Have to allocate a new pd, recurse */
4281 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4282 				    lockp) == NULL) {
4283 					vm_page_unwire_noq(m);
4284 					vm_page_free_zero(m);
4285 					return (NULL);
4286 				}
4287 			} else {
4288 				/* Add reference to the pd page */
4289 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4290 				pdpg->ref_count++;
4291 			}
4292 		}
4293 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4294 
4295 		/* Now we know where the page directory page is */
4296 		l3e = &l3e[ptepindex & RPTE_MASK];
4297 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4298 	}
4299 
4300 	pmap_resident_count_inc(pmap, 1);
4301 	return (m);
4302 }
4303 static vm_page_t
4304 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4305 {
4306 	vm_pindex_t pdpindex, ptepindex;
4307 	pml2_entry_t *pdpe;
4308 	vm_page_t pdpg;
4309 
4310 retry:
4311 	pdpe = pmap_pml2e(pmap, va);
4312 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4313 		/* Add a reference to the pd page. */
4314 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4315 		pdpg->ref_count++;
4316 	} else {
4317 		/* Allocate a pd page. */
4318 		ptepindex = pmap_l3e_pindex(va);
4319 		pdpindex = ptepindex >> RPTE_SHIFT;
4320 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4321 		if (pdpg == NULL && lockp != NULL)
4322 			goto retry;
4323 	}
4324 	return (pdpg);
4325 }
4326 
4327 static vm_page_t
4328 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4329 {
4330 	vm_pindex_t ptepindex;
4331 	pml3_entry_t *pd;
4332 	vm_page_t m;
4333 
4334 	/*
4335 	 * Calculate pagetable page index
4336 	 */
4337 	ptepindex = pmap_l3e_pindex(va);
4338 retry:
4339 	/*
4340 	 * Get the page directory entry
4341 	 */
4342 	pd = pmap_pml3e(pmap, va);
4343 
4344 	/*
4345 	 * This supports switching from a 2MB page to a
4346 	 * normal 4K page.
4347 	 */
4348 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4349 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4350 			/*
4351 			 * Invalidation of the 2MB page mapping may have caused
4352 			 * the deallocation of the underlying PD page.
4353 			 */
4354 			pd = NULL;
4355 		}
4356 	}
4357 
4358 	/*
4359 	 * If the page table page is mapped, we just increment the
4360 	 * hold count, and activate it.
4361 	 */
4362 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4363 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4364 		m->ref_count++;
4365 	} else {
4366 		/*
4367 		 * Here if the pte page isn't mapped, or if it has been
4368 		 * deallocated.
4369 		 */
4370 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4371 		if (m == NULL && lockp != NULL)
4372 			goto retry;
4373 	}
4374 	return (m);
4375 }
4376 
4377 static void
4378 mmu_radix_pinit0(pmap_t pmap)
4379 {
4380 
4381 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4382 	PMAP_LOCK_INIT(pmap);
4383 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4384 	pmap->pm_pid = kernel_pmap->pm_pid;
4385 
4386 	pmap->pm_radix.rt_root = 0;
4387 	TAILQ_INIT(&pmap->pm_pvchunk);
4388 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4389 	kernel_pmap->pm_flags =
4390 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4391 }
4392 /*
4393  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4394  */
4395 static boolean_t
4396 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4397 {
4398 	pt_entry_t newpde, oldpde;
4399 	vm_offset_t eva, va;
4400 	vm_page_t m;
4401 	boolean_t anychanged;
4402 
4403 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4404 	KASSERT((sva & L3_PAGE_MASK) == 0,
4405 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4406 	anychanged = FALSE;
4407 retry:
4408 	oldpde = newpde = be64toh(*l3e);
4409 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4410 	    (PG_MANAGED | PG_M | PG_RW)) {
4411 		eva = sva + L3_PAGE_SIZE;
4412 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4413 		    va < eva; va += PAGE_SIZE, m++)
4414 			vm_page_dirty(m);
4415 	}
4416 	if ((prot & VM_PROT_WRITE) == 0) {
4417 		newpde &= ~(PG_RW | PG_M);
4418 		newpde |= RPTE_EAA_R;
4419 	}
4420 	if (prot & VM_PROT_EXECUTE)
4421 		newpde |= PG_X;
4422 	if (newpde != oldpde) {
4423 		/*
4424 		 * As an optimization to future operations on this PDE, clear
4425 		 * PG_PROMOTED.  The impending invalidation will remove any
4426 		 * lingering 4KB page mappings from the TLB.
4427 		 */
4428 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4429 			goto retry;
4430 		anychanged = TRUE;
4431 	}
4432 	return (anychanged);
4433 }
4434 
4435 void
4436 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4437     vm_prot_t prot)
4438 {
4439 	vm_offset_t va_next;
4440 	pml1_entry_t *l1e;
4441 	pml2_entry_t *l2e;
4442 	pml3_entry_t ptpaddr, *l3e;
4443 	pt_entry_t *pte;
4444 	boolean_t anychanged;
4445 
4446 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4447 	    prot);
4448 
4449 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4450 	if (prot == VM_PROT_NONE) {
4451 		mmu_radix_remove(pmap, sva, eva);
4452 		return;
4453 	}
4454 
4455 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4456 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4457 		return;
4458 
4459 #ifdef INVARIANTS
4460 	if (VERBOSE_PROTECT || pmap_logging)
4461 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4462 			   pmap, sva, eva, prot, pmap->pm_pid);
4463 #endif
4464 	anychanged = FALSE;
4465 
4466 	PMAP_LOCK(pmap);
4467 	for (; sva < eva; sva = va_next) {
4468 		l1e = pmap_pml1e(pmap, sva);
4469 		if ((be64toh(*l1e) & PG_V) == 0) {
4470 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4471 			if (va_next < sva)
4472 				va_next = eva;
4473 			continue;
4474 		}
4475 
4476 		l2e = pmap_l1e_to_l2e(l1e, sva);
4477 		if ((be64toh(*l2e) & PG_V) == 0) {
4478 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4479 			if (va_next < sva)
4480 				va_next = eva;
4481 			continue;
4482 		}
4483 
4484 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4485 		if (va_next < sva)
4486 			va_next = eva;
4487 
4488 		l3e = pmap_l2e_to_l3e(l2e, sva);
4489 		ptpaddr = be64toh(*l3e);
4490 
4491 		/*
4492 		 * Weed out invalid mappings.
4493 		 */
4494 		if (ptpaddr == 0)
4495 			continue;
4496 
4497 		/*
4498 		 * Check for large page.
4499 		 */
4500 		if ((ptpaddr & RPTE_LEAF) != 0) {
4501 			/*
4502 			 * Are we protecting the entire large page?  If not,
4503 			 * demote the mapping and fall through.
4504 			 */
4505 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4506 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4507 					anychanged = TRUE;
4508 				continue;
4509 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4510 				/*
4511 				 * The large page mapping was destroyed.
4512 				 */
4513 				continue;
4514 			}
4515 		}
4516 
4517 		if (va_next > eva)
4518 			va_next = eva;
4519 
4520 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4521 		    sva += PAGE_SIZE) {
4522 			pt_entry_t obits, pbits;
4523 			vm_page_t m;
4524 
4525 retry:
4526 			MPASS(pte == pmap_pte(pmap, sva));
4527 			obits = pbits = be64toh(*pte);
4528 			if ((pbits & PG_V) == 0)
4529 				continue;
4530 
4531 			if ((prot & VM_PROT_WRITE) == 0) {
4532 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4533 				    (PG_MANAGED | PG_M | PG_RW)) {
4534 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4535 					vm_page_dirty(m);
4536 				}
4537 				pbits &= ~(PG_RW | PG_M);
4538 				pbits |= RPTE_EAA_R;
4539 			}
4540 			if (prot & VM_PROT_EXECUTE)
4541 				pbits |= PG_X;
4542 
4543 			if (pbits != obits) {
4544 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4545 					goto retry;
4546 				if (obits & (PG_A|PG_M)) {
4547 					anychanged = TRUE;
4548 #ifdef INVARIANTS
4549 					if (VERBOSE_PROTECT || pmap_logging)
4550 						printf("%#lx %#lx -> %#lx\n",
4551 						    sva, obits, pbits);
4552 #endif
4553 				}
4554 			}
4555 		}
4556 	}
4557 	if (anychanged)
4558 		pmap_invalidate_all(pmap);
4559 	PMAP_UNLOCK(pmap);
4560 }
4561 
4562 void
4563 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4564 {
4565 
4566 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4567 	pt_entry_t oldpte, pa, *pte;
4568 	vm_page_t m;
4569 	uint64_t cache_bits, attr_bits;
4570 	vm_offset_t va;
4571 
4572 	oldpte = 0;
4573 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4574 	va = sva;
4575 	pte = kvtopte(va);
4576 	while (va < sva + PAGE_SIZE * count) {
4577 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4578 			pte = kvtopte(va);
4579 		MPASS(pte == pmap_pte(kernel_pmap, va));
4580 
4581 		/*
4582 		 * XXX there has to be a more efficient way than traversing
4583 		 * the page table every time - but go for correctness for
4584 		 * today
4585 		 */
4586 
4587 		m = *ma++;
4588 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4589 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4590 		if (be64toh(*pte) != pa) {
4591 			oldpte |= be64toh(*pte);
4592 			pte_store(pte, pa);
4593 		}
4594 		va += PAGE_SIZE;
4595 		pte++;
4596 	}
4597 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4598 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4599 		    PAGE_SIZE);
4600 	else
4601 		ptesync();
4602 }
4603 
4604 void
4605 mmu_radix_qremove(vm_offset_t sva, int count)
4606 {
4607 	vm_offset_t va;
4608 	pt_entry_t *pte;
4609 
4610 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4611 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4612 
4613 	va = sva;
4614 	pte = kvtopte(va);
4615 	while (va < sva + PAGE_SIZE * count) {
4616 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4617 			pte = kvtopte(va);
4618 		pte_clear(pte);
4619 		pte++;
4620 		va += PAGE_SIZE;
4621 	}
4622 	pmap_invalidate_range(kernel_pmap, sva, va);
4623 }
4624 
4625 /***************************************************
4626  * Page table page management routines.....
4627  ***************************************************/
4628 /*
4629  * Schedule the specified unused page table page to be freed.  Specifically,
4630  * add the page to the specified list of pages that will be released to the
4631  * physical memory manager after the TLB has been updated.
4632  */
4633 static __inline void
4634 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4635     boolean_t set_PG_ZERO)
4636 {
4637 
4638 	if (set_PG_ZERO)
4639 		m->flags |= PG_ZERO;
4640 	else
4641 		m->flags &= ~PG_ZERO;
4642 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4643 }
4644 
4645 /*
4646  * Inserts the specified page table page into the specified pmap's collection
4647  * of idle page table pages.  Each of a pmap's page table pages is responsible
4648  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4649  * ordered by this virtual address range.
4650  */
4651 static __inline int
4652 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4653 {
4654 
4655 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4656 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4657 }
4658 
4659 /*
4660  * Removes the page table page mapping the specified virtual address from the
4661  * specified pmap's collection of idle page table pages, and returns it.
4662  * Otherwise, returns NULL if there is no page table page corresponding to the
4663  * specified virtual address.
4664  */
4665 static __inline vm_page_t
4666 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4667 {
4668 
4669 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4670 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4671 }
4672 
4673 /*
4674  * Decrements a page table page's wire count, which is used to record the
4675  * number of valid page table entries within the page.  If the wire count
4676  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4677  * page table page was unmapped and FALSE otherwise.
4678  */
4679 static inline boolean_t
4680 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4681 {
4682 
4683 	--m->ref_count;
4684 	if (m->ref_count == 0) {
4685 		_pmap_unwire_ptp(pmap, va, m, free);
4686 		return (TRUE);
4687 	} else
4688 		return (FALSE);
4689 }
4690 
4691 static void
4692 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4693 {
4694 
4695 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4696 	/*
4697 	 * unmap the page table page
4698 	 */
4699 	if (m->pindex >= (NUPDE + NUPDPE)) {
4700 		/* PDP page */
4701 		pml1_entry_t *pml1;
4702 		pml1 = pmap_pml1e(pmap, va);
4703 		*pml1 = 0;
4704 	} else if (m->pindex >= NUPDE) {
4705 		/* PD page */
4706 		pml2_entry_t *l2e;
4707 		l2e = pmap_pml2e(pmap, va);
4708 		*l2e = 0;
4709 	} else {
4710 		/* PTE page */
4711 		pml3_entry_t *l3e;
4712 		l3e = pmap_pml3e(pmap, va);
4713 		*l3e = 0;
4714 	}
4715 	pmap_resident_count_dec(pmap, 1);
4716 	if (m->pindex < NUPDE) {
4717 		/* We just released a PT, unhold the matching PD */
4718 		vm_page_t pdpg;
4719 
4720 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4721 		pmap_unwire_ptp(pmap, va, pdpg, free);
4722 	}
4723 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4724 		/* We just released a PD, unhold the matching PDP */
4725 		vm_page_t pdppg;
4726 
4727 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4728 		pmap_unwire_ptp(pmap, va, pdppg, free);
4729 	}
4730 
4731 	/*
4732 	 * Put page on a list so that it is released after
4733 	 * *ALL* TLB shootdown is done
4734 	 */
4735 	pmap_add_delayed_free_list(m, free, TRUE);
4736 }
4737 
4738 /*
4739  * After removing a page table entry, this routine is used to
4740  * conditionally free the page, and manage the hold/wire counts.
4741  */
4742 static int
4743 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4744     struct spglist *free)
4745 {
4746 	vm_page_t mpte;
4747 
4748 	if (va >= VM_MAXUSER_ADDRESS)
4749 		return (0);
4750 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4751 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4752 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4753 }
4754 
4755 void
4756 mmu_radix_release(pmap_t pmap)
4757 {
4758 
4759 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4760 	KASSERT(pmap->pm_stats.resident_count == 0,
4761 	    ("pmap_release: pmap resident count %ld != 0",
4762 	    pmap->pm_stats.resident_count));
4763 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4764 	    ("pmap_release: pmap has reserved page table page(s)"));
4765 
4766 	pmap_invalidate_all(pmap);
4767 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4768 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4769 	vmem_free(asid_arena, pmap->pm_pid, 1);
4770 }
4771 
4772 /*
4773  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4774  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4775  * false if the PV entry cannot be allocated without resorting to reclamation.
4776  */
4777 static bool
4778 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4779     struct rwlock **lockp)
4780 {
4781 	struct md_page *pvh;
4782 	pv_entry_t pv;
4783 	vm_paddr_t pa;
4784 
4785 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4786 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4787 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4788 	    NULL : lockp)) == NULL)
4789 		return (false);
4790 	pv->pv_va = va;
4791 	pa = pde & PG_PS_FRAME;
4792 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4793 	pvh = pa_to_pvh(pa);
4794 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4795 	pvh->pv_gen++;
4796 	return (true);
4797 }
4798 
4799 /*
4800  * Fills a page table page with mappings to consecutive physical pages.
4801  */
4802 static void
4803 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4804 {
4805 	pt_entry_t *pte;
4806 
4807 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4808 		*pte = htobe64(newpte);
4809 		newpte += PAGE_SIZE;
4810 	}
4811 }
4812 
4813 static boolean_t
4814 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4815 {
4816 	struct rwlock *lock;
4817 	boolean_t rv;
4818 
4819 	lock = NULL;
4820 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4821 	if (lock != NULL)
4822 		rw_wunlock(lock);
4823 	return (rv);
4824 }
4825 
4826 static boolean_t
4827 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4828     struct rwlock **lockp)
4829 {
4830 	pml3_entry_t oldpde;
4831 	pt_entry_t *firstpte;
4832 	vm_paddr_t mptepa;
4833 	vm_page_t mpte;
4834 	struct spglist free;
4835 	vm_offset_t sva;
4836 
4837 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4838 	oldpde = be64toh(*l3e);
4839 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4840 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4841 	    oldpde));
4842 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4843 	    NULL) {
4844 		KASSERT((oldpde & PG_W) == 0,
4845 		    ("pmap_demote_l3e: page table page for a wired mapping"
4846 		    " is missing"));
4847 
4848 		/*
4849 		 * Invalidate the 2MB page mapping and return "failure" if the
4850 		 * mapping was never accessed or the allocation of the new
4851 		 * page table page fails.  If the 2MB page mapping belongs to
4852 		 * the direct map region of the kernel's address space, then
4853 		 * the page allocation request specifies the highest possible
4854 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4855 		 * normal.  Page table pages are preallocated for every other
4856 		 * part of the kernel address space, so the direct map region
4857 		 * is the only part of the kernel address space that must be
4858 		 * handled here.
4859 		 */
4860 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
4861 		    pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
4862 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4863 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4864 			SLIST_INIT(&free);
4865 			sva = trunc_2mpage(va);
4866 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4867 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4868 			vm_page_free_pages_toq(&free, true);
4869 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4870 			    " in pmap %p", va, pmap);
4871 			return (FALSE);
4872 		}
4873 		if (va < VM_MAXUSER_ADDRESS)
4874 			pmap_resident_count_inc(pmap, 1);
4875 	}
4876 	mptepa = VM_PAGE_TO_PHYS(mpte);
4877 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4878 	KASSERT((oldpde & PG_A) != 0,
4879 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4880 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4881 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4882 
4883 	/*
4884 	 * If the page table page is new, initialize it.
4885 	 */
4886 	if (mpte->ref_count == 1) {
4887 		mpte->ref_count = NPTEPG;
4888 		pmap_fill_ptp(firstpte, oldpde);
4889 	}
4890 
4891 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4892 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4893 	    " addresses"));
4894 
4895 	/*
4896 	 * If the mapping has changed attributes, update the page table
4897 	 * entries.
4898 	 */
4899 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4900 		pmap_fill_ptp(firstpte, oldpde);
4901 
4902 	/*
4903 	 * The spare PV entries must be reserved prior to demoting the
4904 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4905 	 * of the PDE and the PV lists will be inconsistent, which can result
4906 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4907 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4908 	 * PV entry for the 2MB page mapping that is being demoted.
4909 	 */
4910 	if ((oldpde & PG_MANAGED) != 0)
4911 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4912 
4913 	/*
4914 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4915 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4916 	 * set.  Thus, there is no danger of a race with another
4917 	 * processor changing the setting of PG_A and/or PG_M between
4918 	 * the read above and the store below.
4919 	 */
4920 	pde_store(l3e, mptepa);
4921 	ptesync();
4922 	/*
4923 	 * Demote the PV entry.
4924 	 */
4925 	if ((oldpde & PG_MANAGED) != 0)
4926 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4927 
4928 	atomic_add_long(&pmap_l3e_demotions, 1);
4929 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4930 	    " in pmap %p", va, pmap);
4931 	return (TRUE);
4932 }
4933 
4934 /*
4935  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4936  */
4937 static void
4938 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4939 {
4940 	vm_paddr_t mptepa;
4941 	vm_page_t mpte;
4942 
4943 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
4944 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4945 	mpte = pmap_remove_pt_page(pmap, va);
4946 	if (mpte == NULL)
4947 		panic("pmap_remove_kernel_pde: Missing pt page.");
4948 
4949 	mptepa = VM_PAGE_TO_PHYS(mpte);
4950 
4951 	/*
4952 	 * Initialize the page table page.
4953 	 */
4954 	pagezero(PHYS_TO_DMAP(mptepa));
4955 
4956 	/*
4957 	 * Demote the mapping.
4958 	 */
4959 	pde_store(l3e, mptepa);
4960 	ptesync();
4961 }
4962 
4963 /*
4964  * pmap_remove_l3e: do the things to unmap a superpage in a process
4965  */
4966 static int
4967 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
4968     struct spglist *free, struct rwlock **lockp)
4969 {
4970 	struct md_page *pvh;
4971 	pml3_entry_t oldpde;
4972 	vm_offset_t eva, va;
4973 	vm_page_t m, mpte;
4974 
4975 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4976 	KASSERT((sva & L3_PAGE_MASK) == 0,
4977 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
4978 	oldpde = be64toh(pte_load_clear(pdq));
4979 	if (oldpde & PG_W)
4980 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
4981 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4982 	if (oldpde & PG_MANAGED) {
4983 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
4984 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
4985 		pmap_pvh_free(pvh, pmap, sva);
4986 		eva = sva + L3_PAGE_SIZE;
4987 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4988 		    va < eva; va += PAGE_SIZE, m++) {
4989 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
4990 				vm_page_dirty(m);
4991 			if (oldpde & PG_A)
4992 				vm_page_aflag_set(m, PGA_REFERENCED);
4993 			if (TAILQ_EMPTY(&m->md.pv_list) &&
4994 			    TAILQ_EMPTY(&pvh->pv_list))
4995 				vm_page_aflag_clear(m, PGA_WRITEABLE);
4996 		}
4997 	}
4998 	if (pmap == kernel_pmap) {
4999 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5000 	} else {
5001 		mpte = pmap_remove_pt_page(pmap, sva);
5002 		if (mpte != NULL) {
5003 			pmap_resident_count_dec(pmap, 1);
5004 			KASSERT(mpte->ref_count == NPTEPG,
5005 			    ("pmap_remove_l3e: pte page wire count error"));
5006 			mpte->ref_count = 0;
5007 			pmap_add_delayed_free_list(mpte, free, FALSE);
5008 		}
5009 	}
5010 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5011 }
5012 
5013 /*
5014  * pmap_remove_pte: do the things to unmap a page in a process
5015  */
5016 static int
5017 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5018     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5019 {
5020 	struct md_page *pvh;
5021 	pt_entry_t oldpte;
5022 	vm_page_t m;
5023 
5024 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5025 	oldpte = be64toh(pte_load_clear(ptq));
5026 	if (oldpte & RPTE_WIRED)
5027 		pmap->pm_stats.wired_count -= 1;
5028 	pmap_resident_count_dec(pmap, 1);
5029 	if (oldpte & RPTE_MANAGED) {
5030 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5031 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5032 			vm_page_dirty(m);
5033 		if (oldpte & PG_A)
5034 			vm_page_aflag_set(m, PGA_REFERENCED);
5035 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5036 		pmap_pvh_free(&m->md, pmap, va);
5037 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5038 		    (m->flags & PG_FICTITIOUS) == 0) {
5039 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5040 			if (TAILQ_EMPTY(&pvh->pv_list))
5041 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5042 		}
5043 	}
5044 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5045 }
5046 
5047 /*
5048  * Remove a single page from a process address space
5049  */
5050 static bool
5051 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5052     struct spglist *free)
5053 {
5054 	struct rwlock *lock;
5055 	pt_entry_t *pte;
5056 	bool invalidate_all;
5057 
5058 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5059 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5060 		return (false);
5061 	}
5062 	pte = pmap_l3e_to_pte(l3e, va);
5063 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5064 		return (false);
5065 	}
5066 	lock = NULL;
5067 
5068 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5069 	if (lock != NULL)
5070 		rw_wunlock(lock);
5071 	if (!invalidate_all)
5072 		pmap_invalidate_page(pmap, va);
5073 	return (invalidate_all);
5074 }
5075 
5076 /*
5077  * Removes the specified range of addresses from the page table page.
5078  */
5079 static bool
5080 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5081     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5082 {
5083 	pt_entry_t *pte;
5084 	vm_offset_t va;
5085 	bool anyvalid;
5086 
5087 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5088 	anyvalid = false;
5089 	va = eva;
5090 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5091 	    sva += PAGE_SIZE) {
5092 		MPASS(pte == pmap_pte(pmap, sva));
5093 		if (*pte == 0) {
5094 			if (va != eva) {
5095 				anyvalid = true;
5096 				va = eva;
5097 			}
5098 			continue;
5099 		}
5100 		if (va == eva)
5101 			va = sva;
5102 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5103 			anyvalid = true;
5104 			sva += PAGE_SIZE;
5105 			break;
5106 		}
5107 	}
5108 	if (anyvalid)
5109 		pmap_invalidate_all(pmap);
5110 	else if (va != eva)
5111 		pmap_invalidate_range(pmap, va, sva);
5112 	return (anyvalid);
5113 }
5114 
5115 void
5116 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5117 {
5118 	struct rwlock *lock;
5119 	vm_offset_t va_next;
5120 	pml1_entry_t *l1e;
5121 	pml2_entry_t *l2e;
5122 	pml3_entry_t ptpaddr, *l3e;
5123 	struct spglist free;
5124 	bool anyvalid;
5125 
5126 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5127 
5128 	/*
5129 	 * Perform an unsynchronized read.  This is, however, safe.
5130 	 */
5131 	if (pmap->pm_stats.resident_count == 0)
5132 		return;
5133 
5134 	anyvalid = false;
5135 	SLIST_INIT(&free);
5136 
5137 	/* XXX something fishy here */
5138 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5139 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5140 
5141 	PMAP_LOCK(pmap);
5142 
5143 	/*
5144 	 * special handling of removing one page.  a very
5145 	 * common operation and easy to short circuit some
5146 	 * code.
5147 	 */
5148 	if (sva + PAGE_SIZE == eva) {
5149 		l3e = pmap_pml3e(pmap, sva);
5150 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5151 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5152 			goto out;
5153 		}
5154 	}
5155 
5156 	lock = NULL;
5157 	for (; sva < eva; sva = va_next) {
5158 		if (pmap->pm_stats.resident_count == 0)
5159 			break;
5160 		l1e = pmap_pml1e(pmap, sva);
5161 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5162 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5163 			if (va_next < sva)
5164 				va_next = eva;
5165 			continue;
5166 		}
5167 
5168 		l2e = pmap_l1e_to_l2e(l1e, sva);
5169 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5170 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5171 			if (va_next < sva)
5172 				va_next = eva;
5173 			continue;
5174 		}
5175 
5176 		/*
5177 		 * Calculate index for next page table.
5178 		 */
5179 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5180 		if (va_next < sva)
5181 			va_next = eva;
5182 
5183 		l3e = pmap_l2e_to_l3e(l2e, sva);
5184 		ptpaddr = be64toh(*l3e);
5185 
5186 		/*
5187 		 * Weed out invalid mappings.
5188 		 */
5189 		if (ptpaddr == 0)
5190 			continue;
5191 
5192 		/*
5193 		 * Check for large page.
5194 		 */
5195 		if ((ptpaddr & RPTE_LEAF) != 0) {
5196 			/*
5197 			 * Are we removing the entire large page?  If not,
5198 			 * demote the mapping and fall through.
5199 			 */
5200 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5201 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5202 				continue;
5203 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5204 			    &lock)) {
5205 				/* The large page mapping was destroyed. */
5206 				continue;
5207 			} else
5208 				ptpaddr = be64toh(*l3e);
5209 		}
5210 
5211 		/*
5212 		 * Limit our scan to either the end of the va represented
5213 		 * by the current page table page, or to the end of the
5214 		 * range being removed.
5215 		 */
5216 		if (va_next > eva)
5217 			va_next = eva;
5218 
5219 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5220 			anyvalid = true;
5221 	}
5222 	if (lock != NULL)
5223 		rw_wunlock(lock);
5224 out:
5225 	if (anyvalid)
5226 		pmap_invalidate_all(pmap);
5227 	PMAP_UNLOCK(pmap);
5228 	vm_page_free_pages_toq(&free, true);
5229 }
5230 
5231 void
5232 mmu_radix_remove_all(vm_page_t m)
5233 {
5234 	struct md_page *pvh;
5235 	pv_entry_t pv;
5236 	pmap_t pmap;
5237 	struct rwlock *lock;
5238 	pt_entry_t *pte, tpte;
5239 	pml3_entry_t *l3e;
5240 	vm_offset_t va;
5241 	struct spglist free;
5242 	int pvh_gen, md_gen;
5243 
5244 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5245 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5246 	    ("pmap_remove_all: page %p is not managed", m));
5247 	SLIST_INIT(&free);
5248 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5249 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5250 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5251 retry:
5252 	rw_wlock(lock);
5253 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5254 		pmap = PV_PMAP(pv);
5255 		if (!PMAP_TRYLOCK(pmap)) {
5256 			pvh_gen = pvh->pv_gen;
5257 			rw_wunlock(lock);
5258 			PMAP_LOCK(pmap);
5259 			rw_wlock(lock);
5260 			if (pvh_gen != pvh->pv_gen) {
5261 				rw_wunlock(lock);
5262 				PMAP_UNLOCK(pmap);
5263 				goto retry;
5264 			}
5265 		}
5266 		va = pv->pv_va;
5267 		l3e = pmap_pml3e(pmap, va);
5268 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5269 		PMAP_UNLOCK(pmap);
5270 	}
5271 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5272 		pmap = PV_PMAP(pv);
5273 		if (!PMAP_TRYLOCK(pmap)) {
5274 			pvh_gen = pvh->pv_gen;
5275 			md_gen = m->md.pv_gen;
5276 			rw_wunlock(lock);
5277 			PMAP_LOCK(pmap);
5278 			rw_wlock(lock);
5279 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5280 				rw_wunlock(lock);
5281 				PMAP_UNLOCK(pmap);
5282 				goto retry;
5283 			}
5284 		}
5285 		pmap_resident_count_dec(pmap, 1);
5286 		l3e = pmap_pml3e(pmap, pv->pv_va);
5287 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5288 		    " a 2mpage in page %p's pv list", m));
5289 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5290 		tpte = be64toh(pte_load_clear(pte));
5291 		if (tpte & PG_W)
5292 			pmap->pm_stats.wired_count--;
5293 		if (tpte & PG_A)
5294 			vm_page_aflag_set(m, PGA_REFERENCED);
5295 
5296 		/*
5297 		 * Update the vm_page_t clean and reference bits.
5298 		 */
5299 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5300 			vm_page_dirty(m);
5301 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5302 		pmap_invalidate_page(pmap, pv->pv_va);
5303 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5304 		m->md.pv_gen++;
5305 		free_pv_entry(pmap, pv);
5306 		PMAP_UNLOCK(pmap);
5307 	}
5308 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5309 	rw_wunlock(lock);
5310 	vm_page_free_pages_toq(&free, true);
5311 }
5312 
5313 /*
5314  * Destroy all managed, non-wired mappings in the given user-space
5315  * pmap.  This pmap cannot be active on any processor besides the
5316  * caller.
5317  *
5318  * This function cannot be applied to the kernel pmap.  Moreover, it
5319  * is not intended for general use.  It is only to be used during
5320  * process termination.  Consequently, it can be implemented in ways
5321  * that make it faster than pmap_remove().  First, it can more quickly
5322  * destroy mappings by iterating over the pmap's collection of PV
5323  * entries, rather than searching the page table.  Second, it doesn't
5324  * have to test and clear the page table entries atomically, because
5325  * no processor is currently accessing the user address space.  In
5326  * particular, a page table entry's dirty bit won't change state once
5327  * this function starts.
5328  *
5329  * Although this function destroys all of the pmap's managed,
5330  * non-wired mappings, it can delay and batch the invalidation of TLB
5331  * entries without calling pmap_delayed_invl_started() and
5332  * pmap_delayed_invl_finished().  Because the pmap is not active on
5333  * any other processor, none of these TLB entries will ever be used
5334  * before their eventual invalidation.  Consequently, there is no need
5335  * for either pmap_remove_all() or pmap_remove_write() to wait for
5336  * that eventual TLB invalidation.
5337  */
5338 
5339 void
5340 mmu_radix_remove_pages(pmap_t pmap)
5341 {
5342 
5343 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5344 	pml3_entry_t ptel3e;
5345 	pt_entry_t *pte, tpte;
5346 	struct spglist free;
5347 	vm_page_t m, mpte, mt;
5348 	pv_entry_t pv;
5349 	struct md_page *pvh;
5350 	struct pv_chunk *pc, *npc;
5351 	struct rwlock *lock;
5352 	int64_t bit;
5353 	uint64_t inuse, bitmask;
5354 	int allfree, field, freed, idx;
5355 	boolean_t superpage;
5356 	vm_paddr_t pa;
5357 
5358 	/*
5359 	 * Assert that the given pmap is only active on the current
5360 	 * CPU.  Unfortunately, we cannot block another CPU from
5361 	 * activating the pmap while this function is executing.
5362 	 */
5363 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5364 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5365 	    mfspr(SPR_PID)));
5366 
5367 	lock = NULL;
5368 
5369 	SLIST_INIT(&free);
5370 	PMAP_LOCK(pmap);
5371 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5372 		allfree = 1;
5373 		freed = 0;
5374 		for (field = 0; field < _NPCM; field++) {
5375 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5376 			while (inuse != 0) {
5377 				bit = cnttzd(inuse);
5378 				bitmask = 1UL << bit;
5379 				idx = field * 64 + bit;
5380 				pv = &pc->pc_pventry[idx];
5381 				inuse &= ~bitmask;
5382 
5383 				pte = pmap_pml2e(pmap, pv->pv_va);
5384 				ptel3e = be64toh(*pte);
5385 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5386 				tpte = be64toh(*pte);
5387 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5388 					superpage = FALSE;
5389 					ptel3e = tpte;
5390 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5391 					    PG_FRAME);
5392 					pte = &pte[pmap_pte_index(pv->pv_va)];
5393 					tpte = be64toh(*pte);
5394 				} else {
5395 					/*
5396 					 * Keep track whether 'tpte' is a
5397 					 * superpage explicitly instead of
5398 					 * relying on RPTE_LEAF being set.
5399 					 *
5400 					 * This is because RPTE_LEAF is numerically
5401 					 * identical to PG_PTE_PAT and thus a
5402 					 * regular page could be mistaken for
5403 					 * a superpage.
5404 					 */
5405 					superpage = TRUE;
5406 				}
5407 
5408 				if ((tpte & PG_V) == 0) {
5409 					panic("bad pte va %lx pte %lx",
5410 					    pv->pv_va, tpte);
5411 				}
5412 
5413 /*
5414  * We cannot remove wired pages from a process' mapping at this time
5415  */
5416 				if (tpte & PG_W) {
5417 					allfree = 0;
5418 					continue;
5419 				}
5420 
5421 				if (superpage)
5422 					pa = tpte & PG_PS_FRAME;
5423 				else
5424 					pa = tpte & PG_FRAME;
5425 
5426 				m = PHYS_TO_VM_PAGE(pa);
5427 				KASSERT(m->phys_addr == pa,
5428 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5429 				    m, (uintmax_t)m->phys_addr,
5430 				    (uintmax_t)tpte));
5431 
5432 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5433 				    m < &vm_page_array[vm_page_array_size],
5434 				    ("pmap_remove_pages: bad tpte %#jx",
5435 				    (uintmax_t)tpte));
5436 
5437 				pte_clear(pte);
5438 
5439 				/*
5440 				 * Update the vm_page_t clean/reference bits.
5441 				 */
5442 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5443 					if (superpage) {
5444 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5445 							vm_page_dirty(mt);
5446 					} else
5447 						vm_page_dirty(m);
5448 				}
5449 
5450 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5451 
5452 				/* Mark free */
5453 				pc->pc_map[field] |= bitmask;
5454 				if (superpage) {
5455 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5456 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5457 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5458 					pvh->pv_gen++;
5459 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5460 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5461 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5462 							    TAILQ_EMPTY(&mt->md.pv_list))
5463 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5464 					}
5465 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5466 					if (mpte != NULL) {
5467 						pmap_resident_count_dec(pmap, 1);
5468 						KASSERT(mpte->ref_count == NPTEPG,
5469 						    ("pmap_remove_pages: pte page wire count error"));
5470 						mpte->ref_count = 0;
5471 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5472 					}
5473 				} else {
5474 					pmap_resident_count_dec(pmap, 1);
5475 #ifdef VERBOSE_PV
5476 					printf("freeing pv (%p, %p)\n",
5477 						   pmap, pv);
5478 #endif
5479 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5480 					m->md.pv_gen++;
5481 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5482 					    TAILQ_EMPTY(&m->md.pv_list) &&
5483 					    (m->flags & PG_FICTITIOUS) == 0) {
5484 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5485 						if (TAILQ_EMPTY(&pvh->pv_list))
5486 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5487 					}
5488 				}
5489 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5490 				freed++;
5491 			}
5492 		}
5493 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5494 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5495 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5496 		if (allfree) {
5497 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5498 			free_pv_chunk(pc);
5499 		}
5500 	}
5501 	if (lock != NULL)
5502 		rw_wunlock(lock);
5503 	pmap_invalidate_all(pmap);
5504 	PMAP_UNLOCK(pmap);
5505 	vm_page_free_pages_toq(&free, true);
5506 }
5507 
5508 void
5509 mmu_radix_remove_write(vm_page_t m)
5510 {
5511 	struct md_page *pvh;
5512 	pmap_t pmap;
5513 	struct rwlock *lock;
5514 	pv_entry_t next_pv, pv;
5515 	pml3_entry_t *l3e;
5516 	pt_entry_t oldpte, *pte;
5517 	int pvh_gen, md_gen;
5518 
5519 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5520 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5521 	    ("pmap_remove_write: page %p is not managed", m));
5522 	vm_page_assert_busied(m);
5523 
5524 	if (!pmap_page_is_write_mapped(m))
5525 		return;
5526 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5527 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5528 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5529 retry_pv_loop:
5530 	rw_wlock(lock);
5531 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5532 		pmap = PV_PMAP(pv);
5533 		if (!PMAP_TRYLOCK(pmap)) {
5534 			pvh_gen = pvh->pv_gen;
5535 			rw_wunlock(lock);
5536 			PMAP_LOCK(pmap);
5537 			rw_wlock(lock);
5538 			if (pvh_gen != pvh->pv_gen) {
5539 				PMAP_UNLOCK(pmap);
5540 				rw_wunlock(lock);
5541 				goto retry_pv_loop;
5542 			}
5543 		}
5544 		l3e = pmap_pml3e(pmap, pv->pv_va);
5545 		if ((be64toh(*l3e) & PG_RW) != 0)
5546 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5547 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5548 		    ("inconsistent pv lock %p %p for page %p",
5549 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5550 		PMAP_UNLOCK(pmap);
5551 	}
5552 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5553 		pmap = PV_PMAP(pv);
5554 		if (!PMAP_TRYLOCK(pmap)) {
5555 			pvh_gen = pvh->pv_gen;
5556 			md_gen = m->md.pv_gen;
5557 			rw_wunlock(lock);
5558 			PMAP_LOCK(pmap);
5559 			rw_wlock(lock);
5560 			if (pvh_gen != pvh->pv_gen ||
5561 			    md_gen != m->md.pv_gen) {
5562 				PMAP_UNLOCK(pmap);
5563 				rw_wunlock(lock);
5564 				goto retry_pv_loop;
5565 			}
5566 		}
5567 		l3e = pmap_pml3e(pmap, pv->pv_va);
5568 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5569 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5570 		    m));
5571 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5572 retry:
5573 		oldpte = be64toh(*pte);
5574 		if (oldpte & PG_RW) {
5575 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5576 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5577 				goto retry;
5578 			if ((oldpte & PG_M) != 0)
5579 				vm_page_dirty(m);
5580 			pmap_invalidate_page(pmap, pv->pv_va);
5581 		}
5582 		PMAP_UNLOCK(pmap);
5583 	}
5584 	rw_wunlock(lock);
5585 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5586 }
5587 
5588 /*
5589  *	Clear the wired attribute from the mappings for the specified range of
5590  *	addresses in the given pmap.  Every valid mapping within that range
5591  *	must have the wired attribute set.  In contrast, invalid mappings
5592  *	cannot have the wired attribute set, so they are ignored.
5593  *
5594  *	The wired attribute of the page table entry is not a hardware
5595  *	feature, so there is no need to invalidate any TLB entries.
5596  *	Since pmap_demote_l3e() for the wired entry must never fail,
5597  *	pmap_delayed_invl_started()/finished() calls around the
5598  *	function are not needed.
5599  */
5600 void
5601 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5602 {
5603 	vm_offset_t va_next;
5604 	pml1_entry_t *l1e;
5605 	pml2_entry_t *l2e;
5606 	pml3_entry_t *l3e;
5607 	pt_entry_t *pte;
5608 
5609 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5610 	PMAP_LOCK(pmap);
5611 	for (; sva < eva; sva = va_next) {
5612 		l1e = pmap_pml1e(pmap, sva);
5613 		if ((be64toh(*l1e) & PG_V) == 0) {
5614 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5615 			if (va_next < sva)
5616 				va_next = eva;
5617 			continue;
5618 		}
5619 		l2e = pmap_l1e_to_l2e(l1e, sva);
5620 		if ((be64toh(*l2e) & PG_V) == 0) {
5621 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5622 			if (va_next < sva)
5623 				va_next = eva;
5624 			continue;
5625 		}
5626 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5627 		if (va_next < sva)
5628 			va_next = eva;
5629 		l3e = pmap_l2e_to_l3e(l2e, sva);
5630 		if ((be64toh(*l3e) & PG_V) == 0)
5631 			continue;
5632 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5633 			if ((be64toh(*l3e) & PG_W) == 0)
5634 				panic("pmap_unwire: pde %#jx is missing PG_W",
5635 				    (uintmax_t)(be64toh(*l3e)));
5636 
5637 			/*
5638 			 * Are we unwiring the entire large page?  If not,
5639 			 * demote the mapping and fall through.
5640 			 */
5641 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5642 				atomic_clear_long(l3e, htobe64(PG_W));
5643 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5644 				    PAGE_SIZE;
5645 				continue;
5646 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5647 				panic("pmap_unwire: demotion failed");
5648 		}
5649 		if (va_next > eva)
5650 			va_next = eva;
5651 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5652 		    sva += PAGE_SIZE) {
5653 			MPASS(pte == pmap_pte(pmap, sva));
5654 			if ((be64toh(*pte) & PG_V) == 0)
5655 				continue;
5656 			if ((be64toh(*pte) & PG_W) == 0)
5657 				panic("pmap_unwire: pte %#jx is missing PG_W",
5658 				    (uintmax_t)(be64toh(*pte)));
5659 
5660 			/*
5661 			 * PG_W must be cleared atomically.  Although the pmap
5662 			 * lock synchronizes access to PG_W, another processor
5663 			 * could be setting PG_M and/or PG_A concurrently.
5664 			 */
5665 			atomic_clear_long(pte, htobe64(PG_W));
5666 			pmap->pm_stats.wired_count--;
5667 		}
5668 	}
5669 	PMAP_UNLOCK(pmap);
5670 }
5671 
5672 void
5673 mmu_radix_zero_page(vm_page_t m)
5674 {
5675 	vm_offset_t addr;
5676 
5677 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5678 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5679 	pagezero(addr);
5680 }
5681 
5682 void
5683 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5684 {
5685 	caddr_t addr;
5686 
5687 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5688 	MPASS(off + size <= PAGE_SIZE);
5689 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5690 	memset(addr + off, 0, size);
5691 }
5692 
5693 static int
5694 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5695 {
5696 	pml3_entry_t *l3ep;
5697 	pt_entry_t pte;
5698 	vm_paddr_t pa;
5699 	int val;
5700 
5701 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5702 	PMAP_LOCK(pmap);
5703 
5704 	l3ep = pmap_pml3e(pmap, addr);
5705 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5706 		if (be64toh(*l3ep) & RPTE_LEAF) {
5707 			pte = be64toh(*l3ep);
5708 			/* Compute the physical address of the 4KB page. */
5709 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5710 			    PG_FRAME;
5711 			val = MINCORE_PSIND(1);
5712 		} else {
5713 			/* Native endian PTE, do not pass to functions */
5714 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5715 			pa = pte & PG_FRAME;
5716 			val = 0;
5717 		}
5718 	} else {
5719 		pte = 0;
5720 		pa = 0;
5721 		val = 0;
5722 	}
5723 	if ((pte & PG_V) != 0) {
5724 		val |= MINCORE_INCORE;
5725 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5726 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5727 		if ((pte & PG_A) != 0)
5728 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5729 	}
5730 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5731 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5732 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5733 		*locked_pa = pa;
5734 	}
5735 	PMAP_UNLOCK(pmap);
5736 	return (val);
5737 }
5738 
5739 void
5740 mmu_radix_activate(struct thread *td)
5741 {
5742 	pmap_t pmap;
5743 	uint32_t curpid;
5744 
5745 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5746 	critical_enter();
5747 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5748 	curpid = mfspr(SPR_PID);
5749 	if (pmap->pm_pid > isa3_base_pid &&
5750 		curpid != pmap->pm_pid) {
5751 		mmu_radix_pid_set(pmap);
5752 	}
5753 	critical_exit();
5754 }
5755 
5756 /*
5757  *	Increase the starting virtual address of the given mapping if a
5758  *	different alignment might result in more superpage mappings.
5759  */
5760 void
5761 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5762     vm_offset_t *addr, vm_size_t size)
5763 {
5764 
5765 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5766 	    size);
5767 	vm_offset_t superpage_offset;
5768 
5769 	if (size < L3_PAGE_SIZE)
5770 		return;
5771 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5772 		offset += ptoa(object->pg_color);
5773 	superpage_offset = offset & L3_PAGE_MASK;
5774 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5775 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5776 		return;
5777 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5778 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5779 	else
5780 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5781 }
5782 
5783 static void *
5784 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5785 {
5786 	vm_offset_t va, tmpva, ppa, offset;
5787 
5788 	ppa = trunc_page(pa);
5789 	offset = pa & PAGE_MASK;
5790 	size = roundup2(offset + size, PAGE_SIZE);
5791 	if (pa < powerpc_ptob(Maxmem))
5792 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5793 			  pa, powerpc_ptob(Maxmem));
5794 	va = kva_alloc(size);
5795 	if (bootverbose)
5796 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5797 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5798 
5799 	if (!va)
5800 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5801 
5802 	for (tmpva = va; size > 0;) {
5803 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5804 		size -= PAGE_SIZE;
5805 		tmpva += PAGE_SIZE;
5806 		ppa += PAGE_SIZE;
5807 	}
5808 	ptesync();
5809 
5810 	return ((void *)(va + offset));
5811 }
5812 
5813 static void *
5814 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5815 {
5816 
5817 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5818 
5819 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5820 }
5821 
5822 void
5823 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5824 {
5825 
5826 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5827 	m->md.mdpg_cache_attrs = ma;
5828 
5829 	/*
5830 	 * If "m" is a normal page, update its direct mapping.  This update
5831 	 * can be relied upon to perform any cache operations that are
5832 	 * required for data coherence.
5833 	 */
5834 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5835 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5836 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5837 		panic("memory attribute change on the direct map failed");
5838 }
5839 
5840 static void
5841 mmu_radix_unmapdev(vm_offset_t va, vm_size_t size)
5842 {
5843 	vm_offset_t offset;
5844 
5845 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size);
5846 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5847 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5848 		return;
5849 
5850 	offset = va & PAGE_MASK;
5851 	size = round_page(offset + size);
5852 	va = trunc_page(va);
5853 
5854 	if (pmap_initialized) {
5855 		mmu_radix_qremove(va, atop(size));
5856 		kva_free(va, size);
5857 	}
5858 }
5859 
5860 static __inline void
5861 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5862 {
5863 	uint64_t opte, npte;
5864 
5865 	/*
5866 	 * The cache mode bits are all in the low 32-bits of the
5867 	 * PTE, so we can just spin on updating the low 32-bits.
5868 	 */
5869 	do {
5870 		opte = be64toh(*pte);
5871 		npte = opte & ~mask;
5872 		npte |= cache_bits;
5873 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5874 }
5875 
5876 /*
5877  * Tries to demote a 1GB page mapping.
5878  */
5879 static boolean_t
5880 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5881 {
5882 	pml2_entry_t oldpdpe;
5883 	pml3_entry_t *firstpde, newpde, *pde;
5884 	vm_paddr_t pdpgpa;
5885 	vm_page_t pdpg;
5886 
5887 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5888 	oldpdpe = be64toh(*l2e);
5889 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5890 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5891 	pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT,
5892 	    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5893 	if (pdpg == NULL) {
5894 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5895 		    " in pmap %p", va, pmap);
5896 		return (FALSE);
5897 	}
5898 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5899 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5900 	KASSERT((oldpdpe & PG_A) != 0,
5901 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5902 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5903 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5904 	newpde = oldpdpe;
5905 
5906 	/*
5907 	 * Initialize the page directory page.
5908 	 */
5909 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5910 		*pde = htobe64(newpde);
5911 		newpde += L3_PAGE_SIZE;
5912 	}
5913 
5914 	/*
5915 	 * Demote the mapping.
5916 	 */
5917 	pde_store(l2e, pdpgpa);
5918 
5919 	/*
5920 	 * Flush PWC --- XXX revisit
5921 	 */
5922 	pmap_invalidate_all(pmap);
5923 
5924 	pmap_l2e_demotions++;
5925 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5926 	    " in pmap %p", va, pmap);
5927 	return (TRUE);
5928 }
5929 
5930 vm_paddr_t
5931 mmu_radix_kextract(vm_offset_t va)
5932 {
5933 	pml3_entry_t l3e;
5934 	vm_paddr_t pa;
5935 
5936 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
5937 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
5938 		pa = DMAP_TO_PHYS(va);
5939 	} else {
5940 		/* Big-endian PTE on stack */
5941 		l3e = *pmap_pml3e(kernel_pmap, va);
5942 		if (be64toh(l3e) & RPTE_LEAF) {
5943 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
5944 			pa |= (va & L3_PAGE_MASK);
5945 		} else {
5946 			/*
5947 			 * Beware of a concurrent promotion that changes the
5948 			 * PDE at this point!  For example, vtopte() must not
5949 			 * be used to access the PTE because it would use the
5950 			 * new PDE.  It is, however, safe to use the old PDE
5951 			 * because the page table page is preserved by the
5952 			 * promotion.
5953 			 */
5954 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
5955 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
5956 			pa |= (va & PAGE_MASK);
5957 		}
5958 	}
5959 	return (pa);
5960 }
5961 
5962 static pt_entry_t
5963 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
5964 {
5965 
5966 	if (ma != VM_MEMATTR_DEFAULT) {
5967 		return pmap_cache_bits(ma);
5968 	}
5969 
5970 	/*
5971 	 * Assume the page is cache inhibited and access is guarded unless
5972 	 * it's in our available memory array.
5973 	 */
5974 	for (int i = 0; i < pregions_sz; i++) {
5975 		if ((pa >= pregions[i].mr_start) &&
5976 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
5977 			return (RPTE_ATTR_MEM);
5978 	}
5979 	return (RPTE_ATTR_GUARDEDIO);
5980 }
5981 
5982 static void
5983 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
5984 {
5985 	pt_entry_t *pte, pteval;
5986 	uint64_t cache_bits;
5987 
5988 	pte = kvtopte(va);
5989 	MPASS(pte != NULL);
5990 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
5991 	cache_bits = mmu_radix_calc_wimg(pa, ma);
5992 	pte_store(pte, pteval | cache_bits);
5993 }
5994 
5995 void
5996 mmu_radix_kremove(vm_offset_t va)
5997 {
5998 	pt_entry_t *pte;
5999 
6000 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6001 
6002 	pte = kvtopte(va);
6003 	pte_clear(pte);
6004 }
6005 
6006 int
6007 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6008     int *is_user, vm_offset_t *decoded)
6009 {
6010 
6011 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6012 	*decoded = addr;
6013 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6014 	return (0);
6015 }
6016 
6017 static boolean_t
6018 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6019 {
6020 
6021 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6022 	return (mem_valid(pa, size));
6023 }
6024 
6025 static void
6026 mmu_radix_scan_init()
6027 {
6028 
6029 	CTR1(KTR_PMAP, "%s()", __func__);
6030 	UNIMPLEMENTED();
6031 }
6032 
6033 static void
6034 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6035 	void **va)
6036 {
6037 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6038 	UNIMPLEMENTED();
6039 }
6040 
6041 vm_offset_t
6042 mmu_radix_quick_enter_page(vm_page_t m)
6043 {
6044 	vm_paddr_t paddr;
6045 
6046 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6047 	paddr = VM_PAGE_TO_PHYS(m);
6048 	return (PHYS_TO_DMAP(paddr));
6049 }
6050 
6051 void
6052 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6053 {
6054 	/* no work to do here */
6055 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6056 }
6057 
6058 static void
6059 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6060 {
6061 	cpu_flush_dcache((void *)sva, eva - sva);
6062 }
6063 
6064 int
6065 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6066     vm_memattr_t mode)
6067 {
6068 	int error;
6069 
6070 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6071 	PMAP_LOCK(kernel_pmap);
6072 	error = pmap_change_attr_locked(va, size, mode, true);
6073 	PMAP_UNLOCK(kernel_pmap);
6074 	return (error);
6075 }
6076 
6077 static int
6078 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6079 {
6080 	vm_offset_t base, offset, tmpva;
6081 	vm_paddr_t pa_start, pa_end, pa_end1;
6082 	pml2_entry_t *l2e;
6083 	pml3_entry_t *l3e;
6084 	pt_entry_t *pte;
6085 	int cache_bits, error;
6086 	boolean_t changed;
6087 
6088 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6089 	base = trunc_page(va);
6090 	offset = va & PAGE_MASK;
6091 	size = round_page(offset + size);
6092 
6093 	/*
6094 	 * Only supported on kernel virtual addresses, including the direct
6095 	 * map but excluding the recursive map.
6096 	 */
6097 	if (base < DMAP_MIN_ADDRESS)
6098 		return (EINVAL);
6099 
6100 	cache_bits = pmap_cache_bits(mode);
6101 	changed = FALSE;
6102 
6103 	/*
6104 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6105 	 * into 4KB pages if required.
6106 	 */
6107 	for (tmpva = base; tmpva < base + size; ) {
6108 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6109 		if (l2e == NULL || *l2e == 0)
6110 			return (EINVAL);
6111 		if (be64toh(*l2e) & RPTE_LEAF) {
6112 			/*
6113 			 * If the current 1GB page already has the required
6114 			 * memory type, then we need not demote this page. Just
6115 			 * increment tmpva to the next 1GB page frame.
6116 			 */
6117 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6118 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6119 				continue;
6120 			}
6121 
6122 			/*
6123 			 * If the current offset aligns with a 1GB page frame
6124 			 * and there is at least 1GB left within the range, then
6125 			 * we need not break down this page into 2MB pages.
6126 			 */
6127 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6128 			    tmpva + L2_PAGE_MASK < base + size) {
6129 				tmpva += L2_PAGE_MASK;
6130 				continue;
6131 			}
6132 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6133 				return (ENOMEM);
6134 		}
6135 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6136 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6137 		    tmpva, l2e));
6138 		if (*l3e == 0)
6139 			return (EINVAL);
6140 		if (be64toh(*l3e) & RPTE_LEAF) {
6141 			/*
6142 			 * If the current 2MB page already has the required
6143 			 * memory type, then we need not demote this page. Just
6144 			 * increment tmpva to the next 2MB page frame.
6145 			 */
6146 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6147 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6148 				continue;
6149 			}
6150 
6151 			/*
6152 			 * If the current offset aligns with a 2MB page frame
6153 			 * and there is at least 2MB left within the range, then
6154 			 * we need not break down this page into 4KB pages.
6155 			 */
6156 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6157 			    tmpva + L3_PAGE_MASK < base + size) {
6158 				tmpva += L3_PAGE_SIZE;
6159 				continue;
6160 			}
6161 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6162 				return (ENOMEM);
6163 		}
6164 		pte = pmap_l3e_to_pte(l3e, tmpva);
6165 		if (*pte == 0)
6166 			return (EINVAL);
6167 		tmpva += PAGE_SIZE;
6168 	}
6169 	error = 0;
6170 
6171 	/*
6172 	 * Ok, all the pages exist, so run through them updating their
6173 	 * cache mode if required.
6174 	 */
6175 	pa_start = pa_end = 0;
6176 	for (tmpva = base; tmpva < base + size; ) {
6177 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6178 		if (be64toh(*l2e) & RPTE_LEAF) {
6179 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6180 				pmap_pte_attr(l2e, cache_bits,
6181 				    RPTE_ATTR_MASK);
6182 				changed = TRUE;
6183 			}
6184 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6185 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6186 				if (pa_start == pa_end) {
6187 					/* Start physical address run. */
6188 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6189 					pa_end = pa_start + L2_PAGE_SIZE;
6190 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6191 					pa_end += L2_PAGE_SIZE;
6192 				else {
6193 					/* Run ended, update direct map. */
6194 					error = pmap_change_attr_locked(
6195 					    PHYS_TO_DMAP(pa_start),
6196 					    pa_end - pa_start, mode, flush);
6197 					if (error != 0)
6198 						break;
6199 					/* Start physical address run. */
6200 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6201 					pa_end = pa_start + L2_PAGE_SIZE;
6202 				}
6203 			}
6204 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6205 			continue;
6206 		}
6207 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6208 		if (be64toh(*l3e) & RPTE_LEAF) {
6209 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6210 				pmap_pte_attr(l3e, cache_bits,
6211 				    RPTE_ATTR_MASK);
6212 				changed = TRUE;
6213 			}
6214 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6215 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6216 				if (pa_start == pa_end) {
6217 					/* Start physical address run. */
6218 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6219 					pa_end = pa_start + L3_PAGE_SIZE;
6220 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6221 					pa_end += L3_PAGE_SIZE;
6222 				else {
6223 					/* Run ended, update direct map. */
6224 					error = pmap_change_attr_locked(
6225 					    PHYS_TO_DMAP(pa_start),
6226 					    pa_end - pa_start, mode, flush);
6227 					if (error != 0)
6228 						break;
6229 					/* Start physical address run. */
6230 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6231 					pa_end = pa_start + L3_PAGE_SIZE;
6232 				}
6233 			}
6234 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6235 		} else {
6236 			pte = pmap_l3e_to_pte(l3e, tmpva);
6237 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6238 				pmap_pte_attr(pte, cache_bits,
6239 				    RPTE_ATTR_MASK);
6240 				changed = TRUE;
6241 			}
6242 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6243 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6244 				if (pa_start == pa_end) {
6245 					/* Start physical address run. */
6246 					pa_start = be64toh(*pte) & PG_FRAME;
6247 					pa_end = pa_start + PAGE_SIZE;
6248 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6249 					pa_end += PAGE_SIZE;
6250 				else {
6251 					/* Run ended, update direct map. */
6252 					error = pmap_change_attr_locked(
6253 					    PHYS_TO_DMAP(pa_start),
6254 					    pa_end - pa_start, mode, flush);
6255 					if (error != 0)
6256 						break;
6257 					/* Start physical address run. */
6258 					pa_start = be64toh(*pte) & PG_FRAME;
6259 					pa_end = pa_start + PAGE_SIZE;
6260 				}
6261 			}
6262 			tmpva += PAGE_SIZE;
6263 		}
6264 	}
6265 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6266 		pa_end1 = MIN(pa_end, dmaplimit);
6267 		if (pa_start != pa_end1)
6268 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6269 			    pa_end1 - pa_start, mode, flush);
6270 	}
6271 
6272 	/*
6273 	 * Flush CPU caches if required to make sure any data isn't cached that
6274 	 * shouldn't be, etc.
6275 	 */
6276 	if (changed) {
6277 		pmap_invalidate_all(kernel_pmap);
6278 
6279 		if (flush)
6280 			pmap_invalidate_cache_range(base, tmpva);
6281 	}
6282 	return (error);
6283 }
6284 
6285 /*
6286  * Allocate physical memory for the vm_page array and map it into KVA,
6287  * attempting to back the vm_pages with domain-local memory.
6288  */
6289 void
6290 mmu_radix_page_array_startup(long pages)
6291 {
6292 #ifdef notyet
6293 	pml2_entry_t *l2e;
6294 	pml3_entry_t *pde;
6295 	pml3_entry_t newl3;
6296 	vm_offset_t va;
6297 	long pfn;
6298 	int domain, i;
6299 #endif
6300 	vm_paddr_t pa;
6301 	vm_offset_t start, end;
6302 
6303 	vm_page_array_size = pages;
6304 
6305 	start = VM_MIN_KERNEL_ADDRESS;
6306 	end = start + pages * sizeof(struct vm_page);
6307 
6308 	pa = vm_phys_early_alloc(0, end - start);
6309 
6310 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6311 #ifdef notyet
6312 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6313 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6314 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6315 		domain = vm_phys_domain(ptoa(pfn));
6316 		l2e = pmap_pml2e(kernel_pmap, va);
6317 		if ((be64toh(*l2e) & PG_V) == 0) {
6318 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6319 			dump_add_page(pa);
6320 			pagezero(PHYS_TO_DMAP(pa));
6321 			pde_store(l2e, (pml2_entry_t)pa);
6322 		}
6323 		pde = pmap_l2e_to_l3e(l2e, va);
6324 		if ((be64toh(*pde) & PG_V) != 0)
6325 			panic("Unexpected pde %p", pde);
6326 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6327 		for (i = 0; i < NPDEPG; i++)
6328 			dump_add_page(pa + i * PAGE_SIZE);
6329 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6330 		pte_store(pde, newl3);
6331 	}
6332 #endif
6333 	vm_page_array = (vm_page_t)start;
6334 }
6335 
6336 #ifdef DDB
6337 #include <sys/kdb.h>
6338 #include <ddb/ddb.h>
6339 
6340 static void
6341 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6342 {
6343 	pml1_entry_t *l1e;
6344 	pml2_entry_t *l2e;
6345 	pml3_entry_t *l3e;
6346 	pt_entry_t *pte;
6347 
6348 	l1e = &l1[pmap_pml1e_index(va)];
6349 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6350 	if ((be64toh(*l1e) & PG_V) == 0) {
6351 		db_printf("\n");
6352 		return;
6353 	}
6354 	l2e = pmap_l1e_to_l2e(l1e, va);
6355 	db_printf(" l2e %#016lx", be64toh(*l2e));
6356 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6357 		db_printf("\n");
6358 		return;
6359 	}
6360 	l3e = pmap_l2e_to_l3e(l2e, va);
6361 	db_printf(" l3e %#016lx", be64toh(*l3e));
6362 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6363 		db_printf("\n");
6364 		return;
6365 	}
6366 	pte = pmap_l3e_to_pte(l3e, va);
6367 	db_printf(" pte %#016lx\n", be64toh(*pte));
6368 }
6369 
6370 void
6371 pmap_page_print_mappings(vm_page_t m)
6372 {
6373 	pmap_t pmap;
6374 	pv_entry_t pv;
6375 
6376 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6377 	/* need to elide locks if running in ddb */
6378 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6379 		db_printf("pv: %p ", pv);
6380 		db_printf("va: %#016lx ", pv->pv_va);
6381 		pmap = PV_PMAP(pv);
6382 		db_printf("pmap %p  ", pmap);
6383 		if (pmap != NULL) {
6384 			db_printf("asid: %lu\n", pmap->pm_pid);
6385 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6386 		}
6387 	}
6388 }
6389 
6390 DB_SHOW_COMMAND(pte, pmap_print_pte)
6391 {
6392 	vm_offset_t va;
6393 	pmap_t pmap;
6394 
6395 	if (!have_addr) {
6396 		db_printf("show pte addr\n");
6397 		return;
6398 	}
6399 	va = (vm_offset_t)addr;
6400 
6401 	if (va >= DMAP_MIN_ADDRESS)
6402 		pmap = kernel_pmap;
6403 	else if (kdb_thread != NULL)
6404 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6405 	else
6406 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6407 
6408 	pmap_pte_walk(pmap->pm_pml1, va);
6409 }
6410 
6411 #endif
6412