xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision f02f7422801bb39f5eaab8fc383fa7b70c467ff9)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31  * Copyright (C) 1995, 1996 TooLs GmbH.
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by TooLs GmbH.
45  * 4. The name of TooLs GmbH may not be used to endorse or promote products
46  *    derived from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58  *
59  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60  */
61 /*-
62  * Copyright (C) 2001 Benno Rice.
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  *
74  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_compat.h"
106 #include "opt_kstack_pages.h"
107 
108 #include <sys/param.h>
109 #include <sys/kernel.h>
110 #include <sys/queue.h>
111 #include <sys/cpuset.h>
112 #include <sys/ktr.h>
113 #include <sys/lock.h>
114 #include <sys/msgbuf.h>
115 #include <sys/malloc.h>
116 #include <sys/mutex.h>
117 #include <sys/proc.h>
118 #include <sys/rwlock.h>
119 #include <sys/sched.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/vmmeter.h>
123 
124 #include <sys/kdb.h>
125 
126 #include <dev/ofw/openfirm.h>
127 
128 #include <vm/vm.h>
129 #include <vm/vm_param.h>
130 #include <vm/vm_kern.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_map.h>
133 #include <vm/vm_object.h>
134 #include <vm/vm_extern.h>
135 #include <vm/vm_pageout.h>
136 #include <vm/uma.h>
137 
138 #include <machine/_inttypes.h>
139 #include <machine/cpu.h>
140 #include <machine/platform.h>
141 #include <machine/frame.h>
142 #include <machine/md_var.h>
143 #include <machine/psl.h>
144 #include <machine/bat.h>
145 #include <machine/hid.h>
146 #include <machine/pte.h>
147 #include <machine/sr.h>
148 #include <machine/trap.h>
149 #include <machine/mmuvar.h>
150 
151 #include "mmu_oea64.h"
152 #include "mmu_if.h"
153 #include "moea64_if.h"
154 
155 void moea64_release_vsid(uint64_t vsid);
156 uintptr_t moea64_get_unique_vsid(void);
157 
158 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159 #define ENABLE_TRANS(msr)	mtmsr(msr)
160 
161 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163 #define	VSID_HASH_MASK		0x0000007fffffffffULL
164 
165 /*
166  * Locking semantics:
167  * -- Read lock: if no modifications are being made to either the PVO lists
168  *    or page table or if any modifications being made result in internal
169  *    changes (e.g. wiring, protection) such that the existence of the PVOs
170  *    is unchanged and they remain associated with the same pmap (in which
171  *    case the changes should be protected by the pmap lock)
172  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173  */
174 
175 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179 
180 struct ofw_map {
181 	cell_t	om_va;
182 	cell_t	om_len;
183 	uint64_t om_pa;
184 	cell_t	om_mode;
185 };
186 
187 extern unsigned char _etext[];
188 extern unsigned char _end[];
189 
190 extern int dumpsys_minidump;
191 
192 /*
193  * Map of physical memory regions.
194  */
195 static struct	mem_region *regions;
196 static struct	mem_region *pregions;
197 static u_int	phys_avail_count;
198 static int	regions_sz, pregions_sz;
199 
200 extern void bs_remap_earlyboot(void);
201 
202 /*
203  * Lock for the pteg and pvo tables.
204  */
205 struct rwlock	moea64_table_lock;
206 struct mtx	moea64_slb_mutex;
207 
208 /*
209  * PTEG data.
210  */
211 u_int		moea64_pteg_count;
212 u_int		moea64_pteg_mask;
213 
214 /*
215  * PVO data.
216  */
217 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
218 
219 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
220 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
221 
222 #define	BPVO_POOL_SIZE	327680
223 static struct	pvo_entry *moea64_bpvo_pool;
224 static int	moea64_bpvo_pool_index = 0;
225 
226 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227 #ifdef __powerpc64__
228 #define	NVSIDS		(NPMAPS * 16)
229 #define VSID_HASHMASK	0xffffffffUL
230 #else
231 #define NVSIDS		NPMAPS
232 #define VSID_HASHMASK	0xfffffUL
233 #endif
234 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
235 
236 static boolean_t moea64_initialized = FALSE;
237 
238 /*
239  * Statistics.
240  */
241 u_int	moea64_pte_valid = 0;
242 u_int	moea64_pte_overflow = 0;
243 u_int	moea64_pvo_entries = 0;
244 u_int	moea64_pvo_enter_calls = 0;
245 u_int	moea64_pvo_remove_calls = 0;
246 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
247     &moea64_pte_valid, 0, "");
248 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
249     &moea64_pte_overflow, 0, "");
250 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
251     &moea64_pvo_entries, 0, "");
252 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
253     &moea64_pvo_enter_calls, 0, "");
254 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
255     &moea64_pvo_remove_calls, 0, "");
256 
257 vm_offset_t	moea64_scratchpage_va[2];
258 struct pvo_entry *moea64_scratchpage_pvo[2];
259 uintptr_t	moea64_scratchpage_pte[2];
260 struct	mtx	moea64_scratchpage_mtx;
261 
262 uint64_t 	moea64_large_page_mask = 0;
263 uint64_t	moea64_large_page_size = 0;
264 int		moea64_large_page_shift = 0;
265 
266 /*
267  * PVO calls.
268  */
269 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
270 		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
271 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
272 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
273 
274 /*
275  * Utility routines.
276  */
277 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279 static void		moea64_kremove(mmu_t, vm_offset_t);
280 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281 			    vm_offset_t pa, vm_size_t sz);
282 
283 /*
284  * Kernel MMU interface
285  */
286 void moea64_clear_modify(mmu_t, vm_page_t);
287 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
288 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
289     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
290 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
291     u_int flags, int8_t psind);
292 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
293     vm_prot_t);
294 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
295 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
296 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
297 void moea64_init(mmu_t);
298 boolean_t moea64_is_modified(mmu_t, vm_page_t);
299 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
300 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
301 int moea64_ts_referenced(mmu_t, vm_page_t);
302 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
303 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
304 int moea64_page_wired_mappings(mmu_t, vm_page_t);
305 void moea64_pinit(mmu_t, pmap_t);
306 void moea64_pinit0(mmu_t, pmap_t);
307 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
308 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
309 void moea64_qremove(mmu_t, vm_offset_t, int);
310 void moea64_release(mmu_t, pmap_t);
311 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
312 void moea64_remove_pages(mmu_t, pmap_t);
313 void moea64_remove_all(mmu_t, vm_page_t);
314 void moea64_remove_write(mmu_t, vm_page_t);
315 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316 void moea64_zero_page(mmu_t, vm_page_t);
317 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
318 void moea64_zero_page_idle(mmu_t, vm_page_t);
319 void moea64_activate(mmu_t, struct thread *);
320 void moea64_deactivate(mmu_t, struct thread *);
321 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
322 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
323 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
324 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
325 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
326 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
327 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
328 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
329 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
330 vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
331     vm_size_t *sz);
332 struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
333 
334 static mmu_method_t moea64_methods[] = {
335 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
336 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
337 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
338 	MMUMETHOD(mmu_enter,		moea64_enter),
339 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
340 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
341 	MMUMETHOD(mmu_extract,		moea64_extract),
342 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
343 	MMUMETHOD(mmu_init,		moea64_init),
344 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
345 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
346 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
347 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
348 	MMUMETHOD(mmu_map,     		moea64_map),
349 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
350 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
351 	MMUMETHOD(mmu_pinit,		moea64_pinit),
352 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
353 	MMUMETHOD(mmu_protect,		moea64_protect),
354 	MMUMETHOD(mmu_qenter,		moea64_qenter),
355 	MMUMETHOD(mmu_qremove,		moea64_qremove),
356 	MMUMETHOD(mmu_release,		moea64_release),
357 	MMUMETHOD(mmu_remove,		moea64_remove),
358 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
359 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
360 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
361 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
362 	MMUMETHOD(mmu_unwire,		moea64_unwire),
363 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
364 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
365 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
366 	MMUMETHOD(mmu_activate,		moea64_activate),
367 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
368 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
369 
370 	/* Internal interfaces */
371 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
372 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
373 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
374 	MMUMETHOD(mmu_kextract,		moea64_kextract),
375 	MMUMETHOD(mmu_kenter,		moea64_kenter),
376 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
377 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
378 	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
379 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
380 
381 	{ 0, 0 }
382 };
383 
384 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
385 
386 static __inline u_int
387 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
388 {
389 	uint64_t hash;
390 	int shift;
391 
392 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
393 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
394 	    shift);
395 	return (hash & moea64_pteg_mask);
396 }
397 
398 static __inline struct pvo_head *
399 vm_page_to_pvoh(vm_page_t m)
400 {
401 
402 	return (&m->md.mdpg_pvoh);
403 }
404 
405 static __inline void
406 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
407     uint64_t pte_lo, int flags)
408 {
409 
410 	/*
411 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
412 	 * set when the real pte is set in memory.
413 	 *
414 	 * Note: Don't set the valid bit for correct operation of tlb update.
415 	 */
416 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
417 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
418 
419 	if (flags & PVO_LARGE)
420 		pt->pte_hi |= LPTE_BIG;
421 
422 	pt->pte_lo = pte_lo;
423 }
424 
425 static __inline uint64_t
426 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
427 {
428 	uint64_t pte_lo;
429 	int i;
430 
431 	if (ma != VM_MEMATTR_DEFAULT) {
432 		switch (ma) {
433 		case VM_MEMATTR_UNCACHEABLE:
434 			return (LPTE_I | LPTE_G);
435 		case VM_MEMATTR_WRITE_COMBINING:
436 		case VM_MEMATTR_WRITE_BACK:
437 		case VM_MEMATTR_PREFETCHABLE:
438 			return (LPTE_I);
439 		case VM_MEMATTR_WRITE_THROUGH:
440 			return (LPTE_W | LPTE_M);
441 		}
442 	}
443 
444 	/*
445 	 * Assume the page is cache inhibited and access is guarded unless
446 	 * it's in our available memory array.
447 	 */
448 	pte_lo = LPTE_I | LPTE_G;
449 	for (i = 0; i < pregions_sz; i++) {
450 		if ((pa >= pregions[i].mr_start) &&
451 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
452 			pte_lo &= ~(LPTE_I | LPTE_G);
453 			pte_lo |= LPTE_M;
454 			break;
455 		}
456 	}
457 
458 	return pte_lo;
459 }
460 
461 /*
462  * Quick sort callout for comparing memory regions.
463  */
464 static int	om_cmp(const void *a, const void *b);
465 
466 static int
467 om_cmp(const void *a, const void *b)
468 {
469 	const struct	ofw_map *mapa;
470 	const struct	ofw_map *mapb;
471 
472 	mapa = a;
473 	mapb = b;
474 	if (mapa->om_pa < mapb->om_pa)
475 		return (-1);
476 	else if (mapa->om_pa > mapb->om_pa)
477 		return (1);
478 	else
479 		return (0);
480 }
481 
482 static void
483 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
484 {
485 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
486 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
487 	register_t	msr;
488 	vm_offset_t	off;
489 	vm_paddr_t	pa_base;
490 	int		i, j;
491 
492 	bzero(translations, sz);
493 	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
494 	    sizeof(acells));
495 	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
496 		panic("moea64_bootstrap: can't get ofw translations");
497 
498 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
499 	sz /= sizeof(cell_t);
500 	for (i = 0, j = 0; i < sz; j++) {
501 		translations[j].om_va = trans_cells[i++];
502 		translations[j].om_len = trans_cells[i++];
503 		translations[j].om_pa = trans_cells[i++];
504 		if (acells == 2) {
505 			translations[j].om_pa <<= 32;
506 			translations[j].om_pa |= trans_cells[i++];
507 		}
508 		translations[j].om_mode = trans_cells[i++];
509 	}
510 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
511 	    i, sz));
512 
513 	sz = j;
514 	qsort(translations, sz, sizeof (*translations), om_cmp);
515 
516 	for (i = 0; i < sz; i++) {
517 		pa_base = translations[i].om_pa;
518 	      #ifndef __powerpc64__
519 		if ((translations[i].om_pa >> 32) != 0)
520 			panic("OFW translations above 32-bit boundary!");
521 	      #endif
522 
523 		if (pa_base % PAGE_SIZE)
524 			panic("OFW translation not page-aligned (phys)!");
525 		if (translations[i].om_va % PAGE_SIZE)
526 			panic("OFW translation not page-aligned (virt)!");
527 
528 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
529 		    pa_base, translations[i].om_va, translations[i].om_len);
530 
531 		/* Now enter the pages for this mapping */
532 
533 		DISABLE_TRANS(msr);
534 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
535 			if (moea64_pvo_find_va(kernel_pmap,
536 			    translations[i].om_va + off) != NULL)
537 				continue;
538 
539 			moea64_kenter(mmup, translations[i].om_va + off,
540 			    pa_base + off);
541 		}
542 		ENABLE_TRANS(msr);
543 	}
544 }
545 
546 #ifdef __powerpc64__
547 static void
548 moea64_probe_large_page(void)
549 {
550 	uint16_t pvr = mfpvr() >> 16;
551 
552 	switch (pvr) {
553 	case IBM970:
554 	case IBM970FX:
555 	case IBM970MP:
556 		powerpc_sync(); isync();
557 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
558 		powerpc_sync(); isync();
559 
560 		/* FALLTHROUGH */
561 	default:
562 		moea64_large_page_size = 0x1000000; /* 16 MB */
563 		moea64_large_page_shift = 24;
564 	}
565 
566 	moea64_large_page_mask = moea64_large_page_size - 1;
567 }
568 
569 static void
570 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
571 {
572 	struct slb *cache;
573 	struct slb entry;
574 	uint64_t esid, slbe;
575 	uint64_t i;
576 
577 	cache = PCPU_GET(slb);
578 	esid = va >> ADDR_SR_SHFT;
579 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
580 
581 	for (i = 0; i < 64; i++) {
582 		if (cache[i].slbe == (slbe | i))
583 			return;
584 	}
585 
586 	entry.slbe = slbe;
587 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
588 	if (large)
589 		entry.slbv |= SLBV_L;
590 
591 	slb_insert_kernel(entry.slbe, entry.slbv);
592 }
593 #endif
594 
595 static void
596 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
597     vm_offset_t kernelend)
598 {
599 	register_t msr;
600 	vm_paddr_t pa;
601 	vm_offset_t size, off;
602 	uint64_t pte_lo;
603 	int i;
604 
605 	if (moea64_large_page_size == 0)
606 		hw_direct_map = 0;
607 
608 	DISABLE_TRANS(msr);
609 	if (hw_direct_map) {
610 		LOCK_TABLE_WR();
611 		PMAP_LOCK(kernel_pmap);
612 		for (i = 0; i < pregions_sz; i++) {
613 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
614 		     pregions[i].mr_size; pa += moea64_large_page_size) {
615 			pte_lo = LPTE_M;
616 
617 			/*
618 			 * Set memory access as guarded if prefetch within
619 			 * the page could exit the available physmem area.
620 			 */
621 			if (pa & moea64_large_page_mask) {
622 				pa &= moea64_large_page_mask;
623 				pte_lo |= LPTE_G;
624 			}
625 			if (pa + moea64_large_page_size >
626 			    pregions[i].mr_start + pregions[i].mr_size)
627 				pte_lo |= LPTE_G;
628 
629 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
630 				    NULL, pa, pa, pte_lo,
631 				    PVO_WIRED | PVO_LARGE, 0);
632 		  }
633 		}
634 		PMAP_UNLOCK(kernel_pmap);
635 		UNLOCK_TABLE_WR();
636 	} else {
637 		size = sizeof(struct pvo_head) * moea64_pteg_count;
638 		off = (vm_offset_t)(moea64_pvo_table);
639 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
640 			moea64_kenter(mmup, pa, pa);
641 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
642 		off = (vm_offset_t)(moea64_bpvo_pool);
643 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
644 		moea64_kenter(mmup, pa, pa);
645 
646 		/*
647 		 * Map certain important things, like ourselves.
648 		 *
649 		 * NOTE: We do not map the exception vector space. That code is
650 		 * used only in real mode, and leaving it unmapped allows us to
651 		 * catch NULL pointer deferences, instead of making NULL a valid
652 		 * address.
653 		 */
654 
655 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
656 		    pa += PAGE_SIZE)
657 			moea64_kenter(mmup, pa, pa);
658 	}
659 	ENABLE_TRANS(msr);
660 
661 	/*
662 	 * Allow user to override unmapped_buf_allowed for testing.
663 	 * XXXKIB Only direct map implementation was tested.
664 	 */
665 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
666 	    &unmapped_buf_allowed))
667 		unmapped_buf_allowed = hw_direct_map;
668 }
669 
670 void
671 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
672 {
673 	int		i, j;
674 	vm_size_t	physsz, hwphyssz;
675 
676 #ifndef __powerpc64__
677 	/* We don't have a direct map since there is no BAT */
678 	hw_direct_map = 0;
679 
680 	/* Make sure battable is zero, since we have no BAT */
681 	for (i = 0; i < 16; i++) {
682 		battable[i].batu = 0;
683 		battable[i].batl = 0;
684 	}
685 #else
686 	moea64_probe_large_page();
687 
688 	/* Use a direct map if we have large page support */
689 	if (moea64_large_page_size > 0)
690 		hw_direct_map = 1;
691 	else
692 		hw_direct_map = 0;
693 #endif
694 
695 	/* Get physical memory regions from firmware */
696 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
697 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
698 
699 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
700 		panic("moea64_bootstrap: phys_avail too small");
701 
702 	phys_avail_count = 0;
703 	physsz = 0;
704 	hwphyssz = 0;
705 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
706 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
707 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
708 		    regions[i].mr_start, regions[i].mr_start +
709 		    regions[i].mr_size, regions[i].mr_size);
710 		if (hwphyssz != 0 &&
711 		    (physsz + regions[i].mr_size) >= hwphyssz) {
712 			if (physsz < hwphyssz) {
713 				phys_avail[j] = regions[i].mr_start;
714 				phys_avail[j + 1] = regions[i].mr_start +
715 				    hwphyssz - physsz;
716 				physsz = hwphyssz;
717 				phys_avail_count++;
718 			}
719 			break;
720 		}
721 		phys_avail[j] = regions[i].mr_start;
722 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
723 		phys_avail_count++;
724 		physsz += regions[i].mr_size;
725 	}
726 
727 	/* Check for overlap with the kernel and exception vectors */
728 	for (j = 0; j < 2*phys_avail_count; j+=2) {
729 		if (phys_avail[j] < EXC_LAST)
730 			phys_avail[j] += EXC_LAST;
731 
732 		if (kernelstart >= phys_avail[j] &&
733 		    kernelstart < phys_avail[j+1]) {
734 			if (kernelend < phys_avail[j+1]) {
735 				phys_avail[2*phys_avail_count] =
736 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
737 				phys_avail[2*phys_avail_count + 1] =
738 				    phys_avail[j+1];
739 				phys_avail_count++;
740 			}
741 
742 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
743 		}
744 
745 		if (kernelend >= phys_avail[j] &&
746 		    kernelend < phys_avail[j+1]) {
747 			if (kernelstart > phys_avail[j]) {
748 				phys_avail[2*phys_avail_count] = phys_avail[j];
749 				phys_avail[2*phys_avail_count + 1] =
750 				    kernelstart & ~PAGE_MASK;
751 				phys_avail_count++;
752 			}
753 
754 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
755 		}
756 	}
757 
758 	physmem = btoc(physsz);
759 
760 #ifdef PTEGCOUNT
761 	moea64_pteg_count = PTEGCOUNT;
762 #else
763 	moea64_pteg_count = 0x1000;
764 
765 	while (moea64_pteg_count < physmem)
766 		moea64_pteg_count <<= 1;
767 
768 	moea64_pteg_count >>= 1;
769 #endif /* PTEGCOUNT */
770 }
771 
772 void
773 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
774 {
775 	vm_size_t	size;
776 	register_t	msr;
777 	int		i;
778 
779 	/*
780 	 * Set PTEG mask
781 	 */
782 	moea64_pteg_mask = moea64_pteg_count - 1;
783 
784 	/*
785 	 * Allocate pv/overflow lists.
786 	 */
787 	size = sizeof(struct pvo_head) * moea64_pteg_count;
788 
789 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
790 	    PAGE_SIZE);
791 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
792 
793 	DISABLE_TRANS(msr);
794 	for (i = 0; i < moea64_pteg_count; i++)
795 		LIST_INIT(&moea64_pvo_table[i]);
796 	ENABLE_TRANS(msr);
797 
798 	/*
799 	 * Initialize the lock that synchronizes access to the pteg and pvo
800 	 * tables.
801 	 */
802 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
803 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
804 
805 	/*
806 	 * Initialise the unmanaged pvo pool.
807 	 */
808 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
809 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
810 	moea64_bpvo_pool_index = 0;
811 
812 	/*
813 	 * Make sure kernel vsid is allocated as well as VSID 0.
814 	 */
815 	#ifndef __powerpc64__
816 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
817 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
818 	moea64_vsid_bitmap[0] |= 1;
819 	#endif
820 
821 	/*
822 	 * Initialize the kernel pmap (which is statically allocated).
823 	 */
824 	#ifdef __powerpc64__
825 	for (i = 0; i < 64; i++) {
826 		pcpup->pc_slb[i].slbv = 0;
827 		pcpup->pc_slb[i].slbe = 0;
828 	}
829 	#else
830 	for (i = 0; i < 16; i++)
831 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
832 	#endif
833 
834 	kernel_pmap->pmap_phys = kernel_pmap;
835 	CPU_FILL(&kernel_pmap->pm_active);
836 	RB_INIT(&kernel_pmap->pmap_pvo);
837 
838 	PMAP_LOCK_INIT(kernel_pmap);
839 
840 	/*
841 	 * Now map in all the other buffers we allocated earlier
842 	 */
843 
844 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
845 }
846 
847 void
848 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
849 {
850 	ihandle_t	mmui;
851 	phandle_t	chosen;
852 	phandle_t	mmu;
853 	size_t		sz;
854 	int		i;
855 	vm_offset_t	pa, va;
856 	void		*dpcpu;
857 
858 	/*
859 	 * Set up the Open Firmware pmap and add its mappings if not in real
860 	 * mode.
861 	 */
862 
863 	chosen = OF_finddevice("/chosen");
864 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
865 	    mmu = OF_instance_to_package(mmui);
866 	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
867 		sz = 0;
868 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
869 		panic("moea64_bootstrap: too many ofw translations");
870 
871 	    if (sz > 0)
872 		moea64_add_ofw_mappings(mmup, mmu, sz);
873 	}
874 
875 	/*
876 	 * Calculate the last available physical address.
877 	 */
878 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
879 		;
880 	Maxmem = powerpc_btop(phys_avail[i + 1]);
881 
882 	/*
883 	 * Initialize MMU and remap early physical mappings
884 	 */
885 	MMU_CPU_BOOTSTRAP(mmup,0);
886 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
887 	pmap_bootstrapped++;
888 	bs_remap_earlyboot();
889 
890 	/*
891 	 * Set the start and end of kva.
892 	 */
893 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
894 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
895 
896 	/*
897 	 * Map the entire KVA range into the SLB. We must not fault there.
898 	 */
899 	#ifdef __powerpc64__
900 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
901 		moea64_bootstrap_slb_prefault(va, 0);
902 	#endif
903 
904 	/*
905 	 * Figure out how far we can extend virtual_end into segment 16
906 	 * without running into existing mappings. Segment 16 is guaranteed
907 	 * to contain neither RAM nor devices (at least on Apple hardware),
908 	 * but will generally contain some OFW mappings we should not
909 	 * step on.
910 	 */
911 
912 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
913 	PMAP_LOCK(kernel_pmap);
914 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
915 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
916 		virtual_end += PAGE_SIZE;
917 	PMAP_UNLOCK(kernel_pmap);
918 	#endif
919 
920 	/*
921 	 * Allocate a kernel stack with a guard page for thread0 and map it
922 	 * into the kernel page map.
923 	 */
924 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
925 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
926 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
927 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
928 	thread0.td_kstack = va;
929 	thread0.td_kstack_pages = KSTACK_PAGES;
930 	for (i = 0; i < KSTACK_PAGES; i++) {
931 		moea64_kenter(mmup, va, pa);
932 		pa += PAGE_SIZE;
933 		va += PAGE_SIZE;
934 	}
935 
936 	/*
937 	 * Allocate virtual address space for the message buffer.
938 	 */
939 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
940 	msgbufp = (struct msgbuf *)virtual_avail;
941 	va = virtual_avail;
942 	virtual_avail += round_page(msgbufsize);
943 	while (va < virtual_avail) {
944 		moea64_kenter(mmup, va, pa);
945 		pa += PAGE_SIZE;
946 		va += PAGE_SIZE;
947 	}
948 
949 	/*
950 	 * Allocate virtual address space for the dynamic percpu area.
951 	 */
952 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
953 	dpcpu = (void *)virtual_avail;
954 	va = virtual_avail;
955 	virtual_avail += DPCPU_SIZE;
956 	while (va < virtual_avail) {
957 		moea64_kenter(mmup, va, pa);
958 		pa += PAGE_SIZE;
959 		va += PAGE_SIZE;
960 	}
961 	dpcpu_init(dpcpu, 0);
962 
963 	/*
964 	 * Allocate some things for page zeroing. We put this directly
965 	 * in the page table, marked with LPTE_LOCKED, to avoid any
966 	 * of the PVO book-keeping or other parts of the VM system
967 	 * from even knowing that this hack exists.
968 	 */
969 
970 	if (!hw_direct_map) {
971 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
972 		    MTX_DEF);
973 		for (i = 0; i < 2; i++) {
974 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
975 			virtual_end -= PAGE_SIZE;
976 
977 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
978 
979 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
980 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
981 			LOCK_TABLE_RD();
982 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
983 			    mmup, moea64_scratchpage_pvo[i]);
984 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
985 			    |= LPTE_LOCKED;
986 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
987 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
988 			    moea64_scratchpage_pvo[i]->pvo_vpn);
989 			UNLOCK_TABLE_RD();
990 		}
991 	}
992 }
993 
994 /*
995  * Activate a user pmap.  The pmap must be activated before its address
996  * space can be accessed in any way.
997  */
998 void
999 moea64_activate(mmu_t mmu, struct thread *td)
1000 {
1001 	pmap_t	pm;
1002 
1003 	pm = &td->td_proc->p_vmspace->vm_pmap;
1004 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1005 
1006 	#ifdef __powerpc64__
1007 	PCPU_SET(userslb, pm->pm_slb);
1008 	#else
1009 	PCPU_SET(curpmap, pm->pmap_phys);
1010 	#endif
1011 }
1012 
1013 void
1014 moea64_deactivate(mmu_t mmu, struct thread *td)
1015 {
1016 	pmap_t	pm;
1017 
1018 	pm = &td->td_proc->p_vmspace->vm_pmap;
1019 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1020 	#ifdef __powerpc64__
1021 	PCPU_SET(userslb, NULL);
1022 	#else
1023 	PCPU_SET(curpmap, NULL);
1024 	#endif
1025 }
1026 
1027 void
1028 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1029 {
1030 	struct	pvo_entry key, *pvo;
1031 	uintptr_t pt;
1032 
1033 	LOCK_TABLE_RD();
1034 	PMAP_LOCK(pm);
1035 	key.pvo_vaddr = sva;
1036 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1037 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1038 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1039 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1040 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1041 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1042 			    pvo);
1043 		pvo->pvo_vaddr &= ~PVO_WIRED;
1044 		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1045 			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1046 			    &pvo->pvo_pte.lpte);
1047 		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1048 		if (pt != -1) {
1049 			/*
1050 			 * The PTE's wired attribute is not a hardware
1051 			 * feature, so there is no need to invalidate any TLB
1052 			 * entries.
1053 			 */
1054 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1055 			    pvo->pvo_vpn);
1056 		}
1057 		pm->pm_stats.wired_count--;
1058 	}
1059 	UNLOCK_TABLE_RD();
1060 	PMAP_UNLOCK(pm);
1061 }
1062 
1063 /*
1064  * This goes through and sets the physical address of our
1065  * special scratch PTE to the PA we want to zero or copy. Because
1066  * of locking issues (this can get called in pvo_enter() by
1067  * the UMA allocator), we can't use most other utility functions here
1068  */
1069 
1070 static __inline
1071 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1072 
1073 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1074 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1075 
1076 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1077 	    ~(LPTE_WIMG | LPTE_RPGN);
1078 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1079 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1080 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1081 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1082 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1083 	isync();
1084 }
1085 
1086 void
1087 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1088 {
1089 	vm_offset_t	dst;
1090 	vm_offset_t	src;
1091 
1092 	dst = VM_PAGE_TO_PHYS(mdst);
1093 	src = VM_PAGE_TO_PHYS(msrc);
1094 
1095 	if (hw_direct_map) {
1096 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1097 	} else {
1098 		mtx_lock(&moea64_scratchpage_mtx);
1099 
1100 		moea64_set_scratchpage_pa(mmu, 0, src);
1101 		moea64_set_scratchpage_pa(mmu, 1, dst);
1102 
1103 		bcopy((void *)moea64_scratchpage_va[0],
1104 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1105 
1106 		mtx_unlock(&moea64_scratchpage_mtx);
1107 	}
1108 }
1109 
1110 static inline void
1111 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1112     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1113 {
1114 	void *a_cp, *b_cp;
1115 	vm_offset_t a_pg_offset, b_pg_offset;
1116 	int cnt;
1117 
1118 	while (xfersize > 0) {
1119 		a_pg_offset = a_offset & PAGE_MASK;
1120 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1121 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1122 		    a_pg_offset;
1123 		b_pg_offset = b_offset & PAGE_MASK;
1124 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1125 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1126 		    b_pg_offset;
1127 		bcopy(a_cp, b_cp, cnt);
1128 		a_offset += cnt;
1129 		b_offset += cnt;
1130 		xfersize -= cnt;
1131 	}
1132 }
1133 
1134 static inline void
1135 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1136     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1137 {
1138 	void *a_cp, *b_cp;
1139 	vm_offset_t a_pg_offset, b_pg_offset;
1140 	int cnt;
1141 
1142 	mtx_lock(&moea64_scratchpage_mtx);
1143 	while (xfersize > 0) {
1144 		a_pg_offset = a_offset & PAGE_MASK;
1145 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1146 		moea64_set_scratchpage_pa(mmu, 0,
1147 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1148 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1149 		b_pg_offset = b_offset & PAGE_MASK;
1150 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1151 		moea64_set_scratchpage_pa(mmu, 1,
1152 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1153 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1154 		bcopy(a_cp, b_cp, cnt);
1155 		a_offset += cnt;
1156 		b_offset += cnt;
1157 		xfersize -= cnt;
1158 	}
1159 	mtx_unlock(&moea64_scratchpage_mtx);
1160 }
1161 
1162 void
1163 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1164     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1165 {
1166 
1167 	if (hw_direct_map) {
1168 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1169 		    xfersize);
1170 	} else {
1171 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1172 		    xfersize);
1173 	}
1174 }
1175 
1176 void
1177 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1178 {
1179 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1180 
1181 	if (size + off > PAGE_SIZE)
1182 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1183 
1184 	if (hw_direct_map) {
1185 		bzero((caddr_t)pa + off, size);
1186 	} else {
1187 		mtx_lock(&moea64_scratchpage_mtx);
1188 		moea64_set_scratchpage_pa(mmu, 0, pa);
1189 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1190 		mtx_unlock(&moea64_scratchpage_mtx);
1191 	}
1192 }
1193 
1194 /*
1195  * Zero a page of physical memory by temporarily mapping it
1196  */
1197 void
1198 moea64_zero_page(mmu_t mmu, vm_page_t m)
1199 {
1200 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1201 	vm_offset_t va, off;
1202 
1203 	if (!hw_direct_map) {
1204 		mtx_lock(&moea64_scratchpage_mtx);
1205 
1206 		moea64_set_scratchpage_pa(mmu, 0, pa);
1207 		va = moea64_scratchpage_va[0];
1208 	} else {
1209 		va = pa;
1210 	}
1211 
1212 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1213 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1214 
1215 	if (!hw_direct_map)
1216 		mtx_unlock(&moea64_scratchpage_mtx);
1217 }
1218 
1219 void
1220 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1221 {
1222 
1223 	moea64_zero_page(mmu, m);
1224 }
1225 
1226 /*
1227  * Map the given physical page at the specified virtual address in the
1228  * target pmap with the protection requested.  If specified the page
1229  * will be wired down.
1230  */
1231 
1232 int
1233 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1234     vm_prot_t prot, u_int flags, int8_t psind)
1235 {
1236 	struct		pvo_head *pvo_head;
1237 	uma_zone_t	zone;
1238 	uint64_t	pte_lo;
1239 	u_int		pvo_flags;
1240 	int		error;
1241 
1242 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1243 		VM_OBJECT_ASSERT_LOCKED(m->object);
1244 
1245 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1246 		pvo_head = NULL;
1247 		zone = moea64_upvo_zone;
1248 		pvo_flags = 0;
1249 	} else {
1250 		pvo_head = vm_page_to_pvoh(m);
1251 		zone = moea64_mpvo_zone;
1252 		pvo_flags = PVO_MANAGED;
1253 	}
1254 
1255 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1256 
1257 	if (prot & VM_PROT_WRITE) {
1258 		pte_lo |= LPTE_BW;
1259 		if (pmap_bootstrapped &&
1260 		    (m->oflags & VPO_UNMANAGED) == 0)
1261 			vm_page_aflag_set(m, PGA_WRITEABLE);
1262 	} else
1263 		pte_lo |= LPTE_BR;
1264 
1265 	if ((prot & VM_PROT_EXECUTE) == 0)
1266 		pte_lo |= LPTE_NOEXEC;
1267 
1268 	if ((flags & PMAP_ENTER_WIRED) != 0)
1269 		pvo_flags |= PVO_WIRED;
1270 
1271 	for (;;) {
1272 		LOCK_TABLE_WR();
1273 		PMAP_LOCK(pmap);
1274 		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1275 		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1276 		PMAP_UNLOCK(pmap);
1277 		UNLOCK_TABLE_WR();
1278 		if (error != ENOMEM)
1279 			break;
1280 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1281 			return (KERN_RESOURCE_SHORTAGE);
1282 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1283 		VM_WAIT;
1284 	}
1285 
1286 	/*
1287 	 * Flush the page from the instruction cache if this page is
1288 	 * mapped executable and cacheable.
1289 	 */
1290 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1291 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1292 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1293 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1294 	}
1295 	return (KERN_SUCCESS);
1296 }
1297 
1298 static void
1299 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1300     vm_size_t sz)
1301 {
1302 
1303 	/*
1304 	 * This is much trickier than on older systems because
1305 	 * we can't sync the icache on physical addresses directly
1306 	 * without a direct map. Instead we check a couple of cases
1307 	 * where the memory is already mapped in and, failing that,
1308 	 * use the same trick we use for page zeroing to create
1309 	 * a temporary mapping for this physical address.
1310 	 */
1311 
1312 	if (!pmap_bootstrapped) {
1313 		/*
1314 		 * If PMAP is not bootstrapped, we are likely to be
1315 		 * in real mode.
1316 		 */
1317 		__syncicache((void *)pa, sz);
1318 	} else if (pmap == kernel_pmap) {
1319 		__syncicache((void *)va, sz);
1320 	} else if (hw_direct_map) {
1321 		__syncicache((void *)pa, sz);
1322 	} else {
1323 		/* Use the scratch page to set up a temp mapping */
1324 
1325 		mtx_lock(&moea64_scratchpage_mtx);
1326 
1327 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1328 		__syncicache((void *)(moea64_scratchpage_va[1] +
1329 		    (va & ADDR_POFF)), sz);
1330 
1331 		mtx_unlock(&moea64_scratchpage_mtx);
1332 	}
1333 }
1334 
1335 /*
1336  * Maps a sequence of resident pages belonging to the same object.
1337  * The sequence begins with the given page m_start.  This page is
1338  * mapped at the given virtual address start.  Each subsequent page is
1339  * mapped at a virtual address that is offset from start by the same
1340  * amount as the page is offset from m_start within the object.  The
1341  * last page in the sequence is the page with the largest offset from
1342  * m_start that can be mapped at a virtual address less than the given
1343  * virtual address end.  Not every virtual page between start and end
1344  * is mapped; only those for which a resident page exists with the
1345  * corresponding offset from m_start are mapped.
1346  */
1347 void
1348 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1349     vm_page_t m_start, vm_prot_t prot)
1350 {
1351 	vm_page_t m;
1352 	vm_pindex_t diff, psize;
1353 
1354 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1355 
1356 	psize = atop(end - start);
1357 	m = m_start;
1358 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1359 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1360 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1361 		m = TAILQ_NEXT(m, listq);
1362 	}
1363 }
1364 
1365 void
1366 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1367     vm_prot_t prot)
1368 {
1369 
1370 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1371 	    PMAP_ENTER_NOSLEEP, 0);
1372 }
1373 
1374 vm_paddr_t
1375 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1376 {
1377 	struct	pvo_entry *pvo;
1378 	vm_paddr_t pa;
1379 
1380 	PMAP_LOCK(pm);
1381 	pvo = moea64_pvo_find_va(pm, va);
1382 	if (pvo == NULL)
1383 		pa = 0;
1384 	else
1385 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1386 		    (va - PVO_VADDR(pvo));
1387 	PMAP_UNLOCK(pm);
1388 	return (pa);
1389 }
1390 
1391 /*
1392  * Atomically extract and hold the physical page with the given
1393  * pmap and virtual address pair if that mapping permits the given
1394  * protection.
1395  */
1396 vm_page_t
1397 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1398 {
1399 	struct	pvo_entry *pvo;
1400 	vm_page_t m;
1401         vm_paddr_t pa;
1402 
1403 	m = NULL;
1404 	pa = 0;
1405 	PMAP_LOCK(pmap);
1406 retry:
1407 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1408 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1409 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1410 	     (prot & VM_PROT_WRITE) == 0)) {
1411 		if (vm_page_pa_tryrelock(pmap,
1412 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1413 			goto retry;
1414 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1415 		vm_page_hold(m);
1416 	}
1417 	PA_UNLOCK_COND(pa);
1418 	PMAP_UNLOCK(pmap);
1419 	return (m);
1420 }
1421 
1422 static mmu_t installed_mmu;
1423 
1424 static void *
1425 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1426 {
1427 	/*
1428 	 * This entire routine is a horrible hack to avoid bothering kmem
1429 	 * for new KVA addresses. Because this can get called from inside
1430 	 * kmem allocation routines, calling kmem for a new address here
1431 	 * can lead to multiply locking non-recursive mutexes.
1432 	 */
1433         vm_offset_t va;
1434 
1435         vm_page_t m;
1436         int pflags, needed_lock;
1437 
1438 	*flags = UMA_SLAB_PRIV;
1439 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1440 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1441 
1442         for (;;) {
1443                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1444                 if (m == NULL) {
1445                         if (wait & M_NOWAIT)
1446                                 return (NULL);
1447                         VM_WAIT;
1448                 } else
1449                         break;
1450         }
1451 
1452 	va = VM_PAGE_TO_PHYS(m);
1453 
1454 	LOCK_TABLE_WR();
1455 	if (needed_lock)
1456 		PMAP_LOCK(kernel_pmap);
1457 
1458 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1459 	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1460 	    0);
1461 
1462 	if (needed_lock)
1463 		PMAP_UNLOCK(kernel_pmap);
1464 	UNLOCK_TABLE_WR();
1465 
1466 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1467                 bzero((void *)va, PAGE_SIZE);
1468 
1469 	return (void *)va;
1470 }
1471 
1472 extern int elf32_nxstack;
1473 
1474 void
1475 moea64_init(mmu_t mmu)
1476 {
1477 
1478 	CTR0(KTR_PMAP, "moea64_init");
1479 
1480 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1481 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1482 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1483 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1484 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1485 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1486 
1487 	if (!hw_direct_map) {
1488 		installed_mmu = mmu;
1489 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1490 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1491 	}
1492 
1493 #ifdef COMPAT_FREEBSD32
1494 	elf32_nxstack = 1;
1495 #endif
1496 
1497 	moea64_initialized = TRUE;
1498 }
1499 
1500 boolean_t
1501 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1502 {
1503 
1504 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1505 	    ("moea64_is_referenced: page %p is not managed", m));
1506 	return (moea64_query_bit(mmu, m, PTE_REF));
1507 }
1508 
1509 boolean_t
1510 moea64_is_modified(mmu_t mmu, vm_page_t m)
1511 {
1512 
1513 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1514 	    ("moea64_is_modified: page %p is not managed", m));
1515 
1516 	/*
1517 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1518 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1519 	 * is clear, no PTEs can have LPTE_CHG set.
1520 	 */
1521 	VM_OBJECT_ASSERT_LOCKED(m->object);
1522 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1523 		return (FALSE);
1524 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1525 }
1526 
1527 boolean_t
1528 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1529 {
1530 	struct pvo_entry *pvo;
1531 	boolean_t rv;
1532 
1533 	PMAP_LOCK(pmap);
1534 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1535 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1536 	PMAP_UNLOCK(pmap);
1537 	return (rv);
1538 }
1539 
1540 void
1541 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1542 {
1543 
1544 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1545 	    ("moea64_clear_modify: page %p is not managed", m));
1546 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1547 	KASSERT(!vm_page_xbusied(m),
1548 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1549 
1550 	/*
1551 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1552 	 * set.  If the object containing the page is locked and the page is
1553 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1554 	 */
1555 	if ((m->aflags & PGA_WRITEABLE) == 0)
1556 		return;
1557 	moea64_clear_bit(mmu, m, LPTE_CHG);
1558 }
1559 
1560 /*
1561  * Clear the write and modified bits in each of the given page's mappings.
1562  */
1563 void
1564 moea64_remove_write(mmu_t mmu, vm_page_t m)
1565 {
1566 	struct	pvo_entry *pvo;
1567 	uintptr_t pt;
1568 	pmap_t	pmap;
1569 	uint64_t lo = 0;
1570 
1571 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1572 	    ("moea64_remove_write: page %p is not managed", m));
1573 
1574 	/*
1575 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1576 	 * set by another thread while the object is locked.  Thus,
1577 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1578 	 */
1579 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1580 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1581 		return;
1582 	powerpc_sync();
1583 	LOCK_TABLE_RD();
1584 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1585 		pmap = pvo->pvo_pmap;
1586 		PMAP_LOCK(pmap);
1587 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1588 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1589 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1590 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1591 			if (pt != -1) {
1592 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1593 				lo |= pvo->pvo_pte.lpte.pte_lo;
1594 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1595 				MOEA64_PTE_CHANGE(mmu, pt,
1596 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1597 				if (pvo->pvo_pmap == kernel_pmap)
1598 					isync();
1599 			}
1600 		}
1601 		if ((lo & LPTE_CHG) != 0)
1602 			vm_page_dirty(m);
1603 		PMAP_UNLOCK(pmap);
1604 	}
1605 	UNLOCK_TABLE_RD();
1606 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1607 }
1608 
1609 /*
1610  *	moea64_ts_referenced:
1611  *
1612  *	Return a count of reference bits for a page, clearing those bits.
1613  *	It is not necessary for every reference bit to be cleared, but it
1614  *	is necessary that 0 only be returned when there are truly no
1615  *	reference bits set.
1616  *
1617  *	XXX: The exact number of bits to check and clear is a matter that
1618  *	should be tested and standardized at some point in the future for
1619  *	optimal aging of shared pages.
1620  */
1621 int
1622 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1623 {
1624 
1625 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1626 	    ("moea64_ts_referenced: page %p is not managed", m));
1627 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1628 }
1629 
1630 /*
1631  * Modify the WIMG settings of all mappings for a page.
1632  */
1633 void
1634 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1635 {
1636 	struct	pvo_entry *pvo;
1637 	struct  pvo_head *pvo_head;
1638 	uintptr_t pt;
1639 	pmap_t	pmap;
1640 	uint64_t lo;
1641 
1642 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1643 		m->md.mdpg_cache_attrs = ma;
1644 		return;
1645 	}
1646 
1647 	pvo_head = vm_page_to_pvoh(m);
1648 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1649 	LOCK_TABLE_RD();
1650 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1651 		pmap = pvo->pvo_pmap;
1652 		PMAP_LOCK(pmap);
1653 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1654 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1655 		pvo->pvo_pte.lpte.pte_lo |= lo;
1656 		if (pt != -1) {
1657 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1658 			    pvo->pvo_vpn);
1659 			if (pvo->pvo_pmap == kernel_pmap)
1660 				isync();
1661 		}
1662 		PMAP_UNLOCK(pmap);
1663 	}
1664 	UNLOCK_TABLE_RD();
1665 	m->md.mdpg_cache_attrs = ma;
1666 }
1667 
1668 /*
1669  * Map a wired page into kernel virtual address space.
1670  */
1671 void
1672 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1673 {
1674 	uint64_t	pte_lo;
1675 	int		error;
1676 
1677 	pte_lo = moea64_calc_wimg(pa, ma);
1678 
1679 	LOCK_TABLE_WR();
1680 	PMAP_LOCK(kernel_pmap);
1681 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1682 	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1683 	PMAP_UNLOCK(kernel_pmap);
1684 	UNLOCK_TABLE_WR();
1685 
1686 	if (error != 0 && error != ENOENT)
1687 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1688 		    pa, error);
1689 }
1690 
1691 void
1692 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1693 {
1694 
1695 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1696 }
1697 
1698 /*
1699  * Extract the physical page address associated with the given kernel virtual
1700  * address.
1701  */
1702 vm_paddr_t
1703 moea64_kextract(mmu_t mmu, vm_offset_t va)
1704 {
1705 	struct		pvo_entry *pvo;
1706 	vm_paddr_t pa;
1707 
1708 	/*
1709 	 * Shortcut the direct-mapped case when applicable.  We never put
1710 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1711 	 */
1712 	if (va < VM_MIN_KERNEL_ADDRESS)
1713 		return (va);
1714 
1715 	PMAP_LOCK(kernel_pmap);
1716 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1717 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1718 	    va));
1719 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1720 	PMAP_UNLOCK(kernel_pmap);
1721 	return (pa);
1722 }
1723 
1724 /*
1725  * Remove a wired page from kernel virtual address space.
1726  */
1727 void
1728 moea64_kremove(mmu_t mmu, vm_offset_t va)
1729 {
1730 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1731 }
1732 
1733 /*
1734  * Map a range of physical addresses into kernel virtual address space.
1735  *
1736  * The value passed in *virt is a suggested virtual address for the mapping.
1737  * Architectures which can support a direct-mapped physical to virtual region
1738  * can return the appropriate address within that region, leaving '*virt'
1739  * unchanged.  We cannot and therefore do not; *virt is updated with the
1740  * first usable address after the mapped region.
1741  */
1742 vm_offset_t
1743 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1744     vm_paddr_t pa_end, int prot)
1745 {
1746 	vm_offset_t	sva, va;
1747 
1748 	sva = *virt;
1749 	va = sva;
1750 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1751 		moea64_kenter(mmu, va, pa_start);
1752 	*virt = va;
1753 
1754 	return (sva);
1755 }
1756 
1757 /*
1758  * Returns true if the pmap's pv is one of the first
1759  * 16 pvs linked to from this page.  This count may
1760  * be changed upwards or downwards in the future; it
1761  * is only necessary that true be returned for a small
1762  * subset of pmaps for proper page aging.
1763  */
1764 boolean_t
1765 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1766 {
1767         int loops;
1768 	struct pvo_entry *pvo;
1769 	boolean_t rv;
1770 
1771 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1772 	    ("moea64_page_exists_quick: page %p is not managed", m));
1773 	loops = 0;
1774 	rv = FALSE;
1775 	LOCK_TABLE_RD();
1776 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1777 		if (pvo->pvo_pmap == pmap) {
1778 			rv = TRUE;
1779 			break;
1780 		}
1781 		if (++loops >= 16)
1782 			break;
1783 	}
1784 	UNLOCK_TABLE_RD();
1785 	return (rv);
1786 }
1787 
1788 /*
1789  * Return the number of managed mappings to the given physical page
1790  * that are wired.
1791  */
1792 int
1793 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1794 {
1795 	struct pvo_entry *pvo;
1796 	int count;
1797 
1798 	count = 0;
1799 	if ((m->oflags & VPO_UNMANAGED) != 0)
1800 		return (count);
1801 	LOCK_TABLE_RD();
1802 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1803 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1804 			count++;
1805 	UNLOCK_TABLE_RD();
1806 	return (count);
1807 }
1808 
1809 static uintptr_t	moea64_vsidcontext;
1810 
1811 uintptr_t
1812 moea64_get_unique_vsid(void) {
1813 	u_int entropy;
1814 	register_t hash;
1815 	uint32_t mask;
1816 	int i;
1817 
1818 	entropy = 0;
1819 	__asm __volatile("mftb %0" : "=r"(entropy));
1820 
1821 	mtx_lock(&moea64_slb_mutex);
1822 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1823 		u_int	n;
1824 
1825 		/*
1826 		 * Create a new value by mutiplying by a prime and adding in
1827 		 * entropy from the timebase register.  This is to make the
1828 		 * VSID more random so that the PT hash function collides
1829 		 * less often.  (Note that the prime casues gcc to do shifts
1830 		 * instead of a multiply.)
1831 		 */
1832 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1833 		hash = moea64_vsidcontext & (NVSIDS - 1);
1834 		if (hash == 0)		/* 0 is special, avoid it */
1835 			continue;
1836 		n = hash >> 5;
1837 		mask = 1 << (hash & (VSID_NBPW - 1));
1838 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1839 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1840 			/* anything free in this bucket? */
1841 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1842 				entropy = (moea64_vsidcontext >> 20);
1843 				continue;
1844 			}
1845 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1846 			mask = 1 << i;
1847 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1848 			hash |= i;
1849 		}
1850 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1851 		    ("Allocating in-use VSID %#zx\n", hash));
1852 		moea64_vsid_bitmap[n] |= mask;
1853 		mtx_unlock(&moea64_slb_mutex);
1854 		return (hash);
1855 	}
1856 
1857 	mtx_unlock(&moea64_slb_mutex);
1858 	panic("%s: out of segments",__func__);
1859 }
1860 
1861 #ifdef __powerpc64__
1862 void
1863 moea64_pinit(mmu_t mmu, pmap_t pmap)
1864 {
1865 
1866 	RB_INIT(&pmap->pmap_pvo);
1867 
1868 	pmap->pm_slb_tree_root = slb_alloc_tree();
1869 	pmap->pm_slb = slb_alloc_user_cache();
1870 	pmap->pm_slb_len = 0;
1871 }
1872 #else
1873 void
1874 moea64_pinit(mmu_t mmu, pmap_t pmap)
1875 {
1876 	int	i;
1877 	uint32_t hash;
1878 
1879 	RB_INIT(&pmap->pmap_pvo);
1880 
1881 	if (pmap_bootstrapped)
1882 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1883 		    (vm_offset_t)pmap);
1884 	else
1885 		pmap->pmap_phys = pmap;
1886 
1887 	/*
1888 	 * Allocate some segment registers for this pmap.
1889 	 */
1890 	hash = moea64_get_unique_vsid();
1891 
1892 	for (i = 0; i < 16; i++)
1893 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1894 
1895 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1896 }
1897 #endif
1898 
1899 /*
1900  * Initialize the pmap associated with process 0.
1901  */
1902 void
1903 moea64_pinit0(mmu_t mmu, pmap_t pm)
1904 {
1905 
1906 	PMAP_LOCK_INIT(pm);
1907 	moea64_pinit(mmu, pm);
1908 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1909 }
1910 
1911 /*
1912  * Set the physical protection on the specified range of this map as requested.
1913  */
1914 static void
1915 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1916 {
1917 	uintptr_t pt;
1918 	struct	vm_page *pg;
1919 	uint64_t oldlo;
1920 
1921 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1922 
1923 	/*
1924 	 * Grab the PTE pointer before we diddle with the cached PTE
1925 	 * copy.
1926 	 */
1927 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1928 
1929 	/*
1930 	 * Change the protection of the page.
1931 	 */
1932 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1933 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1934 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1935 	if ((prot & VM_PROT_EXECUTE) == 0)
1936 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1937 	if (prot & VM_PROT_WRITE)
1938 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1939 	else
1940 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1941 
1942 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1943 
1944 	/*
1945 	 * If the PVO is in the page table, update that pte as well.
1946 	 */
1947 	if (pt != -1)
1948 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1949 		    pvo->pvo_vpn);
1950 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1951 	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1952 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1953 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1954 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1955 		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1956 	}
1957 
1958 	/*
1959 	 * Update vm about the REF/CHG bits if the page is managed and we have
1960 	 * removed write access.
1961 	 */
1962 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1963 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1964 		if (pg != NULL) {
1965 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1966 				vm_page_dirty(pg);
1967 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1968 				vm_page_aflag_set(pg, PGA_REFERENCED);
1969 		}
1970 	}
1971 }
1972 
1973 void
1974 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1975     vm_prot_t prot)
1976 {
1977 	struct	pvo_entry *pvo, *tpvo, key;
1978 
1979 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1980 	    sva, eva, prot);
1981 
1982 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1983 	    ("moea64_protect: non current pmap"));
1984 
1985 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1986 		moea64_remove(mmu, pm, sva, eva);
1987 		return;
1988 	}
1989 
1990 	LOCK_TABLE_RD();
1991 	PMAP_LOCK(pm);
1992 	key.pvo_vaddr = sva;
1993 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1994 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1995 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1996 		moea64_pvo_protect(mmu, pm, pvo, prot);
1997 	}
1998 	UNLOCK_TABLE_RD();
1999 	PMAP_UNLOCK(pm);
2000 }
2001 
2002 /*
2003  * Map a list of wired pages into kernel virtual address space.  This is
2004  * intended for temporary mappings which do not need page modification or
2005  * references recorded.  Existing mappings in the region are overwritten.
2006  */
2007 void
2008 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2009 {
2010 	while (count-- > 0) {
2011 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2012 		va += PAGE_SIZE;
2013 		m++;
2014 	}
2015 }
2016 
2017 /*
2018  * Remove page mappings from kernel virtual address space.  Intended for
2019  * temporary mappings entered by moea64_qenter.
2020  */
2021 void
2022 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2023 {
2024 	while (count-- > 0) {
2025 		moea64_kremove(mmu, va);
2026 		va += PAGE_SIZE;
2027 	}
2028 }
2029 
2030 void
2031 moea64_release_vsid(uint64_t vsid)
2032 {
2033 	int idx, mask;
2034 
2035 	mtx_lock(&moea64_slb_mutex);
2036 	idx = vsid & (NVSIDS-1);
2037 	mask = 1 << (idx % VSID_NBPW);
2038 	idx /= VSID_NBPW;
2039 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2040 	    ("Freeing unallocated VSID %#jx", vsid));
2041 	moea64_vsid_bitmap[idx] &= ~mask;
2042 	mtx_unlock(&moea64_slb_mutex);
2043 }
2044 
2045 
2046 void
2047 moea64_release(mmu_t mmu, pmap_t pmap)
2048 {
2049 
2050 	/*
2051 	 * Free segment registers' VSIDs
2052 	 */
2053     #ifdef __powerpc64__
2054 	slb_free_tree(pmap);
2055 	slb_free_user_cache(pmap->pm_slb);
2056     #else
2057 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2058 
2059 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2060     #endif
2061 }
2062 
2063 /*
2064  * Remove all pages mapped by the specified pmap
2065  */
2066 void
2067 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2068 {
2069 	struct	pvo_entry *pvo, *tpvo;
2070 
2071 	LOCK_TABLE_WR();
2072 	PMAP_LOCK(pm);
2073 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2074 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2075 			moea64_pvo_remove(mmu, pvo);
2076 	}
2077 	UNLOCK_TABLE_WR();
2078 	PMAP_UNLOCK(pm);
2079 }
2080 
2081 /*
2082  * Remove the given range of addresses from the specified map.
2083  */
2084 void
2085 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2086 {
2087 	struct	pvo_entry *pvo, *tpvo, key;
2088 
2089 	/*
2090 	 * Perform an unsynchronized read.  This is, however, safe.
2091 	 */
2092 	if (pm->pm_stats.resident_count == 0)
2093 		return;
2094 
2095 	LOCK_TABLE_WR();
2096 	PMAP_LOCK(pm);
2097 	key.pvo_vaddr = sva;
2098 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2099 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2100 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2101 		moea64_pvo_remove(mmu, pvo);
2102 	}
2103 	UNLOCK_TABLE_WR();
2104 	PMAP_UNLOCK(pm);
2105 }
2106 
2107 /*
2108  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2109  * will reflect changes in pte's back to the vm_page.
2110  */
2111 void
2112 moea64_remove_all(mmu_t mmu, vm_page_t m)
2113 {
2114 	struct	pvo_entry *pvo, *next_pvo;
2115 	pmap_t	pmap;
2116 
2117 	LOCK_TABLE_WR();
2118 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2119 		pmap = pvo->pvo_pmap;
2120 		PMAP_LOCK(pmap);
2121 		moea64_pvo_remove(mmu, pvo);
2122 		PMAP_UNLOCK(pmap);
2123 	}
2124 	UNLOCK_TABLE_WR();
2125 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2126 		vm_page_dirty(m);
2127 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2128 	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2129 }
2130 
2131 /*
2132  * Allocate a physical page of memory directly from the phys_avail map.
2133  * Can only be called from moea64_bootstrap before avail start and end are
2134  * calculated.
2135  */
2136 vm_offset_t
2137 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2138 {
2139 	vm_offset_t	s, e;
2140 	int		i, j;
2141 
2142 	size = round_page(size);
2143 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2144 		if (align != 0)
2145 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2146 		else
2147 			s = phys_avail[i];
2148 		e = s + size;
2149 
2150 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2151 			continue;
2152 
2153 		if (s + size > platform_real_maxaddr())
2154 			continue;
2155 
2156 		if (s == phys_avail[i]) {
2157 			phys_avail[i] += size;
2158 		} else if (e == phys_avail[i + 1]) {
2159 			phys_avail[i + 1] -= size;
2160 		} else {
2161 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2162 				phys_avail[j] = phys_avail[j - 2];
2163 				phys_avail[j + 1] = phys_avail[j - 1];
2164 			}
2165 
2166 			phys_avail[i + 3] = phys_avail[i + 1];
2167 			phys_avail[i + 1] = s;
2168 			phys_avail[i + 2] = e;
2169 			phys_avail_count++;
2170 		}
2171 
2172 		return (s);
2173 	}
2174 	panic("moea64_bootstrap_alloc: could not allocate memory");
2175 }
2176 
2177 static int
2178 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2179     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2180     uint64_t pte_lo, int flags, int8_t psind __unused)
2181 {
2182 	struct	 pvo_entry *pvo;
2183 	uintptr_t pt;
2184 	uint64_t vsid;
2185 	int	 first;
2186 	u_int	 ptegidx;
2187 	int	 i;
2188 	int      bootstrap;
2189 
2190 	/*
2191 	 * One nasty thing that can happen here is that the UMA calls to
2192 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2193 	 * which calls UMA...
2194 	 *
2195 	 * We break the loop by detecting recursion and allocating out of
2196 	 * the bootstrap pool.
2197 	 */
2198 
2199 	first = 0;
2200 	bootstrap = (flags & PVO_BOOTSTRAP);
2201 
2202 	if (!moea64_initialized)
2203 		bootstrap = 1;
2204 
2205 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2206 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2207 
2208 	/*
2209 	 * Compute the PTE Group index.
2210 	 */
2211 	va &= ~ADDR_POFF;
2212 	vsid = va_to_vsid(pm, va);
2213 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2214 
2215 	/*
2216 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2217 	 * there is a mapping.
2218 	 */
2219 	moea64_pvo_enter_calls++;
2220 
2221 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2222 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2223 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2224 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2225 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2226 				/*
2227 				 * The physical page and protection are not
2228 				 * changing.  Instead, this may be a request
2229 				 * to change the mapping's wired attribute.
2230 				 */
2231 				pt = -1;
2232 				if ((flags & PVO_WIRED) != 0 &&
2233 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2234 					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2235 					pvo->pvo_vaddr |= PVO_WIRED;
2236 					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2237 					pm->pm_stats.wired_count++;
2238 				} else if ((flags & PVO_WIRED) == 0 &&
2239 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2240 					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2241 					pvo->pvo_vaddr &= ~PVO_WIRED;
2242 					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2243 					pm->pm_stats.wired_count--;
2244 				}
2245 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2246 					KASSERT(pt == -1,
2247 					    ("moea64_pvo_enter: valid pt"));
2248 					/* Re-insert if spilled */
2249 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2250 					    &pvo->pvo_pte.lpte);
2251 					if (i >= 0)
2252 						PVO_PTEGIDX_SET(pvo, i);
2253 					moea64_pte_overflow--;
2254 				} else if (pt != -1) {
2255 					/*
2256 					 * The PTE's wired attribute is not a
2257 					 * hardware feature, so there is no
2258 					 * need to invalidate any TLB entries.
2259 					 */
2260 					MOEA64_PTE_CHANGE(mmu, pt,
2261 					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2262 				}
2263 				return (0);
2264 			}
2265 			moea64_pvo_remove(mmu, pvo);
2266 			break;
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * If we aren't overwriting a mapping, try to allocate.
2272 	 */
2273 	if (bootstrap) {
2274 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2275 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2276 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2277 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2278 		}
2279 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2280 		moea64_bpvo_pool_index++;
2281 		bootstrap = 1;
2282 	} else {
2283 		pvo = uma_zalloc(zone, M_NOWAIT);
2284 	}
2285 
2286 	if (pvo == NULL)
2287 		return (ENOMEM);
2288 
2289 	moea64_pvo_entries++;
2290 	pvo->pvo_vaddr = va;
2291 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2292 	    | (vsid << 16);
2293 	pvo->pvo_pmap = pm;
2294 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2295 	pvo->pvo_vaddr &= ~ADDR_POFF;
2296 
2297 	if (flags & PVO_WIRED)
2298 		pvo->pvo_vaddr |= PVO_WIRED;
2299 	if (pvo_head != NULL)
2300 		pvo->pvo_vaddr |= PVO_MANAGED;
2301 	if (bootstrap)
2302 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2303 	if (flags & PVO_LARGE)
2304 		pvo->pvo_vaddr |= PVO_LARGE;
2305 
2306 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2307 	    (uint64_t)(pa) | pte_lo, flags);
2308 
2309 	/*
2310 	 * Add to pmap list
2311 	 */
2312 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2313 
2314 	/*
2315 	 * Remember if the list was empty and therefore will be the first
2316 	 * item.
2317 	 */
2318 	if (pvo_head != NULL) {
2319 		if (LIST_FIRST(pvo_head) == NULL)
2320 			first = 1;
2321 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2322 	}
2323 
2324 	if (pvo->pvo_vaddr & PVO_WIRED) {
2325 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2326 		pm->pm_stats.wired_count++;
2327 	}
2328 	pm->pm_stats.resident_count++;
2329 
2330 	/*
2331 	 * We hope this succeeds but it isn't required.
2332 	 */
2333 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2334 	if (i >= 0) {
2335 		PVO_PTEGIDX_SET(pvo, i);
2336 	} else {
2337 		panic("moea64_pvo_enter: overflow");
2338 		moea64_pte_overflow++;
2339 	}
2340 
2341 	if (pm == kernel_pmap)
2342 		isync();
2343 
2344 #ifdef __powerpc64__
2345 	/*
2346 	 * Make sure all our bootstrap mappings are in the SLB as soon
2347 	 * as virtual memory is switched on.
2348 	 */
2349 	if (!pmap_bootstrapped)
2350 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2351 #endif
2352 
2353 	return (first ? ENOENT : 0);
2354 }
2355 
2356 static void
2357 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2358 {
2359 	struct	vm_page *pg;
2360 	uintptr_t pt;
2361 
2362 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2363 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2364 
2365 	/*
2366 	 * If there is an active pte entry, we need to deactivate it (and
2367 	 * save the ref & cfg bits).
2368 	 */
2369 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2370 	if (pt != -1) {
2371 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2372 		PVO_PTEGIDX_CLR(pvo);
2373 	} else {
2374 		moea64_pte_overflow--;
2375 	}
2376 
2377 	/*
2378 	 * Update our statistics.
2379 	 */
2380 	pvo->pvo_pmap->pm_stats.resident_count--;
2381 	if (pvo->pvo_vaddr & PVO_WIRED)
2382 		pvo->pvo_pmap->pm_stats.wired_count--;
2383 
2384 	/*
2385 	 * Remove this PVO from the pmap list.
2386 	 */
2387 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2388 
2389 	/*
2390 	 * Remove this from the overflow list and return it to the pool
2391 	 * if we aren't going to reuse it.
2392 	 */
2393 	LIST_REMOVE(pvo, pvo_olink);
2394 
2395 	/*
2396 	 * Update vm about the REF/CHG bits if the page is managed.
2397 	 */
2398 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2399 
2400 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2401 		LIST_REMOVE(pvo, pvo_vlink);
2402 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2403 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2404 				vm_page_dirty(pg);
2405 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2406 				vm_page_aflag_set(pg, PGA_REFERENCED);
2407 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2408 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2409 		}
2410 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2411 			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2412 	}
2413 
2414 	moea64_pvo_entries--;
2415 	moea64_pvo_remove_calls++;
2416 
2417 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2418 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2419 		    moea64_upvo_zone, pvo);
2420 }
2421 
2422 static struct pvo_entry *
2423 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2424 {
2425 	struct pvo_entry key;
2426 
2427 	key.pvo_vaddr = va & ~ADDR_POFF;
2428 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2429 }
2430 
2431 static boolean_t
2432 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2433 {
2434 	struct	pvo_entry *pvo;
2435 	uintptr_t pt;
2436 
2437 	LOCK_TABLE_RD();
2438 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2439 		/*
2440 		 * See if we saved the bit off.  If so, return success.
2441 		 */
2442 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2443 			UNLOCK_TABLE_RD();
2444 			return (TRUE);
2445 		}
2446 	}
2447 
2448 	/*
2449 	 * No luck, now go through the hard part of looking at the PTEs
2450 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2451 	 * the PTEs.
2452 	 */
2453 	powerpc_sync();
2454 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2455 
2456 		/*
2457 		 * See if this pvo has a valid PTE.  if so, fetch the
2458 		 * REF/CHG bits from the valid PTE.  If the appropriate
2459 		 * ptebit is set, return success.
2460 		 */
2461 		PMAP_LOCK(pvo->pvo_pmap);
2462 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2463 		if (pt != -1) {
2464 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2465 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2466 				PMAP_UNLOCK(pvo->pvo_pmap);
2467 				UNLOCK_TABLE_RD();
2468 				return (TRUE);
2469 			}
2470 		}
2471 		PMAP_UNLOCK(pvo->pvo_pmap);
2472 	}
2473 
2474 	UNLOCK_TABLE_RD();
2475 	return (FALSE);
2476 }
2477 
2478 static u_int
2479 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2480 {
2481 	u_int	count;
2482 	struct	pvo_entry *pvo;
2483 	uintptr_t pt;
2484 
2485 	/*
2486 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2487 	 * we can reset the right ones).  note that since the pvo entries and
2488 	 * list heads are accessed via BAT0 and are never placed in the page
2489 	 * table, we don't have to worry about further accesses setting the
2490 	 * REF/CHG bits.
2491 	 */
2492 	powerpc_sync();
2493 
2494 	/*
2495 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2496 	 * valid pte clear the ptebit from the valid pte.
2497 	 */
2498 	count = 0;
2499 	LOCK_TABLE_RD();
2500 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2501 		PMAP_LOCK(pvo->pvo_pmap);
2502 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2503 		if (pt != -1) {
2504 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2505 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2506 				count++;
2507 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2508 				    pvo->pvo_vpn, ptebit);
2509 			}
2510 		}
2511 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2512 		PMAP_UNLOCK(pvo->pvo_pmap);
2513 	}
2514 
2515 	UNLOCK_TABLE_RD();
2516 	return (count);
2517 }
2518 
2519 boolean_t
2520 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2521 {
2522 	struct pvo_entry *pvo, key;
2523 	vm_offset_t ppa;
2524 	int error = 0;
2525 
2526 	PMAP_LOCK(kernel_pmap);
2527 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2528 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2529 	    ppa < pa + size; ppa += PAGE_SIZE,
2530 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2531 		if (pvo == NULL ||
2532 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2533 			error = EFAULT;
2534 			break;
2535 		}
2536 	}
2537 	PMAP_UNLOCK(kernel_pmap);
2538 
2539 	return (error);
2540 }
2541 
2542 /*
2543  * Map a set of physical memory pages into the kernel virtual
2544  * address space. Return a pointer to where it is mapped. This
2545  * routine is intended to be used for mapping device memory,
2546  * NOT real memory.
2547  */
2548 void *
2549 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2550 {
2551 	vm_offset_t va, tmpva, ppa, offset;
2552 
2553 	ppa = trunc_page(pa);
2554 	offset = pa & PAGE_MASK;
2555 	size = roundup2(offset + size, PAGE_SIZE);
2556 
2557 	va = kva_alloc(size);
2558 
2559 	if (!va)
2560 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2561 
2562 	for (tmpva = va; size > 0;) {
2563 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2564 		size -= PAGE_SIZE;
2565 		tmpva += PAGE_SIZE;
2566 		ppa += PAGE_SIZE;
2567 	}
2568 
2569 	return ((void *)(va + offset));
2570 }
2571 
2572 void *
2573 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2574 {
2575 
2576 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2577 }
2578 
2579 void
2580 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2581 {
2582 	vm_offset_t base, offset;
2583 
2584 	base = trunc_page(va);
2585 	offset = va & PAGE_MASK;
2586 	size = roundup2(offset + size, PAGE_SIZE);
2587 
2588 	kva_free(base, size);
2589 }
2590 
2591 void
2592 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2593 {
2594 	struct pvo_entry *pvo;
2595 	vm_offset_t lim;
2596 	vm_paddr_t pa;
2597 	vm_size_t len;
2598 
2599 	PMAP_LOCK(pm);
2600 	while (sz > 0) {
2601 		lim = round_page(va);
2602 		len = MIN(lim - va, sz);
2603 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2604 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2605 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2606 			    (va & ADDR_POFF);
2607 			moea64_syncicache(mmu, pm, va, pa, len);
2608 		}
2609 		va += len;
2610 		sz -= len;
2611 	}
2612 	PMAP_UNLOCK(pm);
2613 }
2614 
2615 vm_offset_t
2616 moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2617     vm_size_t *sz)
2618 {
2619 	if (md->md_vaddr == ~0UL)
2620 	    return (md->md_paddr + ofs);
2621 	else
2622 	    return (md->md_vaddr + ofs);
2623 }
2624 
2625 struct pmap_md *
2626 moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2627 {
2628 	static struct pmap_md md;
2629 	struct pvo_entry *pvo;
2630 	vm_offset_t va;
2631 
2632 	if (dumpsys_minidump) {
2633 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2634 		if (prev == NULL) {
2635 			/* 1st: kernel .data and .bss. */
2636 			md.md_index = 1;
2637 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2638 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2639 			return (&md);
2640 		}
2641 		switch (prev->md_index) {
2642 		case 1:
2643 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2644 			md.md_index = 2;
2645 			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2646 			md.md_size = round_page(msgbufp->msg_size);
2647 			break;
2648 		case 2:
2649 			/* 3rd: kernel VM. */
2650 			va = prev->md_vaddr + prev->md_size;
2651 			/* Find start of next chunk (from va). */
2652 			while (va < virtual_end) {
2653 				/* Don't dump the buffer cache. */
2654 				if (va >= kmi.buffer_sva &&
2655 				    va < kmi.buffer_eva) {
2656 					va = kmi.buffer_eva;
2657 					continue;
2658 				}
2659 				pvo = moea64_pvo_find_va(kernel_pmap,
2660 				    va & ~ADDR_POFF);
2661 				if (pvo != NULL &&
2662 				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2663 					break;
2664 				va += PAGE_SIZE;
2665 			}
2666 			if (va < virtual_end) {
2667 				md.md_vaddr = va;
2668 				va += PAGE_SIZE;
2669 				/* Find last page in chunk. */
2670 				while (va < virtual_end) {
2671 					/* Don't run into the buffer cache. */
2672 					if (va == kmi.buffer_sva)
2673 						break;
2674 					pvo = moea64_pvo_find_va(kernel_pmap,
2675 					    va & ~ADDR_POFF);
2676 					if (pvo == NULL ||
2677 					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2678 						break;
2679 					va += PAGE_SIZE;
2680 				}
2681 				md.md_size = va - md.md_vaddr;
2682 				break;
2683 			}
2684 			md.md_index = 3;
2685 			/* FALLTHROUGH */
2686 		default:
2687 			return (NULL);
2688 		}
2689 	} else { /* minidumps */
2690 		if (prev == NULL) {
2691 			/* first physical chunk. */
2692 			md.md_paddr = pregions[0].mr_start;
2693 			md.md_size = pregions[0].mr_size;
2694 			md.md_vaddr = ~0UL;
2695 			md.md_index = 1;
2696 		} else if (md.md_index < pregions_sz) {
2697 			md.md_paddr = pregions[md.md_index].mr_start;
2698 			md.md_size = pregions[md.md_index].mr_size;
2699 			md.md_vaddr = ~0UL;
2700 			md.md_index++;
2701 		} else {
2702 			/* There's no next physical chunk. */
2703 			return (NULL);
2704 		}
2705 	}
2706 
2707 	return (&md);
2708 }
2709