xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision f8b865d1d62d17626ab993212963277c06cc25b8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/rwlock.h>
63 #include <sys/sched.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/vmmeter.h>
67 #include <sys/smp.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_pageout.h>
81 #include <vm/uma.h>
82 
83 #include <machine/_inttypes.h>
84 #include <machine/cpu.h>
85 #include <machine/platform.h>
86 #include <machine/frame.h>
87 #include <machine/md_var.h>
88 #include <machine/psl.h>
89 #include <machine/bat.h>
90 #include <machine/hid.h>
91 #include <machine/pte.h>
92 #include <machine/sr.h>
93 #include <machine/trap.h>
94 #include <machine/mmuvar.h>
95 
96 #include "mmu_oea64.h"
97 #include "mmu_if.h"
98 #include "moea64_if.h"
99 
100 void moea64_release_vsid(uint64_t vsid);
101 uintptr_t moea64_get_unique_vsid(void);
102 
103 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
104 #define ENABLE_TRANS(msr)	mtmsr(msr)
105 
106 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
107 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
108 #define	VSID_HASH_MASK		0x0000007fffffffffULL
109 
110 /*
111  * Locking semantics:
112  *
113  * There are two locks of interest: the page locks and the pmap locks, which
114  * protect their individual PVO lists and are locked in that order. The contents
115  * of all PVO entries are protected by the locks of their respective pmaps.
116  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
117  * into any list.
118  *
119  */
120 
121 #define PV_LOCK_COUNT	PA_LOCK_COUNT*3
122 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
123 
124 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
125 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
126 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
127 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
128 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
129 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
130 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
131 
132 struct ofw_map {
133 	cell_t	om_va;
134 	cell_t	om_len;
135 	uint64_t om_pa;
136 	cell_t	om_mode;
137 };
138 
139 extern unsigned char _etext[];
140 extern unsigned char _end[];
141 
142 extern void *slbtrap, *slbtrapend;
143 
144 /*
145  * Map of physical memory regions.
146  */
147 static struct	mem_region *regions;
148 static struct	mem_region *pregions;
149 static u_int	phys_avail_count;
150 static int	regions_sz, pregions_sz;
151 
152 extern void bs_remap_earlyboot(void);
153 
154 /*
155  * Lock for the SLB tables.
156  */
157 struct mtx	moea64_slb_mutex;
158 
159 /*
160  * PTEG data.
161  */
162 u_int		moea64_pteg_count;
163 u_int		moea64_pteg_mask;
164 
165 /*
166  * PVO data.
167  */
168 
169 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
170 
171 static struct	pvo_entry *moea64_bpvo_pool;
172 static int	moea64_bpvo_pool_index = 0;
173 static int	moea64_bpvo_pool_size = 327680;
174 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
175 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
176     &moea64_bpvo_pool_index, 0, "");
177 
178 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
179 #ifdef __powerpc64__
180 #define	NVSIDS		(NPMAPS * 16)
181 #define VSID_HASHMASK	0xffffffffUL
182 #else
183 #define NVSIDS		NPMAPS
184 #define VSID_HASHMASK	0xfffffUL
185 #endif
186 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
187 
188 static boolean_t moea64_initialized = FALSE;
189 
190 /*
191  * Statistics.
192  */
193 u_int	moea64_pte_valid = 0;
194 u_int	moea64_pte_overflow = 0;
195 u_int	moea64_pvo_entries = 0;
196 u_int	moea64_pvo_enter_calls = 0;
197 u_int	moea64_pvo_remove_calls = 0;
198 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
199     &moea64_pte_valid, 0, "");
200 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
201     &moea64_pte_overflow, 0, "");
202 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
203     &moea64_pvo_entries, 0, "");
204 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
205     &moea64_pvo_enter_calls, 0, "");
206 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
207     &moea64_pvo_remove_calls, 0, "");
208 
209 vm_offset_t	moea64_scratchpage_va[2];
210 struct pvo_entry *moea64_scratchpage_pvo[2];
211 struct	mtx	moea64_scratchpage_mtx;
212 
213 uint64_t 	moea64_large_page_mask = 0;
214 uint64_t	moea64_large_page_size = 0;
215 int		moea64_large_page_shift = 0;
216 
217 /*
218  * PVO calls.
219  */
220 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
221 		    struct pvo_head *pvo_head);
222 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
223 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
224 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
225 
226 /*
227  * Utility routines.
228  */
229 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
230 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
231 static void		moea64_kremove(mmu_t, vm_offset_t);
232 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
233 			    vm_paddr_t pa, vm_size_t sz);
234 static void		moea64_pmap_init_qpages(void);
235 
236 /*
237  * Kernel MMU interface
238  */
239 void moea64_clear_modify(mmu_t, vm_page_t);
240 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
241 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
242     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
243 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
244     u_int flags, int8_t psind);
245 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
246     vm_prot_t);
247 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
248 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
249 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
250 void moea64_init(mmu_t);
251 boolean_t moea64_is_modified(mmu_t, vm_page_t);
252 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
253 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
254 int moea64_ts_referenced(mmu_t, vm_page_t);
255 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
256 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
257 void moea64_page_init(mmu_t, vm_page_t);
258 int moea64_page_wired_mappings(mmu_t, vm_page_t);
259 void moea64_pinit(mmu_t, pmap_t);
260 void moea64_pinit0(mmu_t, pmap_t);
261 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
262 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
263 void moea64_qremove(mmu_t, vm_offset_t, int);
264 void moea64_release(mmu_t, pmap_t);
265 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
266 void moea64_remove_pages(mmu_t, pmap_t);
267 void moea64_remove_all(mmu_t, vm_page_t);
268 void moea64_remove_write(mmu_t, vm_page_t);
269 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
270 void moea64_zero_page(mmu_t, vm_page_t);
271 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
272 void moea64_activate(mmu_t, struct thread *);
273 void moea64_deactivate(mmu_t, struct thread *);
274 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
275 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
276 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
277 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
278 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
279 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
280 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
281 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
282 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
283 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
284     void **va);
285 void moea64_scan_init(mmu_t mmu);
286 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
287 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
288 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
289     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
290 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
291     int *is_user, vm_offset_t *decoded_addr);
292 
293 
294 static mmu_method_t moea64_methods[] = {
295 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
296 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
297 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
298 	MMUMETHOD(mmu_enter,		moea64_enter),
299 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
300 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
301 	MMUMETHOD(mmu_extract,		moea64_extract),
302 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
303 	MMUMETHOD(mmu_init,		moea64_init),
304 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
305 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
306 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
307 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
308 	MMUMETHOD(mmu_map,     		moea64_map),
309 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
310 	MMUMETHOD(mmu_page_init,	moea64_page_init),
311 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
312 	MMUMETHOD(mmu_pinit,		moea64_pinit),
313 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
314 	MMUMETHOD(mmu_protect,		moea64_protect),
315 	MMUMETHOD(mmu_qenter,		moea64_qenter),
316 	MMUMETHOD(mmu_qremove,		moea64_qremove),
317 	MMUMETHOD(mmu_release,		moea64_release),
318 	MMUMETHOD(mmu_remove,		moea64_remove),
319 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
320 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
321 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
322 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
323 	MMUMETHOD(mmu_unwire,		moea64_unwire),
324 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
325 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
326 	MMUMETHOD(mmu_activate,		moea64_activate),
327 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
328 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
329 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
330 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
331 
332 	/* Internal interfaces */
333 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
334 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
335 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
336 	MMUMETHOD(mmu_kextract,		moea64_kextract),
337 	MMUMETHOD(mmu_kenter,		moea64_kenter),
338 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
339 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
340 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
341 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
342 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
343 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
344 
345 	{ 0, 0 }
346 };
347 
348 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
349 
350 static struct pvo_head *
351 vm_page_to_pvoh(vm_page_t m)
352 {
353 
354 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
355 	return (&m->md.mdpg_pvoh);
356 }
357 
358 static struct pvo_entry *
359 alloc_pvo_entry(int bootstrap)
360 {
361 	struct pvo_entry *pvo;
362 
363 	if (!moea64_initialized || bootstrap) {
364 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
365 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
366 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
367 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
368 		}
369 		pvo = &moea64_bpvo_pool[
370 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
371 		bzero(pvo, sizeof(*pvo));
372 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
373 	} else {
374 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
375 		bzero(pvo, sizeof(*pvo));
376 	}
377 
378 	return (pvo);
379 }
380 
381 
382 static void
383 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
384 {
385 	uint64_t vsid;
386 	uint64_t hash;
387 	int shift;
388 
389 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
390 
391 	pvo->pvo_pmap = pmap;
392 	va &= ~ADDR_POFF;
393 	pvo->pvo_vaddr |= va;
394 	vsid = va_to_vsid(pmap, va);
395 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
396 	    | (vsid << 16);
397 
398 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
399 	    ADDR_PIDX_SHFT;
400 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
401 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
402 }
403 
404 static void
405 free_pvo_entry(struct pvo_entry *pvo)
406 {
407 
408 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
409 		uma_zfree(moea64_pvo_zone, pvo);
410 }
411 
412 void
413 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
414 {
415 
416 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
417 	    LPTE_AVPN_MASK;
418 	lpte->pte_hi |= LPTE_VALID;
419 
420 	if (pvo->pvo_vaddr & PVO_LARGE)
421 		lpte->pte_hi |= LPTE_BIG;
422 	if (pvo->pvo_vaddr & PVO_WIRED)
423 		lpte->pte_hi |= LPTE_WIRED;
424 	if (pvo->pvo_vaddr & PVO_HID)
425 		lpte->pte_hi |= LPTE_HID;
426 
427 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
428 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
429 		lpte->pte_lo |= LPTE_BW;
430 	else
431 		lpte->pte_lo |= LPTE_BR;
432 
433 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
434 		lpte->pte_lo |= LPTE_NOEXEC;
435 }
436 
437 static __inline uint64_t
438 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
439 {
440 	uint64_t pte_lo;
441 	int i;
442 
443 	if (ma != VM_MEMATTR_DEFAULT) {
444 		switch (ma) {
445 		case VM_MEMATTR_UNCACHEABLE:
446 			return (LPTE_I | LPTE_G);
447 		case VM_MEMATTR_CACHEABLE:
448 			return (LPTE_M);
449 		case VM_MEMATTR_WRITE_COMBINING:
450 		case VM_MEMATTR_WRITE_BACK:
451 		case VM_MEMATTR_PREFETCHABLE:
452 			return (LPTE_I);
453 		case VM_MEMATTR_WRITE_THROUGH:
454 			return (LPTE_W | LPTE_M);
455 		}
456 	}
457 
458 	/*
459 	 * Assume the page is cache inhibited and access is guarded unless
460 	 * it's in our available memory array.
461 	 */
462 	pte_lo = LPTE_I | LPTE_G;
463 	for (i = 0; i < pregions_sz; i++) {
464 		if ((pa >= pregions[i].mr_start) &&
465 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
466 			pte_lo &= ~(LPTE_I | LPTE_G);
467 			pte_lo |= LPTE_M;
468 			break;
469 		}
470 	}
471 
472 	return pte_lo;
473 }
474 
475 /*
476  * Quick sort callout for comparing memory regions.
477  */
478 static int	om_cmp(const void *a, const void *b);
479 
480 static int
481 om_cmp(const void *a, const void *b)
482 {
483 	const struct	ofw_map *mapa;
484 	const struct	ofw_map *mapb;
485 
486 	mapa = a;
487 	mapb = b;
488 	if (mapa->om_pa < mapb->om_pa)
489 		return (-1);
490 	else if (mapa->om_pa > mapb->om_pa)
491 		return (1);
492 	else
493 		return (0);
494 }
495 
496 static void
497 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
498 {
499 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
500 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
501 	struct pvo_entry *pvo;
502 	register_t	msr;
503 	vm_offset_t	off;
504 	vm_paddr_t	pa_base;
505 	int		i, j;
506 
507 	bzero(translations, sz);
508 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
509 	    sizeof(acells));
510 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
511 		panic("moea64_bootstrap: can't get ofw translations");
512 
513 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
514 	sz /= sizeof(cell_t);
515 	for (i = 0, j = 0; i < sz; j++) {
516 		translations[j].om_va = trans_cells[i++];
517 		translations[j].om_len = trans_cells[i++];
518 		translations[j].om_pa = trans_cells[i++];
519 		if (acells == 2) {
520 			translations[j].om_pa <<= 32;
521 			translations[j].om_pa |= trans_cells[i++];
522 		}
523 		translations[j].om_mode = trans_cells[i++];
524 	}
525 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
526 	    i, sz));
527 
528 	sz = j;
529 	qsort(translations, sz, sizeof (*translations), om_cmp);
530 
531 	for (i = 0; i < sz; i++) {
532 		pa_base = translations[i].om_pa;
533 	      #ifndef __powerpc64__
534 		if ((translations[i].om_pa >> 32) != 0)
535 			panic("OFW translations above 32-bit boundary!");
536 	      #endif
537 
538 		if (pa_base % PAGE_SIZE)
539 			panic("OFW translation not page-aligned (phys)!");
540 		if (translations[i].om_va % PAGE_SIZE)
541 			panic("OFW translation not page-aligned (virt)!");
542 
543 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
544 		    pa_base, translations[i].om_va, translations[i].om_len);
545 
546 		/* Now enter the pages for this mapping */
547 
548 		DISABLE_TRANS(msr);
549 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
550 			/* If this address is direct-mapped, skip remapping */
551 			if (hw_direct_map &&
552 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
553 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
554  			    == LPTE_M)
555 				continue;
556 
557 			PMAP_LOCK(kernel_pmap);
558 			pvo = moea64_pvo_find_va(kernel_pmap,
559 			    translations[i].om_va + off);
560 			PMAP_UNLOCK(kernel_pmap);
561 			if (pvo != NULL)
562 				continue;
563 
564 			moea64_kenter(mmup, translations[i].om_va + off,
565 			    pa_base + off);
566 		}
567 		ENABLE_TRANS(msr);
568 	}
569 }
570 
571 #ifdef __powerpc64__
572 static void
573 moea64_probe_large_page(void)
574 {
575 	uint16_t pvr = mfpvr() >> 16;
576 
577 	switch (pvr) {
578 	case IBM970:
579 	case IBM970FX:
580 	case IBM970MP:
581 		powerpc_sync(); isync();
582 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
583 		powerpc_sync(); isync();
584 
585 		/* FALLTHROUGH */
586 	default:
587 		if (moea64_large_page_size == 0) {
588 			moea64_large_page_size = 0x1000000; /* 16 MB */
589 			moea64_large_page_shift = 24;
590 		}
591 	}
592 
593 	moea64_large_page_mask = moea64_large_page_size - 1;
594 }
595 
596 static void
597 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
598 {
599 	struct slb *cache;
600 	struct slb entry;
601 	uint64_t esid, slbe;
602 	uint64_t i;
603 
604 	cache = PCPU_GET(aim.slb);
605 	esid = va >> ADDR_SR_SHFT;
606 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
607 
608 	for (i = 0; i < 64; i++) {
609 		if (cache[i].slbe == (slbe | i))
610 			return;
611 	}
612 
613 	entry.slbe = slbe;
614 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
615 	if (large)
616 		entry.slbv |= SLBV_L;
617 
618 	slb_insert_kernel(entry.slbe, entry.slbv);
619 }
620 #endif
621 
622 static void
623 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
624     vm_offset_t kernelend)
625 {
626 	struct pvo_entry *pvo;
627 	register_t msr;
628 	vm_paddr_t pa;
629 	vm_offset_t size, off;
630 	uint64_t pte_lo;
631 	int i;
632 
633 	if (moea64_large_page_size == 0)
634 		hw_direct_map = 0;
635 
636 	DISABLE_TRANS(msr);
637 	if (hw_direct_map) {
638 		PMAP_LOCK(kernel_pmap);
639 		for (i = 0; i < pregions_sz; i++) {
640 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
641 		     pregions[i].mr_size; pa += moea64_large_page_size) {
642 			pte_lo = LPTE_M;
643 
644 			pvo = alloc_pvo_entry(1 /* bootstrap */);
645 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
646 			init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa));
647 
648 			/*
649 			 * Set memory access as guarded if prefetch within
650 			 * the page could exit the available physmem area.
651 			 */
652 			if (pa & moea64_large_page_mask) {
653 				pa &= moea64_large_page_mask;
654 				pte_lo |= LPTE_G;
655 			}
656 			if (pa + moea64_large_page_size >
657 			    pregions[i].mr_start + pregions[i].mr_size)
658 				pte_lo |= LPTE_G;
659 
660 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
661 			    VM_PROT_EXECUTE;
662 			pvo->pvo_pte.pa = pa | pte_lo;
663 			moea64_pvo_enter(mmup, pvo, NULL);
664 		  }
665 		}
666 		PMAP_UNLOCK(kernel_pmap);
667 	}
668 
669 	/*
670 	 * Make sure the kernel and BPVO pool stay mapped on systems either
671 	 * without a direct map or on which the kernel is not already executing
672 	 * out of the direct-mapped region.
673 	 */
674 
675 	if (!hw_direct_map || kernelstart < DMAP_BASE_ADDRESS) {
676 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
677 		    pa += PAGE_SIZE)
678 			moea64_kenter(mmup, pa, pa);
679 	}
680 
681 	if (!hw_direct_map) {
682 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
683 		off = (vm_offset_t)(moea64_bpvo_pool);
684 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
685 			moea64_kenter(mmup, pa, pa);
686 	}
687 	ENABLE_TRANS(msr);
688 
689 	/*
690 	 * Allow user to override unmapped_buf_allowed for testing.
691 	 * XXXKIB Only direct map implementation was tested.
692 	 */
693 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
694 	    &unmapped_buf_allowed))
695 		unmapped_buf_allowed = hw_direct_map;
696 }
697 
698 void
699 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
700 {
701 	int		i, j;
702 	vm_size_t	physsz, hwphyssz;
703 	vm_paddr_t	kernelphysstart, kernelphysend;
704 
705 #ifndef __powerpc64__
706 	/* We don't have a direct map since there is no BAT */
707 	hw_direct_map = 0;
708 
709 	/* Make sure battable is zero, since we have no BAT */
710 	for (i = 0; i < 16; i++) {
711 		battable[i].batu = 0;
712 		battable[i].batl = 0;
713 	}
714 #else
715 	moea64_probe_large_page();
716 
717 	/* Use a direct map if we have large page support */
718 	if (moea64_large_page_size > 0)
719 		hw_direct_map = 1;
720 	else
721 		hw_direct_map = 0;
722 
723 	/* Install trap handlers for SLBs */
724 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
725 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
726 	__syncicache((void *)EXC_DSE, 0x80);
727 	__syncicache((void *)EXC_ISE, 0x80);
728 #endif
729 
730 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
731 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
732 
733 	/* Get physical memory regions from firmware */
734 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
735 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
736 
737 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
738 		panic("moea64_bootstrap: phys_avail too small");
739 
740 	phys_avail_count = 0;
741 	physsz = 0;
742 	hwphyssz = 0;
743 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
744 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
745 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
746 		    regions[i].mr_start, regions[i].mr_start +
747 		    regions[i].mr_size, regions[i].mr_size);
748 		if (hwphyssz != 0 &&
749 		    (physsz + regions[i].mr_size) >= hwphyssz) {
750 			if (physsz < hwphyssz) {
751 				phys_avail[j] = regions[i].mr_start;
752 				phys_avail[j + 1] = regions[i].mr_start +
753 				    hwphyssz - physsz;
754 				physsz = hwphyssz;
755 				phys_avail_count++;
756 			}
757 			break;
758 		}
759 		phys_avail[j] = regions[i].mr_start;
760 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
761 		phys_avail_count++;
762 		physsz += regions[i].mr_size;
763 	}
764 
765 	/* Check for overlap with the kernel and exception vectors */
766 	for (j = 0; j < 2*phys_avail_count; j+=2) {
767 		if (phys_avail[j] < EXC_LAST)
768 			phys_avail[j] += EXC_LAST;
769 
770 		if (kernelphysstart >= phys_avail[j] &&
771 		    kernelphysstart < phys_avail[j+1]) {
772 			if (kernelphysend < phys_avail[j+1]) {
773 				phys_avail[2*phys_avail_count] =
774 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
775 				phys_avail[2*phys_avail_count + 1] =
776 				    phys_avail[j+1];
777 				phys_avail_count++;
778 			}
779 
780 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
781 		}
782 
783 		if (kernelphysend >= phys_avail[j] &&
784 		    kernelphysend < phys_avail[j+1]) {
785 			if (kernelphysstart > phys_avail[j]) {
786 				phys_avail[2*phys_avail_count] = phys_avail[j];
787 				phys_avail[2*phys_avail_count + 1] =
788 				    kernelphysstart & ~PAGE_MASK;
789 				phys_avail_count++;
790 			}
791 
792 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
793 			    PAGE_SIZE;
794 		}
795 	}
796 
797 	physmem = btoc(physsz);
798 
799 #ifdef PTEGCOUNT
800 	moea64_pteg_count = PTEGCOUNT;
801 #else
802 	moea64_pteg_count = 0x1000;
803 
804 	while (moea64_pteg_count < physmem)
805 		moea64_pteg_count <<= 1;
806 
807 	moea64_pteg_count >>= 1;
808 #endif /* PTEGCOUNT */
809 }
810 
811 void
812 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
813 {
814 	int		i;
815 
816 	/*
817 	 * Set PTEG mask
818 	 */
819 	moea64_pteg_mask = moea64_pteg_count - 1;
820 
821 	/*
822 	 * Initialize SLB table lock and page locks
823 	 */
824 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
825 	for (i = 0; i < PV_LOCK_COUNT; i++)
826 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
827 
828 	/*
829 	 * Initialise the bootstrap pvo pool.
830 	 */
831 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
832 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
833 	moea64_bpvo_pool_index = 0;
834 
835 	/* Place at address usable through the direct map */
836 	if (hw_direct_map)
837 		moea64_bpvo_pool = (struct pvo_entry *)
838 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
839 
840 	/*
841 	 * Make sure kernel vsid is allocated as well as VSID 0.
842 	 */
843 	#ifndef __powerpc64__
844 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
845 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
846 	moea64_vsid_bitmap[0] |= 1;
847 	#endif
848 
849 	/*
850 	 * Initialize the kernel pmap (which is statically allocated).
851 	 */
852 	#ifdef __powerpc64__
853 	for (i = 0; i < 64; i++) {
854 		pcpup->pc_aim.slb[i].slbv = 0;
855 		pcpup->pc_aim.slb[i].slbe = 0;
856 	}
857 	#else
858 	for (i = 0; i < 16; i++)
859 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
860 	#endif
861 
862 	kernel_pmap->pmap_phys = kernel_pmap;
863 	CPU_FILL(&kernel_pmap->pm_active);
864 	RB_INIT(&kernel_pmap->pmap_pvo);
865 
866 	PMAP_LOCK_INIT(kernel_pmap);
867 
868 	/*
869 	 * Now map in all the other buffers we allocated earlier
870 	 */
871 
872 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
873 }
874 
875 void
876 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
877 {
878 	ihandle_t	mmui;
879 	phandle_t	chosen;
880 	phandle_t	mmu;
881 	ssize_t		sz;
882 	int		i;
883 	vm_offset_t	pa, va;
884 	void		*dpcpu;
885 
886 	/*
887 	 * Set up the Open Firmware pmap and add its mappings if not in real
888 	 * mode.
889 	 */
890 
891 	chosen = OF_finddevice("/chosen");
892 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
893 		mmu = OF_instance_to_package(mmui);
894 		if (mmu == -1 ||
895 		    (sz = OF_getproplen(mmu, "translations")) == -1)
896 			sz = 0;
897 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
898 			panic("moea64_bootstrap: too many ofw translations");
899 
900 		if (sz > 0)
901 			moea64_add_ofw_mappings(mmup, mmu, sz);
902 	}
903 
904 	/*
905 	 * Calculate the last available physical address.
906 	 */
907 	Maxmem = 0;
908 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
909 		Maxmem = max(Maxmem, powerpc_btop(phys_avail[i + 1]));
910 
911 	/*
912 	 * Initialize MMU.
913 	 */
914 	MMU_CPU_BOOTSTRAP(mmup,0);
915 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
916 	pmap_bootstrapped++;
917 
918 	/*
919 	 * Set the start and end of kva.
920 	 */
921 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
922 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
923 
924 	/*
925 	 * Map the entire KVA range into the SLB. We must not fault there.
926 	 */
927 	#ifdef __powerpc64__
928 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
929 		moea64_bootstrap_slb_prefault(va, 0);
930 	#endif
931 
932 	/*
933 	 * Remap any early IO mappings (console framebuffer, etc.)
934 	 */
935 	bs_remap_earlyboot();
936 
937 	/*
938 	 * Figure out how far we can extend virtual_end into segment 16
939 	 * without running into existing mappings. Segment 16 is guaranteed
940 	 * to contain neither RAM nor devices (at least on Apple hardware),
941 	 * but will generally contain some OFW mappings we should not
942 	 * step on.
943 	 */
944 
945 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
946 	PMAP_LOCK(kernel_pmap);
947 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
948 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
949 		virtual_end += PAGE_SIZE;
950 	PMAP_UNLOCK(kernel_pmap);
951 	#endif
952 
953 	/*
954 	 * Allocate a kernel stack with a guard page for thread0 and map it
955 	 * into the kernel page map.
956 	 */
957 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
958 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
959 	virtual_avail = va + kstack_pages * PAGE_SIZE;
960 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
961 	thread0.td_kstack = va;
962 	thread0.td_kstack_pages = kstack_pages;
963 	for (i = 0; i < kstack_pages; i++) {
964 		moea64_kenter(mmup, va, pa);
965 		pa += PAGE_SIZE;
966 		va += PAGE_SIZE;
967 	}
968 
969 	/*
970 	 * Allocate virtual address space for the message buffer.
971 	 */
972 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
973 	msgbufp = (struct msgbuf *)virtual_avail;
974 	va = virtual_avail;
975 	virtual_avail += round_page(msgbufsize);
976 	while (va < virtual_avail) {
977 		moea64_kenter(mmup, va, pa);
978 		pa += PAGE_SIZE;
979 		va += PAGE_SIZE;
980 	}
981 
982 	/*
983 	 * Allocate virtual address space for the dynamic percpu area.
984 	 */
985 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
986 	dpcpu = (void *)virtual_avail;
987 	va = virtual_avail;
988 	virtual_avail += DPCPU_SIZE;
989 	while (va < virtual_avail) {
990 		moea64_kenter(mmup, va, pa);
991 		pa += PAGE_SIZE;
992 		va += PAGE_SIZE;
993 	}
994 	dpcpu_init(dpcpu, curcpu);
995 
996 	/*
997 	 * Allocate some things for page zeroing. We put this directly
998 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
999 	 * of the PVO book-keeping or other parts of the VM system
1000 	 * from even knowing that this hack exists.
1001 	 */
1002 
1003 	if (!hw_direct_map) {
1004 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1005 		    MTX_DEF);
1006 		for (i = 0; i < 2; i++) {
1007 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1008 			virtual_end -= PAGE_SIZE;
1009 
1010 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
1011 
1012 			PMAP_LOCK(kernel_pmap);
1013 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1014 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1015 			PMAP_UNLOCK(kernel_pmap);
1016 		}
1017 	}
1018 }
1019 
1020 static void
1021 moea64_pmap_init_qpages(void)
1022 {
1023 	struct pcpu *pc;
1024 	int i;
1025 
1026 	if (hw_direct_map)
1027 		return;
1028 
1029 	CPU_FOREACH(i) {
1030 		pc = pcpu_find(i);
1031 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1032 		if (pc->pc_qmap_addr == 0)
1033 			panic("pmap_init_qpages: unable to allocate KVA");
1034 		PMAP_LOCK(kernel_pmap);
1035 		pc->pc_aim.qmap_pvo =
1036 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1037 		PMAP_UNLOCK(kernel_pmap);
1038 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1039 	}
1040 }
1041 
1042 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1043 
1044 /*
1045  * Activate a user pmap.  This mostly involves setting some non-CPU
1046  * state.
1047  */
1048 void
1049 moea64_activate(mmu_t mmu, struct thread *td)
1050 {
1051 	pmap_t	pm;
1052 
1053 	pm = &td->td_proc->p_vmspace->vm_pmap;
1054 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1055 
1056 	#ifdef __powerpc64__
1057 	PCPU_SET(aim.userslb, pm->pm_slb);
1058 	__asm __volatile("slbmte %0, %1; isync" ::
1059 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1060 	#else
1061 	PCPU_SET(curpmap, pm->pmap_phys);
1062 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1063 	#endif
1064 }
1065 
1066 void
1067 moea64_deactivate(mmu_t mmu, struct thread *td)
1068 {
1069 	pmap_t	pm;
1070 
1071 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1072 
1073 	pm = &td->td_proc->p_vmspace->vm_pmap;
1074 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1075 	#ifdef __powerpc64__
1076 	PCPU_SET(aim.userslb, NULL);
1077 	#else
1078 	PCPU_SET(curpmap, NULL);
1079 	#endif
1080 }
1081 
1082 void
1083 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1084 {
1085 	struct	pvo_entry key, *pvo;
1086 	vm_page_t m;
1087 	int64_t	refchg;
1088 
1089 	key.pvo_vaddr = sva;
1090 	PMAP_LOCK(pm);
1091 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1092 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1093 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1094 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1095 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1096 			    pvo);
1097 		pvo->pvo_vaddr &= ~PVO_WIRED;
1098 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1099 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1100 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1101 			if (refchg < 0)
1102 				refchg = LPTE_CHG;
1103 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1104 
1105 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1106 			if (refchg & LPTE_CHG)
1107 				vm_page_dirty(m);
1108 			if (refchg & LPTE_REF)
1109 				vm_page_aflag_set(m, PGA_REFERENCED);
1110 		}
1111 		pm->pm_stats.wired_count--;
1112 	}
1113 	PMAP_UNLOCK(pm);
1114 }
1115 
1116 /*
1117  * This goes through and sets the physical address of our
1118  * special scratch PTE to the PA we want to zero or copy. Because
1119  * of locking issues (this can get called in pvo_enter() by
1120  * the UMA allocator), we can't use most other utility functions here
1121  */
1122 
1123 static __inline
1124 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) {
1125 
1126 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1127 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1128 
1129 	moea64_scratchpage_pvo[which]->pvo_pte.pa =
1130 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1131 	MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1132 	    MOEA64_PTE_INVALIDATE);
1133 	isync();
1134 }
1135 
1136 void
1137 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1138 {
1139 	vm_offset_t	dst;
1140 	vm_offset_t	src;
1141 
1142 	dst = VM_PAGE_TO_PHYS(mdst);
1143 	src = VM_PAGE_TO_PHYS(msrc);
1144 
1145 	if (hw_direct_map) {
1146 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1147 		    PAGE_SIZE);
1148 	} else {
1149 		mtx_lock(&moea64_scratchpage_mtx);
1150 
1151 		moea64_set_scratchpage_pa(mmu, 0, src);
1152 		moea64_set_scratchpage_pa(mmu, 1, dst);
1153 
1154 		bcopy((void *)moea64_scratchpage_va[0],
1155 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1156 
1157 		mtx_unlock(&moea64_scratchpage_mtx);
1158 	}
1159 }
1160 
1161 static inline void
1162 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1163     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1164 {
1165 	void *a_cp, *b_cp;
1166 	vm_offset_t a_pg_offset, b_pg_offset;
1167 	int cnt;
1168 
1169 	while (xfersize > 0) {
1170 		a_pg_offset = a_offset & PAGE_MASK;
1171 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1172 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1173 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1174 		    a_pg_offset;
1175 		b_pg_offset = b_offset & PAGE_MASK;
1176 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1177 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1178 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1179 		    b_pg_offset;
1180 		bcopy(a_cp, b_cp, cnt);
1181 		a_offset += cnt;
1182 		b_offset += cnt;
1183 		xfersize -= cnt;
1184 	}
1185 }
1186 
1187 static inline void
1188 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1189     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1190 {
1191 	void *a_cp, *b_cp;
1192 	vm_offset_t a_pg_offset, b_pg_offset;
1193 	int cnt;
1194 
1195 	mtx_lock(&moea64_scratchpage_mtx);
1196 	while (xfersize > 0) {
1197 		a_pg_offset = a_offset & PAGE_MASK;
1198 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1199 		moea64_set_scratchpage_pa(mmu, 0,
1200 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1201 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1202 		b_pg_offset = b_offset & PAGE_MASK;
1203 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1204 		moea64_set_scratchpage_pa(mmu, 1,
1205 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1206 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1207 		bcopy(a_cp, b_cp, cnt);
1208 		a_offset += cnt;
1209 		b_offset += cnt;
1210 		xfersize -= cnt;
1211 	}
1212 	mtx_unlock(&moea64_scratchpage_mtx);
1213 }
1214 
1215 void
1216 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1217     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1218 {
1219 
1220 	if (hw_direct_map) {
1221 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1222 		    xfersize);
1223 	} else {
1224 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1225 		    xfersize);
1226 	}
1227 }
1228 
1229 void
1230 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1231 {
1232 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1233 
1234 	if (size + off > PAGE_SIZE)
1235 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1236 
1237 	if (hw_direct_map) {
1238 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1239 	} else {
1240 		mtx_lock(&moea64_scratchpage_mtx);
1241 		moea64_set_scratchpage_pa(mmu, 0, pa);
1242 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1243 		mtx_unlock(&moea64_scratchpage_mtx);
1244 	}
1245 }
1246 
1247 /*
1248  * Zero a page of physical memory by temporarily mapping it
1249  */
1250 void
1251 moea64_zero_page(mmu_t mmu, vm_page_t m)
1252 {
1253 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1254 	vm_offset_t va, off;
1255 
1256 	if (!hw_direct_map) {
1257 		mtx_lock(&moea64_scratchpage_mtx);
1258 
1259 		moea64_set_scratchpage_pa(mmu, 0, pa);
1260 		va = moea64_scratchpage_va[0];
1261 	} else {
1262 		va = PHYS_TO_DMAP(pa);
1263 	}
1264 
1265 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1266 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1267 
1268 	if (!hw_direct_map)
1269 		mtx_unlock(&moea64_scratchpage_mtx);
1270 }
1271 
1272 vm_offset_t
1273 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1274 {
1275 	struct pvo_entry *pvo;
1276 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1277 
1278 	if (hw_direct_map)
1279 		return (PHYS_TO_DMAP(pa));
1280 
1281 	/*
1282  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1283 	 * a critical section and access the PCPU data like on i386.
1284 	 * Instead, pin the thread and grab the PCPU lock to prevent
1285 	 * a preempting thread from using the same PCPU data.
1286 	 */
1287 	sched_pin();
1288 
1289 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1290 	pvo = PCPU_GET(aim.qmap_pvo);
1291 
1292 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1293 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1294 	    (uint64_t)pa;
1295 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1296 	isync();
1297 
1298 	return (PCPU_GET(qmap_addr));
1299 }
1300 
1301 void
1302 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1303 {
1304 	if (hw_direct_map)
1305 		return;
1306 
1307 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1308 	KASSERT(PCPU_GET(qmap_addr) == addr,
1309 	    ("moea64_quick_remove_page: invalid address"));
1310 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1311 	sched_unpin();
1312 }
1313 
1314 /*
1315  * Map the given physical page at the specified virtual address in the
1316  * target pmap with the protection requested.  If specified the page
1317  * will be wired down.
1318  */
1319 
1320 int
1321 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1322     vm_prot_t prot, u_int flags, int8_t psind)
1323 {
1324 	struct		pvo_entry *pvo, *oldpvo;
1325 	struct		pvo_head *pvo_head;
1326 	uint64_t	pte_lo;
1327 	int		error;
1328 
1329 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1330 		VM_OBJECT_ASSERT_LOCKED(m->object);
1331 
1332 	pvo = alloc_pvo_entry(0);
1333 	pvo->pvo_pmap = NULL; /* to be filled in later */
1334 	pvo->pvo_pte.prot = prot;
1335 
1336 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1337 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1338 
1339 	if ((flags & PMAP_ENTER_WIRED) != 0)
1340 		pvo->pvo_vaddr |= PVO_WIRED;
1341 
1342 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1343 		pvo_head = NULL;
1344 	} else {
1345 		pvo_head = &m->md.mdpg_pvoh;
1346 		pvo->pvo_vaddr |= PVO_MANAGED;
1347 	}
1348 
1349 	for (;;) {
1350 		PV_PAGE_LOCK(m);
1351 		PMAP_LOCK(pmap);
1352 		if (pvo->pvo_pmap == NULL)
1353 			init_pvo_entry(pvo, pmap, va);
1354 		if (prot & VM_PROT_WRITE)
1355 			if (pmap_bootstrapped &&
1356 			    (m->oflags & VPO_UNMANAGED) == 0)
1357 				vm_page_aflag_set(m, PGA_WRITEABLE);
1358 
1359 		oldpvo = moea64_pvo_find_va(pmap, va);
1360 		if (oldpvo != NULL) {
1361 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1362 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1363 			    oldpvo->pvo_pte.prot == prot) {
1364 				/* Identical mapping already exists */
1365 				error = 0;
1366 
1367 				/* If not in page table, reinsert it */
1368 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1369 					moea64_pte_overflow--;
1370 					MOEA64_PTE_INSERT(mmu, oldpvo);
1371 				}
1372 
1373 				/* Then just clean up and go home */
1374 				PV_PAGE_UNLOCK(m);
1375 				PMAP_UNLOCK(pmap);
1376 				free_pvo_entry(pvo);
1377 				break;
1378 			}
1379 
1380 			/* Otherwise, need to kill it first */
1381 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1382 			    "mapping does not match new mapping"));
1383 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1384 		}
1385 		error = moea64_pvo_enter(mmu, pvo, pvo_head);
1386 		PV_PAGE_UNLOCK(m);
1387 		PMAP_UNLOCK(pmap);
1388 
1389 		/* Free any dead pages */
1390 		if (oldpvo != NULL) {
1391 			PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1392 			moea64_pvo_remove_from_page(mmu, oldpvo);
1393 			PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1394 			free_pvo_entry(oldpvo);
1395 		}
1396 
1397 		if (error != ENOMEM)
1398 			break;
1399 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1400 			return (KERN_RESOURCE_SHORTAGE);
1401 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1402 		vm_wait(NULL);
1403 	}
1404 
1405 	/*
1406 	 * Flush the page from the instruction cache if this page is
1407 	 * mapped executable and cacheable.
1408 	 */
1409 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1410 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1411 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1412 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1413 	}
1414 	return (KERN_SUCCESS);
1415 }
1416 
1417 static void
1418 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1419     vm_size_t sz)
1420 {
1421 
1422 	/*
1423 	 * This is much trickier than on older systems because
1424 	 * we can't sync the icache on physical addresses directly
1425 	 * without a direct map. Instead we check a couple of cases
1426 	 * where the memory is already mapped in and, failing that,
1427 	 * use the same trick we use for page zeroing to create
1428 	 * a temporary mapping for this physical address.
1429 	 */
1430 
1431 	if (!pmap_bootstrapped) {
1432 		/*
1433 		 * If PMAP is not bootstrapped, we are likely to be
1434 		 * in real mode.
1435 		 */
1436 		__syncicache((void *)(uintptr_t)pa, sz);
1437 	} else if (pmap == kernel_pmap) {
1438 		__syncicache((void *)va, sz);
1439 	} else if (hw_direct_map) {
1440 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1441 	} else {
1442 		/* Use the scratch page to set up a temp mapping */
1443 
1444 		mtx_lock(&moea64_scratchpage_mtx);
1445 
1446 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1447 		__syncicache((void *)(moea64_scratchpage_va[1] +
1448 		    (va & ADDR_POFF)), sz);
1449 
1450 		mtx_unlock(&moea64_scratchpage_mtx);
1451 	}
1452 }
1453 
1454 /*
1455  * Maps a sequence of resident pages belonging to the same object.
1456  * The sequence begins with the given page m_start.  This page is
1457  * mapped at the given virtual address start.  Each subsequent page is
1458  * mapped at a virtual address that is offset from start by the same
1459  * amount as the page is offset from m_start within the object.  The
1460  * last page in the sequence is the page with the largest offset from
1461  * m_start that can be mapped at a virtual address less than the given
1462  * virtual address end.  Not every virtual page between start and end
1463  * is mapped; only those for which a resident page exists with the
1464  * corresponding offset from m_start are mapped.
1465  */
1466 void
1467 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1468     vm_page_t m_start, vm_prot_t prot)
1469 {
1470 	vm_page_t m;
1471 	vm_pindex_t diff, psize;
1472 
1473 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1474 
1475 	psize = atop(end - start);
1476 	m = m_start;
1477 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1478 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1479 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1480 		m = TAILQ_NEXT(m, listq);
1481 	}
1482 }
1483 
1484 void
1485 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1486     vm_prot_t prot)
1487 {
1488 
1489 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1490 	    PMAP_ENTER_NOSLEEP, 0);
1491 }
1492 
1493 vm_paddr_t
1494 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1495 {
1496 	struct	pvo_entry *pvo;
1497 	vm_paddr_t pa;
1498 
1499 	PMAP_LOCK(pm);
1500 	pvo = moea64_pvo_find_va(pm, va);
1501 	if (pvo == NULL)
1502 		pa = 0;
1503 	else
1504 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1505 	PMAP_UNLOCK(pm);
1506 
1507 	return (pa);
1508 }
1509 
1510 /*
1511  * Atomically extract and hold the physical page with the given
1512  * pmap and virtual address pair if that mapping permits the given
1513  * protection.
1514  */
1515 vm_page_t
1516 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1517 {
1518 	struct	pvo_entry *pvo;
1519 	vm_page_t m;
1520         vm_paddr_t pa;
1521 
1522 	m = NULL;
1523 	pa = 0;
1524 	PMAP_LOCK(pmap);
1525 retry:
1526 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1527 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1528 		if (vm_page_pa_tryrelock(pmap,
1529 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1530 			goto retry;
1531 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1532 		vm_page_hold(m);
1533 	}
1534 	PA_UNLOCK_COND(pa);
1535 	PMAP_UNLOCK(pmap);
1536 	return (m);
1537 }
1538 
1539 static mmu_t installed_mmu;
1540 
1541 static void *
1542 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1543     uint8_t *flags, int wait)
1544 {
1545 	struct pvo_entry *pvo;
1546         vm_offset_t va;
1547         vm_page_t m;
1548         int needed_lock;
1549 
1550 	/*
1551 	 * This entire routine is a horrible hack to avoid bothering kmem
1552 	 * for new KVA addresses. Because this can get called from inside
1553 	 * kmem allocation routines, calling kmem for a new address here
1554 	 * can lead to multiply locking non-recursive mutexes.
1555 	 */
1556 
1557 	*flags = UMA_SLAB_PRIV;
1558 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1559 
1560 	m = vm_page_alloc_domain(NULL, 0, domain,
1561 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1562 	if (m == NULL)
1563 		return (NULL);
1564 
1565 	va = VM_PAGE_TO_PHYS(m);
1566 
1567 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1568 
1569 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1570 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1571 
1572 	if (needed_lock)
1573 		PMAP_LOCK(kernel_pmap);
1574 
1575 	init_pvo_entry(pvo, kernel_pmap, va);
1576 	pvo->pvo_vaddr |= PVO_WIRED;
1577 
1578 	moea64_pvo_enter(installed_mmu, pvo, NULL);
1579 
1580 	if (needed_lock)
1581 		PMAP_UNLOCK(kernel_pmap);
1582 
1583 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1584                 bzero((void *)va, PAGE_SIZE);
1585 
1586 	return (void *)va;
1587 }
1588 
1589 extern int elf32_nxstack;
1590 
1591 void
1592 moea64_init(mmu_t mmu)
1593 {
1594 
1595 	CTR0(KTR_PMAP, "moea64_init");
1596 
1597 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1598 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1599 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1600 
1601 	if (!hw_direct_map) {
1602 		installed_mmu = mmu;
1603 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1604 	}
1605 
1606 #ifdef COMPAT_FREEBSD32
1607 	elf32_nxstack = 1;
1608 #endif
1609 
1610 	moea64_initialized = TRUE;
1611 }
1612 
1613 boolean_t
1614 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1615 {
1616 
1617 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1618 	    ("moea64_is_referenced: page %p is not managed", m));
1619 
1620 	return (moea64_query_bit(mmu, m, LPTE_REF));
1621 }
1622 
1623 boolean_t
1624 moea64_is_modified(mmu_t mmu, vm_page_t m)
1625 {
1626 
1627 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1628 	    ("moea64_is_modified: page %p is not managed", m));
1629 
1630 	/*
1631 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1632 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1633 	 * is clear, no PTEs can have LPTE_CHG set.
1634 	 */
1635 	VM_OBJECT_ASSERT_LOCKED(m->object);
1636 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1637 		return (FALSE);
1638 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1639 }
1640 
1641 boolean_t
1642 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1643 {
1644 	struct pvo_entry *pvo;
1645 	boolean_t rv = TRUE;
1646 
1647 	PMAP_LOCK(pmap);
1648 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1649 	if (pvo != NULL)
1650 		rv = FALSE;
1651 	PMAP_UNLOCK(pmap);
1652 	return (rv);
1653 }
1654 
1655 void
1656 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1657 {
1658 
1659 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1660 	    ("moea64_clear_modify: page %p is not managed", m));
1661 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1662 	KASSERT(!vm_page_xbusied(m),
1663 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1664 
1665 	/*
1666 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1667 	 * set.  If the object containing the page is locked and the page is
1668 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1669 	 */
1670 	if ((m->aflags & PGA_WRITEABLE) == 0)
1671 		return;
1672 	moea64_clear_bit(mmu, m, LPTE_CHG);
1673 }
1674 
1675 /*
1676  * Clear the write and modified bits in each of the given page's mappings.
1677  */
1678 void
1679 moea64_remove_write(mmu_t mmu, vm_page_t m)
1680 {
1681 	struct	pvo_entry *pvo;
1682 	int64_t	refchg, ret;
1683 	pmap_t	pmap;
1684 
1685 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1686 	    ("moea64_remove_write: page %p is not managed", m));
1687 
1688 	/*
1689 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1690 	 * set by another thread while the object is locked.  Thus,
1691 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1692 	 */
1693 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1694 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1695 		return;
1696 	powerpc_sync();
1697 	PV_PAGE_LOCK(m);
1698 	refchg = 0;
1699 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1700 		pmap = pvo->pvo_pmap;
1701 		PMAP_LOCK(pmap);
1702 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1703 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1704 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1705 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1706 			    MOEA64_PTE_PROT_UPDATE);
1707 			if (ret < 0)
1708 				ret = LPTE_CHG;
1709 			refchg |= ret;
1710 			if (pvo->pvo_pmap == kernel_pmap)
1711 				isync();
1712 		}
1713 		PMAP_UNLOCK(pmap);
1714 	}
1715 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1716 		vm_page_dirty(m);
1717 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1718 	PV_PAGE_UNLOCK(m);
1719 }
1720 
1721 /*
1722  *	moea64_ts_referenced:
1723  *
1724  *	Return a count of reference bits for a page, clearing those bits.
1725  *	It is not necessary for every reference bit to be cleared, but it
1726  *	is necessary that 0 only be returned when there are truly no
1727  *	reference bits set.
1728  *
1729  *	XXX: The exact number of bits to check and clear is a matter that
1730  *	should be tested and standardized at some point in the future for
1731  *	optimal aging of shared pages.
1732  */
1733 int
1734 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1735 {
1736 
1737 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1738 	    ("moea64_ts_referenced: page %p is not managed", m));
1739 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1740 }
1741 
1742 /*
1743  * Modify the WIMG settings of all mappings for a page.
1744  */
1745 void
1746 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1747 {
1748 	struct	pvo_entry *pvo;
1749 	int64_t	refchg;
1750 	pmap_t	pmap;
1751 	uint64_t lo;
1752 
1753 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1754 		m->md.mdpg_cache_attrs = ma;
1755 		return;
1756 	}
1757 
1758 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1759 
1760 	PV_PAGE_LOCK(m);
1761 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1762 		pmap = pvo->pvo_pmap;
1763 		PMAP_LOCK(pmap);
1764 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1765 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1766 			pvo->pvo_pte.pa |= lo;
1767 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1768 			    MOEA64_PTE_INVALIDATE);
1769 			if (refchg < 0)
1770 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1771 				    LPTE_CHG : 0;
1772 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1773 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1774 				refchg |=
1775 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1776 				if (refchg & LPTE_CHG)
1777 					vm_page_dirty(m);
1778 				if (refchg & LPTE_REF)
1779 					vm_page_aflag_set(m, PGA_REFERENCED);
1780 			}
1781 			if (pvo->pvo_pmap == kernel_pmap)
1782 				isync();
1783 		}
1784 		PMAP_UNLOCK(pmap);
1785 	}
1786 	m->md.mdpg_cache_attrs = ma;
1787 	PV_PAGE_UNLOCK(m);
1788 }
1789 
1790 /*
1791  * Map a wired page into kernel virtual address space.
1792  */
1793 void
1794 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1795 {
1796 	int		error;
1797 	struct pvo_entry *pvo, *oldpvo;
1798 
1799 	pvo = alloc_pvo_entry(0);
1800 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1801 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1802 	pvo->pvo_vaddr |= PVO_WIRED;
1803 
1804 	PMAP_LOCK(kernel_pmap);
1805 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1806 	if (oldpvo != NULL)
1807 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1808 	init_pvo_entry(pvo, kernel_pmap, va);
1809 	error = moea64_pvo_enter(mmu, pvo, NULL);
1810 	PMAP_UNLOCK(kernel_pmap);
1811 
1812 	/* Free any dead pages */
1813 	if (oldpvo != NULL) {
1814 		PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1815 		moea64_pvo_remove_from_page(mmu, oldpvo);
1816 		PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1817 		free_pvo_entry(oldpvo);
1818 	}
1819 
1820 	if (error != 0 && error != ENOENT)
1821 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1822 		    (uintmax_t)pa, error);
1823 }
1824 
1825 void
1826 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1827 {
1828 
1829 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1830 }
1831 
1832 /*
1833  * Extract the physical page address associated with the given kernel virtual
1834  * address.
1835  */
1836 vm_paddr_t
1837 moea64_kextract(mmu_t mmu, vm_offset_t va)
1838 {
1839 	struct		pvo_entry *pvo;
1840 	vm_paddr_t pa;
1841 
1842 	/*
1843 	 * Shortcut the direct-mapped case when applicable.  We never put
1844 	 * anything but 1:1 (or 62-bit aliased) mappings below
1845 	 * VM_MIN_KERNEL_ADDRESS.
1846 	 */
1847 	if (va < VM_MIN_KERNEL_ADDRESS)
1848 		return (va & ~DMAP_BASE_ADDRESS);
1849 
1850 	PMAP_LOCK(kernel_pmap);
1851 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1852 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1853 	    va));
1854 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1855 	PMAP_UNLOCK(kernel_pmap);
1856 	return (pa);
1857 }
1858 
1859 /*
1860  * Remove a wired page from kernel virtual address space.
1861  */
1862 void
1863 moea64_kremove(mmu_t mmu, vm_offset_t va)
1864 {
1865 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1866 }
1867 
1868 /*
1869  * Provide a kernel pointer corresponding to a given userland pointer.
1870  * The returned pointer is valid until the next time this function is
1871  * called in this thread. This is used internally in copyin/copyout.
1872  */
1873 static int
1874 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1875     void **kaddr, size_t ulen, size_t *klen)
1876 {
1877 	size_t l;
1878 #ifdef __powerpc64__
1879 	struct slb *slb;
1880 #endif
1881 	register_t slbv;
1882 
1883 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1884 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1885 	if (l > ulen)
1886 		l = ulen;
1887 	if (klen)
1888 		*klen = l;
1889 	else if (l != ulen)
1890 		return (EFAULT);
1891 
1892 #ifdef __powerpc64__
1893 	/* Try lockless look-up first */
1894 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1895 
1896 	if (slb == NULL) {
1897 		/* If it isn't there, we need to pre-fault the VSID */
1898 		PMAP_LOCK(pm);
1899 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1900 		PMAP_UNLOCK(pm);
1901 	} else {
1902 		slbv = slb->slbv;
1903 	}
1904 
1905 	/* Mark segment no-execute */
1906 	slbv |= SLBV_N;
1907 #else
1908 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1909 
1910 	/* Mark segment no-execute */
1911 	slbv |= SR_N;
1912 #endif
1913 
1914 	/* If we have already set this VSID, we can just return */
1915 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1916 		return (0);
1917 
1918 	__asm __volatile("isync");
1919 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1920 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1921 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1922 #ifdef __powerpc64__
1923 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1924 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
1925 #else
1926 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
1927 #endif
1928 
1929 	return (0);
1930 }
1931 
1932 /*
1933  * Figure out where a given kernel pointer (usually in a fault) points
1934  * to from the VM's perspective, potentially remapping into userland's
1935  * address space.
1936  */
1937 static int
1938 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
1939     vm_offset_t *decoded_addr)
1940 {
1941 	vm_offset_t user_sr;
1942 
1943 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1944 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1945 		addr &= ADDR_PIDX | ADDR_POFF;
1946 		addr |= user_sr << ADDR_SR_SHFT;
1947 		*decoded_addr = addr;
1948 		*is_user = 1;
1949 	} else {
1950 		*decoded_addr = addr;
1951 		*is_user = 0;
1952 	}
1953 
1954 	return (0);
1955 }
1956 
1957 /*
1958  * Map a range of physical addresses into kernel virtual address space.
1959  *
1960  * The value passed in *virt is a suggested virtual address for the mapping.
1961  * Architectures which can support a direct-mapped physical to virtual region
1962  * can return the appropriate address within that region, leaving '*virt'
1963  * unchanged.  Other architectures should map the pages starting at '*virt' and
1964  * update '*virt' with the first usable address after the mapped region.
1965  */
1966 vm_offset_t
1967 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1968     vm_paddr_t pa_end, int prot)
1969 {
1970 	vm_offset_t	sva, va;
1971 
1972 	if (hw_direct_map) {
1973 		/*
1974 		 * Check if every page in the region is covered by the direct
1975 		 * map. The direct map covers all of physical memory. Use
1976 		 * moea64_calc_wimg() as a shortcut to see if the page is in
1977 		 * physical memory as a way to see if the direct map covers it.
1978 		 */
1979 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1980 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1981 				break;
1982 		if (va == pa_end)
1983 			return (PHYS_TO_DMAP(pa_start));
1984 	}
1985 	sva = *virt;
1986 	va = sva;
1987 	/* XXX respect prot argument */
1988 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1989 		moea64_kenter(mmu, va, pa_start);
1990 	*virt = va;
1991 
1992 	return (sva);
1993 }
1994 
1995 /*
1996  * Returns true if the pmap's pv is one of the first
1997  * 16 pvs linked to from this page.  This count may
1998  * be changed upwards or downwards in the future; it
1999  * is only necessary that true be returned for a small
2000  * subset of pmaps for proper page aging.
2001  */
2002 boolean_t
2003 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2004 {
2005         int loops;
2006 	struct pvo_entry *pvo;
2007 	boolean_t rv;
2008 
2009 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2010 	    ("moea64_page_exists_quick: page %p is not managed", m));
2011 	loops = 0;
2012 	rv = FALSE;
2013 	PV_PAGE_LOCK(m);
2014 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2015 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2016 			rv = TRUE;
2017 			break;
2018 		}
2019 		if (++loops >= 16)
2020 			break;
2021 	}
2022 	PV_PAGE_UNLOCK(m);
2023 	return (rv);
2024 }
2025 
2026 void
2027 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2028 {
2029 
2030 	m->md.mdpg_attrs = 0;
2031 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2032 	LIST_INIT(&m->md.mdpg_pvoh);
2033 }
2034 
2035 /*
2036  * Return the number of managed mappings to the given physical page
2037  * that are wired.
2038  */
2039 int
2040 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2041 {
2042 	struct pvo_entry *pvo;
2043 	int count;
2044 
2045 	count = 0;
2046 	if ((m->oflags & VPO_UNMANAGED) != 0)
2047 		return (count);
2048 	PV_PAGE_LOCK(m);
2049 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2050 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2051 			count++;
2052 	PV_PAGE_UNLOCK(m);
2053 	return (count);
2054 }
2055 
2056 static uintptr_t	moea64_vsidcontext;
2057 
2058 uintptr_t
2059 moea64_get_unique_vsid(void) {
2060 	u_int entropy;
2061 	register_t hash;
2062 	uint32_t mask;
2063 	int i;
2064 
2065 	entropy = 0;
2066 	__asm __volatile("mftb %0" : "=r"(entropy));
2067 
2068 	mtx_lock(&moea64_slb_mutex);
2069 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2070 		u_int	n;
2071 
2072 		/*
2073 		 * Create a new value by mutiplying by a prime and adding in
2074 		 * entropy from the timebase register.  This is to make the
2075 		 * VSID more random so that the PT hash function collides
2076 		 * less often.  (Note that the prime casues gcc to do shifts
2077 		 * instead of a multiply.)
2078 		 */
2079 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2080 		hash = moea64_vsidcontext & (NVSIDS - 1);
2081 		if (hash == 0)		/* 0 is special, avoid it */
2082 			continue;
2083 		n = hash >> 5;
2084 		mask = 1 << (hash & (VSID_NBPW - 1));
2085 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2086 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2087 			/* anything free in this bucket? */
2088 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2089 				entropy = (moea64_vsidcontext >> 20);
2090 				continue;
2091 			}
2092 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2093 			mask = 1 << i;
2094 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2095 			hash |= i;
2096 		}
2097 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2098 			continue;
2099 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2100 		    ("Allocating in-use VSID %#zx\n", hash));
2101 		moea64_vsid_bitmap[n] |= mask;
2102 		mtx_unlock(&moea64_slb_mutex);
2103 		return (hash);
2104 	}
2105 
2106 	mtx_unlock(&moea64_slb_mutex);
2107 	panic("%s: out of segments",__func__);
2108 }
2109 
2110 #ifdef __powerpc64__
2111 void
2112 moea64_pinit(mmu_t mmu, pmap_t pmap)
2113 {
2114 
2115 	RB_INIT(&pmap->pmap_pvo);
2116 
2117 	pmap->pm_slb_tree_root = slb_alloc_tree();
2118 	pmap->pm_slb = slb_alloc_user_cache();
2119 	pmap->pm_slb_len = 0;
2120 }
2121 #else
2122 void
2123 moea64_pinit(mmu_t mmu, pmap_t pmap)
2124 {
2125 	int	i;
2126 	uint32_t hash;
2127 
2128 	RB_INIT(&pmap->pmap_pvo);
2129 
2130 	if (pmap_bootstrapped)
2131 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2132 		    (vm_offset_t)pmap);
2133 	else
2134 		pmap->pmap_phys = pmap;
2135 
2136 	/*
2137 	 * Allocate some segment registers for this pmap.
2138 	 */
2139 	hash = moea64_get_unique_vsid();
2140 
2141 	for (i = 0; i < 16; i++)
2142 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2143 
2144 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2145 }
2146 #endif
2147 
2148 /*
2149  * Initialize the pmap associated with process 0.
2150  */
2151 void
2152 moea64_pinit0(mmu_t mmu, pmap_t pm)
2153 {
2154 
2155 	PMAP_LOCK_INIT(pm);
2156 	moea64_pinit(mmu, pm);
2157 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2158 }
2159 
2160 /*
2161  * Set the physical protection on the specified range of this map as requested.
2162  */
2163 static void
2164 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2165 {
2166 	struct vm_page *pg;
2167 	vm_prot_t oldprot;
2168 	int32_t refchg;
2169 
2170 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2171 
2172 	/*
2173 	 * Change the protection of the page.
2174 	 */
2175 	oldprot = pvo->pvo_pte.prot;
2176 	pvo->pvo_pte.prot = prot;
2177 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2178 
2179 	/*
2180 	 * If the PVO is in the page table, update mapping
2181 	 */
2182 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2183 	if (refchg < 0)
2184 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2185 
2186 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2187 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2188 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2189 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2190 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2191 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2192 	}
2193 
2194 	/*
2195 	 * Update vm about the REF/CHG bits if the page is managed and we have
2196 	 * removed write access.
2197 	 */
2198 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2199 	    (oldprot & VM_PROT_WRITE)) {
2200 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2201 		if (refchg & LPTE_CHG)
2202 			vm_page_dirty(pg);
2203 		if (refchg & LPTE_REF)
2204 			vm_page_aflag_set(pg, PGA_REFERENCED);
2205 	}
2206 }
2207 
2208 void
2209 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2210     vm_prot_t prot)
2211 {
2212 	struct	pvo_entry *pvo, *tpvo, key;
2213 
2214 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2215 	    sva, eva, prot);
2216 
2217 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2218 	    ("moea64_protect: non current pmap"));
2219 
2220 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2221 		moea64_remove(mmu, pm, sva, eva);
2222 		return;
2223 	}
2224 
2225 	PMAP_LOCK(pm);
2226 	key.pvo_vaddr = sva;
2227 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2228 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2229 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2230 		moea64_pvo_protect(mmu, pm, pvo, prot);
2231 	}
2232 	PMAP_UNLOCK(pm);
2233 }
2234 
2235 /*
2236  * Map a list of wired pages into kernel virtual address space.  This is
2237  * intended for temporary mappings which do not need page modification or
2238  * references recorded.  Existing mappings in the region are overwritten.
2239  */
2240 void
2241 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2242 {
2243 	while (count-- > 0) {
2244 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2245 		va += PAGE_SIZE;
2246 		m++;
2247 	}
2248 }
2249 
2250 /*
2251  * Remove page mappings from kernel virtual address space.  Intended for
2252  * temporary mappings entered by moea64_qenter.
2253  */
2254 void
2255 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2256 {
2257 	while (count-- > 0) {
2258 		moea64_kremove(mmu, va);
2259 		va += PAGE_SIZE;
2260 	}
2261 }
2262 
2263 void
2264 moea64_release_vsid(uint64_t vsid)
2265 {
2266 	int idx, mask;
2267 
2268 	mtx_lock(&moea64_slb_mutex);
2269 	idx = vsid & (NVSIDS-1);
2270 	mask = 1 << (idx % VSID_NBPW);
2271 	idx /= VSID_NBPW;
2272 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2273 	    ("Freeing unallocated VSID %#jx", vsid));
2274 	moea64_vsid_bitmap[idx] &= ~mask;
2275 	mtx_unlock(&moea64_slb_mutex);
2276 }
2277 
2278 
2279 void
2280 moea64_release(mmu_t mmu, pmap_t pmap)
2281 {
2282 
2283 	/*
2284 	 * Free segment registers' VSIDs
2285 	 */
2286     #ifdef __powerpc64__
2287 	slb_free_tree(pmap);
2288 	slb_free_user_cache(pmap->pm_slb);
2289     #else
2290 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2291 
2292 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2293     #endif
2294 }
2295 
2296 /*
2297  * Remove all pages mapped by the specified pmap
2298  */
2299 void
2300 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2301 {
2302 	struct pvo_entry *pvo, *tpvo;
2303 	struct pvo_tree tofree;
2304 
2305 	RB_INIT(&tofree);
2306 
2307 	PMAP_LOCK(pm);
2308 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2309 		if (pvo->pvo_vaddr & PVO_WIRED)
2310 			continue;
2311 
2312 		/*
2313 		 * For locking reasons, remove this from the page table and
2314 		 * pmap, but save delinking from the vm_page for a second
2315 		 * pass
2316 		 */
2317 		moea64_pvo_remove_from_pmap(mmu, pvo);
2318 		RB_INSERT(pvo_tree, &tofree, pvo);
2319 	}
2320 	PMAP_UNLOCK(pm);
2321 
2322 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2323 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2324 		moea64_pvo_remove_from_page(mmu, pvo);
2325 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2326 		RB_REMOVE(pvo_tree, &tofree, pvo);
2327 		free_pvo_entry(pvo);
2328 	}
2329 }
2330 
2331 /*
2332  * Remove the given range of addresses from the specified map.
2333  */
2334 void
2335 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2336 {
2337 	struct  pvo_entry *pvo, *tpvo, key;
2338 	struct pvo_tree tofree;
2339 
2340 	/*
2341 	 * Perform an unsynchronized read.  This is, however, safe.
2342 	 */
2343 	if (pm->pm_stats.resident_count == 0)
2344 		return;
2345 
2346 	key.pvo_vaddr = sva;
2347 
2348 	RB_INIT(&tofree);
2349 
2350 	PMAP_LOCK(pm);
2351 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2352 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2353 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2354 
2355 		/*
2356 		 * For locking reasons, remove this from the page table and
2357 		 * pmap, but save delinking from the vm_page for a second
2358 		 * pass
2359 		 */
2360 		moea64_pvo_remove_from_pmap(mmu, pvo);
2361 		RB_INSERT(pvo_tree, &tofree, pvo);
2362 	}
2363 	PMAP_UNLOCK(pm);
2364 
2365 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2366 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2367 		moea64_pvo_remove_from_page(mmu, pvo);
2368 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2369 		RB_REMOVE(pvo_tree, &tofree, pvo);
2370 		free_pvo_entry(pvo);
2371 	}
2372 }
2373 
2374 /*
2375  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2376  * will reflect changes in pte's back to the vm_page.
2377  */
2378 void
2379 moea64_remove_all(mmu_t mmu, vm_page_t m)
2380 {
2381 	struct	pvo_entry *pvo, *next_pvo;
2382 	struct	pvo_head freequeue;
2383 	int	wasdead;
2384 	pmap_t	pmap;
2385 
2386 	LIST_INIT(&freequeue);
2387 
2388 	PV_PAGE_LOCK(m);
2389 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2390 		pmap = pvo->pvo_pmap;
2391 		PMAP_LOCK(pmap);
2392 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2393 		if (!wasdead)
2394 			moea64_pvo_remove_from_pmap(mmu, pvo);
2395 		moea64_pvo_remove_from_page(mmu, pvo);
2396 		if (!wasdead)
2397 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2398 		PMAP_UNLOCK(pmap);
2399 
2400 	}
2401 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2402 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2403 	PV_PAGE_UNLOCK(m);
2404 
2405 	/* Clean up UMA allocations */
2406 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2407 		free_pvo_entry(pvo);
2408 }
2409 
2410 /*
2411  * Allocate a physical page of memory directly from the phys_avail map.
2412  * Can only be called from moea64_bootstrap before avail start and end are
2413  * calculated.
2414  */
2415 vm_offset_t
2416 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2417 {
2418 	vm_offset_t	s, e;
2419 	int		i, j;
2420 
2421 	size = round_page(size);
2422 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2423 		if (align != 0)
2424 			s = roundup2(phys_avail[i], align);
2425 		else
2426 			s = phys_avail[i];
2427 		e = s + size;
2428 
2429 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2430 			continue;
2431 
2432 		if (s + size > platform_real_maxaddr())
2433 			continue;
2434 
2435 		if (s == phys_avail[i]) {
2436 			phys_avail[i] += size;
2437 		} else if (e == phys_avail[i + 1]) {
2438 			phys_avail[i + 1] -= size;
2439 		} else {
2440 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2441 				phys_avail[j] = phys_avail[j - 2];
2442 				phys_avail[j + 1] = phys_avail[j - 1];
2443 			}
2444 
2445 			phys_avail[i + 3] = phys_avail[i + 1];
2446 			phys_avail[i + 1] = s;
2447 			phys_avail[i + 2] = e;
2448 			phys_avail_count++;
2449 		}
2450 
2451 		return (s);
2452 	}
2453 	panic("moea64_bootstrap_alloc: could not allocate memory");
2454 }
2455 
2456 static int
2457 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2458 {
2459 	int first, err;
2460 
2461 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2462 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2463 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2464 
2465 	moea64_pvo_enter_calls++;
2466 
2467 	/*
2468 	 * Add to pmap list
2469 	 */
2470 	RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2471 
2472 	/*
2473 	 * Remember if the list was empty and therefore will be the first
2474 	 * item.
2475 	 */
2476 	if (pvo_head != NULL) {
2477 		if (LIST_FIRST(pvo_head) == NULL)
2478 			first = 1;
2479 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2480 	}
2481 
2482 	if (pvo->pvo_vaddr & PVO_WIRED)
2483 		pvo->pvo_pmap->pm_stats.wired_count++;
2484 	pvo->pvo_pmap->pm_stats.resident_count++;
2485 
2486 	/*
2487 	 * Insert it into the hardware page table
2488 	 */
2489 	err = MOEA64_PTE_INSERT(mmu, pvo);
2490 	if (err != 0) {
2491 		panic("moea64_pvo_enter: overflow");
2492 	}
2493 
2494 	moea64_pvo_entries++;
2495 
2496 	if (pvo->pvo_pmap == kernel_pmap)
2497 		isync();
2498 
2499 #ifdef __powerpc64__
2500 	/*
2501 	 * Make sure all our bootstrap mappings are in the SLB as soon
2502 	 * as virtual memory is switched on.
2503 	 */
2504 	if (!pmap_bootstrapped)
2505 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2506 		    pvo->pvo_vaddr & PVO_LARGE);
2507 #endif
2508 
2509 	return (first ? ENOENT : 0);
2510 }
2511 
2512 static void
2513 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2514 {
2515 	struct	vm_page *pg;
2516 	int32_t refchg;
2517 
2518 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2519 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2520 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2521 
2522 	/*
2523 	 * If there is an active pte entry, we need to deactivate it
2524 	 */
2525 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2526 	if (refchg < 0) {
2527 		/*
2528 		 * If it was evicted from the page table, be pessimistic and
2529 		 * dirty the page.
2530 		 */
2531 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2532 			refchg = LPTE_CHG;
2533 		else
2534 			refchg = 0;
2535 	}
2536 
2537 	/*
2538 	 * Update our statistics.
2539 	 */
2540 	pvo->pvo_pmap->pm_stats.resident_count--;
2541 	if (pvo->pvo_vaddr & PVO_WIRED)
2542 		pvo->pvo_pmap->pm_stats.wired_count--;
2543 
2544 	/*
2545 	 * Remove this PVO from the pmap list.
2546 	 */
2547 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2548 
2549 	/*
2550 	 * Mark this for the next sweep
2551 	 */
2552 	pvo->pvo_vaddr |= PVO_DEAD;
2553 
2554 	/* Send RC bits to VM */
2555 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2556 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2557 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2558 		if (pg != NULL) {
2559 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2560 			if (refchg & LPTE_CHG)
2561 				vm_page_dirty(pg);
2562 			if (refchg & LPTE_REF)
2563 				vm_page_aflag_set(pg, PGA_REFERENCED);
2564 		}
2565 	}
2566 }
2567 
2568 static void
2569 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2570 {
2571 	struct	vm_page *pg;
2572 
2573 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2574 
2575 	/* Use NULL pmaps as a sentinel for races in page deletion */
2576 	if (pvo->pvo_pmap == NULL)
2577 		return;
2578 	pvo->pvo_pmap = NULL;
2579 
2580 	/*
2581 	 * Update vm about page writeability/executability if managed
2582 	 */
2583 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2584 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2585 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2586 
2587 		if (pg != NULL) {
2588 			LIST_REMOVE(pvo, pvo_vlink);
2589 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2590 				vm_page_aflag_clear(pg,
2591 				    PGA_WRITEABLE | PGA_EXECUTABLE);
2592 		}
2593 	}
2594 
2595 	moea64_pvo_entries--;
2596 	moea64_pvo_remove_calls++;
2597 }
2598 
2599 static struct pvo_entry *
2600 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2601 {
2602 	struct pvo_entry key;
2603 
2604 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2605 
2606 	key.pvo_vaddr = va & ~ADDR_POFF;
2607 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2608 }
2609 
2610 static boolean_t
2611 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2612 {
2613 	struct	pvo_entry *pvo;
2614 	int64_t ret;
2615 	boolean_t rv;
2616 
2617 	/*
2618 	 * See if this bit is stored in the page already.
2619 	 */
2620 	if (m->md.mdpg_attrs & ptebit)
2621 		return (TRUE);
2622 
2623 	/*
2624 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2625 	 * flushed to the PTEs.
2626 	 */
2627 	rv = FALSE;
2628 	powerpc_sync();
2629 	PV_PAGE_LOCK(m);
2630 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2631 		ret = 0;
2632 
2633 		/*
2634 		 * See if this pvo has a valid PTE.  if so, fetch the
2635 		 * REF/CHG bits from the valid PTE.  If the appropriate
2636 		 * ptebit is set, return success.
2637 		 */
2638 		PMAP_LOCK(pvo->pvo_pmap);
2639 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2640 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2641 		PMAP_UNLOCK(pvo->pvo_pmap);
2642 
2643 		if (ret > 0) {
2644 			atomic_set_32(&m->md.mdpg_attrs,
2645 			    ret & (LPTE_CHG | LPTE_REF));
2646 			if (ret & ptebit) {
2647 				rv = TRUE;
2648 				break;
2649 			}
2650 		}
2651 	}
2652 	PV_PAGE_UNLOCK(m);
2653 
2654 	return (rv);
2655 }
2656 
2657 static u_int
2658 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2659 {
2660 	u_int	count;
2661 	struct	pvo_entry *pvo;
2662 	int64_t ret;
2663 
2664 	/*
2665 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2666 	 * we can reset the right ones).
2667 	 */
2668 	powerpc_sync();
2669 
2670 	/*
2671 	 * For each pvo entry, clear the pte's ptebit.
2672 	 */
2673 	count = 0;
2674 	PV_PAGE_LOCK(m);
2675 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2676 		ret = 0;
2677 
2678 		PMAP_LOCK(pvo->pvo_pmap);
2679 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2680 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2681 		PMAP_UNLOCK(pvo->pvo_pmap);
2682 
2683 		if (ret > 0 && (ret & ptebit))
2684 			count++;
2685 	}
2686 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2687 	PV_PAGE_UNLOCK(m);
2688 
2689 	return (count);
2690 }
2691 
2692 boolean_t
2693 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2694 {
2695 	struct pvo_entry *pvo, key;
2696 	vm_offset_t ppa;
2697 	int error = 0;
2698 
2699 	if (hw_direct_map && mem_valid(pa, size) == 0)
2700 		return (0);
2701 
2702 	PMAP_LOCK(kernel_pmap);
2703 	ppa = pa & ~ADDR_POFF;
2704 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
2705 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2706 	    ppa < pa + size; ppa += PAGE_SIZE,
2707 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2708 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2709 			error = EFAULT;
2710 			break;
2711 		}
2712 	}
2713 	PMAP_UNLOCK(kernel_pmap);
2714 
2715 	return (error);
2716 }
2717 
2718 /*
2719  * Map a set of physical memory pages into the kernel virtual
2720  * address space. Return a pointer to where it is mapped. This
2721  * routine is intended to be used for mapping device memory,
2722  * NOT real memory.
2723  */
2724 void *
2725 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2726 {
2727 	vm_offset_t va, tmpva, ppa, offset;
2728 
2729 	ppa = trunc_page(pa);
2730 	offset = pa & PAGE_MASK;
2731 	size = roundup2(offset + size, PAGE_SIZE);
2732 
2733 	va = kva_alloc(size);
2734 
2735 	if (!va)
2736 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2737 
2738 	for (tmpva = va; size > 0;) {
2739 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2740 		size -= PAGE_SIZE;
2741 		tmpva += PAGE_SIZE;
2742 		ppa += PAGE_SIZE;
2743 	}
2744 
2745 	return ((void *)(va + offset));
2746 }
2747 
2748 void *
2749 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2750 {
2751 
2752 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2753 }
2754 
2755 void
2756 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2757 {
2758 	vm_offset_t base, offset;
2759 
2760 	base = trunc_page(va);
2761 	offset = va & PAGE_MASK;
2762 	size = roundup2(offset + size, PAGE_SIZE);
2763 
2764 	kva_free(base, size);
2765 }
2766 
2767 void
2768 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2769 {
2770 	struct pvo_entry *pvo;
2771 	vm_offset_t lim;
2772 	vm_paddr_t pa;
2773 	vm_size_t len;
2774 
2775 	PMAP_LOCK(pm);
2776 	while (sz > 0) {
2777 		lim = round_page(va);
2778 		len = MIN(lim - va, sz);
2779 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2780 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2781 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2782 			moea64_syncicache(mmu, pm, va, pa, len);
2783 		}
2784 		va += len;
2785 		sz -= len;
2786 	}
2787 	PMAP_UNLOCK(pm);
2788 }
2789 
2790 void
2791 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2792 {
2793 
2794 	*va = (void *)(uintptr_t)pa;
2795 }
2796 
2797 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2798 
2799 void
2800 moea64_scan_init(mmu_t mmu)
2801 {
2802 	struct pvo_entry *pvo;
2803 	vm_offset_t va;
2804 	int i;
2805 
2806 	if (!do_minidump) {
2807 		/* Initialize phys. segments for dumpsys(). */
2808 		memset(&dump_map, 0, sizeof(dump_map));
2809 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2810 		for (i = 0; i < pregions_sz; i++) {
2811 			dump_map[i].pa_start = pregions[i].mr_start;
2812 			dump_map[i].pa_size = pregions[i].mr_size;
2813 		}
2814 		return;
2815 	}
2816 
2817 	/* Virtual segments for minidumps: */
2818 	memset(&dump_map, 0, sizeof(dump_map));
2819 
2820 	/* 1st: kernel .data and .bss. */
2821 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2822 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2823 	    dump_map[0].pa_start;
2824 
2825 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2826 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2827 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2828 
2829 	/* 3rd: kernel VM. */
2830 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2831 	/* Find start of next chunk (from va). */
2832 	while (va < virtual_end) {
2833 		/* Don't dump the buffer cache. */
2834 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2835 			va = kmi.buffer_eva;
2836 			continue;
2837 		}
2838 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2839 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2840 			break;
2841 		va += PAGE_SIZE;
2842 	}
2843 	if (va < virtual_end) {
2844 		dump_map[2].pa_start = va;
2845 		va += PAGE_SIZE;
2846 		/* Find last page in chunk. */
2847 		while (va < virtual_end) {
2848 			/* Don't run into the buffer cache. */
2849 			if (va == kmi.buffer_sva)
2850 				break;
2851 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2852 			if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2853 				break;
2854 			va += PAGE_SIZE;
2855 		}
2856 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2857 	}
2858 }
2859 
2860