xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * Since the information managed by this module is also stored by the
100  * logical address mapping module, this module may throw away valid virtual
101  * to physical mappings at almost any time.  However, invalidations of
102  * mappings must be done as requested.
103  *
104  * In order to cope with hardware architectures which make virtual to
105  * physical map invalidates expensive, this module may delay invalidate
106  * reduced protection operations until such time as they are actually
107  * necessary.  This module is given full information as to which processors
108  * are currently using which maps, and to when physical maps must be made
109  * correct.
110  */
111 
112 #include "opt_compat.h"
113 #include "opt_kstack_pages.h"
114 
115 #include <sys/param.h>
116 #include <sys/kernel.h>
117 #include <sys/queue.h>
118 #include <sys/cpuset.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/msgbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rwlock.h>
126 #include <sys/sched.h>
127 #include <sys/sysctl.h>
128 #include <sys/systm.h>
129 #include <sys/vmmeter.h>
130 
131 #include <sys/kdb.h>
132 
133 #include <dev/ofw/openfirm.h>
134 
135 #include <vm/vm.h>
136 #include <vm/vm_param.h>
137 #include <vm/vm_kern.h>
138 #include <vm/vm_page.h>
139 #include <vm/vm_map.h>
140 #include <vm/vm_object.h>
141 #include <vm/vm_extern.h>
142 #include <vm/vm_pageout.h>
143 #include <vm/uma.h>
144 
145 #include <machine/_inttypes.h>
146 #include <machine/cpu.h>
147 #include <machine/platform.h>
148 #include <machine/frame.h>
149 #include <machine/md_var.h>
150 #include <machine/psl.h>
151 #include <machine/bat.h>
152 #include <machine/hid.h>
153 #include <machine/pte.h>
154 #include <machine/sr.h>
155 #include <machine/trap.h>
156 #include <machine/mmuvar.h>
157 
158 #include "mmu_oea64.h"
159 #include "mmu_if.h"
160 #include "moea64_if.h"
161 
162 void moea64_release_vsid(uint64_t vsid);
163 uintptr_t moea64_get_unique_vsid(void);
164 
165 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
166 #define ENABLE_TRANS(msr)	mtmsr(msr)
167 
168 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
169 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
170 #define	VSID_HASH_MASK		0x0000007fffffffffULL
171 
172 /*
173  * Locking semantics:
174  * -- Read lock: if no modifications are being made to either the PVO lists
175  *    or page table or if any modifications being made result in internal
176  *    changes (e.g. wiring, protection) such that the existence of the PVOs
177  *    is unchanged and they remain associated with the same pmap (in which
178  *    case the changes should be protected by the pmap lock)
179  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
180  */
181 
182 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
183 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
184 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
185 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
186 
187 struct ofw_map {
188 	cell_t	om_va;
189 	cell_t	om_len;
190 	cell_t	om_pa_hi;
191 	cell_t	om_pa_lo;
192 	cell_t	om_mode;
193 };
194 
195 /*
196  * Map of physical memory regions.
197  */
198 static struct	mem_region *regions;
199 static struct	mem_region *pregions;
200 static u_int	phys_avail_count;
201 static int	regions_sz, pregions_sz;
202 
203 extern void bs_remap_earlyboot(void);
204 
205 /*
206  * Lock for the pteg and pvo tables.
207  */
208 struct rwlock	moea64_table_lock;
209 struct mtx	moea64_slb_mutex;
210 
211 /*
212  * PTEG data.
213  */
214 u_int		moea64_pteg_count;
215 u_int		moea64_pteg_mask;
216 
217 /*
218  * PVO data.
219  */
220 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
221 
222 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
223 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
224 
225 #define	BPVO_POOL_SIZE	327680
226 static struct	pvo_entry *moea64_bpvo_pool;
227 static int	moea64_bpvo_pool_index = 0;
228 
229 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
230 #ifdef __powerpc64__
231 #define	NVSIDS		(NPMAPS * 16)
232 #define VSID_HASHMASK	0xffffffffUL
233 #else
234 #define NVSIDS		NPMAPS
235 #define VSID_HASHMASK	0xfffffUL
236 #endif
237 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
238 
239 static boolean_t moea64_initialized = FALSE;
240 
241 /*
242  * Statistics.
243  */
244 u_int	moea64_pte_valid = 0;
245 u_int	moea64_pte_overflow = 0;
246 u_int	moea64_pvo_entries = 0;
247 u_int	moea64_pvo_enter_calls = 0;
248 u_int	moea64_pvo_remove_calls = 0;
249 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
250     &moea64_pte_valid, 0, "");
251 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
252     &moea64_pte_overflow, 0, "");
253 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
254     &moea64_pvo_entries, 0, "");
255 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
256     &moea64_pvo_enter_calls, 0, "");
257 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
258     &moea64_pvo_remove_calls, 0, "");
259 
260 vm_offset_t	moea64_scratchpage_va[2];
261 struct pvo_entry *moea64_scratchpage_pvo[2];
262 uintptr_t	moea64_scratchpage_pte[2];
263 struct	mtx	moea64_scratchpage_mtx;
264 
265 uint64_t 	moea64_large_page_mask = 0;
266 uint64_t	moea64_large_page_size = 0;
267 int		moea64_large_page_shift = 0;
268 
269 /*
270  * PVO calls.
271  */
272 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
273 		    vm_offset_t, vm_offset_t, uint64_t, int);
274 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
275 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
276 
277 /*
278  * Utility routines.
279  */
280 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
281 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
282 static void		moea64_kremove(mmu_t, vm_offset_t);
283 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
284 			    vm_offset_t pa, vm_size_t sz);
285 
286 /*
287  * Kernel MMU interface
288  */
289 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
290 void moea64_clear_modify(mmu_t, vm_page_t);
291 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
292 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
293     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
294 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
295 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
296     vm_prot_t);
297 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
298 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
299 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
300 void moea64_init(mmu_t);
301 boolean_t moea64_is_modified(mmu_t, vm_page_t);
302 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
303 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
304 int moea64_ts_referenced(mmu_t, vm_page_t);
305 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
306 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
307 int moea64_page_wired_mappings(mmu_t, vm_page_t);
308 void moea64_pinit(mmu_t, pmap_t);
309 void moea64_pinit0(mmu_t, pmap_t);
310 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
311 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
312 void moea64_qremove(mmu_t, vm_offset_t, int);
313 void moea64_release(mmu_t, pmap_t);
314 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
315 void moea64_remove_pages(mmu_t, pmap_t);
316 void moea64_remove_all(mmu_t, vm_page_t);
317 void moea64_remove_write(mmu_t, vm_page_t);
318 void moea64_zero_page(mmu_t, vm_page_t);
319 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
320 void moea64_zero_page_idle(mmu_t, vm_page_t);
321 void moea64_activate(mmu_t, struct thread *);
322 void moea64_deactivate(mmu_t, struct thread *);
323 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
324 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
325 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
326 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
327 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
328 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
329 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
330 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
331 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
332 
333 static mmu_method_t moea64_methods[] = {
334 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
335 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
336 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
337 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
338 	MMUMETHOD(mmu_enter,		moea64_enter),
339 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
340 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
341 	MMUMETHOD(mmu_extract,		moea64_extract),
342 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
343 	MMUMETHOD(mmu_init,		moea64_init),
344 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
345 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
346 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
347 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
348 	MMUMETHOD(mmu_map,     		moea64_map),
349 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
350 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
351 	MMUMETHOD(mmu_pinit,		moea64_pinit),
352 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
353 	MMUMETHOD(mmu_protect,		moea64_protect),
354 	MMUMETHOD(mmu_qenter,		moea64_qenter),
355 	MMUMETHOD(mmu_qremove,		moea64_qremove),
356 	MMUMETHOD(mmu_release,		moea64_release),
357 	MMUMETHOD(mmu_remove,		moea64_remove),
358 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
359 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
360 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
361 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
362 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
363 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
364 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
365 	MMUMETHOD(mmu_activate,		moea64_activate),
366 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
367 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
368 
369 	/* Internal interfaces */
370 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
371 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
372 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
373 	MMUMETHOD(mmu_kextract,		moea64_kextract),
374 	MMUMETHOD(mmu_kenter,		moea64_kenter),
375 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
376 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
377 
378 	{ 0, 0 }
379 };
380 
381 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
382 
383 static __inline u_int
384 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
385 {
386 	uint64_t hash;
387 	int shift;
388 
389 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
390 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
391 	    shift);
392 	return (hash & moea64_pteg_mask);
393 }
394 
395 static __inline struct pvo_head *
396 vm_page_to_pvoh(vm_page_t m)
397 {
398 
399 	return (&m->md.mdpg_pvoh);
400 }
401 
402 static __inline void
403 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
404     uint64_t pte_lo, int flags)
405 {
406 
407 	/*
408 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
409 	 * set when the real pte is set in memory.
410 	 *
411 	 * Note: Don't set the valid bit for correct operation of tlb update.
412 	 */
413 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
414 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
415 
416 	if (flags & PVO_LARGE)
417 		pt->pte_hi |= LPTE_BIG;
418 
419 	pt->pte_lo = pte_lo;
420 }
421 
422 static __inline uint64_t
423 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
424 {
425 	uint64_t pte_lo;
426 	int i;
427 
428 	if (ma != VM_MEMATTR_DEFAULT) {
429 		switch (ma) {
430 		case VM_MEMATTR_UNCACHEABLE:
431 			return (LPTE_I | LPTE_G);
432 		case VM_MEMATTR_WRITE_COMBINING:
433 		case VM_MEMATTR_WRITE_BACK:
434 		case VM_MEMATTR_PREFETCHABLE:
435 			return (LPTE_I);
436 		case VM_MEMATTR_WRITE_THROUGH:
437 			return (LPTE_W | LPTE_M);
438 		}
439 	}
440 
441 	/*
442 	 * Assume the page is cache inhibited and access is guarded unless
443 	 * it's in our available memory array.
444 	 */
445 	pte_lo = LPTE_I | LPTE_G;
446 	for (i = 0; i < pregions_sz; i++) {
447 		if ((pa >= pregions[i].mr_start) &&
448 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
449 			pte_lo &= ~(LPTE_I | LPTE_G);
450 			pte_lo |= LPTE_M;
451 			break;
452 		}
453 	}
454 
455 	return pte_lo;
456 }
457 
458 /*
459  * Quick sort callout for comparing memory regions.
460  */
461 static int	om_cmp(const void *a, const void *b);
462 
463 static int
464 om_cmp(const void *a, const void *b)
465 {
466 	const struct	ofw_map *mapa;
467 	const struct	ofw_map *mapb;
468 
469 	mapa = a;
470 	mapb = b;
471 	if (mapa->om_pa_hi < mapb->om_pa_hi)
472 		return (-1);
473 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
474 		return (1);
475 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
476 		return (-1);
477 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
478 		return (1);
479 	else
480 		return (0);
481 }
482 
483 static void
484 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
485 {
486 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
487 	register_t	msr;
488 	vm_offset_t	off;
489 	vm_paddr_t	pa_base;
490 	int		i;
491 
492 	bzero(translations, sz);
493 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
494 		panic("moea64_bootstrap: can't get ofw translations");
495 
496 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
497 	sz /= sizeof(*translations);
498 	qsort(translations, sz, sizeof (*translations), om_cmp);
499 
500 	for (i = 0; i < sz; i++) {
501 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
502 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
503 		    translations[i].om_len);
504 
505 		if (translations[i].om_pa_lo % PAGE_SIZE)
506 			panic("OFW translation not page-aligned!");
507 
508 		pa_base = translations[i].om_pa_lo;
509 
510 	      #ifdef __powerpc64__
511 		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
512 	      #else
513 		if (translations[i].om_pa_hi)
514 			panic("OFW translations above 32-bit boundary!");
515 	      #endif
516 
517 		/* Now enter the pages for this mapping */
518 
519 		DISABLE_TRANS(msr);
520 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
521 			if (moea64_pvo_find_va(kernel_pmap,
522 			    translations[i].om_va + off) != NULL)
523 				continue;
524 
525 			moea64_kenter(mmup, translations[i].om_va + off,
526 			    pa_base + off);
527 		}
528 		ENABLE_TRANS(msr);
529 	}
530 }
531 
532 #ifdef __powerpc64__
533 static void
534 moea64_probe_large_page(void)
535 {
536 	uint16_t pvr = mfpvr() >> 16;
537 
538 	switch (pvr) {
539 	case IBM970:
540 	case IBM970FX:
541 	case IBM970MP:
542 		powerpc_sync(); isync();
543 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
544 		powerpc_sync(); isync();
545 
546 		/* FALLTHROUGH */
547 	default:
548 		moea64_large_page_size = 0x1000000; /* 16 MB */
549 		moea64_large_page_shift = 24;
550 	}
551 
552 	moea64_large_page_mask = moea64_large_page_size - 1;
553 }
554 
555 static void
556 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
557 {
558 	struct slb *cache;
559 	struct slb entry;
560 	uint64_t esid, slbe;
561 	uint64_t i;
562 
563 	cache = PCPU_GET(slb);
564 	esid = va >> ADDR_SR_SHFT;
565 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
566 
567 	for (i = 0; i < 64; i++) {
568 		if (cache[i].slbe == (slbe | i))
569 			return;
570 	}
571 
572 	entry.slbe = slbe;
573 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
574 	if (large)
575 		entry.slbv |= SLBV_L;
576 
577 	slb_insert_kernel(entry.slbe, entry.slbv);
578 }
579 #endif
580 
581 static void
582 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
583     vm_offset_t kernelend)
584 {
585 	register_t msr;
586 	vm_paddr_t pa;
587 	vm_offset_t size, off;
588 	uint64_t pte_lo;
589 	int i;
590 
591 	if (moea64_large_page_size == 0)
592 		hw_direct_map = 0;
593 
594 	DISABLE_TRANS(msr);
595 	if (hw_direct_map) {
596 		LOCK_TABLE_WR();
597 		PMAP_LOCK(kernel_pmap);
598 		for (i = 0; i < pregions_sz; i++) {
599 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
600 		     pregions[i].mr_size; pa += moea64_large_page_size) {
601 			pte_lo = LPTE_M;
602 
603 			/*
604 			 * Set memory access as guarded if prefetch within
605 			 * the page could exit the available physmem area.
606 			 */
607 			if (pa & moea64_large_page_mask) {
608 				pa &= moea64_large_page_mask;
609 				pte_lo |= LPTE_G;
610 			}
611 			if (pa + moea64_large_page_size >
612 			    pregions[i].mr_start + pregions[i].mr_size)
613 				pte_lo |= LPTE_G;
614 
615 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
616 				    NULL, pa, pa, pte_lo,
617 				    PVO_WIRED | PVO_LARGE);
618 		  }
619 		}
620 		PMAP_UNLOCK(kernel_pmap);
621 		UNLOCK_TABLE_WR();
622 	} else {
623 		size = sizeof(struct pvo_head) * moea64_pteg_count;
624 		off = (vm_offset_t)(moea64_pvo_table);
625 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
626 			moea64_kenter(mmup, pa, pa);
627 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
628 		off = (vm_offset_t)(moea64_bpvo_pool);
629 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
630 		moea64_kenter(mmup, pa, pa);
631 
632 		/*
633 		 * Map certain important things, like ourselves.
634 		 *
635 		 * NOTE: We do not map the exception vector space. That code is
636 		 * used only in real mode, and leaving it unmapped allows us to
637 		 * catch NULL pointer deferences, instead of making NULL a valid
638 		 * address.
639 		 */
640 
641 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
642 		    pa += PAGE_SIZE)
643 			moea64_kenter(mmup, pa, pa);
644 	}
645 	ENABLE_TRANS(msr);
646 
647 	/*
648 	 * Allow user to override unmapped_buf_allowed for testing.
649 	 * XXXKIB Only direct map implementation was tested.
650 	 */
651 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
652 	    &unmapped_buf_allowed))
653 		unmapped_buf_allowed = hw_direct_map;
654 }
655 
656 void
657 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
658 {
659 	int		i, j;
660 	vm_size_t	physsz, hwphyssz;
661 
662 #ifndef __powerpc64__
663 	/* We don't have a direct map since there is no BAT */
664 	hw_direct_map = 0;
665 
666 	/* Make sure battable is zero, since we have no BAT */
667 	for (i = 0; i < 16; i++) {
668 		battable[i].batu = 0;
669 		battable[i].batl = 0;
670 	}
671 #else
672 	moea64_probe_large_page();
673 
674 	/* Use a direct map if we have large page support */
675 	if (moea64_large_page_size > 0)
676 		hw_direct_map = 1;
677 	else
678 		hw_direct_map = 0;
679 #endif
680 
681 	/* Get physical memory regions from firmware */
682 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
683 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
684 
685 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
686 		panic("moea64_bootstrap: phys_avail too small");
687 
688 	phys_avail_count = 0;
689 	physsz = 0;
690 	hwphyssz = 0;
691 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
692 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
693 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
694 		    regions[i].mr_start + regions[i].mr_size,
695 		    regions[i].mr_size);
696 		if (hwphyssz != 0 &&
697 		    (physsz + regions[i].mr_size) >= hwphyssz) {
698 			if (physsz < hwphyssz) {
699 				phys_avail[j] = regions[i].mr_start;
700 				phys_avail[j + 1] = regions[i].mr_start +
701 				    hwphyssz - physsz;
702 				physsz = hwphyssz;
703 				phys_avail_count++;
704 			}
705 			break;
706 		}
707 		phys_avail[j] = regions[i].mr_start;
708 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
709 		phys_avail_count++;
710 		physsz += regions[i].mr_size;
711 	}
712 
713 	/* Check for overlap with the kernel and exception vectors */
714 	for (j = 0; j < 2*phys_avail_count; j+=2) {
715 		if (phys_avail[j] < EXC_LAST)
716 			phys_avail[j] += EXC_LAST;
717 
718 		if (kernelstart >= phys_avail[j] &&
719 		    kernelstart < phys_avail[j+1]) {
720 			if (kernelend < phys_avail[j+1]) {
721 				phys_avail[2*phys_avail_count] =
722 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
723 				phys_avail[2*phys_avail_count + 1] =
724 				    phys_avail[j+1];
725 				phys_avail_count++;
726 			}
727 
728 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
729 		}
730 
731 		if (kernelend >= phys_avail[j] &&
732 		    kernelend < phys_avail[j+1]) {
733 			if (kernelstart > phys_avail[j]) {
734 				phys_avail[2*phys_avail_count] = phys_avail[j];
735 				phys_avail[2*phys_avail_count + 1] =
736 				    kernelstart & ~PAGE_MASK;
737 				phys_avail_count++;
738 			}
739 
740 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
741 		}
742 	}
743 
744 	physmem = btoc(physsz);
745 
746 #ifdef PTEGCOUNT
747 	moea64_pteg_count = PTEGCOUNT;
748 #else
749 	moea64_pteg_count = 0x1000;
750 
751 	while (moea64_pteg_count < physmem)
752 		moea64_pteg_count <<= 1;
753 
754 	moea64_pteg_count >>= 1;
755 #endif /* PTEGCOUNT */
756 }
757 
758 void
759 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
760 {
761 	vm_size_t	size;
762 	register_t	msr;
763 	int		i;
764 
765 	/*
766 	 * Set PTEG mask
767 	 */
768 	moea64_pteg_mask = moea64_pteg_count - 1;
769 
770 	/*
771 	 * Allocate pv/overflow lists.
772 	 */
773 	size = sizeof(struct pvo_head) * moea64_pteg_count;
774 
775 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
776 	    PAGE_SIZE);
777 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
778 
779 	DISABLE_TRANS(msr);
780 	for (i = 0; i < moea64_pteg_count; i++)
781 		LIST_INIT(&moea64_pvo_table[i]);
782 	ENABLE_TRANS(msr);
783 
784 	/*
785 	 * Initialize the lock that synchronizes access to the pteg and pvo
786 	 * tables.
787 	 */
788 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
789 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
790 
791 	/*
792 	 * Initialise the unmanaged pvo pool.
793 	 */
794 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
795 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
796 	moea64_bpvo_pool_index = 0;
797 
798 	/*
799 	 * Make sure kernel vsid is allocated as well as VSID 0.
800 	 */
801 	#ifndef __powerpc64__
802 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
803 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
804 	moea64_vsid_bitmap[0] |= 1;
805 	#endif
806 
807 	/*
808 	 * Initialize the kernel pmap (which is statically allocated).
809 	 */
810 	#ifdef __powerpc64__
811 	for (i = 0; i < 64; i++) {
812 		pcpup->pc_slb[i].slbv = 0;
813 		pcpup->pc_slb[i].slbe = 0;
814 	}
815 	#else
816 	for (i = 0; i < 16; i++)
817 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
818 	#endif
819 
820 	kernel_pmap->pmap_phys = kernel_pmap;
821 	CPU_FILL(&kernel_pmap->pm_active);
822 	RB_INIT(&kernel_pmap->pmap_pvo);
823 
824 	PMAP_LOCK_INIT(kernel_pmap);
825 
826 	/*
827 	 * Now map in all the other buffers we allocated earlier
828 	 */
829 
830 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
831 }
832 
833 void
834 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
835 {
836 	ihandle_t	mmui;
837 	phandle_t	chosen;
838 	phandle_t	mmu;
839 	size_t		sz;
840 	int		i;
841 	vm_offset_t	pa, va;
842 	void		*dpcpu;
843 
844 	/*
845 	 * Set up the Open Firmware pmap and add its mappings if not in real
846 	 * mode.
847 	 */
848 
849 	chosen = OF_finddevice("/chosen");
850 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
851 	    mmu = OF_instance_to_package(mmui);
852 	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
853 		sz = 0;
854 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
855 		panic("moea64_bootstrap: too many ofw translations");
856 
857 	    if (sz > 0)
858 		moea64_add_ofw_mappings(mmup, mmu, sz);
859 	}
860 
861 	/*
862 	 * Calculate the last available physical address.
863 	 */
864 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
865 		;
866 	Maxmem = powerpc_btop(phys_avail[i + 1]);
867 
868 	/*
869 	 * Initialize MMU and remap early physical mappings
870 	 */
871 	MMU_CPU_BOOTSTRAP(mmup,0);
872 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
873 	pmap_bootstrapped++;
874 	bs_remap_earlyboot();
875 
876 	/*
877 	 * Set the start and end of kva.
878 	 */
879 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
880 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
881 
882 	/*
883 	 * Map the entire KVA range into the SLB. We must not fault there.
884 	 */
885 	#ifdef __powerpc64__
886 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
887 		moea64_bootstrap_slb_prefault(va, 0);
888 	#endif
889 
890 	/*
891 	 * Figure out how far we can extend virtual_end into segment 16
892 	 * without running into existing mappings. Segment 16 is guaranteed
893 	 * to contain neither RAM nor devices (at least on Apple hardware),
894 	 * but will generally contain some OFW mappings we should not
895 	 * step on.
896 	 */
897 
898 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
899 	PMAP_LOCK(kernel_pmap);
900 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
901 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
902 		virtual_end += PAGE_SIZE;
903 	PMAP_UNLOCK(kernel_pmap);
904 	#endif
905 
906 	/*
907 	 * Allocate a kernel stack with a guard page for thread0 and map it
908 	 * into the kernel page map.
909 	 */
910 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
911 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
912 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
913 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
914 	thread0.td_kstack = va;
915 	thread0.td_kstack_pages = KSTACK_PAGES;
916 	for (i = 0; i < KSTACK_PAGES; i++) {
917 		moea64_kenter(mmup, va, pa);
918 		pa += PAGE_SIZE;
919 		va += PAGE_SIZE;
920 	}
921 
922 	/*
923 	 * Allocate virtual address space for the message buffer.
924 	 */
925 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
926 	msgbufp = (struct msgbuf *)virtual_avail;
927 	va = virtual_avail;
928 	virtual_avail += round_page(msgbufsize);
929 	while (va < virtual_avail) {
930 		moea64_kenter(mmup, va, pa);
931 		pa += PAGE_SIZE;
932 		va += PAGE_SIZE;
933 	}
934 
935 	/*
936 	 * Allocate virtual address space for the dynamic percpu area.
937 	 */
938 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
939 	dpcpu = (void *)virtual_avail;
940 	va = virtual_avail;
941 	virtual_avail += DPCPU_SIZE;
942 	while (va < virtual_avail) {
943 		moea64_kenter(mmup, va, pa);
944 		pa += PAGE_SIZE;
945 		va += PAGE_SIZE;
946 	}
947 	dpcpu_init(dpcpu, 0);
948 
949 	/*
950 	 * Allocate some things for page zeroing. We put this directly
951 	 * in the page table, marked with LPTE_LOCKED, to avoid any
952 	 * of the PVO book-keeping or other parts of the VM system
953 	 * from even knowing that this hack exists.
954 	 */
955 
956 	if (!hw_direct_map) {
957 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
958 		    MTX_DEF);
959 		for (i = 0; i < 2; i++) {
960 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
961 			virtual_end -= PAGE_SIZE;
962 
963 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
964 
965 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
966 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
967 			LOCK_TABLE_RD();
968 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
969 			    mmup, moea64_scratchpage_pvo[i]);
970 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
971 			    |= LPTE_LOCKED;
972 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
973 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
974 			    moea64_scratchpage_pvo[i]->pvo_vpn);
975 			UNLOCK_TABLE_RD();
976 		}
977 	}
978 }
979 
980 /*
981  * Activate a user pmap.  The pmap must be activated before its address
982  * space can be accessed in any way.
983  */
984 void
985 moea64_activate(mmu_t mmu, struct thread *td)
986 {
987 	pmap_t	pm;
988 
989 	pm = &td->td_proc->p_vmspace->vm_pmap;
990 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
991 
992 	#ifdef __powerpc64__
993 	PCPU_SET(userslb, pm->pm_slb);
994 	#else
995 	PCPU_SET(curpmap, pm->pmap_phys);
996 	#endif
997 }
998 
999 void
1000 moea64_deactivate(mmu_t mmu, struct thread *td)
1001 {
1002 	pmap_t	pm;
1003 
1004 	pm = &td->td_proc->p_vmspace->vm_pmap;
1005 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1006 	#ifdef __powerpc64__
1007 	PCPU_SET(userslb, NULL);
1008 	#else
1009 	PCPU_SET(curpmap, NULL);
1010 	#endif
1011 }
1012 
1013 void
1014 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1015 {
1016 	struct	pvo_entry *pvo;
1017 	uintptr_t pt;
1018 	uint64_t vsid;
1019 	int	i, ptegidx;
1020 
1021 	LOCK_TABLE_WR();
1022 	PMAP_LOCK(pm);
1023 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1024 
1025 	if (pvo != NULL) {
1026 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1027 
1028 		if (wired) {
1029 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1030 				pm->pm_stats.wired_count++;
1031 			pvo->pvo_vaddr |= PVO_WIRED;
1032 			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1033 		} else {
1034 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1035 				pm->pm_stats.wired_count--;
1036 			pvo->pvo_vaddr &= ~PVO_WIRED;
1037 			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1038 		}
1039 
1040 		if (pt != -1) {
1041 			/* Update wiring flag in page table. */
1042 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1043 			    pvo->pvo_vpn);
1044 		} else if (wired) {
1045 			/*
1046 			 * If we are wiring the page, and it wasn't in the
1047 			 * page table before, add it.
1048 			 */
1049 			vsid = PVO_VSID(pvo);
1050 			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1051 			    pvo->pvo_vaddr & PVO_LARGE);
1052 
1053 			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1054 
1055 			if (i >= 0) {
1056 				PVO_PTEGIDX_CLR(pvo);
1057 				PVO_PTEGIDX_SET(pvo, i);
1058 			}
1059 		}
1060 
1061 	}
1062 	UNLOCK_TABLE_WR();
1063 	PMAP_UNLOCK(pm);
1064 }
1065 
1066 /*
1067  * This goes through and sets the physical address of our
1068  * special scratch PTE to the PA we want to zero or copy. Because
1069  * of locking issues (this can get called in pvo_enter() by
1070  * the UMA allocator), we can't use most other utility functions here
1071  */
1072 
1073 static __inline
1074 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1075 
1076 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1077 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1078 
1079 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1080 	    ~(LPTE_WIMG | LPTE_RPGN);
1081 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1082 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1083 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1084 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1085 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1086 	isync();
1087 }
1088 
1089 void
1090 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1091 {
1092 	vm_offset_t	dst;
1093 	vm_offset_t	src;
1094 
1095 	dst = VM_PAGE_TO_PHYS(mdst);
1096 	src = VM_PAGE_TO_PHYS(msrc);
1097 
1098 	if (hw_direct_map) {
1099 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1100 	} else {
1101 		mtx_lock(&moea64_scratchpage_mtx);
1102 
1103 		moea64_set_scratchpage_pa(mmu, 0, src);
1104 		moea64_set_scratchpage_pa(mmu, 1, dst);
1105 
1106 		bcopy((void *)moea64_scratchpage_va[0],
1107 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1108 
1109 		mtx_unlock(&moea64_scratchpage_mtx);
1110 	}
1111 }
1112 
1113 static inline void
1114 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1115     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1116 {
1117 	void *a_cp, *b_cp;
1118 	vm_offset_t a_pg_offset, b_pg_offset;
1119 	int cnt;
1120 
1121 	while (xfersize > 0) {
1122 		a_pg_offset = a_offset & PAGE_MASK;
1123 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1124 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1125 		    a_pg_offset;
1126 		b_pg_offset = b_offset & PAGE_MASK;
1127 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1128 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1129 		    b_pg_offset;
1130 		bcopy(a_cp, b_cp, cnt);
1131 		a_offset += cnt;
1132 		b_offset += cnt;
1133 		xfersize -= cnt;
1134 	}
1135 }
1136 
1137 static inline void
1138 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1139     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1140 {
1141 	void *a_cp, *b_cp;
1142 	vm_offset_t a_pg_offset, b_pg_offset;
1143 	int cnt;
1144 
1145 	mtx_lock(&moea64_scratchpage_mtx);
1146 	while (xfersize > 0) {
1147 		a_pg_offset = a_offset & PAGE_MASK;
1148 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1149 		moea64_set_scratchpage_pa(mmu, 0,
1150 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1151 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1152 		b_pg_offset = b_offset & PAGE_MASK;
1153 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1154 		moea64_set_scratchpage_pa(mmu, 1,
1155 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1156 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1157 		bcopy(a_cp, b_cp, cnt);
1158 		a_offset += cnt;
1159 		b_offset += cnt;
1160 		xfersize -= cnt;
1161 	}
1162 	mtx_unlock(&moea64_scratchpage_mtx);
1163 }
1164 
1165 void
1166 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1167     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1168 {
1169 
1170 	if (hw_direct_map) {
1171 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1172 		    xfersize);
1173 	} else {
1174 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1175 		    xfersize);
1176 	}
1177 }
1178 
1179 void
1180 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1181 {
1182 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1183 
1184 	if (size + off > PAGE_SIZE)
1185 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1186 
1187 	if (hw_direct_map) {
1188 		bzero((caddr_t)pa + off, size);
1189 	} else {
1190 		mtx_lock(&moea64_scratchpage_mtx);
1191 		moea64_set_scratchpage_pa(mmu, 0, pa);
1192 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1193 		mtx_unlock(&moea64_scratchpage_mtx);
1194 	}
1195 }
1196 
1197 /*
1198  * Zero a page of physical memory by temporarily mapping it
1199  */
1200 void
1201 moea64_zero_page(mmu_t mmu, vm_page_t m)
1202 {
1203 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1204 	vm_offset_t va, off;
1205 
1206 	if (!hw_direct_map) {
1207 		mtx_lock(&moea64_scratchpage_mtx);
1208 
1209 		moea64_set_scratchpage_pa(mmu, 0, pa);
1210 		va = moea64_scratchpage_va[0];
1211 	} else {
1212 		va = pa;
1213 	}
1214 
1215 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1216 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1217 
1218 	if (!hw_direct_map)
1219 		mtx_unlock(&moea64_scratchpage_mtx);
1220 }
1221 
1222 void
1223 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1224 {
1225 
1226 	moea64_zero_page(mmu, m);
1227 }
1228 
1229 /*
1230  * Map the given physical page at the specified virtual address in the
1231  * target pmap with the protection requested.  If specified the page
1232  * will be wired down.
1233  */
1234 
1235 void
1236 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1237     vm_prot_t prot, boolean_t wired)
1238 {
1239 	struct		pvo_head *pvo_head;
1240 	uma_zone_t	zone;
1241 	vm_page_t	pg;
1242 	uint64_t	pte_lo;
1243 	u_int		pvo_flags;
1244 	int		error;
1245 
1246 	if (!moea64_initialized) {
1247 		pvo_head = NULL;
1248 		pg = NULL;
1249 		zone = moea64_upvo_zone;
1250 		pvo_flags = 0;
1251 	} else {
1252 		pvo_head = vm_page_to_pvoh(m);
1253 		pg = m;
1254 		zone = moea64_mpvo_zone;
1255 		pvo_flags = PVO_MANAGED;
1256 	}
1257 
1258 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1259 		VM_OBJECT_ASSERT_LOCKED(m->object);
1260 
1261 	/* XXX change the pvo head for fake pages */
1262 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1263 		pvo_flags &= ~PVO_MANAGED;
1264 		pvo_head = NULL;
1265 		zone = moea64_upvo_zone;
1266 	}
1267 
1268 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1269 
1270 	if (prot & VM_PROT_WRITE) {
1271 		pte_lo |= LPTE_BW;
1272 		if (pmap_bootstrapped &&
1273 		    (m->oflags & VPO_UNMANAGED) == 0)
1274 			vm_page_aflag_set(m, PGA_WRITEABLE);
1275 	} else
1276 		pte_lo |= LPTE_BR;
1277 
1278 	if ((prot & VM_PROT_EXECUTE) == 0)
1279 		pte_lo |= LPTE_NOEXEC;
1280 
1281 	if (wired)
1282 		pvo_flags |= PVO_WIRED;
1283 
1284 	LOCK_TABLE_WR();
1285 	PMAP_LOCK(pmap);
1286 	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1287 	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1288 	PMAP_UNLOCK(pmap);
1289 	UNLOCK_TABLE_WR();
1290 
1291 	/*
1292 	 * Flush the page from the instruction cache if this page is
1293 	 * mapped executable and cacheable.
1294 	 */
1295 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1296 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1297 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1298 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1299 	}
1300 }
1301 
1302 static void
1303 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1304     vm_size_t sz)
1305 {
1306 
1307 	/*
1308 	 * This is much trickier than on older systems because
1309 	 * we can't sync the icache on physical addresses directly
1310 	 * without a direct map. Instead we check a couple of cases
1311 	 * where the memory is already mapped in and, failing that,
1312 	 * use the same trick we use for page zeroing to create
1313 	 * a temporary mapping for this physical address.
1314 	 */
1315 
1316 	if (!pmap_bootstrapped) {
1317 		/*
1318 		 * If PMAP is not bootstrapped, we are likely to be
1319 		 * in real mode.
1320 		 */
1321 		__syncicache((void *)pa, sz);
1322 	} else if (pmap == kernel_pmap) {
1323 		__syncicache((void *)va, sz);
1324 	} else if (hw_direct_map) {
1325 		__syncicache((void *)pa, sz);
1326 	} else {
1327 		/* Use the scratch page to set up a temp mapping */
1328 
1329 		mtx_lock(&moea64_scratchpage_mtx);
1330 
1331 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1332 		__syncicache((void *)(moea64_scratchpage_va[1] +
1333 		    (va & ADDR_POFF)), sz);
1334 
1335 		mtx_unlock(&moea64_scratchpage_mtx);
1336 	}
1337 }
1338 
1339 /*
1340  * Maps a sequence of resident pages belonging to the same object.
1341  * The sequence begins with the given page m_start.  This page is
1342  * mapped at the given virtual address start.  Each subsequent page is
1343  * mapped at a virtual address that is offset from start by the same
1344  * amount as the page is offset from m_start within the object.  The
1345  * last page in the sequence is the page with the largest offset from
1346  * m_start that can be mapped at a virtual address less than the given
1347  * virtual address end.  Not every virtual page between start and end
1348  * is mapped; only those for which a resident page exists with the
1349  * corresponding offset from m_start are mapped.
1350  */
1351 void
1352 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1353     vm_page_t m_start, vm_prot_t prot)
1354 {
1355 	vm_page_t m;
1356 	vm_pindex_t diff, psize;
1357 
1358 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1359 
1360 	psize = atop(end - start);
1361 	m = m_start;
1362 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1363 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1364 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1365 		m = TAILQ_NEXT(m, listq);
1366 	}
1367 }
1368 
1369 void
1370 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1371     vm_prot_t prot)
1372 {
1373 
1374 	moea64_enter(mmu, pm, va, m,
1375 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1376 }
1377 
1378 vm_paddr_t
1379 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1380 {
1381 	struct	pvo_entry *pvo;
1382 	vm_paddr_t pa;
1383 
1384 	PMAP_LOCK(pm);
1385 	pvo = moea64_pvo_find_va(pm, va);
1386 	if (pvo == NULL)
1387 		pa = 0;
1388 	else
1389 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1390 		    (va - PVO_VADDR(pvo));
1391 	PMAP_UNLOCK(pm);
1392 	return (pa);
1393 }
1394 
1395 /*
1396  * Atomically extract and hold the physical page with the given
1397  * pmap and virtual address pair if that mapping permits the given
1398  * protection.
1399  */
1400 vm_page_t
1401 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1402 {
1403 	struct	pvo_entry *pvo;
1404 	vm_page_t m;
1405         vm_paddr_t pa;
1406 
1407 	m = NULL;
1408 	pa = 0;
1409 	PMAP_LOCK(pmap);
1410 retry:
1411 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1412 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1413 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1414 	     (prot & VM_PROT_WRITE) == 0)) {
1415 		if (vm_page_pa_tryrelock(pmap,
1416 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1417 			goto retry;
1418 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1419 		vm_page_hold(m);
1420 	}
1421 	PA_UNLOCK_COND(pa);
1422 	PMAP_UNLOCK(pmap);
1423 	return (m);
1424 }
1425 
1426 static mmu_t installed_mmu;
1427 
1428 static void *
1429 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1430 {
1431 	/*
1432 	 * This entire routine is a horrible hack to avoid bothering kmem
1433 	 * for new KVA addresses. Because this can get called from inside
1434 	 * kmem allocation routines, calling kmem for a new address here
1435 	 * can lead to multiply locking non-recursive mutexes.
1436 	 */
1437         vm_offset_t va;
1438 
1439         vm_page_t m;
1440         int pflags, needed_lock;
1441 
1442 	*flags = UMA_SLAB_PRIV;
1443 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1444 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1445 
1446         for (;;) {
1447                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1448                 if (m == NULL) {
1449                         if (wait & M_NOWAIT)
1450                                 return (NULL);
1451                         VM_WAIT;
1452                 } else
1453                         break;
1454         }
1455 
1456 	va = VM_PAGE_TO_PHYS(m);
1457 
1458 	LOCK_TABLE_WR();
1459 	if (needed_lock)
1460 		PMAP_LOCK(kernel_pmap);
1461 
1462 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1463 	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1464 
1465 	if (needed_lock)
1466 		PMAP_UNLOCK(kernel_pmap);
1467 	UNLOCK_TABLE_WR();
1468 
1469 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1470                 bzero((void *)va, PAGE_SIZE);
1471 
1472 	return (void *)va;
1473 }
1474 
1475 extern int elf32_nxstack;
1476 
1477 void
1478 moea64_init(mmu_t mmu)
1479 {
1480 
1481 	CTR0(KTR_PMAP, "moea64_init");
1482 
1483 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1484 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1485 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1486 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1487 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1488 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1489 
1490 	if (!hw_direct_map) {
1491 		installed_mmu = mmu;
1492 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1493 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1494 	}
1495 
1496 #ifdef COMPAT_FREEBSD32
1497 	elf32_nxstack = 1;
1498 #endif
1499 
1500 	moea64_initialized = TRUE;
1501 }
1502 
1503 boolean_t
1504 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1505 {
1506 
1507 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1508 	    ("moea64_is_referenced: page %p is not managed", m));
1509 	return (moea64_query_bit(mmu, m, PTE_REF));
1510 }
1511 
1512 boolean_t
1513 moea64_is_modified(mmu_t mmu, vm_page_t m)
1514 {
1515 
1516 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1517 	    ("moea64_is_modified: page %p is not managed", m));
1518 
1519 	/*
1520 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1521 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1522 	 * is clear, no PTEs can have LPTE_CHG set.
1523 	 */
1524 	VM_OBJECT_ASSERT_LOCKED(m->object);
1525 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1526 		return (FALSE);
1527 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1528 }
1529 
1530 boolean_t
1531 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1532 {
1533 	struct pvo_entry *pvo;
1534 	boolean_t rv;
1535 
1536 	PMAP_LOCK(pmap);
1537 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1538 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1539 	PMAP_UNLOCK(pmap);
1540 	return (rv);
1541 }
1542 
1543 void
1544 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1545 {
1546 
1547 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1548 	    ("moea64_clear_modify: page %p is not managed", m));
1549 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1550 	KASSERT(!vm_page_xbusied(m),
1551 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1552 
1553 	/*
1554 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1555 	 * set.  If the object containing the page is locked and the page is
1556 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1557 	 */
1558 	if ((m->aflags & PGA_WRITEABLE) == 0)
1559 		return;
1560 	moea64_clear_bit(mmu, m, LPTE_CHG);
1561 }
1562 
1563 /*
1564  * Clear the write and modified bits in each of the given page's mappings.
1565  */
1566 void
1567 moea64_remove_write(mmu_t mmu, vm_page_t m)
1568 {
1569 	struct	pvo_entry *pvo;
1570 	uintptr_t pt;
1571 	pmap_t	pmap;
1572 	uint64_t lo = 0;
1573 
1574 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1575 	    ("moea64_remove_write: page %p is not managed", m));
1576 
1577 	/*
1578 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1579 	 * set by another thread while the object is locked.  Thus,
1580 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1581 	 */
1582 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1583 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1584 		return;
1585 	powerpc_sync();
1586 	LOCK_TABLE_RD();
1587 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1588 		pmap = pvo->pvo_pmap;
1589 		PMAP_LOCK(pmap);
1590 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1591 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1592 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1593 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1594 			if (pt != -1) {
1595 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1596 				lo |= pvo->pvo_pte.lpte.pte_lo;
1597 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1598 				MOEA64_PTE_CHANGE(mmu, pt,
1599 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1600 				if (pvo->pvo_pmap == kernel_pmap)
1601 					isync();
1602 			}
1603 		}
1604 		if ((lo & LPTE_CHG) != 0)
1605 			vm_page_dirty(m);
1606 		PMAP_UNLOCK(pmap);
1607 	}
1608 	UNLOCK_TABLE_RD();
1609 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1610 }
1611 
1612 /*
1613  *	moea64_ts_referenced:
1614  *
1615  *	Return a count of reference bits for a page, clearing those bits.
1616  *	It is not necessary for every reference bit to be cleared, but it
1617  *	is necessary that 0 only be returned when there are truly no
1618  *	reference bits set.
1619  *
1620  *	XXX: The exact number of bits to check and clear is a matter that
1621  *	should be tested and standardized at some point in the future for
1622  *	optimal aging of shared pages.
1623  */
1624 int
1625 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1626 {
1627 
1628 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1629 	    ("moea64_ts_referenced: page %p is not managed", m));
1630 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1631 }
1632 
1633 /*
1634  * Modify the WIMG settings of all mappings for a page.
1635  */
1636 void
1637 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1638 {
1639 	struct	pvo_entry *pvo;
1640 	struct  pvo_head *pvo_head;
1641 	uintptr_t pt;
1642 	pmap_t	pmap;
1643 	uint64_t lo;
1644 
1645 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1646 		m->md.mdpg_cache_attrs = ma;
1647 		return;
1648 	}
1649 
1650 	pvo_head = vm_page_to_pvoh(m);
1651 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1652 	LOCK_TABLE_RD();
1653 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1654 		pmap = pvo->pvo_pmap;
1655 		PMAP_LOCK(pmap);
1656 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1657 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1658 		pvo->pvo_pte.lpte.pte_lo |= lo;
1659 		if (pt != -1) {
1660 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1661 			    pvo->pvo_vpn);
1662 			if (pvo->pvo_pmap == kernel_pmap)
1663 				isync();
1664 		}
1665 		PMAP_UNLOCK(pmap);
1666 	}
1667 	UNLOCK_TABLE_RD();
1668 	m->md.mdpg_cache_attrs = ma;
1669 }
1670 
1671 /*
1672  * Map a wired page into kernel virtual address space.
1673  */
1674 void
1675 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1676 {
1677 	uint64_t	pte_lo;
1678 	int		error;
1679 
1680 	pte_lo = moea64_calc_wimg(pa, ma);
1681 
1682 	LOCK_TABLE_WR();
1683 	PMAP_LOCK(kernel_pmap);
1684 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1685 	    NULL, va, pa, pte_lo, PVO_WIRED);
1686 	PMAP_UNLOCK(kernel_pmap);
1687 	UNLOCK_TABLE_WR();
1688 
1689 	if (error != 0 && error != ENOENT)
1690 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1691 		    pa, error);
1692 }
1693 
1694 void
1695 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1696 {
1697 
1698 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1699 }
1700 
1701 /*
1702  * Extract the physical page address associated with the given kernel virtual
1703  * address.
1704  */
1705 vm_paddr_t
1706 moea64_kextract(mmu_t mmu, vm_offset_t va)
1707 {
1708 	struct		pvo_entry *pvo;
1709 	vm_paddr_t pa;
1710 
1711 	/*
1712 	 * Shortcut the direct-mapped case when applicable.  We never put
1713 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1714 	 */
1715 	if (va < VM_MIN_KERNEL_ADDRESS)
1716 		return (va);
1717 
1718 	PMAP_LOCK(kernel_pmap);
1719 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1720 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1721 	    va));
1722 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1723 	PMAP_UNLOCK(kernel_pmap);
1724 	return (pa);
1725 }
1726 
1727 /*
1728  * Remove a wired page from kernel virtual address space.
1729  */
1730 void
1731 moea64_kremove(mmu_t mmu, vm_offset_t va)
1732 {
1733 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1734 }
1735 
1736 /*
1737  * Map a range of physical addresses into kernel virtual address space.
1738  *
1739  * The value passed in *virt is a suggested virtual address for the mapping.
1740  * Architectures which can support a direct-mapped physical to virtual region
1741  * can return the appropriate address within that region, leaving '*virt'
1742  * unchanged.  We cannot and therefore do not; *virt is updated with the
1743  * first usable address after the mapped region.
1744  */
1745 vm_offset_t
1746 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1747     vm_paddr_t pa_end, int prot)
1748 {
1749 	vm_offset_t	sva, va;
1750 
1751 	sva = *virt;
1752 	va = sva;
1753 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1754 		moea64_kenter(mmu, va, pa_start);
1755 	*virt = va;
1756 
1757 	return (sva);
1758 }
1759 
1760 /*
1761  * Returns true if the pmap's pv is one of the first
1762  * 16 pvs linked to from this page.  This count may
1763  * be changed upwards or downwards in the future; it
1764  * is only necessary that true be returned for a small
1765  * subset of pmaps for proper page aging.
1766  */
1767 boolean_t
1768 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1769 {
1770         int loops;
1771 	struct pvo_entry *pvo;
1772 	boolean_t rv;
1773 
1774 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1775 	    ("moea64_page_exists_quick: page %p is not managed", m));
1776 	loops = 0;
1777 	rv = FALSE;
1778 	LOCK_TABLE_RD();
1779 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1780 		if (pvo->pvo_pmap == pmap) {
1781 			rv = TRUE;
1782 			break;
1783 		}
1784 		if (++loops >= 16)
1785 			break;
1786 	}
1787 	UNLOCK_TABLE_RD();
1788 	return (rv);
1789 }
1790 
1791 /*
1792  * Return the number of managed mappings to the given physical page
1793  * that are wired.
1794  */
1795 int
1796 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1797 {
1798 	struct pvo_entry *pvo;
1799 	int count;
1800 
1801 	count = 0;
1802 	if ((m->oflags & VPO_UNMANAGED) != 0)
1803 		return (count);
1804 	LOCK_TABLE_RD();
1805 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1806 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1807 			count++;
1808 	UNLOCK_TABLE_RD();
1809 	return (count);
1810 }
1811 
1812 static uintptr_t	moea64_vsidcontext;
1813 
1814 uintptr_t
1815 moea64_get_unique_vsid(void) {
1816 	u_int entropy;
1817 	register_t hash;
1818 	uint32_t mask;
1819 	int i;
1820 
1821 	entropy = 0;
1822 	__asm __volatile("mftb %0" : "=r"(entropy));
1823 
1824 	mtx_lock(&moea64_slb_mutex);
1825 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1826 		u_int	n;
1827 
1828 		/*
1829 		 * Create a new value by mutiplying by a prime and adding in
1830 		 * entropy from the timebase register.  This is to make the
1831 		 * VSID more random so that the PT hash function collides
1832 		 * less often.  (Note that the prime casues gcc to do shifts
1833 		 * instead of a multiply.)
1834 		 */
1835 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1836 		hash = moea64_vsidcontext & (NVSIDS - 1);
1837 		if (hash == 0)		/* 0 is special, avoid it */
1838 			continue;
1839 		n = hash >> 5;
1840 		mask = 1 << (hash & (VSID_NBPW - 1));
1841 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1842 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1843 			/* anything free in this bucket? */
1844 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1845 				entropy = (moea64_vsidcontext >> 20);
1846 				continue;
1847 			}
1848 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1849 			mask = 1 << i;
1850 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1851 			hash |= i;
1852 		}
1853 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1854 		    ("Allocating in-use VSID %#zx\n", hash));
1855 		moea64_vsid_bitmap[n] |= mask;
1856 		mtx_unlock(&moea64_slb_mutex);
1857 		return (hash);
1858 	}
1859 
1860 	mtx_unlock(&moea64_slb_mutex);
1861 	panic("%s: out of segments",__func__);
1862 }
1863 
1864 #ifdef __powerpc64__
1865 void
1866 moea64_pinit(mmu_t mmu, pmap_t pmap)
1867 {
1868 
1869 	RB_INIT(&pmap->pmap_pvo);
1870 
1871 	pmap->pm_slb_tree_root = slb_alloc_tree();
1872 	pmap->pm_slb = slb_alloc_user_cache();
1873 	pmap->pm_slb_len = 0;
1874 }
1875 #else
1876 void
1877 moea64_pinit(mmu_t mmu, pmap_t pmap)
1878 {
1879 	int	i;
1880 	uint32_t hash;
1881 
1882 	RB_INIT(&pmap->pmap_pvo);
1883 
1884 	if (pmap_bootstrapped)
1885 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1886 		    (vm_offset_t)pmap);
1887 	else
1888 		pmap->pmap_phys = pmap;
1889 
1890 	/*
1891 	 * Allocate some segment registers for this pmap.
1892 	 */
1893 	hash = moea64_get_unique_vsid();
1894 
1895 	for (i = 0; i < 16; i++)
1896 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1897 
1898 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1899 }
1900 #endif
1901 
1902 /*
1903  * Initialize the pmap associated with process 0.
1904  */
1905 void
1906 moea64_pinit0(mmu_t mmu, pmap_t pm)
1907 {
1908 
1909 	PMAP_LOCK_INIT(pm);
1910 	moea64_pinit(mmu, pm);
1911 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1912 }
1913 
1914 /*
1915  * Set the physical protection on the specified range of this map as requested.
1916  */
1917 static void
1918 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1919 {
1920 	uintptr_t pt;
1921 	struct	vm_page *pg;
1922 	uint64_t oldlo;
1923 
1924 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1925 
1926 	/*
1927 	 * Grab the PTE pointer before we diddle with the cached PTE
1928 	 * copy.
1929 	 */
1930 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1931 
1932 	/*
1933 	 * Change the protection of the page.
1934 	 */
1935 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1936 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1937 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1938 	if ((prot & VM_PROT_EXECUTE) == 0)
1939 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1940 	if (prot & VM_PROT_WRITE)
1941 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1942 	else
1943 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1944 
1945 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1946 
1947 	/*
1948 	 * If the PVO is in the page table, update that pte as well.
1949 	 */
1950 	if (pt != -1)
1951 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1952 		    pvo->pvo_vpn);
1953 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1954 	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1955 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1956 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1957 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1958 		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1959 	}
1960 
1961 	/*
1962 	 * Update vm about the REF/CHG bits if the page is managed and we have
1963 	 * removed write access.
1964 	 */
1965 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1966 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1967 		if (pg != NULL) {
1968 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1969 				vm_page_dirty(pg);
1970 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1971 				vm_page_aflag_set(pg, PGA_REFERENCED);
1972 		}
1973 	}
1974 }
1975 
1976 void
1977 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1978     vm_prot_t prot)
1979 {
1980 	struct	pvo_entry *pvo, *tpvo, key;
1981 
1982 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1983 	    sva, eva, prot);
1984 
1985 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1986 	    ("moea64_protect: non current pmap"));
1987 
1988 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1989 		moea64_remove(mmu, pm, sva, eva);
1990 		return;
1991 	}
1992 
1993 	LOCK_TABLE_RD();
1994 	PMAP_LOCK(pm);
1995 	key.pvo_vaddr = sva;
1996 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1997 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1998 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1999 		moea64_pvo_protect(mmu, pm, pvo, prot);
2000 	}
2001 	UNLOCK_TABLE_RD();
2002 	PMAP_UNLOCK(pm);
2003 }
2004 
2005 /*
2006  * Map a list of wired pages into kernel virtual address space.  This is
2007  * intended for temporary mappings which do not need page modification or
2008  * references recorded.  Existing mappings in the region are overwritten.
2009  */
2010 void
2011 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2012 {
2013 	while (count-- > 0) {
2014 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2015 		va += PAGE_SIZE;
2016 		m++;
2017 	}
2018 }
2019 
2020 /*
2021  * Remove page mappings from kernel virtual address space.  Intended for
2022  * temporary mappings entered by moea64_qenter.
2023  */
2024 void
2025 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2026 {
2027 	while (count-- > 0) {
2028 		moea64_kremove(mmu, va);
2029 		va += PAGE_SIZE;
2030 	}
2031 }
2032 
2033 void
2034 moea64_release_vsid(uint64_t vsid)
2035 {
2036 	int idx, mask;
2037 
2038 	mtx_lock(&moea64_slb_mutex);
2039 	idx = vsid & (NVSIDS-1);
2040 	mask = 1 << (idx % VSID_NBPW);
2041 	idx /= VSID_NBPW;
2042 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2043 	    ("Freeing unallocated VSID %#jx", vsid));
2044 	moea64_vsid_bitmap[idx] &= ~mask;
2045 	mtx_unlock(&moea64_slb_mutex);
2046 }
2047 
2048 
2049 void
2050 moea64_release(mmu_t mmu, pmap_t pmap)
2051 {
2052 
2053 	/*
2054 	 * Free segment registers' VSIDs
2055 	 */
2056     #ifdef __powerpc64__
2057 	slb_free_tree(pmap);
2058 	slb_free_user_cache(pmap->pm_slb);
2059     #else
2060 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2061 
2062 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2063     #endif
2064 }
2065 
2066 /*
2067  * Remove all pages mapped by the specified pmap
2068  */
2069 void
2070 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2071 {
2072 	struct	pvo_entry *pvo, *tpvo;
2073 
2074 	LOCK_TABLE_WR();
2075 	PMAP_LOCK(pm);
2076 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2077 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2078 			moea64_pvo_remove(mmu, pvo);
2079 	}
2080 	UNLOCK_TABLE_WR();
2081 	PMAP_UNLOCK(pm);
2082 }
2083 
2084 /*
2085  * Remove the given range of addresses from the specified map.
2086  */
2087 void
2088 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2089 {
2090 	struct	pvo_entry *pvo, *tpvo, key;
2091 
2092 	/*
2093 	 * Perform an unsynchronized read.  This is, however, safe.
2094 	 */
2095 	if (pm->pm_stats.resident_count == 0)
2096 		return;
2097 
2098 	LOCK_TABLE_WR();
2099 	PMAP_LOCK(pm);
2100 	key.pvo_vaddr = sva;
2101 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2102 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2103 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2104 		moea64_pvo_remove(mmu, pvo);
2105 	}
2106 	UNLOCK_TABLE_WR();
2107 	PMAP_UNLOCK(pm);
2108 }
2109 
2110 /*
2111  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2112  * will reflect changes in pte's back to the vm_page.
2113  */
2114 void
2115 moea64_remove_all(mmu_t mmu, vm_page_t m)
2116 {
2117 	struct	pvo_entry *pvo, *next_pvo;
2118 	pmap_t	pmap;
2119 
2120 	LOCK_TABLE_WR();
2121 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2122 		pmap = pvo->pvo_pmap;
2123 		PMAP_LOCK(pmap);
2124 		moea64_pvo_remove(mmu, pvo);
2125 		PMAP_UNLOCK(pmap);
2126 	}
2127 	UNLOCK_TABLE_WR();
2128 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2129 		vm_page_dirty(m);
2130 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2131 	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2132 }
2133 
2134 /*
2135  * Allocate a physical page of memory directly from the phys_avail map.
2136  * Can only be called from moea64_bootstrap before avail start and end are
2137  * calculated.
2138  */
2139 vm_offset_t
2140 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2141 {
2142 	vm_offset_t	s, e;
2143 	int		i, j;
2144 
2145 	size = round_page(size);
2146 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2147 		if (align != 0)
2148 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2149 		else
2150 			s = phys_avail[i];
2151 		e = s + size;
2152 
2153 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2154 			continue;
2155 
2156 		if (s + size > platform_real_maxaddr())
2157 			continue;
2158 
2159 		if (s == phys_avail[i]) {
2160 			phys_avail[i] += size;
2161 		} else if (e == phys_avail[i + 1]) {
2162 			phys_avail[i + 1] -= size;
2163 		} else {
2164 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2165 				phys_avail[j] = phys_avail[j - 2];
2166 				phys_avail[j + 1] = phys_avail[j - 1];
2167 			}
2168 
2169 			phys_avail[i + 3] = phys_avail[i + 1];
2170 			phys_avail[i + 1] = s;
2171 			phys_avail[i + 2] = e;
2172 			phys_avail_count++;
2173 		}
2174 
2175 		return (s);
2176 	}
2177 	panic("moea64_bootstrap_alloc: could not allocate memory");
2178 }
2179 
2180 static int
2181 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2182     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2183     uint64_t pte_lo, int flags)
2184 {
2185 	struct	 pvo_entry *pvo;
2186 	uint64_t vsid;
2187 	int	 first;
2188 	u_int	 ptegidx;
2189 	int	 i;
2190 	int      bootstrap;
2191 
2192 	/*
2193 	 * One nasty thing that can happen here is that the UMA calls to
2194 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2195 	 * which calls UMA...
2196 	 *
2197 	 * We break the loop by detecting recursion and allocating out of
2198 	 * the bootstrap pool.
2199 	 */
2200 
2201 	first = 0;
2202 	bootstrap = (flags & PVO_BOOTSTRAP);
2203 
2204 	if (!moea64_initialized)
2205 		bootstrap = 1;
2206 
2207 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2208 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2209 
2210 	/*
2211 	 * Compute the PTE Group index.
2212 	 */
2213 	va &= ~ADDR_POFF;
2214 	vsid = va_to_vsid(pm, va);
2215 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2216 
2217 	/*
2218 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2219 	 * there is a mapping.
2220 	 */
2221 	moea64_pvo_enter_calls++;
2222 
2223 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2224 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2225 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2226 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2227 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2228 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2229 					/* Re-insert if spilled */
2230 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2231 					    &pvo->pvo_pte.lpte);
2232 					if (i >= 0)
2233 						PVO_PTEGIDX_SET(pvo, i);
2234 					moea64_pte_overflow--;
2235 				}
2236 				return (0);
2237 			}
2238 			moea64_pvo_remove(mmu, pvo);
2239 			break;
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * If we aren't overwriting a mapping, try to allocate.
2245 	 */
2246 	if (bootstrap) {
2247 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2248 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2249 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2250 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2251 		}
2252 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2253 		moea64_bpvo_pool_index++;
2254 		bootstrap = 1;
2255 	} else {
2256 		pvo = uma_zalloc(zone, M_NOWAIT);
2257 	}
2258 
2259 	if (pvo == NULL)
2260 		return (ENOMEM);
2261 
2262 	moea64_pvo_entries++;
2263 	pvo->pvo_vaddr = va;
2264 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2265 	    | (vsid << 16);
2266 	pvo->pvo_pmap = pm;
2267 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2268 	pvo->pvo_vaddr &= ~ADDR_POFF;
2269 
2270 	if (flags & PVO_WIRED)
2271 		pvo->pvo_vaddr |= PVO_WIRED;
2272 	if (pvo_head != NULL)
2273 		pvo->pvo_vaddr |= PVO_MANAGED;
2274 	if (bootstrap)
2275 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2276 	if (flags & PVO_LARGE)
2277 		pvo->pvo_vaddr |= PVO_LARGE;
2278 
2279 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2280 	    (uint64_t)(pa) | pte_lo, flags);
2281 
2282 	/*
2283 	 * Add to pmap list
2284 	 */
2285 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2286 
2287 	/*
2288 	 * Remember if the list was empty and therefore will be the first
2289 	 * item.
2290 	 */
2291 	if (pvo_head != NULL) {
2292 		if (LIST_FIRST(pvo_head) == NULL)
2293 			first = 1;
2294 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2295 	}
2296 
2297 	if (pvo->pvo_vaddr & PVO_WIRED) {
2298 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2299 		pm->pm_stats.wired_count++;
2300 	}
2301 	pm->pm_stats.resident_count++;
2302 
2303 	/*
2304 	 * We hope this succeeds but it isn't required.
2305 	 */
2306 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2307 	if (i >= 0) {
2308 		PVO_PTEGIDX_SET(pvo, i);
2309 	} else {
2310 		panic("moea64_pvo_enter: overflow");
2311 		moea64_pte_overflow++;
2312 	}
2313 
2314 	if (pm == kernel_pmap)
2315 		isync();
2316 
2317 #ifdef __powerpc64__
2318 	/*
2319 	 * Make sure all our bootstrap mappings are in the SLB as soon
2320 	 * as virtual memory is switched on.
2321 	 */
2322 	if (!pmap_bootstrapped)
2323 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2324 #endif
2325 
2326 	return (first ? ENOENT : 0);
2327 }
2328 
2329 static void
2330 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2331 {
2332 	struct	vm_page *pg;
2333 	uintptr_t pt;
2334 
2335 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2336 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2337 
2338 	/*
2339 	 * If there is an active pte entry, we need to deactivate it (and
2340 	 * save the ref & cfg bits).
2341 	 */
2342 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2343 	if (pt != -1) {
2344 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2345 		PVO_PTEGIDX_CLR(pvo);
2346 	} else {
2347 		moea64_pte_overflow--;
2348 	}
2349 
2350 	/*
2351 	 * Update our statistics.
2352 	 */
2353 	pvo->pvo_pmap->pm_stats.resident_count--;
2354 	if (pvo->pvo_vaddr & PVO_WIRED)
2355 		pvo->pvo_pmap->pm_stats.wired_count--;
2356 
2357 	/*
2358 	 * Remove this PVO from the pmap list.
2359 	 */
2360 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2361 
2362 	/*
2363 	 * Remove this from the overflow list and return it to the pool
2364 	 * if we aren't going to reuse it.
2365 	 */
2366 	LIST_REMOVE(pvo, pvo_olink);
2367 
2368 	/*
2369 	 * Update vm about the REF/CHG bits if the page is managed.
2370 	 */
2371 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2372 
2373 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2374 		LIST_REMOVE(pvo, pvo_vlink);
2375 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2376 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2377 				vm_page_dirty(pg);
2378 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2379 				vm_page_aflag_set(pg, PGA_REFERENCED);
2380 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2381 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2382 		}
2383 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2384 			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2385 	}
2386 
2387 	moea64_pvo_entries--;
2388 	moea64_pvo_remove_calls++;
2389 
2390 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2391 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2392 		    moea64_upvo_zone, pvo);
2393 }
2394 
2395 static struct pvo_entry *
2396 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2397 {
2398 	struct pvo_entry key;
2399 
2400 	key.pvo_vaddr = va & ~ADDR_POFF;
2401 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2402 }
2403 
2404 static boolean_t
2405 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2406 {
2407 	struct	pvo_entry *pvo;
2408 	uintptr_t pt;
2409 
2410 	LOCK_TABLE_RD();
2411 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2412 		/*
2413 		 * See if we saved the bit off.  If so, return success.
2414 		 */
2415 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2416 			UNLOCK_TABLE_RD();
2417 			return (TRUE);
2418 		}
2419 	}
2420 
2421 	/*
2422 	 * No luck, now go through the hard part of looking at the PTEs
2423 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2424 	 * the PTEs.
2425 	 */
2426 	powerpc_sync();
2427 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2428 
2429 		/*
2430 		 * See if this pvo has a valid PTE.  if so, fetch the
2431 		 * REF/CHG bits from the valid PTE.  If the appropriate
2432 		 * ptebit is set, return success.
2433 		 */
2434 		PMAP_LOCK(pvo->pvo_pmap);
2435 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2436 		if (pt != -1) {
2437 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2438 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2439 				PMAP_UNLOCK(pvo->pvo_pmap);
2440 				UNLOCK_TABLE_RD();
2441 				return (TRUE);
2442 			}
2443 		}
2444 		PMAP_UNLOCK(pvo->pvo_pmap);
2445 	}
2446 
2447 	UNLOCK_TABLE_RD();
2448 	return (FALSE);
2449 }
2450 
2451 static u_int
2452 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2453 {
2454 	u_int	count;
2455 	struct	pvo_entry *pvo;
2456 	uintptr_t pt;
2457 
2458 	/*
2459 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2460 	 * we can reset the right ones).  note that since the pvo entries and
2461 	 * list heads are accessed via BAT0 and are never placed in the page
2462 	 * table, we don't have to worry about further accesses setting the
2463 	 * REF/CHG bits.
2464 	 */
2465 	powerpc_sync();
2466 
2467 	/*
2468 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2469 	 * valid pte clear the ptebit from the valid pte.
2470 	 */
2471 	count = 0;
2472 	LOCK_TABLE_RD();
2473 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2474 		PMAP_LOCK(pvo->pvo_pmap);
2475 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2476 		if (pt != -1) {
2477 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2478 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2479 				count++;
2480 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2481 				    pvo->pvo_vpn, ptebit);
2482 			}
2483 		}
2484 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2485 		PMAP_UNLOCK(pvo->pvo_pmap);
2486 	}
2487 
2488 	UNLOCK_TABLE_RD();
2489 	return (count);
2490 }
2491 
2492 boolean_t
2493 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2494 {
2495 	struct pvo_entry *pvo, key;
2496 	vm_offset_t ppa;
2497 	int error = 0;
2498 
2499 	PMAP_LOCK(kernel_pmap);
2500 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2501 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2502 	    ppa < pa + size; ppa += PAGE_SIZE,
2503 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2504 		if (pvo == NULL ||
2505 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2506 			error = EFAULT;
2507 			break;
2508 		}
2509 	}
2510 	PMAP_UNLOCK(kernel_pmap);
2511 
2512 	return (error);
2513 }
2514 
2515 /*
2516  * Map a set of physical memory pages into the kernel virtual
2517  * address space. Return a pointer to where it is mapped. This
2518  * routine is intended to be used for mapping device memory,
2519  * NOT real memory.
2520  */
2521 void *
2522 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2523 {
2524 	vm_offset_t va, tmpva, ppa, offset;
2525 
2526 	ppa = trunc_page(pa);
2527 	offset = pa & PAGE_MASK;
2528 	size = roundup2(offset + size, PAGE_SIZE);
2529 
2530 	va = kva_alloc(size);
2531 
2532 	if (!va)
2533 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2534 
2535 	for (tmpva = va; size > 0;) {
2536 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2537 		size -= PAGE_SIZE;
2538 		tmpva += PAGE_SIZE;
2539 		ppa += PAGE_SIZE;
2540 	}
2541 
2542 	return ((void *)(va + offset));
2543 }
2544 
2545 void *
2546 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2547 {
2548 
2549 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2550 }
2551 
2552 void
2553 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2554 {
2555 	vm_offset_t base, offset;
2556 
2557 	base = trunc_page(va);
2558 	offset = va & PAGE_MASK;
2559 	size = roundup2(offset + size, PAGE_SIZE);
2560 
2561 	kva_free(base, size);
2562 }
2563 
2564 void
2565 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2566 {
2567 	struct pvo_entry *pvo;
2568 	vm_offset_t lim;
2569 	vm_paddr_t pa;
2570 	vm_size_t len;
2571 
2572 	PMAP_LOCK(pm);
2573 	while (sz > 0) {
2574 		lim = round_page(va);
2575 		len = MIN(lim - va, sz);
2576 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2577 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2578 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2579 			    (va & ADDR_POFF);
2580 			moea64_syncicache(mmu, pm, va, pa, len);
2581 		}
2582 		va += len;
2583 		sz -= len;
2584 	}
2585 	PMAP_UNLOCK(pm);
2586 }
2587