xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/bitstring.h>
38 #include <sys/queue.h>
39 #include <sys/cpuset.h>
40 #include <sys/endian.h>
41 #include <sys/kerneldump.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/syslog.h>
45 #include <sys/msgbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmem.h>
55 #include <sys/vmmeter.h>
56 #include <sys/smp.h>
57 
58 #include <sys/kdb.h>
59 
60 #include <dev/ofw/openfirm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_reserv.h>
73 #include <vm/vm_dumpset.h>
74 #include <vm/uma.h>
75 
76 #include <machine/_inttypes.h>
77 #include <machine/cpu.h>
78 #include <machine/platform.h>
79 #include <machine/frame.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/bat.h>
83 #include <machine/hid.h>
84 #include <machine/pte.h>
85 #include <machine/sr.h>
86 #include <machine/trap.h>
87 #include <machine/mmuvar.h>
88 
89 /* For pseries bit. */
90 #include <powerpc/pseries/phyp-hvcall.h>
91 
92 #ifdef INVARIANTS
93 #include <vm/uma_dbg.h>
94 #endif
95 
96 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
97 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
98 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
99 
100 #include "opt_ddb.h"
101 
102 #ifdef DDB
103 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
104 #endif
105 
106 #define PG_W	RPTE_WIRED
107 #define PG_V	RPTE_VALID
108 #define PG_MANAGED	RPTE_MANAGED
109 #define PG_PROMOTED	RPTE_PROMOTED
110 #define PG_M	RPTE_C
111 #define PG_A	RPTE_R
112 #define PG_X	RPTE_EAA_X
113 #define PG_RW	RPTE_EAA_W
114 #define PG_PTE_CACHE RPTE_ATTR_MASK
115 
116 #define RPTE_SHIFT 9
117 #define NLS_MASK ((1UL<<5)-1)
118 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
119 #define RPTE_MASK (RPTE_ENTRIES-1)
120 
121 #define NLB_SHIFT 0
122 #define NLB_MASK (((1UL<<52)-1) << 8)
123 
124 extern int nkpt;
125 extern caddr_t crashdumpmap;
126 
127 #define RIC_FLUSH_TLB 0
128 #define RIC_FLUSH_PWC 1
129 #define RIC_FLUSH_ALL 2
130 
131 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
132 
133 #define PPC_INST_TLBIE			0x7c000264
134 #define PPC_INST_TLBIEL			0x7c000224
135 #define PPC_INST_SLBIA			0x7c0003e4
136 
137 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
138 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
139 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
140 #define ___PPC_RT(t)	___PPC_RS(t)
141 #define ___PPC_R(r)	(((r) & 0x1) << 16)
142 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
143 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
144 
145 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
146 				       ((IH & 0x7) << 21))
147 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
148 	__XSTRING(.long PPC_INST_TLBIE |			\
149 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
150 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
151 			  ___PPC_R(r))
152 
153 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
154 	 __XSTRING(.long PPC_INST_TLBIEL | \
155 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
156 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
157 			   ___PPC_R(r))
158 
159 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
160 
161 static __inline void
162 ttusync(void)
163 {
164 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
165 }
166 
167 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
168 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
169 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
170 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
171 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
172 
173 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
174 #define  TLBIE_ACTUAL_PAGE_4K		0x00
175 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
176 #define  TLBIE_ACTUAL_PAGE_2M		0x20
177 #define  TLBIE_ACTUAL_PAGE_1G		0x40
178 
179 #define TLBIE_PRS_PARTITION_SCOPE	0x0
180 #define TLBIE_PRS_PROCESS_SCOPE	0x1
181 
182 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
183 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
184 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
185 						 * cached {proc, part}tab entries
186 						 */
187 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
188 						 * Invalidate a range of translations
189 						 */
190 
191 static __always_inline void
192 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
193 			vm_offset_t va, uint16_t ap)
194 {
195 	uint64_t rb, rs;
196 
197 	MPASS((va & PAGE_MASK) == 0);
198 
199 	rs = ((uint64_t)pid << 32) | lpid;
200 	rb = va | is | ap;
201 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
202 		"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
203 }
204 
205 static __inline void
206 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
207 {
208 
209 	__asm __volatile("ptesync" ::: "memory");
210 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
211 	    TLBIEL_INVAL_PAGE, 0, 0, va, ap);
212 	__asm __volatile("ptesync" ::: "memory");
213 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
214 	    TLBIEL_INVAL_PAGE, pid, 0, va, ap);
215 }
216 
217 static __inline void
218 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
219 {
220 
221 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
222 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
223 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
224 }
225 
226 static __inline void
227 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
228 {
229 
230 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
231 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
232 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
233 }
234 
235 static __inline void
236 radix_tlbie_invlpwc_user(uint32_t pid)
237 {
238 
239 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
240 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
241 }
242 
243 static __inline void
244 radix_tlbie_flush_user(uint32_t pid)
245 {
246 
247 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
248 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
249 }
250 
251 static __inline void
252 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
253 {
254 
255 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
256 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
257 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
258 }
259 
260 static __inline void
261 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
262 {
263 
264 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
265 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
266 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
267 }
268 
269 /* 1GB pages aren't currently supported. */
270 static __inline __unused void
271 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
272 {
273 
274 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
275 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
276 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
277 }
278 
279 static __inline void
280 radix_tlbie_invlpwc_kernel(void)
281 {
282 
283 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
284 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
285 }
286 
287 static __inline void
288 radix_tlbie_flush_kernel(void)
289 {
290 
291 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
292 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
293 }
294 
295 static __inline vm_pindex_t
296 pmap_l3e_pindex(vm_offset_t va)
297 {
298 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
299 }
300 
301 static __inline vm_pindex_t
302 pmap_pml3e_index(vm_offset_t va)
303 {
304 
305 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
306 }
307 
308 static __inline vm_pindex_t
309 pmap_pml2e_index(vm_offset_t va)
310 {
311 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
312 }
313 
314 static __inline vm_pindex_t
315 pmap_pml1e_index(vm_offset_t va)
316 {
317 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
318 }
319 
320 /* Return various clipped indexes for a given VA */
321 static __inline vm_pindex_t
322 pmap_pte_index(vm_offset_t va)
323 {
324 
325 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
326 }
327 
328 /* Return a pointer to the PT slot that corresponds to a VA */
329 static __inline pt_entry_t *
330 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
331 {
332 	pt_entry_t *pte;
333 	vm_paddr_t ptepa;
334 
335 	ptepa = (be64toh(*l3e) & NLB_MASK);
336 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
337 	return (&pte[pmap_pte_index(va)]);
338 }
339 
340 /* Return a pointer to the PD slot that corresponds to a VA */
341 static __inline pt_entry_t *
342 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
343 {
344 	pt_entry_t *l3e;
345 	vm_paddr_t l3pa;
346 
347 	l3pa = (be64toh(*l2e) & NLB_MASK);
348 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
349 	return (&l3e[pmap_pml3e_index(va)]);
350 }
351 
352 /* Return a pointer to the PD slot that corresponds to a VA */
353 static __inline pt_entry_t *
354 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
355 {
356 	pt_entry_t *l2e;
357 	vm_paddr_t l2pa;
358 
359 	l2pa = (be64toh(*l1e) & NLB_MASK);
360 
361 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
362 	return (&l2e[pmap_pml2e_index(va)]);
363 }
364 
365 static __inline pml1_entry_t *
366 pmap_pml1e(pmap_t pmap, vm_offset_t va)
367 {
368 
369 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
370 }
371 
372 static pt_entry_t *
373 pmap_pml2e(pmap_t pmap, vm_offset_t va)
374 {
375 	pt_entry_t *l1e;
376 
377 	l1e = pmap_pml1e(pmap, va);
378 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
379 		return (NULL);
380 	return (pmap_l1e_to_l2e(l1e, va));
381 }
382 
383 static __inline pt_entry_t *
384 pmap_pml3e(pmap_t pmap, vm_offset_t va)
385 {
386 	pt_entry_t *l2e;
387 
388 	l2e = pmap_pml2e(pmap, va);
389 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
390 		return (NULL);
391 	return (pmap_l2e_to_l3e(l2e, va));
392 }
393 
394 static __inline pt_entry_t *
395 pmap_pte(pmap_t pmap, vm_offset_t va)
396 {
397 	pt_entry_t *l3e;
398 
399 	l3e = pmap_pml3e(pmap, va);
400 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
401 		return (NULL);
402 	return (pmap_l3e_to_pte(l3e, va));
403 }
404 
405 int nkpt = 64;
406 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
407     "Number of kernel page table pages allocated on bootup");
408 
409 vm_paddr_t dmaplimit;
410 
411 SYSCTL_DECL(_vm_pmap);
412 
413 #ifdef INVARIANTS
414 #define VERBOSE_PMAP 0
415 #define VERBOSE_PROTECT 0
416 static int pmap_logging;
417 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
418     &pmap_logging, 0, "verbose debug logging");
419 #endif
420 
421 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
422 
423 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
424 
425 static vm_offset_t qframe = 0;
426 static struct mtx qframe_mtx;
427 
428 void mmu_radix_activate(struct thread *);
429 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
430 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
431     vm_size_t);
432 void mmu_radix_clear_modify(vm_page_t);
433 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
434 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
435 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
436 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
437 	vm_prot_t);
438 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
439 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
440 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
441 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
442 vm_paddr_t mmu_radix_kextract(vm_offset_t);
443 void mmu_radix_kremove(vm_offset_t);
444 boolean_t mmu_radix_is_modified(vm_page_t);
445 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
446 boolean_t mmu_radix_is_referenced(vm_page_t);
447 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
448 	vm_pindex_t, vm_size_t);
449 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
450 void mmu_radix_page_init(vm_page_t);
451 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
452 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
453 int mmu_radix_page_wired_mappings(vm_page_t);
454 int mmu_radix_pinit(pmap_t);
455 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
456 bool mmu_radix_ps_enabled(pmap_t);
457 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
458 void mmu_radix_qremove(vm_offset_t, int);
459 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
460 void mmu_radix_quick_remove_page(vm_offset_t);
461 boolean_t mmu_radix_ts_referenced(vm_page_t);
462 void mmu_radix_release(pmap_t);
463 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
464 void mmu_radix_remove_all(vm_page_t);
465 void mmu_radix_remove_pages(pmap_t);
466 void mmu_radix_remove_write(vm_page_t);
467 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
468 void mmu_radix_zero_page(vm_page_t);
469 void mmu_radix_zero_page_area(vm_page_t, int, int);
470 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
471 void mmu_radix_page_array_startup(long pages);
472 
473 #include "mmu_oea64.h"
474 
475 /*
476  * Kernel MMU interface
477  */
478 
479 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
480 
481 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
482 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
483     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
484 static void mmu_radix_growkernel(vm_offset_t);
485 static void mmu_radix_init(void);
486 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
487 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
488 static void mmu_radix_pinit0(pmap_t);
489 
490 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
491 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
492 static void mmu_radix_unmapdev(vm_offset_t, vm_size_t);
493 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
494 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
495 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
496 static void mmu_radix_scan_init(void);
497 static void	mmu_radix_cpu_bootstrap(int ap);
498 static void	mmu_radix_tlbie_all(void);
499 
500 static struct pmap_funcs mmu_radix_methods = {
501 	.bootstrap = mmu_radix_bootstrap,
502 	.copy_page = mmu_radix_copy_page,
503 	.copy_pages = mmu_radix_copy_pages,
504 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
505 	.growkernel = mmu_radix_growkernel,
506 	.init = mmu_radix_init,
507 	.map =      		mmu_radix_map,
508 	.mincore =      	mmu_radix_mincore,
509 	.pinit = mmu_radix_pinit,
510 	.pinit0 = mmu_radix_pinit0,
511 
512 	.mapdev = mmu_radix_mapdev,
513 	.mapdev_attr = mmu_radix_mapdev_attr,
514 	.unmapdev = mmu_radix_unmapdev,
515 	.kenter_attr = mmu_radix_kenter_attr,
516 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
517 	.dumpsys_pa_init = mmu_radix_scan_init,
518 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
519 	.page_is_mapped = mmu_radix_page_is_mapped,
520 	.ps_enabled = mmu_radix_ps_enabled,
521 	.align_superpage = mmu_radix_align_superpage,
522 	.object_init_pt = mmu_radix_object_init_pt,
523 	.protect = mmu_radix_protect,
524 	/* pmap dispatcher interface */
525 	.clear_modify = mmu_radix_clear_modify,
526 	.copy = mmu_radix_copy,
527 	.enter = mmu_radix_enter,
528 	.enter_object = mmu_radix_enter_object,
529 	.enter_quick = mmu_radix_enter_quick,
530 	.extract = mmu_radix_extract,
531 	.extract_and_hold = mmu_radix_extract_and_hold,
532 	.is_modified = mmu_radix_is_modified,
533 	.is_prefaultable = mmu_radix_is_prefaultable,
534 	.is_referenced = mmu_radix_is_referenced,
535 	.ts_referenced = mmu_radix_ts_referenced,
536 	.page_exists_quick = mmu_radix_page_exists_quick,
537 	.page_init = mmu_radix_page_init,
538 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
539 	.qenter = mmu_radix_qenter,
540 	.qremove = mmu_radix_qremove,
541 	.release = mmu_radix_release,
542 	.remove = mmu_radix_remove,
543 	.remove_all = mmu_radix_remove_all,
544 	.remove_write = mmu_radix_remove_write,
545 	.unwire = mmu_radix_unwire,
546 	.zero_page = mmu_radix_zero_page,
547 	.zero_page_area = mmu_radix_zero_page_area,
548 	.activate = mmu_radix_activate,
549 	.quick_enter_page =  mmu_radix_quick_enter_page,
550 	.quick_remove_page =  mmu_radix_quick_remove_page,
551 	.page_set_memattr = mmu_radix_page_set_memattr,
552 	.page_array_startup =  mmu_radix_page_array_startup,
553 
554 	/* Internal interfaces */
555 	.kenter = mmu_radix_kenter,
556 	.kextract = mmu_radix_kextract,
557 	.kremove = mmu_radix_kremove,
558 	.change_attr = mmu_radix_change_attr,
559 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
560 
561 	.tlbie_all = mmu_radix_tlbie_all,
562 };
563 
564 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565 
566 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567 	struct rwlock **lockp);
568 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571     struct spglist *free, struct rwlock **lockp);
572 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576     struct spglist *free);
577 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579 
580 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581 		    u_int flags, struct rwlock **lockp);
582 #if VM_NRESERVLEVEL > 0
583 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584 	struct rwlock **lockp);
585 #endif
586 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590 
591 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592 	vm_prot_t prot, struct rwlock **lockp);
593 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594 	u_int flags, vm_page_t m, struct rwlock **lockp);
595 
596 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597 static void free_pv_chunk(struct pv_chunk *pc);
598 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600 	struct rwlock **lockp);
601 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602 	struct rwlock **lockp);
603 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604     struct spglist *free);
605 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606 
607 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608 static void pmap_invalidate_all(pmap_t pmap);
609 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610 
611 /*
612  * Internal flags for pmap_enter()'s helper functions.
613  */
614 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
615 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
616 
617 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
618 #define UNTESTED() panic("%s not yet tested", __func__)
619 
620 /* Number of supported PID bits */
621 static unsigned int isa3_pid_bits;
622 
623 /* PID to start allocating from */
624 static unsigned int isa3_base_pid;
625 
626 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
627 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
628 
629 /*
630  * Map of physical memory regions.
631  */
632 static struct	mem_region *regions, *pregions;
633 static struct	numa_mem_region *numa_pregions;
634 static u_int	phys_avail_count;
635 static int	regions_sz, pregions_sz, numa_pregions_sz;
636 static struct pate *isa3_parttab;
637 static struct prte *isa3_proctab;
638 static vmem_t *asid_arena;
639 
640 extern void bs_remap_earlyboot(void);
641 
642 #define	RADIX_PGD_SIZE_SHIFT	16
643 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
644 
645 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
646 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
647 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
648 
649 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
650 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
651 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
652 
653 /* POWER9 only permits a 64k partition table size. */
654 #define	PARTTAB_SIZE_SHIFT	16
655 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
656 
657 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
658 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
659 
660 /* TLB flush actions. Used as argument to tlbiel_all() */
661 enum {
662 	TLB_INVAL_SCOPE_LPID = 0,	/* invalidate TLBs for current LPID */
663 	TLB_INVAL_SCOPE_GLOBAL = 1,	/* invalidate all TLBs */
664 };
665 
666 #define	NPV_LIST_LOCKS	MAXCPU
667 static int pmap_initialized;
668 static vm_paddr_t proctab0pa;
669 static vm_paddr_t parttab_phys;
670 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
671 
672 /*
673  * Data for the pv entry allocation mechanism.
674  * Updates to pv_invl_gen are protected by the pv_list_locks[]
675  * elements, but reads are not.
676  */
677 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
678 static struct mtx __exclusive_cache_line pv_chunks_mutex;
679 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
680 static struct md_page *pv_table;
681 static struct md_page pv_dummy;
682 
683 #ifdef PV_STATS
684 #define PV_STAT(x)	do { x ; } while (0)
685 #else
686 #define PV_STAT(x)	do { } while (0)
687 #endif
688 
689 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
690 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
691 
692 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
693 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
694 
695 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
696 	struct rwlock **_lockp = (lockp);		\
697 	struct rwlock *_new_lock;			\
698 							\
699 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
700 	if (_new_lock != *_lockp) {			\
701 		if (*_lockp != NULL)			\
702 			rw_wunlock(*_lockp);		\
703 		*_lockp = _new_lock;			\
704 		rw_wlock(*_lockp);			\
705 	}						\
706 } while (0)
707 
708 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
709 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
710 
711 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
712 	struct rwlock **_lockp = (lockp);		\
713 							\
714 	if (*_lockp != NULL) {				\
715 		rw_wunlock(*_lockp);			\
716 		*_lockp = NULL;				\
717 	}						\
718 } while (0)
719 
720 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
721 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
722 
723 /*
724  * We support 52 bits, hence:
725  * bits 52 - 31 = 21, 0b10101
726  * RTS encoding details
727  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
728  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
729  */
730 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
731 
732 static int powernv_enabled = 1;
733 
734 static __always_inline void
735 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
736 	uint32_t pid, uint32_t ric, uint32_t prs)
737 {
738 	uint64_t rb;
739 	uint64_t rs;
740 
741 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
742 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
743 
744 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
745 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
746 		     : "memory");
747 }
748 
749 static void
750 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
751 {
752 	uint32_t set;
753 
754 	__asm __volatile("ptesync": : :"memory");
755 
756 	/*
757 	 * Flush the first set of the TLB, and the entire Page Walk Cache
758 	 * and partition table entries. Then flush the remaining sets of the
759 	 * TLB.
760 	 */
761 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
762 	for (set = 1; set < num_sets; set++)
763 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
764 
765 	/* Do the same for process scoped entries. */
766 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
767 	for (set = 1; set < num_sets; set++)
768 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
769 
770 	__asm __volatile("ptesync": : :"memory");
771 }
772 
773 static void
774 mmu_radix_tlbiel_flush(int scope)
775 {
776 	int is;
777 
778 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
779 		  scope == TLB_INVAL_SCOPE_GLOBAL);
780 	is = scope + 2;
781 
782 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, is);
783 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
784 }
785 
786 static void
787 mmu_radix_tlbie_all()
788 {
789 	if (powernv_enabled)
790 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
791 	else
792 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
793 }
794 
795 static void
796 mmu_radix_init_amor(void)
797 {
798 	/*
799 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
800 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
801 	* Register), enable key 0 and set it to 1.
802 	*
803 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
804 	*/
805 	mtspr(SPR_AMOR, (3ul << 62));
806 }
807 
808 static void
809 mmu_radix_init_iamr(void)
810 {
811 	/*
812 	 * Radix always uses key0 of the IAMR to determine if an access is
813 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
814 	 * fetch.
815 	 */
816 	mtspr(SPR_IAMR, (1ul << 62));
817 }
818 
819 static void
820 mmu_radix_pid_set(pmap_t pmap)
821 {
822 
823 	mtspr(SPR_PID, pmap->pm_pid);
824 	isync();
825 }
826 
827 /* Quick sort callout for comparing physical addresses. */
828 static int
829 pa_cmp(const void *a, const void *b)
830 {
831 	const vm_paddr_t *pa = a, *pb = b;
832 
833 	if (*pa < *pb)
834 		return (-1);
835 	else if (*pa > *pb)
836 		return (1);
837 	else
838 		return (0);
839 }
840 
841 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
842 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
843 #define	pte_store(ptep, pte) do {	   \
844 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
845 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
846 } while (0)
847 /*
848  * NB: should only be used for adding directories - not for direct mappings
849  */
850 #define	pde_store(ptep, pa) do {				\
851 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
852 } while (0)
853 
854 #define	pte_clear(ptep) do {					\
855 		*(u_long *)(ptep) = (u_long)(0);		\
856 } while (0)
857 
858 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
859 
860 /*
861  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
862  * (PTE) page mappings have identical settings for the following fields:
863  */
864 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
865 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
866 
867 static __inline void
868 pmap_resident_count_inc(pmap_t pmap, int count)
869 {
870 
871 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
872 	pmap->pm_stats.resident_count += count;
873 }
874 
875 static __inline void
876 pmap_resident_count_dec(pmap_t pmap, int count)
877 {
878 
879 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
880 	KASSERT(pmap->pm_stats.resident_count >= count,
881 	    ("pmap %p resident count underflow %ld %d", pmap,
882 	    pmap->pm_stats.resident_count, count));
883 	pmap->pm_stats.resident_count -= count;
884 }
885 
886 static void
887 pagezero(vm_offset_t va)
888 {
889 	va = trunc_page(va);
890 
891 	bzero((void *)va, PAGE_SIZE);
892 }
893 
894 static uint64_t
895 allocpages(int n)
896 {
897 	u_int64_t ret;
898 
899 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
900 	for (int i = 0; i < n; i++)
901 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
902 	return (ret);
903 }
904 
905 static pt_entry_t *
906 kvtopte(vm_offset_t va)
907 {
908 	pt_entry_t *l3e;
909 
910 	l3e = pmap_pml3e(kernel_pmap, va);
911 	if ((be64toh(*l3e) & RPTE_VALID) == 0)
912 		return (NULL);
913 	return (pmap_l3e_to_pte(l3e, va));
914 }
915 
916 void
917 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
918 {
919 	pt_entry_t *pte;
920 
921 	pte = kvtopte(va);
922 	MPASS(pte != NULL);
923 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
924 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
925 }
926 
927 bool
928 mmu_radix_ps_enabled(pmap_t pmap)
929 {
930 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
931 }
932 
933 static pt_entry_t *
934 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
935 {
936 	pml3_entry_t *l3e;
937 	pt_entry_t *pte;
938 
939 	va &= PG_PS_FRAME;
940 	l3e = pmap_pml3e(pmap, va);
941 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
942 		return (NULL);
943 
944 	if (be64toh(*l3e) & RPTE_LEAF) {
945 		*is_l3e = 1;
946 		return (l3e);
947 	}
948 	*is_l3e = 0;
949 	va &= PG_FRAME;
950 	pte = pmap_l3e_to_pte(l3e, va);
951 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
952 		return (NULL);
953 	return (pte);
954 }
955 
956 int
957 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
958 {
959 	pt_entry_t *pte;
960 	pt_entry_t startpte, origpte, newpte;
961 	vm_page_t m;
962 	int is_l3e;
963 
964 	startpte = 0;
965  retry:
966 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
967 		return (KERN_INVALID_ADDRESS);
968 	origpte = newpte = be64toh(*pte);
969 	if (startpte == 0) {
970 		startpte = origpte;
971 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
972 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
973 			pmap_invalidate_all(pmap);
974 #ifdef INVARIANTS
975 			if (VERBOSE_PMAP || pmap_logging)
976 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
977 				    __func__, pmap, va, flags, origpte);
978 #endif
979 			return (KERN_FAILURE);
980 		}
981 	}
982 #ifdef INVARIANTS
983 	if (VERBOSE_PMAP || pmap_logging)
984 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
985 		    flags, origpte);
986 #endif
987 	PMAP_LOCK(pmap);
988 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
989 	    be64toh(*pte) != origpte) {
990 		PMAP_UNLOCK(pmap);
991 		return (KERN_FAILURE);
992 	}
993 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
994 	MPASS(m != NULL);
995 	switch (flags) {
996 	case VM_PROT_READ:
997 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
998 			goto protfail;
999 		newpte |= PG_A;
1000 		vm_page_aflag_set(m, PGA_REFERENCED);
1001 		break;
1002 	case VM_PROT_WRITE:
1003 		if ((newpte & RPTE_EAA_W) == 0)
1004 			goto protfail;
1005 		if (is_l3e)
1006 			goto protfail;
1007 		newpte |= PG_M;
1008 		vm_page_dirty(m);
1009 		break;
1010 	case VM_PROT_EXECUTE:
1011 		if ((newpte & RPTE_EAA_X) == 0)
1012 			goto protfail;
1013 		newpte |= PG_A;
1014 		vm_page_aflag_set(m, PGA_REFERENCED);
1015 		break;
1016 	}
1017 
1018 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1019 		goto retry;
1020 	ptesync();
1021 	PMAP_UNLOCK(pmap);
1022 	if (startpte == newpte)
1023 		return (KERN_FAILURE);
1024 	return (0);
1025  protfail:
1026 	PMAP_UNLOCK(pmap);
1027 	return (KERN_PROTECTION_FAILURE);
1028 }
1029 
1030 /*
1031  * Returns TRUE if the given page is mapped individually or as part of
1032  * a 2mpage.  Otherwise, returns FALSE.
1033  */
1034 boolean_t
1035 mmu_radix_page_is_mapped(vm_page_t m)
1036 {
1037 	struct rwlock *lock;
1038 	boolean_t rv;
1039 
1040 	if ((m->oflags & VPO_UNMANAGED) != 0)
1041 		return (FALSE);
1042 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1043 	rw_rlock(lock);
1044 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1045 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1046 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1047 	rw_runlock(lock);
1048 	return (rv);
1049 }
1050 
1051 /*
1052  * Determine the appropriate bits to set in a PTE or PDE for a specified
1053  * caching mode.
1054  */
1055 static int
1056 pmap_cache_bits(vm_memattr_t ma)
1057 {
1058 	if (ma != VM_MEMATTR_DEFAULT) {
1059 		switch (ma) {
1060 		case VM_MEMATTR_UNCACHEABLE:
1061 			return (RPTE_ATTR_GUARDEDIO);
1062 		case VM_MEMATTR_CACHEABLE:
1063 			return (RPTE_ATTR_MEM);
1064 		case VM_MEMATTR_WRITE_BACK:
1065 		case VM_MEMATTR_PREFETCHABLE:
1066 		case VM_MEMATTR_WRITE_COMBINING:
1067 			return (RPTE_ATTR_UNGUARDEDIO);
1068 		}
1069 	}
1070 	return (0);
1071 }
1072 
1073 static void
1074 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1075 {
1076 	ptesync();
1077 	if (pmap == kernel_pmap)
1078 		radix_tlbie_invlpg_kernel_4k(start);
1079 	else
1080 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1081 	ttusync();
1082 }
1083 
1084 static void
1085 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1086 {
1087 	ptesync();
1088 	if (pmap == kernel_pmap)
1089 		radix_tlbie_invlpg_kernel_2m(start);
1090 	else
1091 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1092 	ttusync();
1093 }
1094 
1095 static void
1096 pmap_invalidate_pwc(pmap_t pmap)
1097 {
1098 	ptesync();
1099 	if (pmap == kernel_pmap)
1100 		radix_tlbie_invlpwc_kernel();
1101 	else
1102 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1103 	ttusync();
1104 }
1105 
1106 static void
1107 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1108 {
1109 	if (((start - end) >> PAGE_SHIFT) > 8) {
1110 		pmap_invalidate_all(pmap);
1111 		return;
1112 	}
1113 	ptesync();
1114 	if (pmap == kernel_pmap) {
1115 		while (start < end) {
1116 			radix_tlbie_invlpg_kernel_4k(start);
1117 			start += PAGE_SIZE;
1118 		}
1119 	} else {
1120 		while (start < end) {
1121 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1122 			start += PAGE_SIZE;
1123 		}
1124 	}
1125 	ttusync();
1126 }
1127 
1128 static void
1129 pmap_invalidate_all(pmap_t pmap)
1130 {
1131 	ptesync();
1132 	if (pmap == kernel_pmap)
1133 		radix_tlbie_flush_kernel();
1134 	else
1135 		radix_tlbie_flush_user(pmap->pm_pid);
1136 	ttusync();
1137 }
1138 
1139 static void
1140 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1141 {
1142 
1143 	/*
1144 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1145 	 * by a promotion that did not invalidate the 512 4KB page mappings
1146 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1147 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1148 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1149 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1150 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1151 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1152 	 * TLB.
1153 	 */
1154 	ptesync();
1155 	if ((l3e & PG_PROMOTED) != 0)
1156 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1157 	else
1158 		pmap_invalidate_page_2m(pmap, va);
1159 
1160 	pmap_invalidate_pwc(pmap);
1161 }
1162 
1163 static __inline struct pv_chunk *
1164 pv_to_chunk(pv_entry_t pv)
1165 {
1166 
1167 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1168 }
1169 
1170 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1171 
1172 #define	PC_FREE0	0xfffffffffffffffful
1173 #define	PC_FREE1	0x3ffffffffffffffful
1174 
1175 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1176 
1177 /*
1178  * Ensure that the number of spare PV entries in the specified pmap meets or
1179  * exceeds the given count, "needed".
1180  *
1181  * The given PV list lock may be released.
1182  */
1183 static void
1184 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1185 {
1186 	struct pch new_tail;
1187 	struct pv_chunk *pc;
1188 	vm_page_t m;
1189 	int avail, free;
1190 	bool reclaimed;
1191 
1192 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1193 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1194 
1195 	/*
1196 	 * Newly allocated PV chunks must be stored in a private list until
1197 	 * the required number of PV chunks have been allocated.  Otherwise,
1198 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1199 	 * contrast, these chunks must be added to the pmap upon allocation.
1200 	 */
1201 	TAILQ_INIT(&new_tail);
1202 retry:
1203 	avail = 0;
1204 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1205 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1206 		bit_count((bitstr_t *)pc->pc_map, 0,
1207 				  sizeof(pc->pc_map) * NBBY, &free);
1208 #if 0
1209 		free = popcnt_pc_map_pq(pc->pc_map);
1210 #endif
1211 		if (free == 0)
1212 			break;
1213 		avail += free;
1214 		if (avail >= needed)
1215 			break;
1216 	}
1217 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1218 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1219 		    VM_ALLOC_WIRED);
1220 		if (m == NULL) {
1221 			m = reclaim_pv_chunk(pmap, lockp);
1222 			if (m == NULL)
1223 				goto retry;
1224 			reclaimed = true;
1225 		}
1226 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1227 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1228 		dump_add_page(m->phys_addr);
1229 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1230 		pc->pc_pmap = pmap;
1231 		pc->pc_map[0] = PC_FREE0;
1232 		pc->pc_map[1] = PC_FREE1;
1233 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1234 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1235 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1236 
1237 		/*
1238 		 * The reclaim might have freed a chunk from the current pmap.
1239 		 * If that chunk contained available entries, we need to
1240 		 * re-count the number of available entries.
1241 		 */
1242 		if (reclaimed)
1243 			goto retry;
1244 	}
1245 	if (!TAILQ_EMPTY(&new_tail)) {
1246 		mtx_lock(&pv_chunks_mutex);
1247 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1248 		mtx_unlock(&pv_chunks_mutex);
1249 	}
1250 }
1251 
1252 /*
1253  * First find and then remove the pv entry for the specified pmap and virtual
1254  * address from the specified pv list.  Returns the pv entry if found and NULL
1255  * otherwise.  This operation can be performed on pv lists for either 4KB or
1256  * 2MB page mappings.
1257  */
1258 static __inline pv_entry_t
1259 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1260 {
1261 	pv_entry_t pv;
1262 
1263 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1264 #ifdef INVARIANTS
1265 		if (PV_PMAP(pv) == NULL) {
1266 			printf("corrupted pv_chunk/pv %p\n", pv);
1267 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1268 		}
1269 		MPASS(PV_PMAP(pv) != NULL);
1270 		MPASS(pv->pv_va != 0);
1271 #endif
1272 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1273 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1274 			pvh->pv_gen++;
1275 			break;
1276 		}
1277 	}
1278 	return (pv);
1279 }
1280 
1281 /*
1282  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1283  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1284  * entries for each of the 4KB page mappings.
1285  */
1286 static void
1287 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1288     struct rwlock **lockp)
1289 {
1290 	struct md_page *pvh;
1291 	struct pv_chunk *pc;
1292 	pv_entry_t pv;
1293 	vm_offset_t va_last;
1294 	vm_page_t m;
1295 	int bit, field;
1296 
1297 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1298 	KASSERT((pa & L3_PAGE_MASK) == 0,
1299 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1300 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1301 
1302 	/*
1303 	 * Transfer the 2mpage's pv entry for this mapping to the first
1304 	 * page's pv list.  Once this transfer begins, the pv list lock
1305 	 * must not be released until the last pv entry is reinstantiated.
1306 	 */
1307 	pvh = pa_to_pvh(pa);
1308 	va = trunc_2mpage(va);
1309 	pv = pmap_pvh_remove(pvh, pmap, va);
1310 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1311 	m = PHYS_TO_VM_PAGE(pa);
1312 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1313 
1314 	m->md.pv_gen++;
1315 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1316 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1317 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1318 	for (;;) {
1319 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1320 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1321 		    , ("pmap_pv_demote_pde: missing spare"));
1322 		for (field = 0; field < _NPCM; field++) {
1323 			while (pc->pc_map[field]) {
1324 				bit = cnttzd(pc->pc_map[field]);
1325 				pc->pc_map[field] &= ~(1ul << bit);
1326 				pv = &pc->pc_pventry[field * 64 + bit];
1327 				va += PAGE_SIZE;
1328 				pv->pv_va = va;
1329 				m++;
1330 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1331 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1332 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1333 
1334 				m->md.pv_gen++;
1335 				if (va == va_last)
1336 					goto out;
1337 			}
1338 		}
1339 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1340 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1341 	}
1342 out:
1343 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1344 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1345 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1346 	}
1347 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1348 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1349 }
1350 
1351 static void
1352 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1353 {
1354 
1355 	if (pmap == NULL)
1356 		return;
1357 	pmap_invalidate_all(pmap);
1358 	if (pmap != locked_pmap)
1359 		PMAP_UNLOCK(pmap);
1360 }
1361 
1362 /*
1363  * We are in a serious low memory condition.  Resort to
1364  * drastic measures to free some pages so we can allocate
1365  * another pv entry chunk.
1366  *
1367  * Returns NULL if PV entries were reclaimed from the specified pmap.
1368  *
1369  * We do not, however, unmap 2mpages because subsequent accesses will
1370  * allocate per-page pv entries until repromotion occurs, thereby
1371  * exacerbating the shortage of free pv entries.
1372  */
1373 static int active_reclaims = 0;
1374 static vm_page_t
1375 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1376 {
1377 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1378 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1379 	struct md_page *pvh;
1380 	pml3_entry_t *l3e;
1381 	pmap_t next_pmap, pmap;
1382 	pt_entry_t *pte, tpte;
1383 	pv_entry_t pv;
1384 	vm_offset_t va;
1385 	vm_page_t m, m_pc;
1386 	struct spglist free;
1387 	uint64_t inuse;
1388 	int bit, field, freed;
1389 
1390 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1391 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1392 	pmap = NULL;
1393 	m_pc = NULL;
1394 	SLIST_INIT(&free);
1395 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1396 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1397 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1398 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1399 
1400 	mtx_lock(&pv_chunks_mutex);
1401 	active_reclaims++;
1402 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1403 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1404 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1405 	    SLIST_EMPTY(&free)) {
1406 		next_pmap = pc->pc_pmap;
1407 		if (next_pmap == NULL) {
1408 			/*
1409 			 * The next chunk is a marker.  However, it is
1410 			 * not our marker, so active_reclaims must be
1411 			 * > 1.  Consequently, the next_chunk code
1412 			 * will not rotate the pv_chunks list.
1413 			 */
1414 			goto next_chunk;
1415 		}
1416 		mtx_unlock(&pv_chunks_mutex);
1417 
1418 		/*
1419 		 * A pv_chunk can only be removed from the pc_lru list
1420 		 * when both pc_chunks_mutex is owned and the
1421 		 * corresponding pmap is locked.
1422 		 */
1423 		if (pmap != next_pmap) {
1424 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1425 			pmap = next_pmap;
1426 			/* Avoid deadlock and lock recursion. */
1427 			if (pmap > locked_pmap) {
1428 				RELEASE_PV_LIST_LOCK(lockp);
1429 				PMAP_LOCK(pmap);
1430 				mtx_lock(&pv_chunks_mutex);
1431 				continue;
1432 			} else if (pmap != locked_pmap) {
1433 				if (PMAP_TRYLOCK(pmap)) {
1434 					mtx_lock(&pv_chunks_mutex);
1435 					continue;
1436 				} else {
1437 					pmap = NULL; /* pmap is not locked */
1438 					mtx_lock(&pv_chunks_mutex);
1439 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1440 					if (pc == NULL ||
1441 					    pc->pc_pmap != next_pmap)
1442 						continue;
1443 					goto next_chunk;
1444 				}
1445 			}
1446 		}
1447 
1448 		/*
1449 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1450 		 */
1451 		freed = 0;
1452 		for (field = 0; field < _NPCM; field++) {
1453 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1454 			    inuse != 0; inuse &= ~(1UL << bit)) {
1455 				bit = cnttzd(inuse);
1456 				pv = &pc->pc_pventry[field * 64 + bit];
1457 				va = pv->pv_va;
1458 				l3e = pmap_pml3e(pmap, va);
1459 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1460 					continue;
1461 				pte = pmap_l3e_to_pte(l3e, va);
1462 				if ((be64toh(*pte) & PG_W) != 0)
1463 					continue;
1464 				tpte = be64toh(pte_load_clear(pte));
1465 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1466 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1467 					vm_page_dirty(m);
1468 				if ((tpte & PG_A) != 0)
1469 					vm_page_aflag_set(m, PGA_REFERENCED);
1470 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1471 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1472 
1473 				m->md.pv_gen++;
1474 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1475 				    (m->flags & PG_FICTITIOUS) == 0) {
1476 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1477 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1478 						vm_page_aflag_clear(m,
1479 						    PGA_WRITEABLE);
1480 					}
1481 				}
1482 				pc->pc_map[field] |= 1UL << bit;
1483 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1484 				freed++;
1485 			}
1486 		}
1487 		if (freed == 0) {
1488 			mtx_lock(&pv_chunks_mutex);
1489 			goto next_chunk;
1490 		}
1491 		/* Every freed mapping is for a 4 KB page. */
1492 		pmap_resident_count_dec(pmap, freed);
1493 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1494 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1495 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1496 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1497 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1498 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1499 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1500 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1501 			/* Entire chunk is free; return it. */
1502 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1503 			dump_drop_page(m_pc->phys_addr);
1504 			mtx_lock(&pv_chunks_mutex);
1505 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1506 			break;
1507 		}
1508 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1509 		mtx_lock(&pv_chunks_mutex);
1510 		/* One freed pv entry in locked_pmap is sufficient. */
1511 		if (pmap == locked_pmap)
1512 			break;
1513 next_chunk:
1514 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1515 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1516 		if (active_reclaims == 1 && pmap != NULL) {
1517 			/*
1518 			 * Rotate the pv chunks list so that we do not
1519 			 * scan the same pv chunks that could not be
1520 			 * freed (because they contained a wired
1521 			 * and/or superpage mapping) on every
1522 			 * invocation of reclaim_pv_chunk().
1523 			 */
1524 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1525 				MPASS(pc->pc_pmap != NULL);
1526 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1527 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1528 			}
1529 		}
1530 	}
1531 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1532 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1533 	active_reclaims--;
1534 	mtx_unlock(&pv_chunks_mutex);
1535 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1536 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1537 		m_pc = SLIST_FIRST(&free);
1538 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1539 		/* Recycle a freed page table page. */
1540 		m_pc->ref_count = 1;
1541 	}
1542 	vm_page_free_pages_toq(&free, true);
1543 	return (m_pc);
1544 }
1545 
1546 /*
1547  * free the pv_entry back to the free list
1548  */
1549 static void
1550 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1551 {
1552 	struct pv_chunk *pc;
1553 	int idx, field, bit;
1554 
1555 #ifdef VERBOSE_PV
1556 	if (pmap != kernel_pmap)
1557 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1558 #endif
1559 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1560 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1561 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1562 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1563 	pc = pv_to_chunk(pv);
1564 	idx = pv - &pc->pc_pventry[0];
1565 	field = idx / 64;
1566 	bit = idx % 64;
1567 	pc->pc_map[field] |= 1ul << bit;
1568 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1569 		/* 98% of the time, pc is already at the head of the list. */
1570 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1571 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1572 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1573 		}
1574 		return;
1575 	}
1576 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1577 	free_pv_chunk(pc);
1578 }
1579 
1580 static void
1581 free_pv_chunk(struct pv_chunk *pc)
1582 {
1583 	vm_page_t m;
1584 
1585 	mtx_lock(&pv_chunks_mutex);
1586  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1587 	mtx_unlock(&pv_chunks_mutex);
1588 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1589 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1590 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1591 	/* entire chunk is free, return it */
1592 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1593 	dump_drop_page(m->phys_addr);
1594 	vm_page_unwire_noq(m);
1595 	vm_page_free(m);
1596 }
1597 
1598 /*
1599  * Returns a new PV entry, allocating a new PV chunk from the system when
1600  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1601  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1602  * returned.
1603  *
1604  * The given PV list lock may be released.
1605  */
1606 static pv_entry_t
1607 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1608 {
1609 	int bit, field;
1610 	pv_entry_t pv;
1611 	struct pv_chunk *pc;
1612 	vm_page_t m;
1613 
1614 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1615 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1616 retry:
1617 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1618 	if (pc != NULL) {
1619 		for (field = 0; field < _NPCM; field++) {
1620 			if (pc->pc_map[field]) {
1621 				bit = cnttzd(pc->pc_map[field]);
1622 				break;
1623 			}
1624 		}
1625 		if (field < _NPCM) {
1626 			pv = &pc->pc_pventry[field * 64 + bit];
1627 			pc->pc_map[field] &= ~(1ul << bit);
1628 			/* If this was the last item, move it to tail */
1629 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1630 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1631 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1632 				    pc_list);
1633 			}
1634 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1635 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1636 			MPASS(PV_PMAP(pv) != NULL);
1637 			return (pv);
1638 		}
1639 	}
1640 	/* No free items, allocate another chunk */
1641 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1642 	    VM_ALLOC_WIRED);
1643 	if (m == NULL) {
1644 		if (lockp == NULL) {
1645 			PV_STAT(pc_chunk_tryfail++);
1646 			return (NULL);
1647 		}
1648 		m = reclaim_pv_chunk(pmap, lockp);
1649 		if (m == NULL)
1650 			goto retry;
1651 	}
1652 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1653 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1654 	dump_add_page(m->phys_addr);
1655 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1656 	pc->pc_pmap = pmap;
1657 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1658 	pc->pc_map[1] = PC_FREE1;
1659 	mtx_lock(&pv_chunks_mutex);
1660 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1661 	mtx_unlock(&pv_chunks_mutex);
1662 	pv = &pc->pc_pventry[0];
1663 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1664 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1665 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1666 	MPASS(PV_PMAP(pv) != NULL);
1667 	return (pv);
1668 }
1669 
1670 #if VM_NRESERVLEVEL > 0
1671 /*
1672  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1673  * replace the many pv entries for the 4KB page mappings by a single pv entry
1674  * for the 2MB page mapping.
1675  */
1676 static void
1677 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1678     struct rwlock **lockp)
1679 {
1680 	struct md_page *pvh;
1681 	pv_entry_t pv;
1682 	vm_offset_t va_last;
1683 	vm_page_t m;
1684 
1685 	KASSERT((pa & L3_PAGE_MASK) == 0,
1686 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1687 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1688 
1689 	/*
1690 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1691 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1692 	 * a transfer avoids the possibility that get_pv_entry() calls
1693 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1694 	 * mappings that is being promoted.
1695 	 */
1696 	m = PHYS_TO_VM_PAGE(pa);
1697 	va = trunc_2mpage(va);
1698 	pv = pmap_pvh_remove(&m->md, pmap, va);
1699 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1700 	pvh = pa_to_pvh(pa);
1701 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1702 	pvh->pv_gen++;
1703 	/* Free the remaining NPTEPG - 1 pv entries. */
1704 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1705 	do {
1706 		m++;
1707 		va += PAGE_SIZE;
1708 		pmap_pvh_free(&m->md, pmap, va);
1709 	} while (va < va_last);
1710 }
1711 #endif /* VM_NRESERVLEVEL > 0 */
1712 
1713 /*
1714  * First find and then destroy the pv entry for the specified pmap and virtual
1715  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1716  * page mappings.
1717  */
1718 static void
1719 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1720 {
1721 	pv_entry_t pv;
1722 
1723 	pv = pmap_pvh_remove(pvh, pmap, va);
1724 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1725 	free_pv_entry(pmap, pv);
1726 }
1727 
1728 /*
1729  * Conditionally create the PV entry for a 4KB page mapping if the required
1730  * memory can be allocated without resorting to reclamation.
1731  */
1732 static boolean_t
1733 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1734     struct rwlock **lockp)
1735 {
1736 	pv_entry_t pv;
1737 
1738 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1739 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1740 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1741 		pv->pv_va = va;
1742 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1743 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1744 		m->md.pv_gen++;
1745 		return (TRUE);
1746 	} else
1747 		return (FALSE);
1748 }
1749 
1750 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1751 #ifdef INVARIANTS
1752 static void
1753 validate_addr(vm_paddr_t addr, vm_size_t size)
1754 {
1755 	vm_paddr_t end = addr + size;
1756 	bool found = false;
1757 
1758 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1759 		if (addr >= phys_avail_debug[i] &&
1760 			end <= phys_avail_debug[i + 1]) {
1761 			found = true;
1762 			break;
1763 		}
1764 	}
1765 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1766 					addr, end));
1767 }
1768 #else
1769 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1770 #endif
1771 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1772 
1773 static vm_paddr_t
1774 alloc_pt_page(void)
1775 {
1776 	vm_paddr_t page;
1777 
1778 	page = allocpages(1);
1779 	pagezero(PHYS_TO_DMAP(page));
1780 	return (page);
1781 }
1782 
1783 static void
1784 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1785 {
1786 	pt_entry_t *pte, pteval;
1787 	vm_paddr_t page;
1788 
1789 	if (bootverbose)
1790 		printf("%s %lx -> %lx\n", __func__, start, end);
1791 	while (start < end) {
1792 		pteval = start | DMAP_PAGE_BITS;
1793 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1794 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1795 			page = alloc_pt_page();
1796 			pde_store(pte, page);
1797 		}
1798 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1799 		if ((start & L2_PAGE_MASK) == 0 &&
1800 			end - start >= L2_PAGE_SIZE) {
1801 			start += L2_PAGE_SIZE;
1802 			goto done;
1803 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1804 			page = alloc_pt_page();
1805 			pde_store(pte, page);
1806 		}
1807 
1808 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1809 		if ((start & L3_PAGE_MASK) == 0 &&
1810 			end - start >= L3_PAGE_SIZE) {
1811 			start += L3_PAGE_SIZE;
1812 			goto done;
1813 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1814 			page = alloc_pt_page();
1815 			pde_store(pte, page);
1816 		}
1817 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1818 		start += PAGE_SIZE;
1819 	done:
1820 		pte_store(pte, pteval);
1821 	}
1822 }
1823 
1824 static void
1825 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1826 {
1827 	vm_paddr_t start, end;
1828 
1829 	for (int i = 0; i < pregions_sz; i++) {
1830 		start = pregions[i].mr_start;
1831 		end = start + pregions[i].mr_size;
1832 		if (hwphyssz && start >= hwphyssz)
1833 			break;
1834 		if (hwphyssz && hwphyssz < end)
1835 			end = hwphyssz;
1836 		mmu_radix_dmap_range(start, end);
1837 	}
1838 }
1839 
1840 static void
1841 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1842 {
1843 	vm_paddr_t ptpages, pages;
1844 	pt_entry_t *pte;
1845 	vm_paddr_t l1phys;
1846 
1847 	bzero(kernel_pmap, sizeof(struct pmap));
1848 	PMAP_LOCK_INIT(kernel_pmap);
1849 
1850 	ptpages = allocpages(3);
1851 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1852 	validate_addr(l1phys, RADIX_PGD_SIZE);
1853 	if (bootverbose)
1854 		printf("l1phys=%lx\n", l1phys);
1855 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1856 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1857 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1858 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1859 
1860 	mmu_radix_dmap_populate(hwphyssz);
1861 
1862 	/*
1863 	 * Create page tables for first 128MB of KVA
1864 	 */
1865 	pages = ptpages;
1866 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1867 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1868 	pages += PAGE_SIZE;
1869 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1870 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1871 	pages += PAGE_SIZE;
1872 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1873 	/*
1874 	 * the kernel page table pages need to be preserved in
1875 	 * phys_avail and not overlap with previous  allocations
1876 	 */
1877 	pages = allocpages(nkpt);
1878 	if (bootverbose) {
1879 		printf("phys_avail after dmap populate and nkpt allocation\n");
1880 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1881 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1882 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1883 	}
1884 	KPTphys = pages;
1885 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1886 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1887 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1888 	if (bootverbose)
1889 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1890 	/*
1891 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1892 	 * preallocated kernel page table pages so that vm_page structures
1893 	 * representing these pages will be created.  The vm_page structures
1894 	 * are required for promotion of the corresponding kernel virtual
1895 	 * addresses to superpage mappings.
1896 	 */
1897 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1898 }
1899 
1900 static void
1901 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1902 {
1903 	vm_paddr_t	kpstart, kpend;
1904 	vm_size_t	physsz, hwphyssz;
1905 	//uint64_t	l2virt;
1906 	int		rm_pavail, proctab_size;
1907 	int		i, j;
1908 
1909 	kpstart = start & ~DMAP_BASE_ADDRESS;
1910 	kpend = end & ~DMAP_BASE_ADDRESS;
1911 
1912 	/* Get physical memory regions from firmware */
1913 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1914 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1915 
1916 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1917 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1918 
1919 	if (bootverbose)
1920 		for (int i = 0; i < regions_sz; i++)
1921 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1922 			    i, regions[i].mr_start, i, regions[i].mr_size);
1923 	/*
1924 	 * XXX workaround a simulator bug
1925 	 */
1926 	for (int i = 0; i < regions_sz; i++)
1927 		if (regions[i].mr_start & PAGE_MASK) {
1928 			regions[i].mr_start += PAGE_MASK;
1929 			regions[i].mr_start &= ~PAGE_MASK;
1930 			regions[i].mr_size &= ~PAGE_MASK;
1931 		}
1932 	if (bootverbose)
1933 		for (int i = 0; i < pregions_sz; i++)
1934 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1935 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1936 
1937 	phys_avail_count = 0;
1938 	physsz = 0;
1939 	hwphyssz = 0;
1940 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1941 	for (i = 0, j = 0; i < regions_sz; i++) {
1942 		if (bootverbose)
1943 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1944 			    i, regions[i].mr_start, i, regions[i].mr_size);
1945 
1946 		if (regions[i].mr_size < PAGE_SIZE)
1947 			continue;
1948 
1949 		if (hwphyssz != 0 &&
1950 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1951 			if (physsz < hwphyssz) {
1952 				phys_avail[j] = regions[i].mr_start;
1953 				phys_avail[j + 1] = regions[i].mr_start +
1954 				    (hwphyssz - physsz);
1955 				physsz = hwphyssz;
1956 				phys_avail_count++;
1957 				dump_avail[j] = phys_avail[j];
1958 				dump_avail[j + 1] = phys_avail[j + 1];
1959 			}
1960 			break;
1961 		}
1962 		phys_avail[j] = regions[i].mr_start;
1963 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1964 		dump_avail[j] = phys_avail[j];
1965 		dump_avail[j + 1] = phys_avail[j + 1];
1966 
1967 		phys_avail_count++;
1968 		physsz += regions[i].mr_size;
1969 		j += 2;
1970 	}
1971 
1972 	/* Check for overlap with the kernel and exception vectors */
1973 	rm_pavail = 0;
1974 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1975 		if (phys_avail[j] < EXC_LAST)
1976 			phys_avail[j] += EXC_LAST;
1977 
1978 		if (phys_avail[j] >= kpstart &&
1979 		    phys_avail[j + 1] <= kpend) {
1980 			phys_avail[j] = phys_avail[j + 1] = ~0;
1981 			rm_pavail++;
1982 			continue;
1983 		}
1984 
1985 		if (kpstart >= phys_avail[j] &&
1986 		    kpstart < phys_avail[j + 1]) {
1987 			if (kpend < phys_avail[j + 1]) {
1988 				phys_avail[2 * phys_avail_count] =
1989 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1990 				phys_avail[2 * phys_avail_count + 1] =
1991 				    phys_avail[j + 1];
1992 				phys_avail_count++;
1993 			}
1994 
1995 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1996 		}
1997 
1998 		if (kpend >= phys_avail[j] &&
1999 		    kpend < phys_avail[j + 1]) {
2000 			if (kpstart > phys_avail[j]) {
2001 				phys_avail[2 * phys_avail_count] = phys_avail[j];
2002 				phys_avail[2 * phys_avail_count + 1] =
2003 				    kpstart & ~PAGE_MASK;
2004 				phys_avail_count++;
2005 			}
2006 
2007 			phys_avail[j] = (kpend & ~PAGE_MASK) +
2008 			    PAGE_SIZE;
2009 		}
2010 	}
2011 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2012 	for (i = 0; i < 2 * phys_avail_count; i++)
2013 		phys_avail_debug[i] = phys_avail[i];
2014 
2015 	/* Remove physical available regions marked for removal (~0) */
2016 	if (rm_pavail) {
2017 		phys_avail_count -= rm_pavail;
2018 		for (i = 2 * phys_avail_count;
2019 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
2020 			phys_avail[i] = phys_avail[i + 1] = 0;
2021 	}
2022 	if (bootverbose) {
2023 		printf("phys_avail ranges after filtering:\n");
2024 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2025 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2026 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2027 	}
2028 	physmem = btoc(physsz);
2029 
2030 	/* XXX assume we're running non-virtualized and
2031 	 * we don't support BHYVE
2032 	 */
2033 	if (isa3_pid_bits == 0)
2034 		isa3_pid_bits = 20;
2035 	if (powernv_enabled) {
2036 		parttab_phys =
2037 		    moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2038 		validate_addr(parttab_phys, PARTTAB_SIZE);
2039 		for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2040 			pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2041 
2042 	}
2043 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2044 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2045 	validate_addr(proctab0pa, proctab_size);
2046 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2047 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2048 
2049 	mmu_radix_setup_pagetables(hwphyssz);
2050 }
2051 
2052 static void
2053 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2054 {
2055 	int		i;
2056 	vm_paddr_t	pa;
2057 	void		*dpcpu;
2058 	vm_offset_t va;
2059 
2060 	/*
2061 	 * Set up the Open Firmware pmap and add its mappings if not in real
2062 	 * mode.
2063 	 */
2064 	if (bootverbose)
2065 		printf("%s enter\n", __func__);
2066 
2067 	/*
2068 	 * Calculate the last available physical address, and reserve the
2069 	 * vm_page_array (upper bound).
2070 	 */
2071 	Maxmem = 0;
2072 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
2073 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2074 
2075 	/*
2076 	 * Set the start and end of kva.
2077 	 */
2078 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
2079 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
2080 
2081 	/*
2082 	 * Remap any early IO mappings (console framebuffer, etc.)
2083 	 */
2084 	bs_remap_earlyboot();
2085 
2086 	/*
2087 	 * Allocate a kernel stack with a guard page for thread0 and map it
2088 	 * into the kernel page map.
2089 	 */
2090 	pa = allocpages(kstack_pages);
2091 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2092 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2093 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2094 	thread0.td_kstack = va;
2095 	for (i = 0; i < kstack_pages; i++) {
2096 		mmu_radix_kenter(va, pa);
2097 		pa += PAGE_SIZE;
2098 		va += PAGE_SIZE;
2099 	}
2100 	thread0.td_kstack_pages = kstack_pages;
2101 
2102 	/*
2103 	 * Allocate virtual address space for the message buffer.
2104 	 */
2105 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2106 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2107 
2108 	/*
2109 	 * Allocate virtual address space for the dynamic percpu area.
2110 	 */
2111 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2112 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2113 	dpcpu_init(dpcpu, curcpu);
2114 
2115 	crashdumpmap = (caddr_t)virtual_avail;
2116 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2117 
2118 	/*
2119 	 * Reserve some special page table entries/VA space for temporary
2120 	 * mapping of pages.
2121 	 */
2122 }
2123 
2124 static void
2125 mmu_parttab_init(void)
2126 {
2127 	uint64_t ptcr;
2128 
2129 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2130 
2131 	if (bootverbose)
2132 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2133 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2134 	if (bootverbose)
2135 		printf("setting ptcr %lx\n", ptcr);
2136 	mtspr(SPR_PTCR, ptcr);
2137 }
2138 
2139 static void
2140 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2141 {
2142 	uint64_t prev;
2143 
2144 	if (bootverbose)
2145 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2146 			   lpid, pagetab, proctab);
2147 	prev = be64toh(isa3_parttab[lpid].pagetab);
2148 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2149 	isa3_parttab[lpid].proctab = htobe64(proctab);
2150 
2151 	if (prev & PARTTAB_HR) {
2152 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2153 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2154 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2155 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2156 	} else {
2157 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2158 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2159 	}
2160 	ttusync();
2161 }
2162 
2163 static void
2164 mmu_radix_parttab_init(void)
2165 {
2166 	uint64_t pagetab;
2167 
2168 	mmu_parttab_init();
2169 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2170 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2171 	mmu_parttab_update(0, pagetab, 0);
2172 }
2173 
2174 static void
2175 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2176 {
2177 	uint64_t pagetab, proctab;
2178 
2179 	pagetab = be64toh(isa3_parttab[0].pagetab);
2180 	proctab = proctabpa | table_size | PARTTAB_GR;
2181 	mmu_parttab_update(0, pagetab, proctab);
2182 }
2183 
2184 static void
2185 mmu_radix_proctab_init(void)
2186 {
2187 
2188 	isa3_base_pid = 1;
2189 
2190 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2191 	isa3_proctab->proctab0 =
2192 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2193 		RADIX_PGD_INDEX_SHIFT);
2194 
2195 	if (powernv_enabled) {
2196 		mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2197 		__asm __volatile("ptesync" : : : "memory");
2198 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2199 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2200 		__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2201 #ifdef PSERIES
2202 	} else {
2203 		phyp_hcall(H_REGISTER_PROC_TBL,
2204 		    PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2205 		    proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2206 #endif
2207 	}
2208 
2209 	if (bootverbose)
2210 		printf("process table %p and kernel radix PDE: %p\n",
2211 			   isa3_proctab, kernel_pmap->pm_pml1);
2212 	mtmsr(mfmsr() | PSL_DR );
2213 	mtmsr(mfmsr() &  ~PSL_DR);
2214 	kernel_pmap->pm_pid = isa3_base_pid;
2215 	isa3_base_pid++;
2216 }
2217 
2218 void
2219 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2220     int advice)
2221 {
2222 	struct rwlock *lock;
2223 	pml1_entry_t *l1e;
2224 	pml2_entry_t *l2e;
2225 	pml3_entry_t oldl3e, *l3e;
2226 	pt_entry_t *pte;
2227 	vm_offset_t va, va_next;
2228 	vm_page_t m;
2229 	bool anychanged;
2230 
2231 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2232 		return;
2233 	anychanged = false;
2234 	PMAP_LOCK(pmap);
2235 	for (; sva < eva; sva = va_next) {
2236 		l1e = pmap_pml1e(pmap, sva);
2237 		if ((be64toh(*l1e) & PG_V) == 0) {
2238 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2239 			if (va_next < sva)
2240 				va_next = eva;
2241 			continue;
2242 		}
2243 		l2e = pmap_l1e_to_l2e(l1e, sva);
2244 		if ((be64toh(*l2e) & PG_V) == 0) {
2245 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2246 			if (va_next < sva)
2247 				va_next = eva;
2248 			continue;
2249 		}
2250 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2251 		if (va_next < sva)
2252 			va_next = eva;
2253 		l3e = pmap_l2e_to_l3e(l2e, sva);
2254 		oldl3e = be64toh(*l3e);
2255 		if ((oldl3e & PG_V) == 0)
2256 			continue;
2257 		else if ((oldl3e & RPTE_LEAF) != 0) {
2258 			if ((oldl3e & PG_MANAGED) == 0)
2259 				continue;
2260 			lock = NULL;
2261 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2262 				if (lock != NULL)
2263 					rw_wunlock(lock);
2264 
2265 				/*
2266 				 * The large page mapping was destroyed.
2267 				 */
2268 				continue;
2269 			}
2270 
2271 			/*
2272 			 * Unless the page mappings are wired, remove the
2273 			 * mapping to a single page so that a subsequent
2274 			 * access may repromote.  Choosing the last page
2275 			 * within the address range [sva, min(va_next, eva))
2276 			 * generally results in more repromotions.  Since the
2277 			 * underlying page table page is fully populated, this
2278 			 * removal never frees a page table page.
2279 			 */
2280 			if ((oldl3e & PG_W) == 0) {
2281 				va = eva;
2282 				if (va > va_next)
2283 					va = va_next;
2284 				va -= PAGE_SIZE;
2285 				KASSERT(va >= sva,
2286 				    ("mmu_radix_advise: no address gap"));
2287 				pte = pmap_l3e_to_pte(l3e, va);
2288 				KASSERT((be64toh(*pte) & PG_V) != 0,
2289 				    ("pmap_advise: invalid PTE"));
2290 				pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2291 				    &lock);
2292 				anychanged = true;
2293 			}
2294 			if (lock != NULL)
2295 				rw_wunlock(lock);
2296 		}
2297 		if (va_next > eva)
2298 			va_next = eva;
2299 		va = va_next;
2300 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2301 			 pte++, sva += PAGE_SIZE) {
2302 			MPASS(pte == pmap_pte(pmap, sva));
2303 
2304 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2305 				goto maybe_invlrng;
2306 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2307 				if (advice == MADV_DONTNEED) {
2308 					/*
2309 					 * Future calls to pmap_is_modified()
2310 					 * can be avoided by making the page
2311 					 * dirty now.
2312 					 */
2313 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2314 					vm_page_dirty(m);
2315 				}
2316 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2317 			} else if ((be64toh(*pte) & PG_A) != 0)
2318 				atomic_clear_long(pte, htobe64(PG_A));
2319 			else
2320 				goto maybe_invlrng;
2321 			anychanged = true;
2322 			continue;
2323 maybe_invlrng:
2324 			if (va != va_next) {
2325 				anychanged = true;
2326 				va = va_next;
2327 			}
2328 		}
2329 		if (va != va_next)
2330 			anychanged = true;
2331 	}
2332 	if (anychanged)
2333 		pmap_invalidate_all(pmap);
2334 	PMAP_UNLOCK(pmap);
2335 }
2336 
2337 /*
2338  * Routines used in machine-dependent code
2339  */
2340 static void
2341 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2342 {
2343 	uint64_t lpcr;
2344 
2345 	if (bootverbose)
2346 		printf("%s\n", __func__);
2347 	hw_direct_map = 1;
2348 	powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2349 	mmu_radix_early_bootstrap(start, end);
2350 	if (bootverbose)
2351 		printf("early bootstrap complete\n");
2352 	if (powernv_enabled) {
2353 		lpcr = mfspr(SPR_LPCR);
2354 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2355 		mmu_radix_parttab_init();
2356 		mmu_radix_init_amor();
2357 		if (bootverbose)
2358 			printf("powernv init complete\n");
2359 	}
2360 	mmu_radix_init_iamr();
2361 	mmu_radix_proctab_init();
2362 	mmu_radix_pid_set(kernel_pmap);
2363 	if (powernv_enabled)
2364 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2365 	else
2366 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2367 
2368 	mmu_radix_late_bootstrap(start, end);
2369 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2370 	if (bootverbose)
2371 		printf("%s done\n", __func__);
2372 	pmap_bootstrapped = 1;
2373 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2374 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2375 }
2376 
2377 static void
2378 mmu_radix_cpu_bootstrap(int ap)
2379 {
2380 	uint64_t lpcr;
2381 	uint64_t ptcr;
2382 
2383 	if (powernv_enabled) {
2384 		lpcr = mfspr(SPR_LPCR);
2385 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2386 
2387 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2388 		mtspr(SPR_PTCR, ptcr);
2389 		mmu_radix_init_amor();
2390 	}
2391 	mmu_radix_init_iamr();
2392 	mmu_radix_pid_set(kernel_pmap);
2393 	if (powernv_enabled)
2394 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2395 	else
2396 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2397 }
2398 
2399 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2400     "2MB page mapping counters");
2401 
2402 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2403 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2404     &pmap_l3e_demotions, "2MB page demotions");
2405 
2406 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2407 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2408     &pmap_l3e_mappings, "2MB page mappings");
2409 
2410 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2411 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2412     &pmap_l3e_p_failures, "2MB page promotion failures");
2413 
2414 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2415 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2416     &pmap_l3e_promotions, "2MB page promotions");
2417 
2418 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2419     "1GB page mapping counters");
2420 
2421 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2422 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2423     &pmap_l2e_demotions, "1GB page demotions");
2424 
2425 void
2426 mmu_radix_clear_modify(vm_page_t m)
2427 {
2428 	struct md_page *pvh;
2429 	pmap_t pmap;
2430 	pv_entry_t next_pv, pv;
2431 	pml3_entry_t oldl3e, *l3e;
2432 	pt_entry_t oldpte, *pte;
2433 	struct rwlock *lock;
2434 	vm_offset_t va;
2435 	int md_gen, pvh_gen;
2436 
2437 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2438 	    ("pmap_clear_modify: page %p is not managed", m));
2439 	vm_page_assert_busied(m);
2440 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2441 
2442 	/*
2443 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2444 	 * If the object containing the page is locked and the page is not
2445 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2446 	 */
2447 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2448 		return;
2449 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2450 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2451 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2452 	rw_wlock(lock);
2453 restart:
2454 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2455 		pmap = PV_PMAP(pv);
2456 		if (!PMAP_TRYLOCK(pmap)) {
2457 			pvh_gen = pvh->pv_gen;
2458 			rw_wunlock(lock);
2459 			PMAP_LOCK(pmap);
2460 			rw_wlock(lock);
2461 			if (pvh_gen != pvh->pv_gen) {
2462 				PMAP_UNLOCK(pmap);
2463 				goto restart;
2464 			}
2465 		}
2466 		va = pv->pv_va;
2467 		l3e = pmap_pml3e(pmap, va);
2468 		oldl3e = be64toh(*l3e);
2469 		if ((oldl3e & PG_RW) != 0 &&
2470 		    pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2471 		    (oldl3e & PG_W) == 0) {
2472 			/*
2473 			 * Write protect the mapping to a
2474 			 * single page so that a subsequent
2475 			 * write access may repromote.
2476 			 */
2477 			va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2478 			    PG_PS_FRAME);
2479 			pte = pmap_l3e_to_pte(l3e, va);
2480 			oldpte = be64toh(*pte);
2481 			while (!atomic_cmpset_long(pte,
2482 			    htobe64(oldpte),
2483 				htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2484 				   oldpte = be64toh(*pte);
2485 			vm_page_dirty(m);
2486 			pmap_invalidate_page(pmap, va);
2487 		}
2488 		PMAP_UNLOCK(pmap);
2489 	}
2490 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2491 		pmap = PV_PMAP(pv);
2492 		if (!PMAP_TRYLOCK(pmap)) {
2493 			md_gen = m->md.pv_gen;
2494 			pvh_gen = pvh->pv_gen;
2495 			rw_wunlock(lock);
2496 			PMAP_LOCK(pmap);
2497 			rw_wlock(lock);
2498 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2499 				PMAP_UNLOCK(pmap);
2500 				goto restart;
2501 			}
2502 		}
2503 		l3e = pmap_pml3e(pmap, pv->pv_va);
2504 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2505 		    " a 2mpage in page %p's pv list", m));
2506 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2507 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2508 			atomic_clear_long(pte, htobe64(PG_M));
2509 			pmap_invalidate_page(pmap, pv->pv_va);
2510 		}
2511 		PMAP_UNLOCK(pmap);
2512 	}
2513 	rw_wunlock(lock);
2514 }
2515 
2516 void
2517 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2518     vm_size_t len, vm_offset_t src_addr)
2519 {
2520 	struct rwlock *lock;
2521 	struct spglist free;
2522 	vm_offset_t addr;
2523 	vm_offset_t end_addr = src_addr + len;
2524 	vm_offset_t va_next;
2525 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2526 	bool invalidate_all;
2527 
2528 	CTR6(KTR_PMAP,
2529 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2530 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2531 
2532 	if (dst_addr != src_addr)
2533 		return;
2534 	lock = NULL;
2535 	invalidate_all = false;
2536 	if (dst_pmap < src_pmap) {
2537 		PMAP_LOCK(dst_pmap);
2538 		PMAP_LOCK(src_pmap);
2539 	} else {
2540 		PMAP_LOCK(src_pmap);
2541 		PMAP_LOCK(dst_pmap);
2542 	}
2543 
2544 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2545 		pml1_entry_t *l1e;
2546 		pml2_entry_t *l2e;
2547 		pml3_entry_t srcptepaddr, *l3e;
2548 		pt_entry_t *src_pte, *dst_pte;
2549 
2550 		l1e = pmap_pml1e(src_pmap, addr);
2551 		if ((be64toh(*l1e) & PG_V) == 0) {
2552 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2553 			if (va_next < addr)
2554 				va_next = end_addr;
2555 			continue;
2556 		}
2557 
2558 		l2e = pmap_l1e_to_l2e(l1e, addr);
2559 		if ((be64toh(*l2e) & PG_V) == 0) {
2560 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2561 			if (va_next < addr)
2562 				va_next = end_addr;
2563 			continue;
2564 		}
2565 
2566 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2567 		if (va_next < addr)
2568 			va_next = end_addr;
2569 
2570 		l3e = pmap_l2e_to_l3e(l2e, addr);
2571 		srcptepaddr = be64toh(*l3e);
2572 		if (srcptepaddr == 0)
2573 			continue;
2574 
2575 		if (srcptepaddr & RPTE_LEAF) {
2576 			if ((addr & L3_PAGE_MASK) != 0 ||
2577 			    addr + L3_PAGE_SIZE > end_addr)
2578 				continue;
2579 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2580 			if (dst_pdpg == NULL)
2581 				break;
2582 			l3e = (pml3_entry_t *)
2583 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2584 			l3e = &l3e[pmap_pml3e_index(addr)];
2585 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2586 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2587 			    PMAP_ENTER_NORECLAIM, &lock))) {
2588 				*l3e = htobe64(srcptepaddr & ~PG_W);
2589 				pmap_resident_count_inc(dst_pmap,
2590 				    L3_PAGE_SIZE / PAGE_SIZE);
2591 				counter_u64_add(pmap_l3e_mappings, 1);
2592 			} else
2593 				dst_pdpg->ref_count--;
2594 			continue;
2595 		}
2596 
2597 		srcptepaddr &= PG_FRAME;
2598 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2599 		KASSERT(srcmpte->ref_count > 0,
2600 		    ("pmap_copy: source page table page is unused"));
2601 
2602 		if (va_next > end_addr)
2603 			va_next = end_addr;
2604 
2605 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2606 		src_pte = &src_pte[pmap_pte_index(addr)];
2607 		dstmpte = NULL;
2608 		while (addr < va_next) {
2609 			pt_entry_t ptetemp;
2610 			ptetemp = be64toh(*src_pte);
2611 			/*
2612 			 * we only virtual copy managed pages
2613 			 */
2614 			if ((ptetemp & PG_MANAGED) != 0) {
2615 				if (dstmpte != NULL &&
2616 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2617 					dstmpte->ref_count++;
2618 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2619 				    addr, NULL)) == NULL)
2620 					goto out;
2621 				dst_pte = (pt_entry_t *)
2622 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2623 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2624 				if (be64toh(*dst_pte) == 0 &&
2625 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2626 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2627 				    &lock)) {
2628 					/*
2629 					 * Clear the wired, modified, and
2630 					 * accessed (referenced) bits
2631 					 * during the copy.
2632 					 */
2633 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2634 					    PG_A));
2635 					pmap_resident_count_inc(dst_pmap, 1);
2636 				} else {
2637 					SLIST_INIT(&free);
2638 					if (pmap_unwire_ptp(dst_pmap, addr,
2639 					    dstmpte, &free)) {
2640 						/*
2641 						 * Although "addr" is not
2642 						 * mapped, paging-structure
2643 						 * caches could nonetheless
2644 						 * have entries that refer to
2645 						 * the freed page table pages.
2646 						 * Invalidate those entries.
2647 						 */
2648 						invalidate_all = true;
2649 						vm_page_free_pages_toq(&free,
2650 						    true);
2651 					}
2652 					goto out;
2653 				}
2654 				if (dstmpte->ref_count >= srcmpte->ref_count)
2655 					break;
2656 			}
2657 			addr += PAGE_SIZE;
2658 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2659 				src_pte = pmap_pte(src_pmap, addr);
2660 			else
2661 				src_pte++;
2662 		}
2663 	}
2664 out:
2665 	if (invalidate_all)
2666 		pmap_invalidate_all(dst_pmap);
2667 	if (lock != NULL)
2668 		rw_wunlock(lock);
2669 	PMAP_UNLOCK(src_pmap);
2670 	PMAP_UNLOCK(dst_pmap);
2671 }
2672 
2673 static void
2674 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2675 {
2676 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2677 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2678 
2679 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2680 	/*
2681 	 * XXX slow
2682 	 */
2683 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2684 }
2685 
2686 static void
2687 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2688     vm_offset_t b_offset, int xfersize)
2689 {
2690         void *a_cp, *b_cp;
2691         vm_offset_t a_pg_offset, b_pg_offset;
2692         int cnt;
2693 
2694 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2695 	    a_offset, mb, b_offset, xfersize);
2696 
2697         while (xfersize > 0) {
2698                 a_pg_offset = a_offset & PAGE_MASK;
2699                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2700                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2701                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2702                     a_pg_offset;
2703                 b_pg_offset = b_offset & PAGE_MASK;
2704                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2705                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2706                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2707                     b_pg_offset;
2708                 bcopy(a_cp, b_cp, cnt);
2709                 a_offset += cnt;
2710                 b_offset += cnt;
2711                 xfersize -= cnt;
2712         }
2713 }
2714 
2715 #if VM_NRESERVLEVEL > 0
2716 /*
2717  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2718  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2719  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2720  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2721  * identical characteristics.
2722  */
2723 static int
2724 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2725     struct rwlock **lockp)
2726 {
2727 	pml3_entry_t newpde;
2728 	pt_entry_t *firstpte, oldpte, pa, *pte;
2729 	vm_page_t mpte;
2730 
2731 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2732 
2733 	/*
2734 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2735 	 * either invalid, unused, or does not map the first 4KB physical page
2736 	 * within a 2MB page.
2737 	 */
2738 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2739 setpde:
2740 	newpde = be64toh(*firstpte);
2741 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2742 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2743 		    " in pmap %p", va, pmap);
2744 		goto fail;
2745 	}
2746 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2747 		/*
2748 		 * When PG_M is already clear, PG_RW can be cleared without
2749 		 * a TLB invalidation.
2750 		 */
2751 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2752 			goto setpde;
2753 		newpde &= ~RPTE_EAA_W;
2754 	}
2755 
2756 	/*
2757 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2758 	 * PTE maps an unexpected 4KB physical page or does not have identical
2759 	 * characteristics to the first PTE.
2760 	 */
2761 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2762 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2763 setpte:
2764 		oldpte = be64toh(*pte);
2765 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2766 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2767 			    " in pmap %p", va, pmap);
2768 			goto fail;
2769 		}
2770 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2771 			/*
2772 			 * When PG_M is already clear, PG_RW can be cleared
2773 			 * without a TLB invalidation.
2774 			 */
2775 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2776 				goto setpte;
2777 			oldpte &= ~RPTE_EAA_W;
2778 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2779 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2780 			    (va & ~L3_PAGE_MASK), pmap);
2781 		}
2782 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2783 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2784 			    " in pmap %p", va, pmap);
2785 			goto fail;
2786 		}
2787 		pa -= PAGE_SIZE;
2788 	}
2789 
2790 	/*
2791 	 * Save the page table page in its current state until the PDE
2792 	 * mapping the superpage is demoted by pmap_demote_pde() or
2793 	 * destroyed by pmap_remove_pde().
2794 	 */
2795 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2796 	KASSERT(mpte >= vm_page_array &&
2797 	    mpte < &vm_page_array[vm_page_array_size],
2798 	    ("pmap_promote_l3e: page table page is out of range"));
2799 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2800 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2801 	if (pmap_insert_pt_page(pmap, mpte)) {
2802 		CTR2(KTR_PMAP,
2803 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2804 		    pmap);
2805 		goto fail;
2806 	}
2807 
2808 	/*
2809 	 * Promote the pv entries.
2810 	 */
2811 	if ((newpde & PG_MANAGED) != 0)
2812 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2813 
2814 	pte_store(pde, PG_PROMOTED | newpde);
2815 	ptesync();
2816 	counter_u64_add(pmap_l3e_promotions, 1);
2817 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2818 	    " in pmap %p", va, pmap);
2819 	return (0);
2820  fail:
2821 	counter_u64_add(pmap_l3e_p_failures, 1);
2822 	return (KERN_FAILURE);
2823 }
2824 #endif /* VM_NRESERVLEVEL > 0 */
2825 
2826 int
2827 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2828     vm_prot_t prot, u_int flags, int8_t psind)
2829 {
2830 	struct rwlock *lock;
2831 	pml3_entry_t *l3e;
2832 	pt_entry_t *pte;
2833 	pt_entry_t newpte, origpte;
2834 	pv_entry_t pv;
2835 	vm_paddr_t opa, pa;
2836 	vm_page_t mpte, om;
2837 	int rv, retrycount;
2838 	boolean_t nosleep, invalidate_all, invalidate_page;
2839 
2840 	va = trunc_page(va);
2841 	retrycount = 0;
2842 	invalidate_page = invalidate_all = false;
2843 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2844 	    m, prot, flags, psind);
2845 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2846 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2847 	    ("pmap_enter: managed mapping within the clean submap"));
2848 	if ((m->oflags & VPO_UNMANAGED) == 0)
2849 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2850 
2851 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2852 	    ("pmap_enter: flags %u has reserved bits set", flags));
2853 	pa = VM_PAGE_TO_PHYS(m);
2854 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2855 	if ((flags & VM_PROT_WRITE) != 0)
2856 		newpte |= PG_M;
2857 	if ((flags & VM_PROT_READ) != 0)
2858 		newpte |= PG_A;
2859 	if (prot & VM_PROT_READ)
2860 		newpte |= RPTE_EAA_R;
2861 	if ((prot & VM_PROT_WRITE) != 0)
2862 		newpte |= RPTE_EAA_W;
2863 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2864 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2865 
2866 	if (prot & VM_PROT_EXECUTE)
2867 		newpte |= PG_X;
2868 	if ((flags & PMAP_ENTER_WIRED) != 0)
2869 		newpte |= PG_W;
2870 	if (va >= DMAP_MIN_ADDRESS)
2871 		newpte |= RPTE_EAA_P;
2872 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2873 	/*
2874 	 * Set modified bit gratuitously for writeable mappings if
2875 	 * the page is unmanaged. We do not want to take a fault
2876 	 * to do the dirty bit accounting for these mappings.
2877 	 */
2878 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2879 		if ((newpte & PG_RW) != 0)
2880 			newpte |= PG_M;
2881 	} else
2882 		newpte |= PG_MANAGED;
2883 
2884 	lock = NULL;
2885 	PMAP_LOCK(pmap);
2886 	if (psind == 1) {
2887 		/* Assert the required virtual and physical alignment. */
2888 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2889 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2890 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2891 		goto out;
2892 	}
2893 	mpte = NULL;
2894 
2895 	/*
2896 	 * In the case that a page table page is not
2897 	 * resident, we are creating it here.
2898 	 */
2899 retry:
2900 	l3e = pmap_pml3e(pmap, va);
2901 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2902 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2903 		pte = pmap_l3e_to_pte(l3e, va);
2904 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2905 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2906 			mpte->ref_count++;
2907 		}
2908 	} else if (va < VM_MAXUSER_ADDRESS) {
2909 		/*
2910 		 * Here if the pte page isn't mapped, or if it has been
2911 		 * deallocated.
2912 		 */
2913 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2914 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2915 		    nosleep ? NULL : &lock);
2916 		if (mpte == NULL && nosleep) {
2917 			rv = KERN_RESOURCE_SHORTAGE;
2918 			goto out;
2919 		}
2920 		if (__predict_false(retrycount++ == 6))
2921 			panic("too many retries");
2922 		invalidate_all = true;
2923 		goto retry;
2924 	} else
2925 		panic("pmap_enter: invalid page directory va=%#lx", va);
2926 
2927 	origpte = be64toh(*pte);
2928 	pv = NULL;
2929 
2930 	/*
2931 	 * Is the specified virtual address already mapped?
2932 	 */
2933 	if ((origpte & PG_V) != 0) {
2934 #ifdef INVARIANTS
2935 		if (VERBOSE_PMAP || pmap_logging) {
2936 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2937 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2938 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2939 			    curproc->p_pid, curproc->p_comm, origpte);
2940 			pmap_pte_walk(pmap->pm_pml1, va);
2941 		}
2942 #endif
2943 		/*
2944 		 * Wiring change, just update stats. We don't worry about
2945 		 * wiring PT pages as they remain resident as long as there
2946 		 * are valid mappings in them. Hence, if a user page is wired,
2947 		 * the PT page will be also.
2948 		 */
2949 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2950 			pmap->pm_stats.wired_count++;
2951 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2952 			pmap->pm_stats.wired_count--;
2953 
2954 		/*
2955 		 * Remove the extra PT page reference.
2956 		 */
2957 		if (mpte != NULL) {
2958 			mpte->ref_count--;
2959 			KASSERT(mpte->ref_count > 0,
2960 			    ("pmap_enter: missing reference to page table page,"
2961 			     " va: 0x%lx", va));
2962 		}
2963 
2964 		/*
2965 		 * Has the physical page changed?
2966 		 */
2967 		opa = origpte & PG_FRAME;
2968 		if (opa == pa) {
2969 			/*
2970 			 * No, might be a protection or wiring change.
2971 			 */
2972 			if ((origpte & PG_MANAGED) != 0 &&
2973 			    (newpte & PG_RW) != 0)
2974 				vm_page_aflag_set(m, PGA_WRITEABLE);
2975 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2976 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2977 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2978 						goto retry;
2979 					if ((newpte & PG_M) != (origpte & PG_M))
2980 						vm_page_dirty(m);
2981 					if ((newpte & PG_A) != (origpte & PG_A))
2982 						vm_page_aflag_set(m, PGA_REFERENCED);
2983 					ptesync();
2984 				} else
2985 					invalidate_all = true;
2986 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2987 					goto unchanged;
2988 			}
2989 			goto validate;
2990 		}
2991 
2992 		/*
2993 		 * The physical page has changed.  Temporarily invalidate
2994 		 * the mapping.  This ensures that all threads sharing the
2995 		 * pmap keep a consistent view of the mapping, which is
2996 		 * necessary for the correct handling of COW faults.  It
2997 		 * also permits reuse of the old mapping's PV entry,
2998 		 * avoiding an allocation.
2999 		 *
3000 		 * For consistency, handle unmanaged mappings the same way.
3001 		 */
3002 		origpte = be64toh(pte_load_clear(pte));
3003 		KASSERT((origpte & PG_FRAME) == opa,
3004 		    ("pmap_enter: unexpected pa update for %#lx", va));
3005 		if ((origpte & PG_MANAGED) != 0) {
3006 			om = PHYS_TO_VM_PAGE(opa);
3007 
3008 			/*
3009 			 * The pmap lock is sufficient to synchronize with
3010 			 * concurrent calls to pmap_page_test_mappings() and
3011 			 * pmap_ts_referenced().
3012 			 */
3013 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3014 				vm_page_dirty(om);
3015 			if ((origpte & PG_A) != 0)
3016 				vm_page_aflag_set(om, PGA_REFERENCED);
3017 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3018 			pv = pmap_pvh_remove(&om->md, pmap, va);
3019 			if ((newpte & PG_MANAGED) == 0)
3020 				free_pv_entry(pmap, pv);
3021 #ifdef INVARIANTS
3022 			else if (origpte & PG_MANAGED) {
3023 				if (pv == NULL) {
3024 					pmap_page_print_mappings(om);
3025 					MPASS(pv != NULL);
3026 				}
3027 			}
3028 #endif
3029 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3030 			    TAILQ_EMPTY(&om->md.pv_list) &&
3031 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3032 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3033 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3034 		}
3035 		if ((origpte & PG_A) != 0)
3036 			invalidate_page = true;
3037 		origpte = 0;
3038 	} else {
3039 		if (pmap != kernel_pmap) {
3040 #ifdef INVARIANTS
3041 			if (VERBOSE_PMAP || pmap_logging)
3042 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3043 				    pmap, va, m, prot, flags, psind,
3044 				    pmap->pm_pid, curproc->p_pid,
3045 				    curproc->p_comm);
3046 #endif
3047 		}
3048 
3049 		/*
3050 		 * Increment the counters.
3051 		 */
3052 		if ((newpte & PG_W) != 0)
3053 			pmap->pm_stats.wired_count++;
3054 		pmap_resident_count_inc(pmap, 1);
3055 	}
3056 
3057 	/*
3058 	 * Enter on the PV list if part of our managed memory.
3059 	 */
3060 	if ((newpte & PG_MANAGED) != 0) {
3061 		if (pv == NULL) {
3062 			pv = get_pv_entry(pmap, &lock);
3063 			pv->pv_va = va;
3064 		}
3065 #ifdef VERBOSE_PV
3066 		else
3067 			printf("reassigning pv: %p to pmap: %p\n",
3068 				   pv, pmap);
3069 #endif
3070 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3071 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3072 		m->md.pv_gen++;
3073 		if ((newpte & PG_RW) != 0)
3074 			vm_page_aflag_set(m, PGA_WRITEABLE);
3075 	}
3076 
3077 	/*
3078 	 * Update the PTE.
3079 	 */
3080 	if ((origpte & PG_V) != 0) {
3081 validate:
3082 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3083 		KASSERT((origpte & PG_FRAME) == pa,
3084 		    ("pmap_enter: unexpected pa update for %#lx", va));
3085 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3086 		    (PG_M | PG_RW)) {
3087 			if ((origpte & PG_MANAGED) != 0)
3088 				vm_page_dirty(m);
3089 			invalidate_page = true;
3090 
3091 			/*
3092 			 * Although the PTE may still have PG_RW set, TLB
3093 			 * invalidation may nonetheless be required because
3094 			 * the PTE no longer has PG_M set.
3095 			 */
3096 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3097 			/*
3098 			 * Removing capabilities requires invalidation on POWER
3099 			 */
3100 			invalidate_page = true;
3101 			goto unchanged;
3102 		}
3103 		if ((origpte & PG_A) != 0)
3104 			invalidate_page = true;
3105 	} else {
3106 		pte_store(pte, newpte);
3107 		ptesync();
3108 	}
3109 unchanged:
3110 
3111 #if VM_NRESERVLEVEL > 0
3112 	/*
3113 	 * If both the page table page and the reservation are fully
3114 	 * populated, then attempt promotion.
3115 	 */
3116 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3117 	    mmu_radix_ps_enabled(pmap) &&
3118 	    (m->flags & PG_FICTITIOUS) == 0 &&
3119 	    vm_reserv_level_iffullpop(m) == 0 &&
3120 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3121 		invalidate_all = true;
3122 #endif
3123 	if (invalidate_all)
3124 		pmap_invalidate_all(pmap);
3125 	else if (invalidate_page)
3126 		pmap_invalidate_page(pmap, va);
3127 
3128 	rv = KERN_SUCCESS;
3129 out:
3130 	if (lock != NULL)
3131 		rw_wunlock(lock);
3132 	PMAP_UNLOCK(pmap);
3133 
3134 	return (rv);
3135 }
3136 
3137 /*
3138  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3139  * if successful.  Returns false if (1) a page table page cannot be allocated
3140  * without sleeping, (2) a mapping already exists at the specified virtual
3141  * address, or (3) a PV entry cannot be allocated without reclaiming another
3142  * PV entry.
3143  */
3144 static bool
3145 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3146     struct rwlock **lockp)
3147 {
3148 	pml3_entry_t newpde;
3149 
3150 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3151 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3152 	    RPTE_LEAF | PG_V;
3153 	if ((m->oflags & VPO_UNMANAGED) == 0)
3154 		newpde |= PG_MANAGED;
3155 	if (prot & VM_PROT_EXECUTE)
3156 		newpde |= PG_X;
3157 	if (prot & VM_PROT_READ)
3158 		newpde |= RPTE_EAA_R;
3159 	if (va >= DMAP_MIN_ADDRESS)
3160 		newpde |= RPTE_EAA_P;
3161 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3162 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3163 	    KERN_SUCCESS);
3164 }
3165 
3166 /*
3167  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3168  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3169  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3170  * a mapping already exists at the specified virtual address.  Returns
3171  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3172  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3173  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3174  *
3175  * The parameter "m" is only used when creating a managed, writeable mapping.
3176  */
3177 static int
3178 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3179     vm_page_t m, struct rwlock **lockp)
3180 {
3181 	struct spglist free;
3182 	pml3_entry_t oldl3e, *l3e;
3183 	vm_page_t mt, pdpg;
3184 
3185 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3186 	    ("pmap_enter_pde: newpde is missing PG_M"));
3187 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3188 
3189 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3190 	    NULL : lockp)) == NULL) {
3191 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3192 		    " in pmap %p", va, pmap);
3193 		return (KERN_RESOURCE_SHORTAGE);
3194 	}
3195 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3196 	l3e = &l3e[pmap_pml3e_index(va)];
3197 	oldl3e = be64toh(*l3e);
3198 	if ((oldl3e & PG_V) != 0) {
3199 		KASSERT(pdpg->ref_count > 1,
3200 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3201 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3202 			pdpg->ref_count--;
3203 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3204 			    " in pmap %p", va, pmap);
3205 			return (KERN_FAILURE);
3206 		}
3207 		/* Break the existing mapping(s). */
3208 		SLIST_INIT(&free);
3209 		if ((oldl3e & RPTE_LEAF) != 0) {
3210 			/*
3211 			 * The reference to the PD page that was acquired by
3212 			 * pmap_allocl3e() ensures that it won't be freed.
3213 			 * However, if the PDE resulted from a promotion, then
3214 			 * a reserved PT page could be freed.
3215 			 */
3216 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3217 			pmap_invalidate_l3e_page(pmap, va, oldl3e);
3218 		} else {
3219 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3220 			    &free, lockp))
3221 		               pmap_invalidate_all(pmap);
3222 		}
3223 		vm_page_free_pages_toq(&free, true);
3224 		if (va >= VM_MAXUSER_ADDRESS) {
3225 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3226 			if (pmap_insert_pt_page(pmap, mt)) {
3227 				/*
3228 				 * XXX Currently, this can't happen because
3229 				 * we do not perform pmap_enter(psind == 1)
3230 				 * on the kernel pmap.
3231 				 */
3232 				panic("pmap_enter_pde: trie insert failed");
3233 			}
3234 		} else
3235 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3236 			    l3e));
3237 	}
3238 	if ((newpde & PG_MANAGED) != 0) {
3239 		/*
3240 		 * Abort this mapping if its PV entry could not be created.
3241 		 */
3242 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3243 			SLIST_INIT(&free);
3244 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3245 				/*
3246 				 * Although "va" is not mapped, paging-
3247 				 * structure caches could nonetheless have
3248 				 * entries that refer to the freed page table
3249 				 * pages.  Invalidate those entries.
3250 				 */
3251 				pmap_invalidate_page(pmap, va);
3252 				vm_page_free_pages_toq(&free, true);
3253 			}
3254 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3255 			    " in pmap %p", va, pmap);
3256 			return (KERN_RESOURCE_SHORTAGE);
3257 		}
3258 		if ((newpde & PG_RW) != 0) {
3259 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3260 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3261 		}
3262 	}
3263 
3264 	/*
3265 	 * Increment counters.
3266 	 */
3267 	if ((newpde & PG_W) != 0)
3268 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3269 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3270 
3271 	/*
3272 	 * Map the superpage.  (This is not a promoted mapping; there will not
3273 	 * be any lingering 4KB page mappings in the TLB.)
3274 	 */
3275 	pte_store(l3e, newpde);
3276 	ptesync();
3277 
3278 	counter_u64_add(pmap_l3e_mappings, 1);
3279 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3280 	    " in pmap %p", va, pmap);
3281 	return (KERN_SUCCESS);
3282 }
3283 
3284 void
3285 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3286     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3287 {
3288 
3289 	struct rwlock *lock;
3290 	vm_offset_t va;
3291 	vm_page_t m, mpte;
3292 	vm_pindex_t diff, psize;
3293 	bool invalidate;
3294 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3295 
3296 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3297 	    end, m_start, prot);
3298 
3299 	invalidate = false;
3300 	psize = atop(end - start);
3301 	mpte = NULL;
3302 	m = m_start;
3303 	lock = NULL;
3304 	PMAP_LOCK(pmap);
3305 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3306 		va = start + ptoa(diff);
3307 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3308 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3309 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3310 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3311 		else
3312 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3313 			    mpte, &lock, &invalidate);
3314 		m = TAILQ_NEXT(m, listq);
3315 	}
3316 	ptesync();
3317 	if (lock != NULL)
3318 		rw_wunlock(lock);
3319 	if (invalidate)
3320 		pmap_invalidate_all(pmap);
3321 	PMAP_UNLOCK(pmap);
3322 }
3323 
3324 static vm_page_t
3325 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3326     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3327 {
3328 	struct spglist free;
3329 	pt_entry_t *pte;
3330 	vm_paddr_t pa;
3331 
3332 	KASSERT(!VA_IS_CLEANMAP(va) ||
3333 	    (m->oflags & VPO_UNMANAGED) != 0,
3334 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3335 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3336 
3337 	/*
3338 	 * In the case that a page table page is not
3339 	 * resident, we are creating it here.
3340 	 */
3341 	if (va < VM_MAXUSER_ADDRESS) {
3342 		vm_pindex_t ptepindex;
3343 		pml3_entry_t *ptepa;
3344 
3345 		/*
3346 		 * Calculate pagetable page index
3347 		 */
3348 		ptepindex = pmap_l3e_pindex(va);
3349 		if (mpte && (mpte->pindex == ptepindex)) {
3350 			mpte->ref_count++;
3351 		} else {
3352 			/*
3353 			 * Get the page directory entry
3354 			 */
3355 			ptepa = pmap_pml3e(pmap, va);
3356 
3357 			/*
3358 			 * If the page table page is mapped, we just increment
3359 			 * the hold count, and activate it.  Otherwise, we
3360 			 * attempt to allocate a page table page.  If this
3361 			 * attempt fails, we don't retry.  Instead, we give up.
3362 			 */
3363 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3364 				if (be64toh(*ptepa) & RPTE_LEAF)
3365 					return (NULL);
3366 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3367 				mpte->ref_count++;
3368 			} else {
3369 				/*
3370 				 * Pass NULL instead of the PV list lock
3371 				 * pointer, because we don't intend to sleep.
3372 				 */
3373 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3374 				if (mpte == NULL)
3375 					return (mpte);
3376 			}
3377 		}
3378 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3379 		pte = &pte[pmap_pte_index(va)];
3380 	} else {
3381 		mpte = NULL;
3382 		pte = pmap_pte(pmap, va);
3383 	}
3384 	if (be64toh(*pte)) {
3385 		if (mpte != NULL) {
3386 			mpte->ref_count--;
3387 			mpte = NULL;
3388 		}
3389 		return (mpte);
3390 	}
3391 
3392 	/*
3393 	 * Enter on the PV list if part of our managed memory.
3394 	 */
3395 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3396 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3397 		if (mpte != NULL) {
3398 			SLIST_INIT(&free);
3399 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3400 				/*
3401 				 * Although "va" is not mapped, paging-
3402 				 * structure caches could nonetheless have
3403 				 * entries that refer to the freed page table
3404 				 * pages.  Invalidate those entries.
3405 				 */
3406 				*invalidate = true;
3407 				vm_page_free_pages_toq(&free, true);
3408 			}
3409 			mpte = NULL;
3410 		}
3411 		return (mpte);
3412 	}
3413 
3414 	/*
3415 	 * Increment counters
3416 	 */
3417 	pmap_resident_count_inc(pmap, 1);
3418 
3419 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3420 	if (prot & VM_PROT_EXECUTE)
3421 		pa |= PG_X;
3422 	else
3423 		pa |= RPTE_EAA_R;
3424 	if ((m->oflags & VPO_UNMANAGED) == 0)
3425 		pa |= PG_MANAGED;
3426 
3427 	pte_store(pte, pa);
3428 	return (mpte);
3429 }
3430 
3431 void
3432 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3433     vm_prot_t prot)
3434 {
3435 	struct rwlock *lock;
3436 	bool invalidate;
3437 
3438 	lock = NULL;
3439 	invalidate = false;
3440 	PMAP_LOCK(pmap);
3441 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3442 	    &invalidate);
3443 	ptesync();
3444 	if (lock != NULL)
3445 		rw_wunlock(lock);
3446 	if (invalidate)
3447 		pmap_invalidate_all(pmap);
3448 	PMAP_UNLOCK(pmap);
3449 }
3450 
3451 vm_paddr_t
3452 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3453 {
3454 	pml3_entry_t *l3e;
3455 	pt_entry_t *pte;
3456 	vm_paddr_t pa;
3457 
3458 	l3e = pmap_pml3e(pmap, va);
3459 	if (__predict_false(l3e == NULL))
3460 		return (0);
3461 	if (be64toh(*l3e) & RPTE_LEAF) {
3462 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3463 		pa |= (va & L3_PAGE_MASK);
3464 	} else {
3465 		/*
3466 		 * Beware of a concurrent promotion that changes the
3467 		 * PDE at this point!  For example, vtopte() must not
3468 		 * be used to access the PTE because it would use the
3469 		 * new PDE.  It is, however, safe to use the old PDE
3470 		 * because the page table page is preserved by the
3471 		 * promotion.
3472 		 */
3473 		pte = pmap_l3e_to_pte(l3e, va);
3474 		if (__predict_false(pte == NULL))
3475 			return (0);
3476 		pa = be64toh(*pte);
3477 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3478 		pa |= (va & PAGE_MASK);
3479 	}
3480 	return (pa);
3481 }
3482 
3483 vm_page_t
3484 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3485 {
3486 	pml3_entry_t l3e, *l3ep;
3487 	pt_entry_t pte;
3488 	vm_page_t m;
3489 
3490 	m = NULL;
3491 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3492 	PMAP_LOCK(pmap);
3493 	l3ep = pmap_pml3e(pmap, va);
3494 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3495 		if (l3e & RPTE_LEAF) {
3496 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3497 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3498 				    (va & L3_PAGE_MASK));
3499 		} else {
3500 			/* Native endian PTE, do not pass to pmap functions */
3501 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3502 			if ((pte & PG_V) &&
3503 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3504 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3505 		}
3506 		if (m != NULL && !vm_page_wire_mapped(m))
3507 			m = NULL;
3508 	}
3509 	PMAP_UNLOCK(pmap);
3510 	return (m);
3511 }
3512 
3513 static void
3514 mmu_radix_growkernel(vm_offset_t addr)
3515 {
3516 	vm_paddr_t paddr;
3517 	vm_page_t nkpg;
3518 	pml3_entry_t *l3e;
3519 	pml2_entry_t *l2e;
3520 
3521 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3522 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3523 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3524 		return;
3525 
3526 	addr = roundup2(addr, L3_PAGE_SIZE);
3527 	if (addr - 1 >= vm_map_max(kernel_map))
3528 		addr = vm_map_max(kernel_map);
3529 	while (kernel_vm_end < addr) {
3530 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3531 		if ((be64toh(*l2e) & PG_V) == 0) {
3532 			/* We need a new PDP entry */
3533 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT,
3534 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
3535 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3536 			if (nkpg == NULL)
3537 				panic("pmap_growkernel: no memory to grow kernel");
3538 			if ((nkpg->flags & PG_ZERO) == 0)
3539 				mmu_radix_zero_page(nkpg);
3540 			paddr = VM_PAGE_TO_PHYS(nkpg);
3541 			pde_store(l2e, paddr);
3542 			continue; /* try again */
3543 		}
3544 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3545 		if ((be64toh(*l3e) & PG_V) != 0) {
3546 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3547 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3548 				kernel_vm_end = vm_map_max(kernel_map);
3549 				break;
3550 			}
3551 			continue;
3552 		}
3553 
3554 		nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end),
3555 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3556 		    VM_ALLOC_ZERO);
3557 		if (nkpg == NULL)
3558 			panic("pmap_growkernel: no memory to grow kernel");
3559 		if ((nkpg->flags & PG_ZERO) == 0)
3560 			mmu_radix_zero_page(nkpg);
3561 		paddr = VM_PAGE_TO_PHYS(nkpg);
3562 		pde_store(l3e, paddr);
3563 
3564 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3565 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3566 			kernel_vm_end = vm_map_max(kernel_map);
3567 			break;
3568 		}
3569 	}
3570 	ptesync();
3571 }
3572 
3573 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3574 static uma_zone_t zone_radix_pgd;
3575 
3576 static int
3577 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3578     int flags)
3579 {
3580 
3581 	for (int i = 0; i < count; i++) {
3582 		vm_page_t m = vm_page_alloc_contig(NULL, 0,
3583 		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3584 		    VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE,
3585 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3586 		    VM_MEMATTR_DEFAULT);
3587 		/* XXX zero on alloc here so we don't have to later */
3588 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3589 	}
3590 	return (count);
3591 }
3592 
3593 static void
3594 radix_pgd_release(void *arg __unused, void **store, int count)
3595 {
3596 	vm_page_t m;
3597 	struct spglist free;
3598 	int page_count;
3599 
3600 	SLIST_INIT(&free);
3601 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3602 
3603 	for (int i = 0; i < count; i++) {
3604 		/*
3605 		 * XXX selectively remove dmap and KVA entries so we don't
3606 		 * need to bzero
3607 		 */
3608 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3609 		for (int j = page_count-1; j >= 0; j--) {
3610 			vm_page_unwire_noq(&m[j]);
3611 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3612 		}
3613 		vm_page_free_pages_toq(&free, false);
3614 	}
3615 }
3616 
3617 static void
3618 mmu_radix_init()
3619 {
3620 	vm_page_t mpte;
3621 	vm_size_t s;
3622 	int error, i, pv_npg;
3623 
3624 	/* XXX is this really needed for POWER? */
3625 	/* L1TF, reserve page @0 unconditionally */
3626 	vm_page_blacklist_add(0, bootverbose);
3627 
3628 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3629 		RADIX_PGD_SIZE, NULL, NULL,
3630 #ifdef INVARIANTS
3631 	    trash_init, trash_fini,
3632 #else
3633 	    NULL, NULL,
3634 #endif
3635 		radix_pgd_import, radix_pgd_release,
3636 		NULL, UMA_ZONE_NOBUCKET);
3637 
3638 	/*
3639 	 * Initialize the vm page array entries for the kernel pmap's
3640 	 * page table pages.
3641 	 */
3642 	PMAP_LOCK(kernel_pmap);
3643 	for (i = 0; i < nkpt; i++) {
3644 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3645 		KASSERT(mpte >= vm_page_array &&
3646 		    mpte < &vm_page_array[vm_page_array_size],
3647 		    ("pmap_init: page table page is out of range size: %lu",
3648 		     vm_page_array_size));
3649 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3650 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3651 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3652 		//pmap_insert_pt_page(kernel_pmap, mpte);
3653 		mpte->ref_count = 1;
3654 	}
3655 	PMAP_UNLOCK(kernel_pmap);
3656 	vm_wire_add(nkpt);
3657 
3658 	CTR1(KTR_PMAP, "%s()", __func__);
3659 	TAILQ_INIT(&pv_dummy.pv_list);
3660 
3661 	/*
3662 	 * Are large page mappings enabled?
3663 	 */
3664 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3665 	if (superpages_enabled) {
3666 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3667 		    ("pmap_init: can't assign to pagesizes[1]"));
3668 		pagesizes[1] = L3_PAGE_SIZE;
3669 	}
3670 
3671 	/*
3672 	 * Initialize the pv chunk list mutex.
3673 	 */
3674 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3675 
3676 	/*
3677 	 * Initialize the pool of pv list locks.
3678 	 */
3679 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3680 		rw_init(&pv_list_locks[i], "pmap pv list");
3681 
3682 	/*
3683 	 * Calculate the size of the pv head table for superpages.
3684 	 */
3685 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3686 
3687 	/*
3688 	 * Allocate memory for the pv head table for superpages.
3689 	 */
3690 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3691 	s = round_page(s);
3692 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
3693 	for (i = 0; i < pv_npg; i++)
3694 		TAILQ_INIT(&pv_table[i].pv_list);
3695 	TAILQ_INIT(&pv_dummy.pv_list);
3696 
3697 	pmap_initialized = 1;
3698 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3699 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3700 	    (vmem_addr_t *)&qframe);
3701 
3702 	if (error != 0)
3703 		panic("qframe allocation failed");
3704 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3705 	    1, 1, M_WAITOK);
3706 }
3707 
3708 static boolean_t
3709 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3710 {
3711 	struct rwlock *lock;
3712 	pv_entry_t pv;
3713 	struct md_page *pvh;
3714 	pt_entry_t *pte, mask;
3715 	pmap_t pmap;
3716 	int md_gen, pvh_gen;
3717 	boolean_t rv;
3718 
3719 	rv = FALSE;
3720 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3721 	rw_rlock(lock);
3722 restart:
3723 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3724 		pmap = PV_PMAP(pv);
3725 		if (!PMAP_TRYLOCK(pmap)) {
3726 			md_gen = m->md.pv_gen;
3727 			rw_runlock(lock);
3728 			PMAP_LOCK(pmap);
3729 			rw_rlock(lock);
3730 			if (md_gen != m->md.pv_gen) {
3731 				PMAP_UNLOCK(pmap);
3732 				goto restart;
3733 			}
3734 		}
3735 		pte = pmap_pte(pmap, pv->pv_va);
3736 		mask = 0;
3737 		if (modified)
3738 			mask |= PG_RW | PG_M;
3739 		if (accessed)
3740 			mask |= PG_V | PG_A;
3741 		rv = (be64toh(*pte) & mask) == mask;
3742 		PMAP_UNLOCK(pmap);
3743 		if (rv)
3744 			goto out;
3745 	}
3746 	if ((m->flags & PG_FICTITIOUS) == 0) {
3747 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3748 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3749 			pmap = PV_PMAP(pv);
3750 			if (!PMAP_TRYLOCK(pmap)) {
3751 				md_gen = m->md.pv_gen;
3752 				pvh_gen = pvh->pv_gen;
3753 				rw_runlock(lock);
3754 				PMAP_LOCK(pmap);
3755 				rw_rlock(lock);
3756 				if (md_gen != m->md.pv_gen ||
3757 				    pvh_gen != pvh->pv_gen) {
3758 					PMAP_UNLOCK(pmap);
3759 					goto restart;
3760 				}
3761 			}
3762 			pte = pmap_pml3e(pmap, pv->pv_va);
3763 			mask = 0;
3764 			if (modified)
3765 				mask |= PG_RW | PG_M;
3766 			if (accessed)
3767 				mask |= PG_V | PG_A;
3768 			rv = (be64toh(*pte) & mask) == mask;
3769 			PMAP_UNLOCK(pmap);
3770 			if (rv)
3771 				goto out;
3772 		}
3773 	}
3774 out:
3775 	rw_runlock(lock);
3776 	return (rv);
3777 }
3778 
3779 /*
3780  *	pmap_is_modified:
3781  *
3782  *	Return whether or not the specified physical page was modified
3783  *	in any physical maps.
3784  */
3785 boolean_t
3786 mmu_radix_is_modified(vm_page_t m)
3787 {
3788 
3789 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3790 	    ("pmap_is_modified: page %p is not managed", m));
3791 
3792 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3793 	/*
3794 	 * If the page is not busied then this check is racy.
3795 	 */
3796 	if (!pmap_page_is_write_mapped(m))
3797 		return (FALSE);
3798 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3799 }
3800 
3801 boolean_t
3802 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3803 {
3804 	pml3_entry_t *l3e;
3805 	pt_entry_t *pte;
3806 	boolean_t rv;
3807 
3808 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3809 	rv = FALSE;
3810 	PMAP_LOCK(pmap);
3811 	l3e = pmap_pml3e(pmap, addr);
3812 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3813 		pte = pmap_l3e_to_pte(l3e, addr);
3814 		rv = (be64toh(*pte) & PG_V) == 0;
3815 	}
3816 	PMAP_UNLOCK(pmap);
3817 	return (rv);
3818 }
3819 
3820 boolean_t
3821 mmu_radix_is_referenced(vm_page_t m)
3822 {
3823 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3824 	    ("pmap_is_referenced: page %p is not managed", m));
3825 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3826 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3827 }
3828 
3829 /*
3830  *	pmap_ts_referenced:
3831  *
3832  *	Return a count of reference bits for a page, clearing those bits.
3833  *	It is not necessary for every reference bit to be cleared, but it
3834  *	is necessary that 0 only be returned when there are truly no
3835  *	reference bits set.
3836  *
3837  *	As an optimization, update the page's dirty field if a modified bit is
3838  *	found while counting reference bits.  This opportunistic update can be
3839  *	performed at low cost and can eliminate the need for some future calls
3840  *	to pmap_is_modified().  However, since this function stops after
3841  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3842  *	dirty pages.  Those dirty pages will only be detected by a future call
3843  *	to pmap_is_modified().
3844  *
3845  *	A DI block is not needed within this function, because
3846  *	invalidations are performed before the PV list lock is
3847  *	released.
3848  */
3849 boolean_t
3850 mmu_radix_ts_referenced(vm_page_t m)
3851 {
3852 	struct md_page *pvh;
3853 	pv_entry_t pv, pvf;
3854 	pmap_t pmap;
3855 	struct rwlock *lock;
3856 	pml3_entry_t oldl3e, *l3e;
3857 	pt_entry_t *pte;
3858 	vm_paddr_t pa;
3859 	int cleared, md_gen, not_cleared, pvh_gen;
3860 	struct spglist free;
3861 
3862 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3863 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3864 	    ("pmap_ts_referenced: page %p is not managed", m));
3865 	SLIST_INIT(&free);
3866 	cleared = 0;
3867 	pa = VM_PAGE_TO_PHYS(m);
3868 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3869 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3870 	rw_wlock(lock);
3871 retry:
3872 	not_cleared = 0;
3873 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3874 		goto small_mappings;
3875 	pv = pvf;
3876 	do {
3877 		if (pvf == NULL)
3878 			pvf = pv;
3879 		pmap = PV_PMAP(pv);
3880 		if (!PMAP_TRYLOCK(pmap)) {
3881 			pvh_gen = pvh->pv_gen;
3882 			rw_wunlock(lock);
3883 			PMAP_LOCK(pmap);
3884 			rw_wlock(lock);
3885 			if (pvh_gen != pvh->pv_gen) {
3886 				PMAP_UNLOCK(pmap);
3887 				goto retry;
3888 			}
3889 		}
3890 		l3e = pmap_pml3e(pmap, pv->pv_va);
3891 		oldl3e = be64toh(*l3e);
3892 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3893 			/*
3894 			 * Although "oldpde" is mapping a 2MB page, because
3895 			 * this function is called at a 4KB page granularity,
3896 			 * we only update the 4KB page under test.
3897 			 */
3898 			vm_page_dirty(m);
3899 		}
3900 		if ((oldl3e & PG_A) != 0) {
3901 			/*
3902 			 * Since this reference bit is shared by 512 4KB
3903 			 * pages, it should not be cleared every time it is
3904 			 * tested.  Apply a simple "hash" function on the
3905 			 * physical page number, the virtual superpage number,
3906 			 * and the pmap address to select one 4KB page out of
3907 			 * the 512 on which testing the reference bit will
3908 			 * result in clearing that reference bit.  This
3909 			 * function is designed to avoid the selection of the
3910 			 * same 4KB page for every 2MB page mapping.
3911 			 *
3912 			 * On demotion, a mapping that hasn't been referenced
3913 			 * is simply destroyed.  To avoid the possibility of a
3914 			 * subsequent page fault on a demoted wired mapping,
3915 			 * always leave its reference bit set.  Moreover,
3916 			 * since the superpage is wired, the current state of
3917 			 * its reference bit won't affect page replacement.
3918 			 */
3919 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3920 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3921 			    (oldl3e & PG_W) == 0) {
3922 				atomic_clear_long(l3e, htobe64(PG_A));
3923 				pmap_invalidate_page(pmap, pv->pv_va);
3924 				cleared++;
3925 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3926 				    ("inconsistent pv lock %p %p for page %p",
3927 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3928 			} else
3929 				not_cleared++;
3930 		}
3931 		PMAP_UNLOCK(pmap);
3932 		/* Rotate the PV list if it has more than one entry. */
3933 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3934 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3935 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3936 			pvh->pv_gen++;
3937 		}
3938 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3939 			goto out;
3940 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3941 small_mappings:
3942 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3943 		goto out;
3944 	pv = pvf;
3945 	do {
3946 		if (pvf == NULL)
3947 			pvf = pv;
3948 		pmap = PV_PMAP(pv);
3949 		if (!PMAP_TRYLOCK(pmap)) {
3950 			pvh_gen = pvh->pv_gen;
3951 			md_gen = m->md.pv_gen;
3952 			rw_wunlock(lock);
3953 			PMAP_LOCK(pmap);
3954 			rw_wlock(lock);
3955 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3956 				PMAP_UNLOCK(pmap);
3957 				goto retry;
3958 			}
3959 		}
3960 		l3e = pmap_pml3e(pmap, pv->pv_va);
3961 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3962 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3963 		    m));
3964 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3965 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3966 			vm_page_dirty(m);
3967 		if ((be64toh(*pte) & PG_A) != 0) {
3968 			atomic_clear_long(pte, htobe64(PG_A));
3969 			pmap_invalidate_page(pmap, pv->pv_va);
3970 			cleared++;
3971 		}
3972 		PMAP_UNLOCK(pmap);
3973 		/* Rotate the PV list if it has more than one entry. */
3974 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3975 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3976 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3977 			m->md.pv_gen++;
3978 		}
3979 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3980 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3981 out:
3982 	rw_wunlock(lock);
3983 	vm_page_free_pages_toq(&free, true);
3984 	return (cleared + not_cleared);
3985 }
3986 
3987 static vm_offset_t
3988 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3989     vm_paddr_t end, int prot __unused)
3990 {
3991 
3992 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3993 		 prot);
3994 	return (PHYS_TO_DMAP(start));
3995 }
3996 
3997 void
3998 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3999     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4000 {
4001 	pml3_entry_t *l3e;
4002 	vm_paddr_t pa, ptepa;
4003 	vm_page_t p, pdpg;
4004 	vm_memattr_t ma;
4005 
4006 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4007 	    object, pindex, size);
4008 	VM_OBJECT_ASSERT_WLOCKED(object);
4009 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4010 			("pmap_object_init_pt: non-device object"));
4011 	/* NB: size can be logically ored with addr here */
4012 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4013 		if (!mmu_radix_ps_enabled(pmap))
4014 			return;
4015 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4016 			return;
4017 		p = vm_page_lookup(object, pindex);
4018 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4019 		    ("pmap_object_init_pt: invalid page %p", p));
4020 		ma = p->md.mdpg_cache_attrs;
4021 
4022 		/*
4023 		 * Abort the mapping if the first page is not physically
4024 		 * aligned to a 2MB page boundary.
4025 		 */
4026 		ptepa = VM_PAGE_TO_PHYS(p);
4027 		if (ptepa & L3_PAGE_MASK)
4028 			return;
4029 
4030 		/*
4031 		 * Skip the first page.  Abort the mapping if the rest of
4032 		 * the pages are not physically contiguous or have differing
4033 		 * memory attributes.
4034 		 */
4035 		p = TAILQ_NEXT(p, listq);
4036 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4037 		    pa += PAGE_SIZE) {
4038 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4039 			    ("pmap_object_init_pt: invalid page %p", p));
4040 			if (pa != VM_PAGE_TO_PHYS(p) ||
4041 			    ma != p->md.mdpg_cache_attrs)
4042 				return;
4043 			p = TAILQ_NEXT(p, listq);
4044 		}
4045 
4046 		PMAP_LOCK(pmap);
4047 		for (pa = ptepa | pmap_cache_bits(ma);
4048 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
4049 			pdpg = pmap_allocl3e(pmap, addr, NULL);
4050 			if (pdpg == NULL) {
4051 				/*
4052 				 * The creation of mappings below is only an
4053 				 * optimization.  If a page directory page
4054 				 * cannot be allocated without blocking,
4055 				 * continue on to the next mapping rather than
4056 				 * blocking.
4057 				 */
4058 				addr += L3_PAGE_SIZE;
4059 				continue;
4060 			}
4061 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4062 			l3e = &l3e[pmap_pml3e_index(addr)];
4063 			if ((be64toh(*l3e) & PG_V) == 0) {
4064 				pa |= PG_M | PG_A | PG_RW;
4065 				pte_store(l3e, pa);
4066 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4067 				counter_u64_add(pmap_l3e_mappings, 1);
4068 			} else {
4069 				/* Continue on if the PDE is already valid. */
4070 				pdpg->ref_count--;
4071 				KASSERT(pdpg->ref_count > 0,
4072 				    ("pmap_object_init_pt: missing reference "
4073 				    "to page directory page, va: 0x%lx", addr));
4074 			}
4075 			addr += L3_PAGE_SIZE;
4076 		}
4077 		ptesync();
4078 		PMAP_UNLOCK(pmap);
4079 	}
4080 }
4081 
4082 boolean_t
4083 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4084 {
4085 	struct md_page *pvh;
4086 	struct rwlock *lock;
4087 	pv_entry_t pv;
4088 	int loops = 0;
4089 	boolean_t rv;
4090 
4091 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4092 	    ("pmap_page_exists_quick: page %p is not managed", m));
4093 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4094 	rv = FALSE;
4095 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4096 	rw_rlock(lock);
4097 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4098 		if (PV_PMAP(pv) == pmap) {
4099 			rv = TRUE;
4100 			break;
4101 		}
4102 		loops++;
4103 		if (loops >= 16)
4104 			break;
4105 	}
4106 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4107 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4108 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4109 			if (PV_PMAP(pv) == pmap) {
4110 				rv = TRUE;
4111 				break;
4112 			}
4113 			loops++;
4114 			if (loops >= 16)
4115 				break;
4116 		}
4117 	}
4118 	rw_runlock(lock);
4119 	return (rv);
4120 }
4121 
4122 void
4123 mmu_radix_page_init(vm_page_t m)
4124 {
4125 
4126 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4127 	TAILQ_INIT(&m->md.pv_list);
4128 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4129 }
4130 
4131 int
4132 mmu_radix_page_wired_mappings(vm_page_t m)
4133 {
4134 	struct rwlock *lock;
4135 	struct md_page *pvh;
4136 	pmap_t pmap;
4137 	pt_entry_t *pte;
4138 	pv_entry_t pv;
4139 	int count, md_gen, pvh_gen;
4140 
4141 	if ((m->oflags & VPO_UNMANAGED) != 0)
4142 		return (0);
4143 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4144 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4145 	rw_rlock(lock);
4146 restart:
4147 	count = 0;
4148 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4149 		pmap = PV_PMAP(pv);
4150 		if (!PMAP_TRYLOCK(pmap)) {
4151 			md_gen = m->md.pv_gen;
4152 			rw_runlock(lock);
4153 			PMAP_LOCK(pmap);
4154 			rw_rlock(lock);
4155 			if (md_gen != m->md.pv_gen) {
4156 				PMAP_UNLOCK(pmap);
4157 				goto restart;
4158 			}
4159 		}
4160 		pte = pmap_pte(pmap, pv->pv_va);
4161 		if ((be64toh(*pte) & PG_W) != 0)
4162 			count++;
4163 		PMAP_UNLOCK(pmap);
4164 	}
4165 	if ((m->flags & PG_FICTITIOUS) == 0) {
4166 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4167 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4168 			pmap = PV_PMAP(pv);
4169 			if (!PMAP_TRYLOCK(pmap)) {
4170 				md_gen = m->md.pv_gen;
4171 				pvh_gen = pvh->pv_gen;
4172 				rw_runlock(lock);
4173 				PMAP_LOCK(pmap);
4174 				rw_rlock(lock);
4175 				if (md_gen != m->md.pv_gen ||
4176 				    pvh_gen != pvh->pv_gen) {
4177 					PMAP_UNLOCK(pmap);
4178 					goto restart;
4179 				}
4180 			}
4181 			pte = pmap_pml3e(pmap, pv->pv_va);
4182 			if ((be64toh(*pte) & PG_W) != 0)
4183 				count++;
4184 			PMAP_UNLOCK(pmap);
4185 		}
4186 	}
4187 	rw_runlock(lock);
4188 	return (count);
4189 }
4190 
4191 static void
4192 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4193 {
4194 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4195 }
4196 
4197 int
4198 mmu_radix_pinit(pmap_t pmap)
4199 {
4200 	vmem_addr_t pid;
4201 	vm_paddr_t l1pa;
4202 
4203 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4204 
4205 	/*
4206 	 * allocate the page directory page
4207 	 */
4208 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4209 
4210 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4211 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4212 	pmap->pm_radix.rt_root = 0;
4213 	TAILQ_INIT(&pmap->pm_pvchunk);
4214 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4215 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4216 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4217 
4218 	pmap->pm_pid = pid;
4219 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4220 	mmu_radix_update_proctab(pid, l1pa);
4221 	__asm __volatile("ptesync;isync" : : : "memory");
4222 
4223 	return (1);
4224 }
4225 
4226 /*
4227  * This routine is called if the desired page table page does not exist.
4228  *
4229  * If page table page allocation fails, this routine may sleep before
4230  * returning NULL.  It sleeps only if a lock pointer was given.
4231  *
4232  * Note: If a page allocation fails at page table level two or three,
4233  * one or two pages may be held during the wait, only to be released
4234  * afterwards.  This conservative approach is easily argued to avoid
4235  * race conditions.
4236  */
4237 static vm_page_t
4238 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4239 {
4240 	vm_page_t m, pdppg, pdpg;
4241 
4242 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4243 
4244 	/*
4245 	 * Allocate a page table page.
4246 	 */
4247 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4248 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4249 		if (lockp != NULL) {
4250 			RELEASE_PV_LIST_LOCK(lockp);
4251 			PMAP_UNLOCK(pmap);
4252 			vm_wait(NULL);
4253 			PMAP_LOCK(pmap);
4254 		}
4255 		/*
4256 		 * Indicate the need to retry.  While waiting, the page table
4257 		 * page may have been allocated.
4258 		 */
4259 		return (NULL);
4260 	}
4261 	if ((m->flags & PG_ZERO) == 0)
4262 		mmu_radix_zero_page(m);
4263 
4264 	/*
4265 	 * Map the pagetable page into the process address space, if
4266 	 * it isn't already there.
4267 	 */
4268 
4269 	if (ptepindex >= (NUPDE + NUPDPE)) {
4270 		pml1_entry_t *l1e;
4271 		vm_pindex_t pml1index;
4272 
4273 		/* Wire up a new PDPE page */
4274 		pml1index = ptepindex - (NUPDE + NUPDPE);
4275 		l1e = &pmap->pm_pml1[pml1index];
4276 		KASSERT((be64toh(*l1e) & PG_V) == 0,
4277 		    ("%s: L1 entry %#lx is valid", __func__, *l1e));
4278 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4279 	} else if (ptepindex >= NUPDE) {
4280 		vm_pindex_t pml1index;
4281 		vm_pindex_t pdpindex;
4282 		pml1_entry_t *l1e;
4283 		pml2_entry_t *l2e;
4284 
4285 		/* Wire up a new l2e page */
4286 		pdpindex = ptepindex - NUPDE;
4287 		pml1index = pdpindex >> RPTE_SHIFT;
4288 
4289 		l1e = &pmap->pm_pml1[pml1index];
4290 		if ((be64toh(*l1e) & PG_V) == 0) {
4291 			/* Have to allocate a new pdp, recurse */
4292 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4293 				lockp) == NULL) {
4294 				vm_page_unwire_noq(m);
4295 				vm_page_free_zero(m);
4296 				return (NULL);
4297 			}
4298 		} else {
4299 			/* Add reference to l2e page */
4300 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4301 			pdppg->ref_count++;
4302 		}
4303 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4304 
4305 		/* Now find the pdp page */
4306 		l2e = &l2e[pdpindex & RPTE_MASK];
4307 		KASSERT((be64toh(*l2e) & PG_V) == 0,
4308 		    ("%s: L2 entry %#lx is valid", __func__, *l2e));
4309 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4310 	} else {
4311 		vm_pindex_t pml1index;
4312 		vm_pindex_t pdpindex;
4313 		pml1_entry_t *l1e;
4314 		pml2_entry_t *l2e;
4315 		pml3_entry_t *l3e;
4316 
4317 		/* Wire up a new PTE page */
4318 		pdpindex = ptepindex >> RPTE_SHIFT;
4319 		pml1index = pdpindex >> RPTE_SHIFT;
4320 
4321 		/* First, find the pdp and check that its valid. */
4322 		l1e = &pmap->pm_pml1[pml1index];
4323 		if ((be64toh(*l1e) & PG_V) == 0) {
4324 			/* Have to allocate a new pd, recurse */
4325 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4326 			    lockp) == NULL) {
4327 				vm_page_unwire_noq(m);
4328 				vm_page_free_zero(m);
4329 				return (NULL);
4330 			}
4331 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4332 			l2e = &l2e[pdpindex & RPTE_MASK];
4333 		} else {
4334 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4335 			l2e = &l2e[pdpindex & RPTE_MASK];
4336 			if ((be64toh(*l2e) & PG_V) == 0) {
4337 				/* Have to allocate a new pd, recurse */
4338 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4339 				    lockp) == NULL) {
4340 					vm_page_unwire_noq(m);
4341 					vm_page_free_zero(m);
4342 					return (NULL);
4343 				}
4344 			} else {
4345 				/* Add reference to the pd page */
4346 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4347 				pdpg->ref_count++;
4348 			}
4349 		}
4350 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4351 
4352 		/* Now we know where the page directory page is */
4353 		l3e = &l3e[ptepindex & RPTE_MASK];
4354 		KASSERT((be64toh(*l3e) & PG_V) == 0,
4355 		    ("%s: L3 entry %#lx is valid", __func__, *l3e));
4356 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4357 	}
4358 
4359 	pmap_resident_count_inc(pmap, 1);
4360 	return (m);
4361 }
4362 static vm_page_t
4363 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4364 {
4365 	vm_pindex_t pdpindex, ptepindex;
4366 	pml2_entry_t *pdpe;
4367 	vm_page_t pdpg;
4368 
4369 retry:
4370 	pdpe = pmap_pml2e(pmap, va);
4371 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4372 		/* Add a reference to the pd page. */
4373 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4374 		pdpg->ref_count++;
4375 	} else {
4376 		/* Allocate a pd page. */
4377 		ptepindex = pmap_l3e_pindex(va);
4378 		pdpindex = ptepindex >> RPTE_SHIFT;
4379 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4380 		if (pdpg == NULL && lockp != NULL)
4381 			goto retry;
4382 	}
4383 	return (pdpg);
4384 }
4385 
4386 static vm_page_t
4387 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4388 {
4389 	vm_pindex_t ptepindex;
4390 	pml3_entry_t *pd;
4391 	vm_page_t m;
4392 
4393 	/*
4394 	 * Calculate pagetable page index
4395 	 */
4396 	ptepindex = pmap_l3e_pindex(va);
4397 retry:
4398 	/*
4399 	 * Get the page directory entry
4400 	 */
4401 	pd = pmap_pml3e(pmap, va);
4402 
4403 	/*
4404 	 * This supports switching from a 2MB page to a
4405 	 * normal 4K page.
4406 	 */
4407 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4408 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4409 			/*
4410 			 * Invalidation of the 2MB page mapping may have caused
4411 			 * the deallocation of the underlying PD page.
4412 			 */
4413 			pd = NULL;
4414 		}
4415 	}
4416 
4417 	/*
4418 	 * If the page table page is mapped, we just increment the
4419 	 * hold count, and activate it.
4420 	 */
4421 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4422 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4423 		m->ref_count++;
4424 	} else {
4425 		/*
4426 		 * Here if the pte page isn't mapped, or if it has been
4427 		 * deallocated.
4428 		 */
4429 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4430 		if (m == NULL && lockp != NULL)
4431 			goto retry;
4432 	}
4433 	return (m);
4434 }
4435 
4436 static void
4437 mmu_radix_pinit0(pmap_t pmap)
4438 {
4439 
4440 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4441 	PMAP_LOCK_INIT(pmap);
4442 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4443 	pmap->pm_pid = kernel_pmap->pm_pid;
4444 
4445 	pmap->pm_radix.rt_root = 0;
4446 	TAILQ_INIT(&pmap->pm_pvchunk);
4447 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4448 	kernel_pmap->pm_flags =
4449 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4450 }
4451 /*
4452  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4453  */
4454 static boolean_t
4455 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4456 {
4457 	pt_entry_t newpde, oldpde;
4458 	vm_offset_t eva, va;
4459 	vm_page_t m;
4460 	boolean_t anychanged;
4461 
4462 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4463 	KASSERT((sva & L3_PAGE_MASK) == 0,
4464 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4465 	anychanged = FALSE;
4466 retry:
4467 	oldpde = newpde = be64toh(*l3e);
4468 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4469 	    (PG_MANAGED | PG_M | PG_RW)) {
4470 		eva = sva + L3_PAGE_SIZE;
4471 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4472 		    va < eva; va += PAGE_SIZE, m++)
4473 			vm_page_dirty(m);
4474 	}
4475 	if ((prot & VM_PROT_WRITE) == 0) {
4476 		newpde &= ~(PG_RW | PG_M);
4477 		newpde |= RPTE_EAA_R;
4478 	}
4479 	if (prot & VM_PROT_EXECUTE)
4480 		newpde |= PG_X;
4481 	if (newpde != oldpde) {
4482 		/*
4483 		 * As an optimization to future operations on this PDE, clear
4484 		 * PG_PROMOTED.  The impending invalidation will remove any
4485 		 * lingering 4KB page mappings from the TLB.
4486 		 */
4487 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4488 			goto retry;
4489 		anychanged = TRUE;
4490 	}
4491 	return (anychanged);
4492 }
4493 
4494 void
4495 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4496     vm_prot_t prot)
4497 {
4498 	vm_offset_t va_next;
4499 	pml1_entry_t *l1e;
4500 	pml2_entry_t *l2e;
4501 	pml3_entry_t ptpaddr, *l3e;
4502 	pt_entry_t *pte;
4503 	boolean_t anychanged;
4504 
4505 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4506 	    prot);
4507 
4508 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4509 	if (prot == VM_PROT_NONE) {
4510 		mmu_radix_remove(pmap, sva, eva);
4511 		return;
4512 	}
4513 
4514 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4515 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4516 		return;
4517 
4518 #ifdef INVARIANTS
4519 	if (VERBOSE_PROTECT || pmap_logging)
4520 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4521 			   pmap, sva, eva, prot, pmap->pm_pid);
4522 #endif
4523 	anychanged = FALSE;
4524 
4525 	PMAP_LOCK(pmap);
4526 	for (; sva < eva; sva = va_next) {
4527 		l1e = pmap_pml1e(pmap, sva);
4528 		if ((be64toh(*l1e) & PG_V) == 0) {
4529 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4530 			if (va_next < sva)
4531 				va_next = eva;
4532 			continue;
4533 		}
4534 
4535 		l2e = pmap_l1e_to_l2e(l1e, sva);
4536 		if ((be64toh(*l2e) & PG_V) == 0) {
4537 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4538 			if (va_next < sva)
4539 				va_next = eva;
4540 			continue;
4541 		}
4542 
4543 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4544 		if (va_next < sva)
4545 			va_next = eva;
4546 
4547 		l3e = pmap_l2e_to_l3e(l2e, sva);
4548 		ptpaddr = be64toh(*l3e);
4549 
4550 		/*
4551 		 * Weed out invalid mappings.
4552 		 */
4553 		if (ptpaddr == 0)
4554 			continue;
4555 
4556 		/*
4557 		 * Check for large page.
4558 		 */
4559 		if ((ptpaddr & RPTE_LEAF) != 0) {
4560 			/*
4561 			 * Are we protecting the entire large page?  If not,
4562 			 * demote the mapping and fall through.
4563 			 */
4564 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4565 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4566 					anychanged = TRUE;
4567 				continue;
4568 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4569 				/*
4570 				 * The large page mapping was destroyed.
4571 				 */
4572 				continue;
4573 			}
4574 		}
4575 
4576 		if (va_next > eva)
4577 			va_next = eva;
4578 
4579 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4580 		    sva += PAGE_SIZE) {
4581 			pt_entry_t obits, pbits;
4582 			vm_page_t m;
4583 
4584 retry:
4585 			MPASS(pte == pmap_pte(pmap, sva));
4586 			obits = pbits = be64toh(*pte);
4587 			if ((pbits & PG_V) == 0)
4588 				continue;
4589 
4590 			if ((prot & VM_PROT_WRITE) == 0) {
4591 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4592 				    (PG_MANAGED | PG_M | PG_RW)) {
4593 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4594 					vm_page_dirty(m);
4595 				}
4596 				pbits &= ~(PG_RW | PG_M);
4597 				pbits |= RPTE_EAA_R;
4598 			}
4599 			if (prot & VM_PROT_EXECUTE)
4600 				pbits |= PG_X;
4601 
4602 			if (pbits != obits) {
4603 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4604 					goto retry;
4605 				if (obits & (PG_A|PG_M)) {
4606 					anychanged = TRUE;
4607 #ifdef INVARIANTS
4608 					if (VERBOSE_PROTECT || pmap_logging)
4609 						printf("%#lx %#lx -> %#lx\n",
4610 						    sva, obits, pbits);
4611 #endif
4612 				}
4613 			}
4614 		}
4615 	}
4616 	if (anychanged)
4617 		pmap_invalidate_all(pmap);
4618 	PMAP_UNLOCK(pmap);
4619 }
4620 
4621 void
4622 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4623 {
4624 
4625 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4626 	pt_entry_t oldpte, pa, *pte;
4627 	vm_page_t m;
4628 	uint64_t cache_bits, attr_bits;
4629 	vm_offset_t va;
4630 
4631 	oldpte = 0;
4632 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4633 	va = sva;
4634 	pte = kvtopte(va);
4635 	while (va < sva + PAGE_SIZE * count) {
4636 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4637 			pte = kvtopte(va);
4638 		MPASS(pte == pmap_pte(kernel_pmap, va));
4639 
4640 		/*
4641 		 * XXX there has to be a more efficient way than traversing
4642 		 * the page table every time - but go for correctness for
4643 		 * today
4644 		 */
4645 
4646 		m = *ma++;
4647 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4648 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4649 		if (be64toh(*pte) != pa) {
4650 			oldpte |= be64toh(*pte);
4651 			pte_store(pte, pa);
4652 		}
4653 		va += PAGE_SIZE;
4654 		pte++;
4655 	}
4656 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4657 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4658 		    PAGE_SIZE);
4659 	else
4660 		ptesync();
4661 }
4662 
4663 void
4664 mmu_radix_qremove(vm_offset_t sva, int count)
4665 {
4666 	vm_offset_t va;
4667 	pt_entry_t *pte;
4668 
4669 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4670 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4671 
4672 	va = sva;
4673 	pte = kvtopte(va);
4674 	while (va < sva + PAGE_SIZE * count) {
4675 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4676 			pte = kvtopte(va);
4677 		pte_clear(pte);
4678 		pte++;
4679 		va += PAGE_SIZE;
4680 	}
4681 	pmap_invalidate_range(kernel_pmap, sva, va);
4682 }
4683 
4684 /***************************************************
4685  * Page table page management routines.....
4686  ***************************************************/
4687 /*
4688  * Schedule the specified unused page table page to be freed.  Specifically,
4689  * add the page to the specified list of pages that will be released to the
4690  * physical memory manager after the TLB has been updated.
4691  */
4692 static __inline void
4693 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4694     boolean_t set_PG_ZERO)
4695 {
4696 
4697 	if (set_PG_ZERO)
4698 		m->flags |= PG_ZERO;
4699 	else
4700 		m->flags &= ~PG_ZERO;
4701 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4702 }
4703 
4704 /*
4705  * Inserts the specified page table page into the specified pmap's collection
4706  * of idle page table pages.  Each of a pmap's page table pages is responsible
4707  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4708  * ordered by this virtual address range.
4709  */
4710 static __inline int
4711 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4712 {
4713 
4714 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4715 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4716 }
4717 
4718 /*
4719  * Removes the page table page mapping the specified virtual address from the
4720  * specified pmap's collection of idle page table pages, and returns it.
4721  * Otherwise, returns NULL if there is no page table page corresponding to the
4722  * specified virtual address.
4723  */
4724 static __inline vm_page_t
4725 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4726 {
4727 
4728 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4729 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4730 }
4731 
4732 /*
4733  * Decrements a page table page's wire count, which is used to record the
4734  * number of valid page table entries within the page.  If the wire count
4735  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4736  * page table page was unmapped and FALSE otherwise.
4737  */
4738 static inline boolean_t
4739 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4740 {
4741 
4742 	--m->ref_count;
4743 	if (m->ref_count == 0) {
4744 		_pmap_unwire_ptp(pmap, va, m, free);
4745 		return (TRUE);
4746 	} else
4747 		return (FALSE);
4748 }
4749 
4750 static void
4751 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4752 {
4753 
4754 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4755 	/*
4756 	 * unmap the page table page
4757 	 */
4758 	if (m->pindex >= NUPDE + NUPDPE) {
4759 		/* PDP page */
4760 		pml1_entry_t *pml1;
4761 		pml1 = pmap_pml1e(pmap, va);
4762 		*pml1 = 0;
4763 	} else if (m->pindex >= NUPDE) {
4764 		/* PD page */
4765 		pml2_entry_t *l2e;
4766 		l2e = pmap_pml2e(pmap, va);
4767 		*l2e = 0;
4768 	} else {
4769 		/* PTE page */
4770 		pml3_entry_t *l3e;
4771 		l3e = pmap_pml3e(pmap, va);
4772 		*l3e = 0;
4773 	}
4774 	pmap_resident_count_dec(pmap, 1);
4775 	if (m->pindex < NUPDE) {
4776 		/* We just released a PT, unhold the matching PD */
4777 		vm_page_t pdpg;
4778 
4779 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4780 		pmap_unwire_ptp(pmap, va, pdpg, free);
4781 	}
4782 	else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4783 		/* We just released a PD, unhold the matching PDP */
4784 		vm_page_t pdppg;
4785 
4786 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4787 		pmap_unwire_ptp(pmap, va, pdppg, free);
4788 	}
4789 
4790 	/*
4791 	 * Put page on a list so that it is released after
4792 	 * *ALL* TLB shootdown is done
4793 	 */
4794 	pmap_add_delayed_free_list(m, free, TRUE);
4795 }
4796 
4797 /*
4798  * After removing a page table entry, this routine is used to
4799  * conditionally free the page, and manage the hold/wire counts.
4800  */
4801 static int
4802 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4803     struct spglist *free)
4804 {
4805 	vm_page_t mpte;
4806 
4807 	if (va >= VM_MAXUSER_ADDRESS)
4808 		return (0);
4809 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4810 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4811 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4812 }
4813 
4814 void
4815 mmu_radix_release(pmap_t pmap)
4816 {
4817 
4818 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4819 	KASSERT(pmap->pm_stats.resident_count == 0,
4820 	    ("pmap_release: pmap resident count %ld != 0",
4821 	    pmap->pm_stats.resident_count));
4822 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4823 	    ("pmap_release: pmap has reserved page table page(s)"));
4824 
4825 	pmap_invalidate_all(pmap);
4826 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4827 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4828 	vmem_free(asid_arena, pmap->pm_pid, 1);
4829 }
4830 
4831 /*
4832  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4833  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4834  * false if the PV entry cannot be allocated without resorting to reclamation.
4835  */
4836 static bool
4837 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4838     struct rwlock **lockp)
4839 {
4840 	struct md_page *pvh;
4841 	pv_entry_t pv;
4842 	vm_paddr_t pa;
4843 
4844 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4845 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4846 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4847 	    NULL : lockp)) == NULL)
4848 		return (false);
4849 	pv->pv_va = va;
4850 	pa = pde & PG_PS_FRAME;
4851 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4852 	pvh = pa_to_pvh(pa);
4853 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4854 	pvh->pv_gen++;
4855 	return (true);
4856 }
4857 
4858 /*
4859  * Fills a page table page with mappings to consecutive physical pages.
4860  */
4861 static void
4862 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4863 {
4864 	pt_entry_t *pte;
4865 
4866 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4867 		*pte = htobe64(newpte);
4868 		newpte += PAGE_SIZE;
4869 	}
4870 }
4871 
4872 static boolean_t
4873 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4874 {
4875 	struct rwlock *lock;
4876 	boolean_t rv;
4877 
4878 	lock = NULL;
4879 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4880 	if (lock != NULL)
4881 		rw_wunlock(lock);
4882 	return (rv);
4883 }
4884 
4885 static boolean_t
4886 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4887     struct rwlock **lockp)
4888 {
4889 	pml3_entry_t oldpde;
4890 	pt_entry_t *firstpte;
4891 	vm_paddr_t mptepa;
4892 	vm_page_t mpte;
4893 	struct spglist free;
4894 	vm_offset_t sva;
4895 
4896 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4897 	oldpde = be64toh(*l3e);
4898 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4899 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4900 	    oldpde));
4901 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4902 	    NULL) {
4903 		KASSERT((oldpde & PG_W) == 0,
4904 		    ("pmap_demote_l3e: page table page for a wired mapping"
4905 		    " is missing"));
4906 
4907 		/*
4908 		 * Invalidate the 2MB page mapping and return "failure" if the
4909 		 * mapping was never accessed or the allocation of the new
4910 		 * page table page fails.  If the 2MB page mapping belongs to
4911 		 * the direct map region of the kernel's address space, then
4912 		 * the page allocation request specifies the highest possible
4913 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4914 		 * normal.  Page table pages are preallocated for every other
4915 		 * part of the kernel address space, so the direct map region
4916 		 * is the only part of the kernel address space that must be
4917 		 * handled here.
4918 		 */
4919 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
4920 		    pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
4921 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4922 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4923 			SLIST_INIT(&free);
4924 			sva = trunc_2mpage(va);
4925 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4926 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4927 			vm_page_free_pages_toq(&free, true);
4928 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4929 			    " in pmap %p", va, pmap);
4930 			return (FALSE);
4931 		}
4932 		if (va < VM_MAXUSER_ADDRESS)
4933 			pmap_resident_count_inc(pmap, 1);
4934 	}
4935 	mptepa = VM_PAGE_TO_PHYS(mpte);
4936 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4937 	KASSERT((oldpde & PG_A) != 0,
4938 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4939 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4940 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4941 
4942 	/*
4943 	 * If the page table page is new, initialize it.
4944 	 */
4945 	if (mpte->ref_count == 1) {
4946 		mpte->ref_count = NPTEPG;
4947 		pmap_fill_ptp(firstpte, oldpde);
4948 	}
4949 
4950 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4951 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4952 	    " addresses"));
4953 
4954 	/*
4955 	 * If the mapping has changed attributes, update the page table
4956 	 * entries.
4957 	 */
4958 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4959 		pmap_fill_ptp(firstpte, oldpde);
4960 
4961 	/*
4962 	 * The spare PV entries must be reserved prior to demoting the
4963 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4964 	 * of the PDE and the PV lists will be inconsistent, which can result
4965 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4966 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4967 	 * PV entry for the 2MB page mapping that is being demoted.
4968 	 */
4969 	if ((oldpde & PG_MANAGED) != 0)
4970 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4971 
4972 	/*
4973 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4974 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4975 	 * set.  Thus, there is no danger of a race with another
4976 	 * processor changing the setting of PG_A and/or PG_M between
4977 	 * the read above and the store below.
4978 	 */
4979 	pde_store(l3e, mptepa);
4980 	pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
4981 	/*
4982 	 * Demote the PV entry.
4983 	 */
4984 	if ((oldpde & PG_MANAGED) != 0)
4985 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4986 
4987 	counter_u64_add(pmap_l3e_demotions, 1);
4988 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4989 	    " in pmap %p", va, pmap);
4990 	return (TRUE);
4991 }
4992 
4993 /*
4994  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4995  */
4996 static void
4997 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4998 {
4999 	vm_paddr_t mptepa;
5000 	vm_page_t mpte;
5001 
5002 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5003 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5004 	mpte = pmap_remove_pt_page(pmap, va);
5005 	if (mpte == NULL)
5006 		panic("pmap_remove_kernel_pde: Missing pt page.");
5007 
5008 	mptepa = VM_PAGE_TO_PHYS(mpte);
5009 
5010 	/*
5011 	 * Initialize the page table page.
5012 	 */
5013 	pagezero(PHYS_TO_DMAP(mptepa));
5014 
5015 	/*
5016 	 * Demote the mapping.
5017 	 */
5018 	pde_store(l3e, mptepa);
5019 	ptesync();
5020 }
5021 
5022 /*
5023  * pmap_remove_l3e: do the things to unmap a superpage in a process
5024  */
5025 static int
5026 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5027     struct spglist *free, struct rwlock **lockp)
5028 {
5029 	struct md_page *pvh;
5030 	pml3_entry_t oldpde;
5031 	vm_offset_t eva, va;
5032 	vm_page_t m, mpte;
5033 
5034 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5035 	KASSERT((sva & L3_PAGE_MASK) == 0,
5036 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
5037 	oldpde = be64toh(pte_load_clear(pdq));
5038 	if (oldpde & PG_W)
5039 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5040 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5041 	if (oldpde & PG_MANAGED) {
5042 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5043 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5044 		pmap_pvh_free(pvh, pmap, sva);
5045 		eva = sva + L3_PAGE_SIZE;
5046 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5047 		    va < eva; va += PAGE_SIZE, m++) {
5048 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5049 				vm_page_dirty(m);
5050 			if (oldpde & PG_A)
5051 				vm_page_aflag_set(m, PGA_REFERENCED);
5052 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5053 			    TAILQ_EMPTY(&pvh->pv_list))
5054 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5055 		}
5056 	}
5057 	if (pmap == kernel_pmap) {
5058 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5059 	} else {
5060 		mpte = pmap_remove_pt_page(pmap, sva);
5061 		if (mpte != NULL) {
5062 			pmap_resident_count_dec(pmap, 1);
5063 			KASSERT(mpte->ref_count == NPTEPG,
5064 			    ("pmap_remove_l3e: pte page wire count error"));
5065 			mpte->ref_count = 0;
5066 			pmap_add_delayed_free_list(mpte, free, FALSE);
5067 		}
5068 	}
5069 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5070 }
5071 
5072 /*
5073  * pmap_remove_pte: do the things to unmap a page in a process
5074  */
5075 static int
5076 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5077     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5078 {
5079 	struct md_page *pvh;
5080 	pt_entry_t oldpte;
5081 	vm_page_t m;
5082 
5083 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5084 	oldpte = be64toh(pte_load_clear(ptq));
5085 	if (oldpte & RPTE_WIRED)
5086 		pmap->pm_stats.wired_count -= 1;
5087 	pmap_resident_count_dec(pmap, 1);
5088 	if (oldpte & RPTE_MANAGED) {
5089 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5090 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5091 			vm_page_dirty(m);
5092 		if (oldpte & PG_A)
5093 			vm_page_aflag_set(m, PGA_REFERENCED);
5094 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5095 		pmap_pvh_free(&m->md, pmap, va);
5096 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5097 		    (m->flags & PG_FICTITIOUS) == 0) {
5098 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5099 			if (TAILQ_EMPTY(&pvh->pv_list))
5100 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5101 		}
5102 	}
5103 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5104 }
5105 
5106 /*
5107  * Remove a single page from a process address space
5108  */
5109 static bool
5110 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5111     struct spglist *free)
5112 {
5113 	struct rwlock *lock;
5114 	pt_entry_t *pte;
5115 	bool invalidate_all;
5116 
5117 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5118 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5119 		return (false);
5120 	}
5121 	pte = pmap_l3e_to_pte(l3e, va);
5122 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5123 		return (false);
5124 	}
5125 	lock = NULL;
5126 
5127 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5128 	if (lock != NULL)
5129 		rw_wunlock(lock);
5130 	if (!invalidate_all)
5131 		pmap_invalidate_page(pmap, va);
5132 	return (invalidate_all);
5133 }
5134 
5135 /*
5136  * Removes the specified range of addresses from the page table page.
5137  */
5138 static bool
5139 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5140     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5141 {
5142 	pt_entry_t *pte;
5143 	vm_offset_t va;
5144 	bool anyvalid;
5145 
5146 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5147 	anyvalid = false;
5148 	va = eva;
5149 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5150 	    sva += PAGE_SIZE) {
5151 		MPASS(pte == pmap_pte(pmap, sva));
5152 		if (*pte == 0) {
5153 			if (va != eva) {
5154 				anyvalid = true;
5155 				va = eva;
5156 			}
5157 			continue;
5158 		}
5159 		if (va == eva)
5160 			va = sva;
5161 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5162 			anyvalid = true;
5163 			sva += PAGE_SIZE;
5164 			break;
5165 		}
5166 	}
5167 	if (anyvalid)
5168 		pmap_invalidate_all(pmap);
5169 	else if (va != eva)
5170 		pmap_invalidate_range(pmap, va, sva);
5171 	return (anyvalid);
5172 }
5173 
5174 void
5175 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5176 {
5177 	struct rwlock *lock;
5178 	vm_offset_t va_next;
5179 	pml1_entry_t *l1e;
5180 	pml2_entry_t *l2e;
5181 	pml3_entry_t ptpaddr, *l3e;
5182 	struct spglist free;
5183 	bool anyvalid;
5184 
5185 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5186 
5187 	/*
5188 	 * Perform an unsynchronized read.  This is, however, safe.
5189 	 */
5190 	if (pmap->pm_stats.resident_count == 0)
5191 		return;
5192 
5193 	anyvalid = false;
5194 	SLIST_INIT(&free);
5195 
5196 	/* XXX something fishy here */
5197 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5198 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5199 
5200 	PMAP_LOCK(pmap);
5201 
5202 	/*
5203 	 * special handling of removing one page.  a very
5204 	 * common operation and easy to short circuit some
5205 	 * code.
5206 	 */
5207 	if (sva + PAGE_SIZE == eva) {
5208 		l3e = pmap_pml3e(pmap, sva);
5209 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5210 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5211 			goto out;
5212 		}
5213 	}
5214 
5215 	lock = NULL;
5216 	for (; sva < eva; sva = va_next) {
5217 		if (pmap->pm_stats.resident_count == 0)
5218 			break;
5219 		l1e = pmap_pml1e(pmap, sva);
5220 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5221 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5222 			if (va_next < sva)
5223 				va_next = eva;
5224 			continue;
5225 		}
5226 
5227 		l2e = pmap_l1e_to_l2e(l1e, sva);
5228 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5229 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5230 			if (va_next < sva)
5231 				va_next = eva;
5232 			continue;
5233 		}
5234 
5235 		/*
5236 		 * Calculate index for next page table.
5237 		 */
5238 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5239 		if (va_next < sva)
5240 			va_next = eva;
5241 
5242 		l3e = pmap_l2e_to_l3e(l2e, sva);
5243 		ptpaddr = be64toh(*l3e);
5244 
5245 		/*
5246 		 * Weed out invalid mappings.
5247 		 */
5248 		if (ptpaddr == 0)
5249 			continue;
5250 
5251 		/*
5252 		 * Check for large page.
5253 		 */
5254 		if ((ptpaddr & RPTE_LEAF) != 0) {
5255 			/*
5256 			 * Are we removing the entire large page?  If not,
5257 			 * demote the mapping and fall through.
5258 			 */
5259 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5260 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5261 				anyvalid = true;
5262 				continue;
5263 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5264 			    &lock)) {
5265 				/* The large page mapping was destroyed. */
5266 				continue;
5267 			} else
5268 				ptpaddr = be64toh(*l3e);
5269 		}
5270 
5271 		/*
5272 		 * Limit our scan to either the end of the va represented
5273 		 * by the current page table page, or to the end of the
5274 		 * range being removed.
5275 		 */
5276 		if (va_next > eva)
5277 			va_next = eva;
5278 
5279 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5280 			anyvalid = true;
5281 	}
5282 	if (lock != NULL)
5283 		rw_wunlock(lock);
5284 out:
5285 	if (anyvalid)
5286 		pmap_invalidate_all(pmap);
5287 	PMAP_UNLOCK(pmap);
5288 	vm_page_free_pages_toq(&free, true);
5289 }
5290 
5291 void
5292 mmu_radix_remove_all(vm_page_t m)
5293 {
5294 	struct md_page *pvh;
5295 	pv_entry_t pv;
5296 	pmap_t pmap;
5297 	struct rwlock *lock;
5298 	pt_entry_t *pte, tpte;
5299 	pml3_entry_t *l3e;
5300 	vm_offset_t va;
5301 	struct spglist free;
5302 	int pvh_gen, md_gen;
5303 
5304 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5305 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5306 	    ("pmap_remove_all: page %p is not managed", m));
5307 	SLIST_INIT(&free);
5308 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5309 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5310 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5311 retry:
5312 	rw_wlock(lock);
5313 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5314 		pmap = PV_PMAP(pv);
5315 		if (!PMAP_TRYLOCK(pmap)) {
5316 			pvh_gen = pvh->pv_gen;
5317 			rw_wunlock(lock);
5318 			PMAP_LOCK(pmap);
5319 			rw_wlock(lock);
5320 			if (pvh_gen != pvh->pv_gen) {
5321 				rw_wunlock(lock);
5322 				PMAP_UNLOCK(pmap);
5323 				goto retry;
5324 			}
5325 		}
5326 		va = pv->pv_va;
5327 		l3e = pmap_pml3e(pmap, va);
5328 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5329 		PMAP_UNLOCK(pmap);
5330 	}
5331 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5332 		pmap = PV_PMAP(pv);
5333 		if (!PMAP_TRYLOCK(pmap)) {
5334 			pvh_gen = pvh->pv_gen;
5335 			md_gen = m->md.pv_gen;
5336 			rw_wunlock(lock);
5337 			PMAP_LOCK(pmap);
5338 			rw_wlock(lock);
5339 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5340 				rw_wunlock(lock);
5341 				PMAP_UNLOCK(pmap);
5342 				goto retry;
5343 			}
5344 		}
5345 		pmap_resident_count_dec(pmap, 1);
5346 		l3e = pmap_pml3e(pmap, pv->pv_va);
5347 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5348 		    " a 2mpage in page %p's pv list", m));
5349 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5350 		tpte = be64toh(pte_load_clear(pte));
5351 		if (tpte & PG_W)
5352 			pmap->pm_stats.wired_count--;
5353 		if (tpte & PG_A)
5354 			vm_page_aflag_set(m, PGA_REFERENCED);
5355 
5356 		/*
5357 		 * Update the vm_page_t clean and reference bits.
5358 		 */
5359 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5360 			vm_page_dirty(m);
5361 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5362 		pmap_invalidate_page(pmap, pv->pv_va);
5363 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5364 		m->md.pv_gen++;
5365 		free_pv_entry(pmap, pv);
5366 		PMAP_UNLOCK(pmap);
5367 	}
5368 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5369 	rw_wunlock(lock);
5370 	vm_page_free_pages_toq(&free, true);
5371 }
5372 
5373 /*
5374  * Destroy all managed, non-wired mappings in the given user-space
5375  * pmap.  This pmap cannot be active on any processor besides the
5376  * caller.
5377  *
5378  * This function cannot be applied to the kernel pmap.  Moreover, it
5379  * is not intended for general use.  It is only to be used during
5380  * process termination.  Consequently, it can be implemented in ways
5381  * that make it faster than pmap_remove().  First, it can more quickly
5382  * destroy mappings by iterating over the pmap's collection of PV
5383  * entries, rather than searching the page table.  Second, it doesn't
5384  * have to test and clear the page table entries atomically, because
5385  * no processor is currently accessing the user address space.  In
5386  * particular, a page table entry's dirty bit won't change state once
5387  * this function starts.
5388  *
5389  * Although this function destroys all of the pmap's managed,
5390  * non-wired mappings, it can delay and batch the invalidation of TLB
5391  * entries without calling pmap_delayed_invl_started() and
5392  * pmap_delayed_invl_finished().  Because the pmap is not active on
5393  * any other processor, none of these TLB entries will ever be used
5394  * before their eventual invalidation.  Consequently, there is no need
5395  * for either pmap_remove_all() or pmap_remove_write() to wait for
5396  * that eventual TLB invalidation.
5397  */
5398 
5399 void
5400 mmu_radix_remove_pages(pmap_t pmap)
5401 {
5402 
5403 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5404 	pml3_entry_t ptel3e;
5405 	pt_entry_t *pte, tpte;
5406 	struct spglist free;
5407 	vm_page_t m, mpte, mt;
5408 	pv_entry_t pv;
5409 	struct md_page *pvh;
5410 	struct pv_chunk *pc, *npc;
5411 	struct rwlock *lock;
5412 	int64_t bit;
5413 	uint64_t inuse, bitmask;
5414 	int allfree, field, freed, idx;
5415 	boolean_t superpage;
5416 	vm_paddr_t pa;
5417 
5418 	/*
5419 	 * Assert that the given pmap is only active on the current
5420 	 * CPU.  Unfortunately, we cannot block another CPU from
5421 	 * activating the pmap while this function is executing.
5422 	 */
5423 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5424 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5425 	    mfspr(SPR_PID)));
5426 
5427 	lock = NULL;
5428 
5429 	SLIST_INIT(&free);
5430 	PMAP_LOCK(pmap);
5431 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5432 		allfree = 1;
5433 		freed = 0;
5434 		for (field = 0; field < _NPCM; field++) {
5435 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5436 			while (inuse != 0) {
5437 				bit = cnttzd(inuse);
5438 				bitmask = 1UL << bit;
5439 				idx = field * 64 + bit;
5440 				pv = &pc->pc_pventry[idx];
5441 				inuse &= ~bitmask;
5442 
5443 				pte = pmap_pml2e(pmap, pv->pv_va);
5444 				ptel3e = be64toh(*pte);
5445 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5446 				tpte = be64toh(*pte);
5447 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5448 					superpage = FALSE;
5449 					ptel3e = tpte;
5450 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5451 					    PG_FRAME);
5452 					pte = &pte[pmap_pte_index(pv->pv_va)];
5453 					tpte = be64toh(*pte);
5454 				} else {
5455 					/*
5456 					 * Keep track whether 'tpte' is a
5457 					 * superpage explicitly instead of
5458 					 * relying on RPTE_LEAF being set.
5459 					 *
5460 					 * This is because RPTE_LEAF is numerically
5461 					 * identical to PG_PTE_PAT and thus a
5462 					 * regular page could be mistaken for
5463 					 * a superpage.
5464 					 */
5465 					superpage = TRUE;
5466 				}
5467 
5468 				if ((tpte & PG_V) == 0) {
5469 					panic("bad pte va %lx pte %lx",
5470 					    pv->pv_va, tpte);
5471 				}
5472 
5473 /*
5474  * We cannot remove wired pages from a process' mapping at this time
5475  */
5476 				if (tpte & PG_W) {
5477 					allfree = 0;
5478 					continue;
5479 				}
5480 
5481 				if (superpage)
5482 					pa = tpte & PG_PS_FRAME;
5483 				else
5484 					pa = tpte & PG_FRAME;
5485 
5486 				m = PHYS_TO_VM_PAGE(pa);
5487 				KASSERT(m->phys_addr == pa,
5488 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5489 				    m, (uintmax_t)m->phys_addr,
5490 				    (uintmax_t)tpte));
5491 
5492 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5493 				    m < &vm_page_array[vm_page_array_size],
5494 				    ("pmap_remove_pages: bad tpte %#jx",
5495 				    (uintmax_t)tpte));
5496 
5497 				pte_clear(pte);
5498 
5499 				/*
5500 				 * Update the vm_page_t clean/reference bits.
5501 				 */
5502 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5503 					if (superpage) {
5504 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5505 							vm_page_dirty(mt);
5506 					} else
5507 						vm_page_dirty(m);
5508 				}
5509 
5510 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5511 
5512 				/* Mark free */
5513 				pc->pc_map[field] |= bitmask;
5514 				if (superpage) {
5515 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5516 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5517 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5518 					pvh->pv_gen++;
5519 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5520 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5521 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5522 							    TAILQ_EMPTY(&mt->md.pv_list))
5523 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5524 					}
5525 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5526 					if (mpte != NULL) {
5527 						pmap_resident_count_dec(pmap, 1);
5528 						KASSERT(mpte->ref_count == NPTEPG,
5529 						    ("pmap_remove_pages: pte page wire count error"));
5530 						mpte->ref_count = 0;
5531 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5532 					}
5533 				} else {
5534 					pmap_resident_count_dec(pmap, 1);
5535 #ifdef VERBOSE_PV
5536 					printf("freeing pv (%p, %p)\n",
5537 						   pmap, pv);
5538 #endif
5539 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5540 					m->md.pv_gen++;
5541 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5542 					    TAILQ_EMPTY(&m->md.pv_list) &&
5543 					    (m->flags & PG_FICTITIOUS) == 0) {
5544 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5545 						if (TAILQ_EMPTY(&pvh->pv_list))
5546 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5547 					}
5548 				}
5549 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5550 				freed++;
5551 			}
5552 		}
5553 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5554 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5555 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5556 		if (allfree) {
5557 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5558 			free_pv_chunk(pc);
5559 		}
5560 	}
5561 	if (lock != NULL)
5562 		rw_wunlock(lock);
5563 	pmap_invalidate_all(pmap);
5564 	PMAP_UNLOCK(pmap);
5565 	vm_page_free_pages_toq(&free, true);
5566 }
5567 
5568 void
5569 mmu_radix_remove_write(vm_page_t m)
5570 {
5571 	struct md_page *pvh;
5572 	pmap_t pmap;
5573 	struct rwlock *lock;
5574 	pv_entry_t next_pv, pv;
5575 	pml3_entry_t *l3e;
5576 	pt_entry_t oldpte, *pte;
5577 	int pvh_gen, md_gen;
5578 
5579 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5580 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5581 	    ("pmap_remove_write: page %p is not managed", m));
5582 	vm_page_assert_busied(m);
5583 
5584 	if (!pmap_page_is_write_mapped(m))
5585 		return;
5586 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5587 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5588 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5589 retry_pv_loop:
5590 	rw_wlock(lock);
5591 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5592 		pmap = PV_PMAP(pv);
5593 		if (!PMAP_TRYLOCK(pmap)) {
5594 			pvh_gen = pvh->pv_gen;
5595 			rw_wunlock(lock);
5596 			PMAP_LOCK(pmap);
5597 			rw_wlock(lock);
5598 			if (pvh_gen != pvh->pv_gen) {
5599 				PMAP_UNLOCK(pmap);
5600 				rw_wunlock(lock);
5601 				goto retry_pv_loop;
5602 			}
5603 		}
5604 		l3e = pmap_pml3e(pmap, pv->pv_va);
5605 		if ((be64toh(*l3e) & PG_RW) != 0)
5606 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5607 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5608 		    ("inconsistent pv lock %p %p for page %p",
5609 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5610 		PMAP_UNLOCK(pmap);
5611 	}
5612 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5613 		pmap = PV_PMAP(pv);
5614 		if (!PMAP_TRYLOCK(pmap)) {
5615 			pvh_gen = pvh->pv_gen;
5616 			md_gen = m->md.pv_gen;
5617 			rw_wunlock(lock);
5618 			PMAP_LOCK(pmap);
5619 			rw_wlock(lock);
5620 			if (pvh_gen != pvh->pv_gen ||
5621 			    md_gen != m->md.pv_gen) {
5622 				PMAP_UNLOCK(pmap);
5623 				rw_wunlock(lock);
5624 				goto retry_pv_loop;
5625 			}
5626 		}
5627 		l3e = pmap_pml3e(pmap, pv->pv_va);
5628 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5629 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5630 		    m));
5631 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5632 retry:
5633 		oldpte = be64toh(*pte);
5634 		if (oldpte & PG_RW) {
5635 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5636 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5637 				goto retry;
5638 			if ((oldpte & PG_M) != 0)
5639 				vm_page_dirty(m);
5640 			pmap_invalidate_page(pmap, pv->pv_va);
5641 		}
5642 		PMAP_UNLOCK(pmap);
5643 	}
5644 	rw_wunlock(lock);
5645 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5646 }
5647 
5648 /*
5649  *	Clear the wired attribute from the mappings for the specified range of
5650  *	addresses in the given pmap.  Every valid mapping within that range
5651  *	must have the wired attribute set.  In contrast, invalid mappings
5652  *	cannot have the wired attribute set, so they are ignored.
5653  *
5654  *	The wired attribute of the page table entry is not a hardware
5655  *	feature, so there is no need to invalidate any TLB entries.
5656  *	Since pmap_demote_l3e() for the wired entry must never fail,
5657  *	pmap_delayed_invl_started()/finished() calls around the
5658  *	function are not needed.
5659  */
5660 void
5661 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5662 {
5663 	vm_offset_t va_next;
5664 	pml1_entry_t *l1e;
5665 	pml2_entry_t *l2e;
5666 	pml3_entry_t *l3e;
5667 	pt_entry_t *pte;
5668 
5669 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5670 	PMAP_LOCK(pmap);
5671 	for (; sva < eva; sva = va_next) {
5672 		l1e = pmap_pml1e(pmap, sva);
5673 		if ((be64toh(*l1e) & PG_V) == 0) {
5674 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5675 			if (va_next < sva)
5676 				va_next = eva;
5677 			continue;
5678 		}
5679 		l2e = pmap_l1e_to_l2e(l1e, sva);
5680 		if ((be64toh(*l2e) & PG_V) == 0) {
5681 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5682 			if (va_next < sva)
5683 				va_next = eva;
5684 			continue;
5685 		}
5686 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5687 		if (va_next < sva)
5688 			va_next = eva;
5689 		l3e = pmap_l2e_to_l3e(l2e, sva);
5690 		if ((be64toh(*l3e) & PG_V) == 0)
5691 			continue;
5692 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5693 			if ((be64toh(*l3e) & PG_W) == 0)
5694 				panic("pmap_unwire: pde %#jx is missing PG_W",
5695 				    (uintmax_t)(be64toh(*l3e)));
5696 
5697 			/*
5698 			 * Are we unwiring the entire large page?  If not,
5699 			 * demote the mapping and fall through.
5700 			 */
5701 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5702 				atomic_clear_long(l3e, htobe64(PG_W));
5703 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5704 				    PAGE_SIZE;
5705 				continue;
5706 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5707 				panic("pmap_unwire: demotion failed");
5708 		}
5709 		if (va_next > eva)
5710 			va_next = eva;
5711 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5712 		    sva += PAGE_SIZE) {
5713 			MPASS(pte == pmap_pte(pmap, sva));
5714 			if ((be64toh(*pte) & PG_V) == 0)
5715 				continue;
5716 			if ((be64toh(*pte) & PG_W) == 0)
5717 				panic("pmap_unwire: pte %#jx is missing PG_W",
5718 				    (uintmax_t)(be64toh(*pte)));
5719 
5720 			/*
5721 			 * PG_W must be cleared atomically.  Although the pmap
5722 			 * lock synchronizes access to PG_W, another processor
5723 			 * could be setting PG_M and/or PG_A concurrently.
5724 			 */
5725 			atomic_clear_long(pte, htobe64(PG_W));
5726 			pmap->pm_stats.wired_count--;
5727 		}
5728 	}
5729 	PMAP_UNLOCK(pmap);
5730 }
5731 
5732 void
5733 mmu_radix_zero_page(vm_page_t m)
5734 {
5735 	vm_offset_t addr;
5736 
5737 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5738 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5739 	pagezero(addr);
5740 }
5741 
5742 void
5743 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5744 {
5745 	caddr_t addr;
5746 
5747 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5748 	MPASS(off + size <= PAGE_SIZE);
5749 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5750 	memset(addr + off, 0, size);
5751 }
5752 
5753 static int
5754 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5755 {
5756 	pml3_entry_t *l3ep;
5757 	pt_entry_t pte;
5758 	vm_paddr_t pa;
5759 	int val;
5760 
5761 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5762 	PMAP_LOCK(pmap);
5763 
5764 	l3ep = pmap_pml3e(pmap, addr);
5765 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5766 		if (be64toh(*l3ep) & RPTE_LEAF) {
5767 			pte = be64toh(*l3ep);
5768 			/* Compute the physical address of the 4KB page. */
5769 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5770 			    PG_FRAME;
5771 			val = MINCORE_PSIND(1);
5772 		} else {
5773 			/* Native endian PTE, do not pass to functions */
5774 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5775 			pa = pte & PG_FRAME;
5776 			val = 0;
5777 		}
5778 	} else {
5779 		pte = 0;
5780 		pa = 0;
5781 		val = 0;
5782 	}
5783 	if ((pte & PG_V) != 0) {
5784 		val |= MINCORE_INCORE;
5785 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5786 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5787 		if ((pte & PG_A) != 0)
5788 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5789 	}
5790 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5791 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5792 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5793 		*locked_pa = pa;
5794 	}
5795 	PMAP_UNLOCK(pmap);
5796 	return (val);
5797 }
5798 
5799 void
5800 mmu_radix_activate(struct thread *td)
5801 {
5802 	pmap_t pmap;
5803 	uint32_t curpid;
5804 
5805 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5806 	critical_enter();
5807 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5808 	curpid = mfspr(SPR_PID);
5809 	if (pmap->pm_pid > isa3_base_pid &&
5810 		curpid != pmap->pm_pid) {
5811 		mmu_radix_pid_set(pmap);
5812 	}
5813 	critical_exit();
5814 }
5815 
5816 /*
5817  *	Increase the starting virtual address of the given mapping if a
5818  *	different alignment might result in more superpage mappings.
5819  */
5820 void
5821 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5822     vm_offset_t *addr, vm_size_t size)
5823 {
5824 
5825 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5826 	    size);
5827 	vm_offset_t superpage_offset;
5828 
5829 	if (size < L3_PAGE_SIZE)
5830 		return;
5831 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5832 		offset += ptoa(object->pg_color);
5833 	superpage_offset = offset & L3_PAGE_MASK;
5834 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5835 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5836 		return;
5837 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5838 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5839 	else
5840 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5841 }
5842 
5843 static void *
5844 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5845 {
5846 	vm_offset_t va, tmpva, ppa, offset;
5847 
5848 	ppa = trunc_page(pa);
5849 	offset = pa & PAGE_MASK;
5850 	size = roundup2(offset + size, PAGE_SIZE);
5851 	if (pa < powerpc_ptob(Maxmem))
5852 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5853 			  pa, powerpc_ptob(Maxmem));
5854 	va = kva_alloc(size);
5855 	if (bootverbose)
5856 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5857 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5858 
5859 	if (!va)
5860 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5861 
5862 	for (tmpva = va; size > 0;) {
5863 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5864 		size -= PAGE_SIZE;
5865 		tmpva += PAGE_SIZE;
5866 		ppa += PAGE_SIZE;
5867 	}
5868 	ptesync();
5869 
5870 	return ((void *)(va + offset));
5871 }
5872 
5873 static void *
5874 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5875 {
5876 
5877 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5878 
5879 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5880 }
5881 
5882 void
5883 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5884 {
5885 
5886 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5887 	m->md.mdpg_cache_attrs = ma;
5888 
5889 	/*
5890 	 * If "m" is a normal page, update its direct mapping.  This update
5891 	 * can be relied upon to perform any cache operations that are
5892 	 * required for data coherence.
5893 	 */
5894 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5895 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5896 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5897 		panic("memory attribute change on the direct map failed");
5898 }
5899 
5900 static void
5901 mmu_radix_unmapdev(vm_offset_t va, vm_size_t size)
5902 {
5903 	vm_offset_t offset;
5904 
5905 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size);
5906 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5907 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5908 		return;
5909 
5910 	offset = va & PAGE_MASK;
5911 	size = round_page(offset + size);
5912 	va = trunc_page(va);
5913 
5914 	if (pmap_initialized) {
5915 		mmu_radix_qremove(va, atop(size));
5916 		kva_free(va, size);
5917 	}
5918 }
5919 
5920 static __inline void
5921 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5922 {
5923 	uint64_t opte, npte;
5924 
5925 	/*
5926 	 * The cache mode bits are all in the low 32-bits of the
5927 	 * PTE, so we can just spin on updating the low 32-bits.
5928 	 */
5929 	do {
5930 		opte = be64toh(*pte);
5931 		npte = opte & ~mask;
5932 		npte |= cache_bits;
5933 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5934 }
5935 
5936 /*
5937  * Tries to demote a 1GB page mapping.
5938  */
5939 static boolean_t
5940 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5941 {
5942 	pml2_entry_t oldpdpe;
5943 	pml3_entry_t *firstpde, newpde, *pde;
5944 	vm_paddr_t pdpgpa;
5945 	vm_page_t pdpg;
5946 
5947 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5948 	oldpdpe = be64toh(*l2e);
5949 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5950 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5951 	pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT,
5952 	    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5953 	if (pdpg == NULL) {
5954 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5955 		    " in pmap %p", va, pmap);
5956 		return (FALSE);
5957 	}
5958 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5959 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5960 	KASSERT((oldpdpe & PG_A) != 0,
5961 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5962 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5963 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5964 	newpde = oldpdpe;
5965 
5966 	/*
5967 	 * Initialize the page directory page.
5968 	 */
5969 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5970 		*pde = htobe64(newpde);
5971 		newpde += L3_PAGE_SIZE;
5972 	}
5973 
5974 	/*
5975 	 * Demote the mapping.
5976 	 */
5977 	pde_store(l2e, pdpgpa);
5978 
5979 	/*
5980 	 * Flush PWC --- XXX revisit
5981 	 */
5982 	pmap_invalidate_all(pmap);
5983 
5984 	counter_u64_add(pmap_l2e_demotions, 1);
5985 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5986 	    " in pmap %p", va, pmap);
5987 	return (TRUE);
5988 }
5989 
5990 vm_paddr_t
5991 mmu_radix_kextract(vm_offset_t va)
5992 {
5993 	pml3_entry_t l3e;
5994 	vm_paddr_t pa;
5995 
5996 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
5997 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
5998 		pa = DMAP_TO_PHYS(va);
5999 	} else {
6000 		/* Big-endian PTE on stack */
6001 		l3e = *pmap_pml3e(kernel_pmap, va);
6002 		if (be64toh(l3e) & RPTE_LEAF) {
6003 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6004 			pa |= (va & L3_PAGE_MASK);
6005 		} else {
6006 			/*
6007 			 * Beware of a concurrent promotion that changes the
6008 			 * PDE at this point!  For example, vtopte() must not
6009 			 * be used to access the PTE because it would use the
6010 			 * new PDE.  It is, however, safe to use the old PDE
6011 			 * because the page table page is preserved by the
6012 			 * promotion.
6013 			 */
6014 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6015 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6016 			pa |= (va & PAGE_MASK);
6017 		}
6018 	}
6019 	return (pa);
6020 }
6021 
6022 static pt_entry_t
6023 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6024 {
6025 
6026 	if (ma != VM_MEMATTR_DEFAULT) {
6027 		return pmap_cache_bits(ma);
6028 	}
6029 
6030 	/*
6031 	 * Assume the page is cache inhibited and access is guarded unless
6032 	 * it's in our available memory array.
6033 	 */
6034 	for (int i = 0; i < pregions_sz; i++) {
6035 		if ((pa >= pregions[i].mr_start) &&
6036 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6037 			return (RPTE_ATTR_MEM);
6038 	}
6039 	return (RPTE_ATTR_GUARDEDIO);
6040 }
6041 
6042 static void
6043 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6044 {
6045 	pt_entry_t *pte, pteval;
6046 	uint64_t cache_bits;
6047 
6048 	pte = kvtopte(va);
6049 	MPASS(pte != NULL);
6050 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6051 	cache_bits = mmu_radix_calc_wimg(pa, ma);
6052 	pte_store(pte, pteval | cache_bits);
6053 }
6054 
6055 void
6056 mmu_radix_kremove(vm_offset_t va)
6057 {
6058 	pt_entry_t *pte;
6059 
6060 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6061 
6062 	pte = kvtopte(va);
6063 	pte_clear(pte);
6064 }
6065 
6066 int
6067 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6068     int *is_user, vm_offset_t *decoded)
6069 {
6070 
6071 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6072 	*decoded = addr;
6073 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6074 	return (0);
6075 }
6076 
6077 static boolean_t
6078 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6079 {
6080 
6081 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6082 	return (mem_valid(pa, size));
6083 }
6084 
6085 static void
6086 mmu_radix_scan_init()
6087 {
6088 
6089 	CTR1(KTR_PMAP, "%s()", __func__);
6090 	UNIMPLEMENTED();
6091 }
6092 
6093 static void
6094 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6095 	void **va)
6096 {
6097 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6098 	UNIMPLEMENTED();
6099 }
6100 
6101 vm_offset_t
6102 mmu_radix_quick_enter_page(vm_page_t m)
6103 {
6104 	vm_paddr_t paddr;
6105 
6106 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6107 	paddr = VM_PAGE_TO_PHYS(m);
6108 	return (PHYS_TO_DMAP(paddr));
6109 }
6110 
6111 void
6112 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6113 {
6114 	/* no work to do here */
6115 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6116 }
6117 
6118 static void
6119 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6120 {
6121 	cpu_flush_dcache((void *)sva, eva - sva);
6122 }
6123 
6124 int
6125 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6126     vm_memattr_t mode)
6127 {
6128 	int error;
6129 
6130 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6131 	PMAP_LOCK(kernel_pmap);
6132 	error = pmap_change_attr_locked(va, size, mode, true);
6133 	PMAP_UNLOCK(kernel_pmap);
6134 	return (error);
6135 }
6136 
6137 static int
6138 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6139 {
6140 	vm_offset_t base, offset, tmpva;
6141 	vm_paddr_t pa_start, pa_end, pa_end1;
6142 	pml2_entry_t *l2e;
6143 	pml3_entry_t *l3e;
6144 	pt_entry_t *pte;
6145 	int cache_bits, error;
6146 	boolean_t changed;
6147 
6148 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6149 	base = trunc_page(va);
6150 	offset = va & PAGE_MASK;
6151 	size = round_page(offset + size);
6152 
6153 	/*
6154 	 * Only supported on kernel virtual addresses, including the direct
6155 	 * map but excluding the recursive map.
6156 	 */
6157 	if (base < DMAP_MIN_ADDRESS)
6158 		return (EINVAL);
6159 
6160 	cache_bits = pmap_cache_bits(mode);
6161 	changed = FALSE;
6162 
6163 	/*
6164 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6165 	 * into 4KB pages if required.
6166 	 */
6167 	for (tmpva = base; tmpva < base + size; ) {
6168 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6169 		if (l2e == NULL || *l2e == 0)
6170 			return (EINVAL);
6171 		if (be64toh(*l2e) & RPTE_LEAF) {
6172 			/*
6173 			 * If the current 1GB page already has the required
6174 			 * memory type, then we need not demote this page. Just
6175 			 * increment tmpva to the next 1GB page frame.
6176 			 */
6177 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6178 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6179 				continue;
6180 			}
6181 
6182 			/*
6183 			 * If the current offset aligns with a 1GB page frame
6184 			 * and there is at least 1GB left within the range, then
6185 			 * we need not break down this page into 2MB pages.
6186 			 */
6187 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6188 			    tmpva + L2_PAGE_MASK < base + size) {
6189 				tmpva += L2_PAGE_MASK;
6190 				continue;
6191 			}
6192 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6193 				return (ENOMEM);
6194 		}
6195 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6196 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6197 		    tmpva, l2e));
6198 		if (*l3e == 0)
6199 			return (EINVAL);
6200 		if (be64toh(*l3e) & RPTE_LEAF) {
6201 			/*
6202 			 * If the current 2MB page already has the required
6203 			 * memory type, then we need not demote this page. Just
6204 			 * increment tmpva to the next 2MB page frame.
6205 			 */
6206 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6207 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6208 				continue;
6209 			}
6210 
6211 			/*
6212 			 * If the current offset aligns with a 2MB page frame
6213 			 * and there is at least 2MB left within the range, then
6214 			 * we need not break down this page into 4KB pages.
6215 			 */
6216 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6217 			    tmpva + L3_PAGE_MASK < base + size) {
6218 				tmpva += L3_PAGE_SIZE;
6219 				continue;
6220 			}
6221 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6222 				return (ENOMEM);
6223 		}
6224 		pte = pmap_l3e_to_pte(l3e, tmpva);
6225 		if (*pte == 0)
6226 			return (EINVAL);
6227 		tmpva += PAGE_SIZE;
6228 	}
6229 	error = 0;
6230 
6231 	/*
6232 	 * Ok, all the pages exist, so run through them updating their
6233 	 * cache mode if required.
6234 	 */
6235 	pa_start = pa_end = 0;
6236 	for (tmpva = base; tmpva < base + size; ) {
6237 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6238 		if (be64toh(*l2e) & RPTE_LEAF) {
6239 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6240 				pmap_pte_attr(l2e, cache_bits,
6241 				    RPTE_ATTR_MASK);
6242 				changed = TRUE;
6243 			}
6244 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6245 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6246 				if (pa_start == pa_end) {
6247 					/* Start physical address run. */
6248 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6249 					pa_end = pa_start + L2_PAGE_SIZE;
6250 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6251 					pa_end += L2_PAGE_SIZE;
6252 				else {
6253 					/* Run ended, update direct map. */
6254 					error = pmap_change_attr_locked(
6255 					    PHYS_TO_DMAP(pa_start),
6256 					    pa_end - pa_start, mode, flush);
6257 					if (error != 0)
6258 						break;
6259 					/* Start physical address run. */
6260 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6261 					pa_end = pa_start + L2_PAGE_SIZE;
6262 				}
6263 			}
6264 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6265 			continue;
6266 		}
6267 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6268 		if (be64toh(*l3e) & RPTE_LEAF) {
6269 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6270 				pmap_pte_attr(l3e, cache_bits,
6271 				    RPTE_ATTR_MASK);
6272 				changed = TRUE;
6273 			}
6274 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6275 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6276 				if (pa_start == pa_end) {
6277 					/* Start physical address run. */
6278 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6279 					pa_end = pa_start + L3_PAGE_SIZE;
6280 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6281 					pa_end += L3_PAGE_SIZE;
6282 				else {
6283 					/* Run ended, update direct map. */
6284 					error = pmap_change_attr_locked(
6285 					    PHYS_TO_DMAP(pa_start),
6286 					    pa_end - pa_start, mode, flush);
6287 					if (error != 0)
6288 						break;
6289 					/* Start physical address run. */
6290 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6291 					pa_end = pa_start + L3_PAGE_SIZE;
6292 				}
6293 			}
6294 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6295 		} else {
6296 			pte = pmap_l3e_to_pte(l3e, tmpva);
6297 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6298 				pmap_pte_attr(pte, cache_bits,
6299 				    RPTE_ATTR_MASK);
6300 				changed = TRUE;
6301 			}
6302 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6303 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6304 				if (pa_start == pa_end) {
6305 					/* Start physical address run. */
6306 					pa_start = be64toh(*pte) & PG_FRAME;
6307 					pa_end = pa_start + PAGE_SIZE;
6308 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6309 					pa_end += PAGE_SIZE;
6310 				else {
6311 					/* Run ended, update direct map. */
6312 					error = pmap_change_attr_locked(
6313 					    PHYS_TO_DMAP(pa_start),
6314 					    pa_end - pa_start, mode, flush);
6315 					if (error != 0)
6316 						break;
6317 					/* Start physical address run. */
6318 					pa_start = be64toh(*pte) & PG_FRAME;
6319 					pa_end = pa_start + PAGE_SIZE;
6320 				}
6321 			}
6322 			tmpva += PAGE_SIZE;
6323 		}
6324 	}
6325 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6326 		pa_end1 = MIN(pa_end, dmaplimit);
6327 		if (pa_start != pa_end1)
6328 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6329 			    pa_end1 - pa_start, mode, flush);
6330 	}
6331 
6332 	/*
6333 	 * Flush CPU caches if required to make sure any data isn't cached that
6334 	 * shouldn't be, etc.
6335 	 */
6336 	if (changed) {
6337 		pmap_invalidate_all(kernel_pmap);
6338 
6339 		if (flush)
6340 			pmap_invalidate_cache_range(base, tmpva);
6341 	}
6342 	return (error);
6343 }
6344 
6345 /*
6346  * Allocate physical memory for the vm_page array and map it into KVA,
6347  * attempting to back the vm_pages with domain-local memory.
6348  */
6349 void
6350 mmu_radix_page_array_startup(long pages)
6351 {
6352 #ifdef notyet
6353 	pml2_entry_t *l2e;
6354 	pml3_entry_t *pde;
6355 	pml3_entry_t newl3;
6356 	vm_offset_t va;
6357 	long pfn;
6358 	int domain, i;
6359 #endif
6360 	vm_paddr_t pa;
6361 	vm_offset_t start, end;
6362 
6363 	vm_page_array_size = pages;
6364 
6365 	start = VM_MIN_KERNEL_ADDRESS;
6366 	end = start + pages * sizeof(struct vm_page);
6367 
6368 	pa = vm_phys_early_alloc(0, end - start);
6369 
6370 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6371 #ifdef notyet
6372 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6373 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6374 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6375 		domain = vm_phys_domain(ptoa(pfn));
6376 		l2e = pmap_pml2e(kernel_pmap, va);
6377 		if ((be64toh(*l2e) & PG_V) == 0) {
6378 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6379 			dump_add_page(pa);
6380 			pagezero(PHYS_TO_DMAP(pa));
6381 			pde_store(l2e, (pml2_entry_t)pa);
6382 		}
6383 		pde = pmap_l2e_to_l3e(l2e, va);
6384 		if ((be64toh(*pde) & PG_V) != 0)
6385 			panic("Unexpected pde %p", pde);
6386 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6387 		for (i = 0; i < NPDEPG; i++)
6388 			dump_add_page(pa + i * PAGE_SIZE);
6389 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6390 		pte_store(pde, newl3);
6391 	}
6392 #endif
6393 	vm_page_array = (vm_page_t)start;
6394 }
6395 
6396 #ifdef DDB
6397 #include <sys/kdb.h>
6398 #include <ddb/ddb.h>
6399 
6400 static void
6401 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6402 {
6403 	pml1_entry_t *l1e;
6404 	pml2_entry_t *l2e;
6405 	pml3_entry_t *l3e;
6406 	pt_entry_t *pte;
6407 
6408 	l1e = &l1[pmap_pml1e_index(va)];
6409 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6410 	if ((be64toh(*l1e) & PG_V) == 0) {
6411 		db_printf("\n");
6412 		return;
6413 	}
6414 	l2e = pmap_l1e_to_l2e(l1e, va);
6415 	db_printf(" l2e %#016lx", be64toh(*l2e));
6416 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6417 		db_printf("\n");
6418 		return;
6419 	}
6420 	l3e = pmap_l2e_to_l3e(l2e, va);
6421 	db_printf(" l3e %#016lx", be64toh(*l3e));
6422 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6423 		db_printf("\n");
6424 		return;
6425 	}
6426 	pte = pmap_l3e_to_pte(l3e, va);
6427 	db_printf(" pte %#016lx\n", be64toh(*pte));
6428 }
6429 
6430 void
6431 pmap_page_print_mappings(vm_page_t m)
6432 {
6433 	pmap_t pmap;
6434 	pv_entry_t pv;
6435 
6436 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6437 	/* need to elide locks if running in ddb */
6438 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6439 		db_printf("pv: %p ", pv);
6440 		db_printf("va: %#016lx ", pv->pv_va);
6441 		pmap = PV_PMAP(pv);
6442 		db_printf("pmap %p  ", pmap);
6443 		if (pmap != NULL) {
6444 			db_printf("asid: %lu\n", pmap->pm_pid);
6445 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6446 		}
6447 	}
6448 }
6449 
6450 DB_SHOW_COMMAND(pte, pmap_print_pte)
6451 {
6452 	vm_offset_t va;
6453 	pmap_t pmap;
6454 
6455 	if (!have_addr) {
6456 		db_printf("show pte addr\n");
6457 		return;
6458 	}
6459 	va = (vm_offset_t)addr;
6460 
6461 	if (va >= DMAP_MIN_ADDRESS)
6462 		pmap = kernel_pmap;
6463 	else if (kdb_thread != NULL)
6464 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6465 	else
6466 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6467 
6468 	pmap_pte_walk(pmap->pm_pml1, va);
6469 }
6470 
6471 #endif
6472