xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_compat.h"
118 #include "opt_kstack_pages.h"
119 
120 #include <sys/param.h>
121 #include <sys/kernel.h>
122 #include <sys/queue.h>
123 #include <sys/cpuset.h>
124 #include <sys/ktr.h>
125 #include <sys/lock.h>
126 #include <sys/msgbuf.h>
127 #include <sys/mutex.h>
128 #include <sys/proc.h>
129 #include <sys/rwlock.h>
130 #include <sys/sched.h>
131 #include <sys/sysctl.h>
132 #include <sys/systm.h>
133 #include <sys/vmmeter.h>
134 
135 #include <sys/kdb.h>
136 
137 #include <dev/ofw/openfirm.h>
138 
139 #include <vm/vm.h>
140 #include <vm/vm_param.h>
141 #include <vm/vm_kern.h>
142 #include <vm/vm_page.h>
143 #include <vm/vm_map.h>
144 #include <vm/vm_object.h>
145 #include <vm/vm_extern.h>
146 #include <vm/vm_pageout.h>
147 #include <vm/vm_pager.h>
148 #include <vm/uma.h>
149 
150 #include <machine/_inttypes.h>
151 #include <machine/cpu.h>
152 #include <machine/platform.h>
153 #include <machine/frame.h>
154 #include <machine/md_var.h>
155 #include <machine/psl.h>
156 #include <machine/bat.h>
157 #include <machine/hid.h>
158 #include <machine/pte.h>
159 #include <machine/sr.h>
160 #include <machine/trap.h>
161 #include <machine/mmuvar.h>
162 
163 #include "mmu_oea64.h"
164 #include "mmu_if.h"
165 #include "moea64_if.h"
166 
167 void moea64_release_vsid(uint64_t vsid);
168 uintptr_t moea64_get_unique_vsid(void);
169 
170 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
171 #define ENABLE_TRANS(msr)	mtmsr(msr)
172 
173 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
174 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
175 #define	VSID_HASH_MASK		0x0000007fffffffffULL
176 
177 /*
178  * Locking semantics:
179  * -- Read lock: if no modifications are being made to either the PVO lists
180  *    or page table or if any modifications being made result in internal
181  *    changes (e.g. wiring, protection) such that the existence of the PVOs
182  *    is unchanged and they remain associated with the same pmap (in which
183  *    case the changes should be protected by the pmap lock)
184  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
185  */
186 
187 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
188 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
189 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
190 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
191 
192 struct ofw_map {
193 	cell_t	om_va;
194 	cell_t	om_len;
195 	cell_t	om_pa_hi;
196 	cell_t	om_pa_lo;
197 	cell_t	om_mode;
198 };
199 
200 /*
201  * Map of physical memory regions.
202  */
203 static struct	mem_region *regions;
204 static struct	mem_region *pregions;
205 static u_int	phys_avail_count;
206 static int	regions_sz, pregions_sz;
207 
208 extern void bs_remap_earlyboot(void);
209 
210 /*
211  * Lock for the pteg and pvo tables.
212  */
213 struct rwlock	moea64_table_lock;
214 struct mtx	moea64_slb_mutex;
215 
216 /*
217  * PTEG data.
218  */
219 u_int		moea64_pteg_count;
220 u_int		moea64_pteg_mask;
221 
222 /*
223  * PVO data.
224  */
225 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
226 
227 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
228 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
229 
230 #define	BPVO_POOL_SIZE	327680
231 static struct	pvo_entry *moea64_bpvo_pool;
232 static int	moea64_bpvo_pool_index = 0;
233 
234 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
235 #ifdef __powerpc64__
236 #define	NVSIDS		(NPMAPS * 16)
237 #define VSID_HASHMASK	0xffffffffUL
238 #else
239 #define NVSIDS		NPMAPS
240 #define VSID_HASHMASK	0xfffffUL
241 #endif
242 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
243 
244 static boolean_t moea64_initialized = FALSE;
245 
246 /*
247  * Statistics.
248  */
249 u_int	moea64_pte_valid = 0;
250 u_int	moea64_pte_overflow = 0;
251 u_int	moea64_pvo_entries = 0;
252 u_int	moea64_pvo_enter_calls = 0;
253 u_int	moea64_pvo_remove_calls = 0;
254 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
255     &moea64_pte_valid, 0, "");
256 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
257     &moea64_pte_overflow, 0, "");
258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
259     &moea64_pvo_entries, 0, "");
260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
261     &moea64_pvo_enter_calls, 0, "");
262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
263     &moea64_pvo_remove_calls, 0, "");
264 
265 vm_offset_t	moea64_scratchpage_va[2];
266 struct pvo_entry *moea64_scratchpage_pvo[2];
267 uintptr_t	moea64_scratchpage_pte[2];
268 struct	mtx	moea64_scratchpage_mtx;
269 
270 uint64_t 	moea64_large_page_mask = 0;
271 int		moea64_large_page_size = 0;
272 int		moea64_large_page_shift = 0;
273 
274 /*
275  * PVO calls.
276  */
277 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
278 		    vm_offset_t, vm_offset_t, uint64_t, int);
279 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
280 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
281 
282 /*
283  * Utility routines.
284  */
285 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
286 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
287 static void		moea64_kremove(mmu_t, vm_offset_t);
288 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
289 			    vm_offset_t pa, vm_size_t sz);
290 
291 /*
292  * Kernel MMU interface
293  */
294 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
295 void moea64_clear_modify(mmu_t, vm_page_t);
296 void moea64_clear_reference(mmu_t, vm_page_t);
297 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
298 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
299 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
300     vm_prot_t);
301 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
302 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
303 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
304 void moea64_init(mmu_t);
305 boolean_t moea64_is_modified(mmu_t, vm_page_t);
306 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
307 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
308 int moea64_ts_referenced(mmu_t, vm_page_t);
309 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
310 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
311 int moea64_page_wired_mappings(mmu_t, vm_page_t);
312 void moea64_pinit(mmu_t, pmap_t);
313 void moea64_pinit0(mmu_t, pmap_t);
314 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
315 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
316 void moea64_qremove(mmu_t, vm_offset_t, int);
317 void moea64_release(mmu_t, pmap_t);
318 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
319 void moea64_remove_pages(mmu_t, pmap_t);
320 void moea64_remove_all(mmu_t, vm_page_t);
321 void moea64_remove_write(mmu_t, vm_page_t);
322 void moea64_zero_page(mmu_t, vm_page_t);
323 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
324 void moea64_zero_page_idle(mmu_t, vm_page_t);
325 void moea64_activate(mmu_t, struct thread *);
326 void moea64_deactivate(mmu_t, struct thread *);
327 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
328 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
329 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
330 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
331 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
332 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
333 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
334 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
335 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
336 
337 static mmu_method_t moea64_methods[] = {
338 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
339 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
340 	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
341 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
342 	MMUMETHOD(mmu_enter,		moea64_enter),
343 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
344 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
345 	MMUMETHOD(mmu_extract,		moea64_extract),
346 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
347 	MMUMETHOD(mmu_init,		moea64_init),
348 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
349 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
350 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
351 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
352 	MMUMETHOD(mmu_map,     		moea64_map),
353 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
354 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
355 	MMUMETHOD(mmu_pinit,		moea64_pinit),
356 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
357 	MMUMETHOD(mmu_protect,		moea64_protect),
358 	MMUMETHOD(mmu_qenter,		moea64_qenter),
359 	MMUMETHOD(mmu_qremove,		moea64_qremove),
360 	MMUMETHOD(mmu_release,		moea64_release),
361 	MMUMETHOD(mmu_remove,		moea64_remove),
362 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
363 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
364 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
365 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
366 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
367 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
368 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
369 	MMUMETHOD(mmu_activate,		moea64_activate),
370 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
371 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
372 
373 	/* Internal interfaces */
374 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
375 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
376 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
377 	MMUMETHOD(mmu_kextract,		moea64_kextract),
378 	MMUMETHOD(mmu_kenter,		moea64_kenter),
379 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
380 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
381 
382 	{ 0, 0 }
383 };
384 
385 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
386 
387 static __inline u_int
388 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
389 {
390 	uint64_t hash;
391 	int shift;
392 
393 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
394 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
395 	    shift);
396 	return (hash & moea64_pteg_mask);
397 }
398 
399 static __inline struct pvo_head *
400 vm_page_to_pvoh(vm_page_t m)
401 {
402 
403 	return (&m->md.mdpg_pvoh);
404 }
405 
406 static __inline void
407 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
408     uint64_t pte_lo, int flags)
409 {
410 
411 	/*
412 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
413 	 * set when the real pte is set in memory.
414 	 *
415 	 * Note: Don't set the valid bit for correct operation of tlb update.
416 	 */
417 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
418 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
419 
420 	if (flags & PVO_LARGE)
421 		pt->pte_hi |= LPTE_BIG;
422 
423 	pt->pte_lo = pte_lo;
424 }
425 
426 static __inline uint64_t
427 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
428 {
429 	uint64_t pte_lo;
430 	int i;
431 
432 	if (ma != VM_MEMATTR_DEFAULT) {
433 		switch (ma) {
434 		case VM_MEMATTR_UNCACHEABLE:
435 			return (LPTE_I | LPTE_G);
436 		case VM_MEMATTR_WRITE_COMBINING:
437 		case VM_MEMATTR_WRITE_BACK:
438 		case VM_MEMATTR_PREFETCHABLE:
439 			return (LPTE_I);
440 		case VM_MEMATTR_WRITE_THROUGH:
441 			return (LPTE_W | LPTE_M);
442 		}
443 	}
444 
445 	/*
446 	 * Assume the page is cache inhibited and access is guarded unless
447 	 * it's in our available memory array.
448 	 */
449 	pte_lo = LPTE_I | LPTE_G;
450 	for (i = 0; i < pregions_sz; i++) {
451 		if ((pa >= pregions[i].mr_start) &&
452 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
453 			pte_lo &= ~(LPTE_I | LPTE_G);
454 			pte_lo |= LPTE_M;
455 			break;
456 		}
457 	}
458 
459 	return pte_lo;
460 }
461 
462 /*
463  * Quick sort callout for comparing memory regions.
464  */
465 static int	om_cmp(const void *a, const void *b);
466 
467 static int
468 om_cmp(const void *a, const void *b)
469 {
470 	const struct	ofw_map *mapa;
471 	const struct	ofw_map *mapb;
472 
473 	mapa = a;
474 	mapb = b;
475 	if (mapa->om_pa_hi < mapb->om_pa_hi)
476 		return (-1);
477 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
478 		return (1);
479 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
480 		return (-1);
481 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
482 		return (1);
483 	else
484 		return (0);
485 }
486 
487 static void
488 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
489 {
490 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
491 	register_t	msr;
492 	vm_offset_t	off;
493 	vm_paddr_t	pa_base;
494 	int		i;
495 
496 	bzero(translations, sz);
497 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
498 		panic("moea64_bootstrap: can't get ofw translations");
499 
500 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
501 	sz /= sizeof(*translations);
502 	qsort(translations, sz, sizeof (*translations), om_cmp);
503 
504 	for (i = 0; i < sz; i++) {
505 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
506 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
507 		    translations[i].om_len);
508 
509 		if (translations[i].om_pa_lo % PAGE_SIZE)
510 			panic("OFW translation not page-aligned!");
511 
512 		pa_base = translations[i].om_pa_lo;
513 
514 	      #ifdef __powerpc64__
515 		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
516 	      #else
517 		if (translations[i].om_pa_hi)
518 			panic("OFW translations above 32-bit boundary!");
519 	      #endif
520 
521 		/* Now enter the pages for this mapping */
522 
523 		DISABLE_TRANS(msr);
524 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
525 			if (moea64_pvo_find_va(kernel_pmap,
526 			    translations[i].om_va + off) != NULL)
527 				continue;
528 
529 			moea64_kenter(mmup, translations[i].om_va + off,
530 			    pa_base + off);
531 		}
532 		ENABLE_TRANS(msr);
533 	}
534 }
535 
536 #ifdef __powerpc64__
537 static void
538 moea64_probe_large_page(void)
539 {
540 	uint16_t pvr = mfpvr() >> 16;
541 
542 	switch (pvr) {
543 	case IBM970:
544 	case IBM970FX:
545 	case IBM970MP:
546 		powerpc_sync(); isync();
547 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
548 		powerpc_sync(); isync();
549 
550 		/* FALLTHROUGH */
551 	case IBMCELLBE:
552 		moea64_large_page_size = 0x1000000; /* 16 MB */
553 		moea64_large_page_shift = 24;
554 		break;
555 	default:
556 		moea64_large_page_size = 0;
557 	}
558 
559 	moea64_large_page_mask = moea64_large_page_size - 1;
560 }
561 
562 static void
563 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
564 {
565 	struct slb *cache;
566 	struct slb entry;
567 	uint64_t esid, slbe;
568 	uint64_t i;
569 
570 	cache = PCPU_GET(slb);
571 	esid = va >> ADDR_SR_SHFT;
572 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
573 
574 	for (i = 0; i < 64; i++) {
575 		if (cache[i].slbe == (slbe | i))
576 			return;
577 	}
578 
579 	entry.slbe = slbe;
580 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
581 	if (large)
582 		entry.slbv |= SLBV_L;
583 
584 	slb_insert_kernel(entry.slbe, entry.slbv);
585 }
586 #endif
587 
588 static void
589 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
590     vm_offset_t kernelend)
591 {
592 	register_t msr;
593 	vm_paddr_t pa;
594 	vm_offset_t size, off;
595 	uint64_t pte_lo;
596 	int i;
597 
598 	if (moea64_large_page_size == 0)
599 		hw_direct_map = 0;
600 
601 	DISABLE_TRANS(msr);
602 	if (hw_direct_map) {
603 		LOCK_TABLE_WR();
604 		PMAP_LOCK(kernel_pmap);
605 		for (i = 0; i < pregions_sz; i++) {
606 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
607 		     pregions[i].mr_size; pa += moea64_large_page_size) {
608 			pte_lo = LPTE_M;
609 
610 			/*
611 			 * Set memory access as guarded if prefetch within
612 			 * the page could exit the available physmem area.
613 			 */
614 			if (pa & moea64_large_page_mask) {
615 				pa &= moea64_large_page_mask;
616 				pte_lo |= LPTE_G;
617 			}
618 			if (pa + moea64_large_page_size >
619 			    pregions[i].mr_start + pregions[i].mr_size)
620 				pte_lo |= LPTE_G;
621 
622 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
623 				    NULL, pa, pa, pte_lo,
624 				    PVO_WIRED | PVO_LARGE);
625 		  }
626 		}
627 		PMAP_UNLOCK(kernel_pmap);
628 		UNLOCK_TABLE_WR();
629 	} else {
630 		size = sizeof(struct pvo_head) * moea64_pteg_count;
631 		off = (vm_offset_t)(moea64_pvo_table);
632 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
633 			moea64_kenter(mmup, pa, pa);
634 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
635 		off = (vm_offset_t)(moea64_bpvo_pool);
636 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
637 		moea64_kenter(mmup, pa, pa);
638 
639 		/*
640 		 * Map certain important things, like ourselves.
641 		 *
642 		 * NOTE: We do not map the exception vector space. That code is
643 		 * used only in real mode, and leaving it unmapped allows us to
644 		 * catch NULL pointer deferences, instead of making NULL a valid
645 		 * address.
646 		 */
647 
648 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
649 		    pa += PAGE_SIZE)
650 			moea64_kenter(mmup, pa, pa);
651 	}
652 	ENABLE_TRANS(msr);
653 }
654 
655 void
656 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
657 {
658 	int		i, j;
659 	vm_size_t	physsz, hwphyssz;
660 
661 #ifndef __powerpc64__
662 	/* We don't have a direct map since there is no BAT */
663 	hw_direct_map = 0;
664 
665 	/* Make sure battable is zero, since we have no BAT */
666 	for (i = 0; i < 16; i++) {
667 		battable[i].batu = 0;
668 		battable[i].batl = 0;
669 	}
670 #else
671 	moea64_probe_large_page();
672 
673 	/* Use a direct map if we have large page support */
674 	if (moea64_large_page_size > 0)
675 		hw_direct_map = 1;
676 	else
677 		hw_direct_map = 0;
678 #endif
679 
680 	/* Get physical memory regions from firmware */
681 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
682 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
683 
684 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
685 		panic("moea64_bootstrap: phys_avail too small");
686 
687 	phys_avail_count = 0;
688 	physsz = 0;
689 	hwphyssz = 0;
690 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
691 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
692 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
693 		    regions[i].mr_start + regions[i].mr_size,
694 		    regions[i].mr_size);
695 		if (hwphyssz != 0 &&
696 		    (physsz + regions[i].mr_size) >= hwphyssz) {
697 			if (physsz < hwphyssz) {
698 				phys_avail[j] = regions[i].mr_start;
699 				phys_avail[j + 1] = regions[i].mr_start +
700 				    hwphyssz - physsz;
701 				physsz = hwphyssz;
702 				phys_avail_count++;
703 			}
704 			break;
705 		}
706 		phys_avail[j] = regions[i].mr_start;
707 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
708 		phys_avail_count++;
709 		physsz += regions[i].mr_size;
710 	}
711 
712 	/* Check for overlap with the kernel and exception vectors */
713 	for (j = 0; j < 2*phys_avail_count; j+=2) {
714 		if (phys_avail[j] < EXC_LAST)
715 			phys_avail[j] += EXC_LAST;
716 
717 		if (kernelstart >= phys_avail[j] &&
718 		    kernelstart < phys_avail[j+1]) {
719 			if (kernelend < phys_avail[j+1]) {
720 				phys_avail[2*phys_avail_count] =
721 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
722 				phys_avail[2*phys_avail_count + 1] =
723 				    phys_avail[j+1];
724 				phys_avail_count++;
725 			}
726 
727 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
728 		}
729 
730 		if (kernelend >= phys_avail[j] &&
731 		    kernelend < phys_avail[j+1]) {
732 			if (kernelstart > phys_avail[j]) {
733 				phys_avail[2*phys_avail_count] = phys_avail[j];
734 				phys_avail[2*phys_avail_count + 1] =
735 				    kernelstart & ~PAGE_MASK;
736 				phys_avail_count++;
737 			}
738 
739 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
740 		}
741 	}
742 
743 	physmem = btoc(physsz);
744 
745 #ifdef PTEGCOUNT
746 	moea64_pteg_count = PTEGCOUNT;
747 #else
748 	moea64_pteg_count = 0x1000;
749 
750 	while (moea64_pteg_count < physmem)
751 		moea64_pteg_count <<= 1;
752 
753 	moea64_pteg_count >>= 1;
754 #endif /* PTEGCOUNT */
755 }
756 
757 void
758 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
759 {
760 	vm_size_t	size;
761 	register_t	msr;
762 	int		i;
763 
764 	/*
765 	 * Set PTEG mask
766 	 */
767 	moea64_pteg_mask = moea64_pteg_count - 1;
768 
769 	/*
770 	 * Allocate pv/overflow lists.
771 	 */
772 	size = sizeof(struct pvo_head) * moea64_pteg_count;
773 
774 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
775 	    PAGE_SIZE);
776 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
777 
778 	DISABLE_TRANS(msr);
779 	for (i = 0; i < moea64_pteg_count; i++)
780 		LIST_INIT(&moea64_pvo_table[i]);
781 	ENABLE_TRANS(msr);
782 
783 	/*
784 	 * Initialize the lock that synchronizes access to the pteg and pvo
785 	 * tables.
786 	 */
787 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
788 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
789 
790 	/*
791 	 * Initialise the unmanaged pvo pool.
792 	 */
793 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
794 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
795 	moea64_bpvo_pool_index = 0;
796 
797 	/*
798 	 * Make sure kernel vsid is allocated as well as VSID 0.
799 	 */
800 	#ifndef __powerpc64__
801 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
802 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
803 	moea64_vsid_bitmap[0] |= 1;
804 	#endif
805 
806 	/*
807 	 * Initialize the kernel pmap (which is statically allocated).
808 	 */
809 	#ifdef __powerpc64__
810 	for (i = 0; i < 64; i++) {
811 		pcpup->pc_slb[i].slbv = 0;
812 		pcpup->pc_slb[i].slbe = 0;
813 	}
814 	#else
815 	for (i = 0; i < 16; i++)
816 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
817 	#endif
818 
819 	kernel_pmap->pmap_phys = kernel_pmap;
820 	CPU_FILL(&kernel_pmap->pm_active);
821 	RB_INIT(&kernel_pmap->pmap_pvo);
822 
823 	PMAP_LOCK_INIT(kernel_pmap);
824 
825 	/*
826 	 * Now map in all the other buffers we allocated earlier
827 	 */
828 
829 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
830 }
831 
832 void
833 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
834 {
835 	ihandle_t	mmui;
836 	phandle_t	chosen;
837 	phandle_t	mmu;
838 	size_t		sz;
839 	int		i;
840 	vm_offset_t	pa, va;
841 	void		*dpcpu;
842 
843 	/*
844 	 * Set up the Open Firmware pmap and add its mappings if not in real
845 	 * mode.
846 	 */
847 
848 	chosen = OF_finddevice("/chosen");
849 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
850 	    mmu = OF_instance_to_package(mmui);
851 	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
852 		sz = 0;
853 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
854 		panic("moea64_bootstrap: too many ofw translations");
855 
856 	    if (sz > 0)
857 		moea64_add_ofw_mappings(mmup, mmu, sz);
858 	}
859 
860 	/*
861 	 * Calculate the last available physical address.
862 	 */
863 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
864 		;
865 	Maxmem = powerpc_btop(phys_avail[i + 1]);
866 
867 	/*
868 	 * Initialize MMU and remap early physical mappings
869 	 */
870 	MMU_CPU_BOOTSTRAP(mmup,0);
871 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
872 	pmap_bootstrapped++;
873 	bs_remap_earlyboot();
874 
875 	/*
876 	 * Set the start and end of kva.
877 	 */
878 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
879 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
880 
881 	/*
882 	 * Map the entire KVA range into the SLB. We must not fault there.
883 	 */
884 	#ifdef __powerpc64__
885 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
886 		moea64_bootstrap_slb_prefault(va, 0);
887 	#endif
888 
889 	/*
890 	 * Figure out how far we can extend virtual_end into segment 16
891 	 * without running into existing mappings. Segment 16 is guaranteed
892 	 * to contain neither RAM nor devices (at least on Apple hardware),
893 	 * but will generally contain some OFW mappings we should not
894 	 * step on.
895 	 */
896 
897 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
898 	PMAP_LOCK(kernel_pmap);
899 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
900 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
901 		virtual_end += PAGE_SIZE;
902 	PMAP_UNLOCK(kernel_pmap);
903 	#endif
904 
905 	/*
906 	 * Allocate a kernel stack with a guard page for thread0 and map it
907 	 * into the kernel page map.
908 	 */
909 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
910 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
911 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
912 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
913 	thread0.td_kstack = va;
914 	thread0.td_kstack_pages = KSTACK_PAGES;
915 	for (i = 0; i < KSTACK_PAGES; i++) {
916 		moea64_kenter(mmup, va, pa);
917 		pa += PAGE_SIZE;
918 		va += PAGE_SIZE;
919 	}
920 
921 	/*
922 	 * Allocate virtual address space for the message buffer.
923 	 */
924 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
925 	msgbufp = (struct msgbuf *)virtual_avail;
926 	va = virtual_avail;
927 	virtual_avail += round_page(msgbufsize);
928 	while (va < virtual_avail) {
929 		moea64_kenter(mmup, va, pa);
930 		pa += PAGE_SIZE;
931 		va += PAGE_SIZE;
932 	}
933 
934 	/*
935 	 * Allocate virtual address space for the dynamic percpu area.
936 	 */
937 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
938 	dpcpu = (void *)virtual_avail;
939 	va = virtual_avail;
940 	virtual_avail += DPCPU_SIZE;
941 	while (va < virtual_avail) {
942 		moea64_kenter(mmup, va, pa);
943 		pa += PAGE_SIZE;
944 		va += PAGE_SIZE;
945 	}
946 	dpcpu_init(dpcpu, 0);
947 
948 	/*
949 	 * Allocate some things for page zeroing. We put this directly
950 	 * in the page table, marked with LPTE_LOCKED, to avoid any
951 	 * of the PVO book-keeping or other parts of the VM system
952 	 * from even knowing that this hack exists.
953 	 */
954 
955 	if (!hw_direct_map) {
956 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
957 		    MTX_DEF);
958 		for (i = 0; i < 2; i++) {
959 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
960 			virtual_end -= PAGE_SIZE;
961 
962 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
963 
964 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
965 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
966 			LOCK_TABLE_RD();
967 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
968 			    mmup, moea64_scratchpage_pvo[i]);
969 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
970 			    |= LPTE_LOCKED;
971 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
972 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
973 			    moea64_scratchpage_pvo[i]->pvo_vpn);
974 			UNLOCK_TABLE_RD();
975 		}
976 	}
977 }
978 
979 /*
980  * Activate a user pmap.  The pmap must be activated before its address
981  * space can be accessed in any way.
982  */
983 void
984 moea64_activate(mmu_t mmu, struct thread *td)
985 {
986 	pmap_t	pm;
987 
988 	pm = &td->td_proc->p_vmspace->vm_pmap;
989 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
990 
991 	#ifdef __powerpc64__
992 	PCPU_SET(userslb, pm->pm_slb);
993 	#else
994 	PCPU_SET(curpmap, pm->pmap_phys);
995 	#endif
996 }
997 
998 void
999 moea64_deactivate(mmu_t mmu, struct thread *td)
1000 {
1001 	pmap_t	pm;
1002 
1003 	pm = &td->td_proc->p_vmspace->vm_pmap;
1004 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1005 	#ifdef __powerpc64__
1006 	PCPU_SET(userslb, NULL);
1007 	#else
1008 	PCPU_SET(curpmap, NULL);
1009 	#endif
1010 }
1011 
1012 void
1013 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1014 {
1015 	struct	pvo_entry *pvo;
1016 	uintptr_t pt;
1017 	uint64_t vsid;
1018 	int	i, ptegidx;
1019 
1020 	LOCK_TABLE_WR();
1021 	PMAP_LOCK(pm);
1022 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1023 
1024 	if (pvo != NULL) {
1025 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1026 
1027 		if (wired) {
1028 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1029 				pm->pm_stats.wired_count++;
1030 			pvo->pvo_vaddr |= PVO_WIRED;
1031 			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1032 		} else {
1033 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1034 				pm->pm_stats.wired_count--;
1035 			pvo->pvo_vaddr &= ~PVO_WIRED;
1036 			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1037 		}
1038 
1039 		if (pt != -1) {
1040 			/* Update wiring flag in page table. */
1041 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1042 			    pvo->pvo_vpn);
1043 		} else if (wired) {
1044 			/*
1045 			 * If we are wiring the page, and it wasn't in the
1046 			 * page table before, add it.
1047 			 */
1048 			vsid = PVO_VSID(pvo);
1049 			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1050 			    pvo->pvo_vaddr & PVO_LARGE);
1051 
1052 			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1053 
1054 			if (i >= 0) {
1055 				PVO_PTEGIDX_CLR(pvo);
1056 				PVO_PTEGIDX_SET(pvo, i);
1057 			}
1058 		}
1059 
1060 	}
1061 	UNLOCK_TABLE_WR();
1062 	PMAP_UNLOCK(pm);
1063 }
1064 
1065 /*
1066  * This goes through and sets the physical address of our
1067  * special scratch PTE to the PA we want to zero or copy. Because
1068  * of locking issues (this can get called in pvo_enter() by
1069  * the UMA allocator), we can't use most other utility functions here
1070  */
1071 
1072 static __inline
1073 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1074 
1075 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1076 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1077 
1078 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1079 	    ~(LPTE_WIMG | LPTE_RPGN);
1080 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1081 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1082 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1083 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1084 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1085 	isync();
1086 }
1087 
1088 void
1089 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1090 {
1091 	vm_offset_t	dst;
1092 	vm_offset_t	src;
1093 
1094 	dst = VM_PAGE_TO_PHYS(mdst);
1095 	src = VM_PAGE_TO_PHYS(msrc);
1096 
1097 	if (hw_direct_map) {
1098 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1099 	} else {
1100 		mtx_lock(&moea64_scratchpage_mtx);
1101 
1102 		moea64_set_scratchpage_pa(mmu, 0, src);
1103 		moea64_set_scratchpage_pa(mmu, 1, dst);
1104 
1105 		bcopy((void *)moea64_scratchpage_va[0],
1106 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1107 
1108 		mtx_unlock(&moea64_scratchpage_mtx);
1109 	}
1110 }
1111 
1112 void
1113 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1114 {
1115 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1116 
1117 	if (size + off > PAGE_SIZE)
1118 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1119 
1120 	if (hw_direct_map) {
1121 		bzero((caddr_t)pa + off, size);
1122 	} else {
1123 		mtx_lock(&moea64_scratchpage_mtx);
1124 		moea64_set_scratchpage_pa(mmu, 0, pa);
1125 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1126 		mtx_unlock(&moea64_scratchpage_mtx);
1127 	}
1128 }
1129 
1130 /*
1131  * Zero a page of physical memory by temporarily mapping it
1132  */
1133 void
1134 moea64_zero_page(mmu_t mmu, vm_page_t m)
1135 {
1136 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1137 	vm_offset_t va, off;
1138 
1139 	if (!hw_direct_map) {
1140 		mtx_lock(&moea64_scratchpage_mtx);
1141 
1142 		moea64_set_scratchpage_pa(mmu, 0, pa);
1143 		va = moea64_scratchpage_va[0];
1144 	} else {
1145 		va = pa;
1146 	}
1147 
1148 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1149 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1150 
1151 	if (!hw_direct_map)
1152 		mtx_unlock(&moea64_scratchpage_mtx);
1153 }
1154 
1155 void
1156 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1157 {
1158 
1159 	moea64_zero_page(mmu, m);
1160 }
1161 
1162 /*
1163  * Map the given physical page at the specified virtual address in the
1164  * target pmap with the protection requested.  If specified the page
1165  * will be wired down.
1166  */
1167 
1168 void
1169 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1170     vm_prot_t prot, boolean_t wired)
1171 {
1172 	struct		pvo_head *pvo_head;
1173 	uma_zone_t	zone;
1174 	vm_page_t	pg;
1175 	uint64_t	pte_lo;
1176 	u_int		pvo_flags;
1177 	int		error;
1178 
1179 	if (!moea64_initialized) {
1180 		pvo_head = NULL;
1181 		pg = NULL;
1182 		zone = moea64_upvo_zone;
1183 		pvo_flags = 0;
1184 	} else {
1185 		pvo_head = vm_page_to_pvoh(m);
1186 		pg = m;
1187 		zone = moea64_mpvo_zone;
1188 		pvo_flags = PVO_MANAGED;
1189 	}
1190 
1191 	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1192 	    VM_OBJECT_LOCKED(m->object),
1193 	    ("moea64_enter: page %p is not busy", m));
1194 
1195 	/* XXX change the pvo head for fake pages */
1196 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1197 		pvo_flags &= ~PVO_MANAGED;
1198 		pvo_head = NULL;
1199 		zone = moea64_upvo_zone;
1200 	}
1201 
1202 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1203 
1204 	if (prot & VM_PROT_WRITE) {
1205 		pte_lo |= LPTE_BW;
1206 		if (pmap_bootstrapped &&
1207 		    (m->oflags & VPO_UNMANAGED) == 0)
1208 			vm_page_aflag_set(m, PGA_WRITEABLE);
1209 	} else
1210 		pte_lo |= LPTE_BR;
1211 
1212 	if ((prot & VM_PROT_EXECUTE) == 0)
1213 		pte_lo |= LPTE_NOEXEC;
1214 
1215 	if (wired)
1216 		pvo_flags |= PVO_WIRED;
1217 
1218 	LOCK_TABLE_WR();
1219 	PMAP_LOCK(pmap);
1220 	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1221 	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1222 	PMAP_UNLOCK(pmap);
1223 	UNLOCK_TABLE_WR();
1224 
1225 	/*
1226 	 * Flush the page from the instruction cache if this page is
1227 	 * mapped executable and cacheable.
1228 	 */
1229 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1230 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1231 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1232 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1233 	}
1234 }
1235 
1236 static void
1237 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1238     vm_size_t sz)
1239 {
1240 
1241 	/*
1242 	 * This is much trickier than on older systems because
1243 	 * we can't sync the icache on physical addresses directly
1244 	 * without a direct map. Instead we check a couple of cases
1245 	 * where the memory is already mapped in and, failing that,
1246 	 * use the same trick we use for page zeroing to create
1247 	 * a temporary mapping for this physical address.
1248 	 */
1249 
1250 	if (!pmap_bootstrapped) {
1251 		/*
1252 		 * If PMAP is not bootstrapped, we are likely to be
1253 		 * in real mode.
1254 		 */
1255 		__syncicache((void *)pa, sz);
1256 	} else if (pmap == kernel_pmap) {
1257 		__syncicache((void *)va, sz);
1258 	} else if (hw_direct_map) {
1259 		__syncicache((void *)pa, sz);
1260 	} else {
1261 		/* Use the scratch page to set up a temp mapping */
1262 
1263 		mtx_lock(&moea64_scratchpage_mtx);
1264 
1265 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1266 		__syncicache((void *)(moea64_scratchpage_va[1] +
1267 		    (va & ADDR_POFF)), sz);
1268 
1269 		mtx_unlock(&moea64_scratchpage_mtx);
1270 	}
1271 }
1272 
1273 /*
1274  * Maps a sequence of resident pages belonging to the same object.
1275  * The sequence begins with the given page m_start.  This page is
1276  * mapped at the given virtual address start.  Each subsequent page is
1277  * mapped at a virtual address that is offset from start by the same
1278  * amount as the page is offset from m_start within the object.  The
1279  * last page in the sequence is the page with the largest offset from
1280  * m_start that can be mapped at a virtual address less than the given
1281  * virtual address end.  Not every virtual page between start and end
1282  * is mapped; only those for which a resident page exists with the
1283  * corresponding offset from m_start are mapped.
1284  */
1285 void
1286 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1287     vm_page_t m_start, vm_prot_t prot)
1288 {
1289 	vm_page_t m;
1290 	vm_pindex_t diff, psize;
1291 
1292 	psize = atop(end - start);
1293 	m = m_start;
1294 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1295 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1296 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1297 		m = TAILQ_NEXT(m, listq);
1298 	}
1299 }
1300 
1301 void
1302 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1303     vm_prot_t prot)
1304 {
1305 
1306 	moea64_enter(mmu, pm, va, m,
1307 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1308 }
1309 
1310 vm_paddr_t
1311 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1312 {
1313 	struct	pvo_entry *pvo;
1314 	vm_paddr_t pa;
1315 
1316 	PMAP_LOCK(pm);
1317 	pvo = moea64_pvo_find_va(pm, va);
1318 	if (pvo == NULL)
1319 		pa = 0;
1320 	else
1321 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1322 		    (va - PVO_VADDR(pvo));
1323 	PMAP_UNLOCK(pm);
1324 	return (pa);
1325 }
1326 
1327 /*
1328  * Atomically extract and hold the physical page with the given
1329  * pmap and virtual address pair if that mapping permits the given
1330  * protection.
1331  */
1332 vm_page_t
1333 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1334 {
1335 	struct	pvo_entry *pvo;
1336 	vm_page_t m;
1337         vm_paddr_t pa;
1338 
1339 	m = NULL;
1340 	pa = 0;
1341 	PMAP_LOCK(pmap);
1342 retry:
1343 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1344 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1345 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1346 	     (prot & VM_PROT_WRITE) == 0)) {
1347 		if (vm_page_pa_tryrelock(pmap,
1348 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1349 			goto retry;
1350 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1351 		vm_page_hold(m);
1352 	}
1353 	PA_UNLOCK_COND(pa);
1354 	PMAP_UNLOCK(pmap);
1355 	return (m);
1356 }
1357 
1358 static mmu_t installed_mmu;
1359 
1360 static void *
1361 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1362 {
1363 	/*
1364 	 * This entire routine is a horrible hack to avoid bothering kmem
1365 	 * for new KVA addresses. Because this can get called from inside
1366 	 * kmem allocation routines, calling kmem for a new address here
1367 	 * can lead to multiply locking non-recursive mutexes.
1368 	 */
1369         vm_offset_t va;
1370 
1371         vm_page_t m;
1372         int pflags, needed_lock;
1373 
1374 	*flags = UMA_SLAB_PRIV;
1375 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1376 
1377         if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1378                 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1379         else
1380                 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1381         if (wait & M_ZERO)
1382                 pflags |= VM_ALLOC_ZERO;
1383 
1384         for (;;) {
1385                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1386                 if (m == NULL) {
1387                         if (wait & M_NOWAIT)
1388                                 return (NULL);
1389                         VM_WAIT;
1390                 } else
1391                         break;
1392         }
1393 
1394 	va = VM_PAGE_TO_PHYS(m);
1395 
1396 	LOCK_TABLE_WR();
1397 	if (needed_lock)
1398 		PMAP_LOCK(kernel_pmap);
1399 
1400 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1401 	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1402 
1403 	if (needed_lock)
1404 		PMAP_UNLOCK(kernel_pmap);
1405 	UNLOCK_TABLE_WR();
1406 
1407 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1408                 bzero((void *)va, PAGE_SIZE);
1409 
1410 	return (void *)va;
1411 }
1412 
1413 extern int elf32_nxstack;
1414 
1415 void
1416 moea64_init(mmu_t mmu)
1417 {
1418 
1419 	CTR0(KTR_PMAP, "moea64_init");
1420 
1421 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1422 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1423 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1424 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1425 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1426 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1427 
1428 	if (!hw_direct_map) {
1429 		installed_mmu = mmu;
1430 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1431 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1432 	}
1433 
1434 #ifdef COMPAT_FREEBSD32
1435 	elf32_nxstack = 1;
1436 #endif
1437 
1438 	moea64_initialized = TRUE;
1439 }
1440 
1441 boolean_t
1442 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1443 {
1444 
1445 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1446 	    ("moea64_is_referenced: page %p is not managed", m));
1447 	return (moea64_query_bit(mmu, m, PTE_REF));
1448 }
1449 
1450 boolean_t
1451 moea64_is_modified(mmu_t mmu, vm_page_t m)
1452 {
1453 
1454 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1455 	    ("moea64_is_modified: page %p is not managed", m));
1456 
1457 	/*
1458 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1459 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1460 	 * is clear, no PTEs can have LPTE_CHG set.
1461 	 */
1462 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1463 	if ((m->oflags & VPO_BUSY) == 0 &&
1464 	    (m->aflags & PGA_WRITEABLE) == 0)
1465 		return (FALSE);
1466 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1467 }
1468 
1469 boolean_t
1470 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1471 {
1472 	struct pvo_entry *pvo;
1473 	boolean_t rv;
1474 
1475 	PMAP_LOCK(pmap);
1476 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1477 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1478 	PMAP_UNLOCK(pmap);
1479 	return (rv);
1480 }
1481 
1482 void
1483 moea64_clear_reference(mmu_t mmu, vm_page_t m)
1484 {
1485 
1486 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1487 	    ("moea64_clear_reference: page %p is not managed", m));
1488 	moea64_clear_bit(mmu, m, LPTE_REF);
1489 }
1490 
1491 void
1492 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1493 {
1494 
1495 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1496 	    ("moea64_clear_modify: page %p is not managed", m));
1497 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1498 	KASSERT((m->oflags & VPO_BUSY) == 0,
1499 	    ("moea64_clear_modify: page %p is busy", m));
1500 
1501 	/*
1502 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1503 	 * set.  If the object containing the page is locked and the page is
1504 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1505 	 */
1506 	if ((m->aflags & PGA_WRITEABLE) == 0)
1507 		return;
1508 	moea64_clear_bit(mmu, m, LPTE_CHG);
1509 }
1510 
1511 /*
1512  * Clear the write and modified bits in each of the given page's mappings.
1513  */
1514 void
1515 moea64_remove_write(mmu_t mmu, vm_page_t m)
1516 {
1517 	struct	pvo_entry *pvo;
1518 	uintptr_t pt;
1519 	pmap_t	pmap;
1520 	uint64_t lo = 0;
1521 
1522 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1523 	    ("moea64_remove_write: page %p is not managed", m));
1524 
1525 	/*
1526 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1527 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1528 	 * is clear, no page table entries need updating.
1529 	 */
1530 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1531 	if ((m->oflags & VPO_BUSY) == 0 &&
1532 	    (m->aflags & PGA_WRITEABLE) == 0)
1533 		return;
1534 	powerpc_sync();
1535 	LOCK_TABLE_RD();
1536 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1537 		pmap = pvo->pvo_pmap;
1538 		PMAP_LOCK(pmap);
1539 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1540 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1541 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1542 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1543 			if (pt != -1) {
1544 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1545 				lo |= pvo->pvo_pte.lpte.pte_lo;
1546 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1547 				MOEA64_PTE_CHANGE(mmu, pt,
1548 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1549 				if (pvo->pvo_pmap == kernel_pmap)
1550 					isync();
1551 			}
1552 		}
1553 		if ((lo & LPTE_CHG) != 0)
1554 			vm_page_dirty(m);
1555 		PMAP_UNLOCK(pmap);
1556 	}
1557 	UNLOCK_TABLE_RD();
1558 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1559 }
1560 
1561 /*
1562  *	moea64_ts_referenced:
1563  *
1564  *	Return a count of reference bits for a page, clearing those bits.
1565  *	It is not necessary for every reference bit to be cleared, but it
1566  *	is necessary that 0 only be returned when there are truly no
1567  *	reference bits set.
1568  *
1569  *	XXX: The exact number of bits to check and clear is a matter that
1570  *	should be tested and standardized at some point in the future for
1571  *	optimal aging of shared pages.
1572  */
1573 int
1574 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1575 {
1576 
1577 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1578 	    ("moea64_ts_referenced: page %p is not managed", m));
1579 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1580 }
1581 
1582 /*
1583  * Modify the WIMG settings of all mappings for a page.
1584  */
1585 void
1586 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1587 {
1588 	struct	pvo_entry *pvo;
1589 	struct  pvo_head *pvo_head;
1590 	uintptr_t pt;
1591 	pmap_t	pmap;
1592 	uint64_t lo;
1593 
1594 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1595 		m->md.mdpg_cache_attrs = ma;
1596 		return;
1597 	}
1598 
1599 	pvo_head = vm_page_to_pvoh(m);
1600 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1601 	LOCK_TABLE_RD();
1602 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1603 		pmap = pvo->pvo_pmap;
1604 		PMAP_LOCK(pmap);
1605 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1606 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1607 		pvo->pvo_pte.lpte.pte_lo |= lo;
1608 		if (pt != -1) {
1609 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1610 			    pvo->pvo_vpn);
1611 			if (pvo->pvo_pmap == kernel_pmap)
1612 				isync();
1613 		}
1614 		PMAP_UNLOCK(pmap);
1615 	}
1616 	UNLOCK_TABLE_RD();
1617 	m->md.mdpg_cache_attrs = ma;
1618 }
1619 
1620 /*
1621  * Map a wired page into kernel virtual address space.
1622  */
1623 void
1624 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1625 {
1626 	uint64_t	pte_lo;
1627 	int		error;
1628 
1629 	pte_lo = moea64_calc_wimg(pa, ma);
1630 
1631 	LOCK_TABLE_WR();
1632 	PMAP_LOCK(kernel_pmap);
1633 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1634 	    NULL, va, pa, pte_lo, PVO_WIRED);
1635 	PMAP_UNLOCK(kernel_pmap);
1636 	UNLOCK_TABLE_WR();
1637 
1638 	if (error != 0 && error != ENOENT)
1639 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1640 		    pa, error);
1641 }
1642 
1643 void
1644 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1645 {
1646 
1647 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1648 }
1649 
1650 /*
1651  * Extract the physical page address associated with the given kernel virtual
1652  * address.
1653  */
1654 vm_paddr_t
1655 moea64_kextract(mmu_t mmu, vm_offset_t va)
1656 {
1657 	struct		pvo_entry *pvo;
1658 	vm_paddr_t pa;
1659 
1660 	/*
1661 	 * Shortcut the direct-mapped case when applicable.  We never put
1662 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1663 	 */
1664 	if (va < VM_MIN_KERNEL_ADDRESS)
1665 		return (va);
1666 
1667 	PMAP_LOCK(kernel_pmap);
1668 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1669 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1670 	    va));
1671 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1672 	PMAP_UNLOCK(kernel_pmap);
1673 	return (pa);
1674 }
1675 
1676 /*
1677  * Remove a wired page from kernel virtual address space.
1678  */
1679 void
1680 moea64_kremove(mmu_t mmu, vm_offset_t va)
1681 {
1682 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1683 }
1684 
1685 /*
1686  * Map a range of physical addresses into kernel virtual address space.
1687  *
1688  * The value passed in *virt is a suggested virtual address for the mapping.
1689  * Architectures which can support a direct-mapped physical to virtual region
1690  * can return the appropriate address within that region, leaving '*virt'
1691  * unchanged.  We cannot and therefore do not; *virt is updated with the
1692  * first usable address after the mapped region.
1693  */
1694 vm_offset_t
1695 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1696     vm_paddr_t pa_end, int prot)
1697 {
1698 	vm_offset_t	sva, va;
1699 
1700 	sva = *virt;
1701 	va = sva;
1702 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1703 		moea64_kenter(mmu, va, pa_start);
1704 	*virt = va;
1705 
1706 	return (sva);
1707 }
1708 
1709 /*
1710  * Returns true if the pmap's pv is one of the first
1711  * 16 pvs linked to from this page.  This count may
1712  * be changed upwards or downwards in the future; it
1713  * is only necessary that true be returned for a small
1714  * subset of pmaps for proper page aging.
1715  */
1716 boolean_t
1717 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1718 {
1719         int loops;
1720 	struct pvo_entry *pvo;
1721 	boolean_t rv;
1722 
1723 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1724 	    ("moea64_page_exists_quick: page %p is not managed", m));
1725 	loops = 0;
1726 	rv = FALSE;
1727 	LOCK_TABLE_RD();
1728 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1729 		if (pvo->pvo_pmap == pmap) {
1730 			rv = TRUE;
1731 			break;
1732 		}
1733 		if (++loops >= 16)
1734 			break;
1735 	}
1736 	UNLOCK_TABLE_RD();
1737 	return (rv);
1738 }
1739 
1740 /*
1741  * Return the number of managed mappings to the given physical page
1742  * that are wired.
1743  */
1744 int
1745 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1746 {
1747 	struct pvo_entry *pvo;
1748 	int count;
1749 
1750 	count = 0;
1751 	if ((m->oflags & VPO_UNMANAGED) != 0)
1752 		return (count);
1753 	LOCK_TABLE_RD();
1754 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1755 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1756 			count++;
1757 	UNLOCK_TABLE_RD();
1758 	return (count);
1759 }
1760 
1761 static uintptr_t	moea64_vsidcontext;
1762 
1763 uintptr_t
1764 moea64_get_unique_vsid(void) {
1765 	u_int entropy;
1766 	register_t hash;
1767 	uint32_t mask;
1768 	int i;
1769 
1770 	entropy = 0;
1771 	__asm __volatile("mftb %0" : "=r"(entropy));
1772 
1773 	mtx_lock(&moea64_slb_mutex);
1774 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1775 		u_int	n;
1776 
1777 		/*
1778 		 * Create a new value by mutiplying by a prime and adding in
1779 		 * entropy from the timebase register.  This is to make the
1780 		 * VSID more random so that the PT hash function collides
1781 		 * less often.  (Note that the prime casues gcc to do shifts
1782 		 * instead of a multiply.)
1783 		 */
1784 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1785 		hash = moea64_vsidcontext & (NVSIDS - 1);
1786 		if (hash == 0)		/* 0 is special, avoid it */
1787 			continue;
1788 		n = hash >> 5;
1789 		mask = 1 << (hash & (VSID_NBPW - 1));
1790 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1791 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1792 			/* anything free in this bucket? */
1793 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1794 				entropy = (moea64_vsidcontext >> 20);
1795 				continue;
1796 			}
1797 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1798 			mask = 1 << i;
1799 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1800 			hash |= i;
1801 		}
1802 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1803 		    ("Allocating in-use VSID %#zx\n", hash));
1804 		moea64_vsid_bitmap[n] |= mask;
1805 		mtx_unlock(&moea64_slb_mutex);
1806 		return (hash);
1807 	}
1808 
1809 	mtx_unlock(&moea64_slb_mutex);
1810 	panic("%s: out of segments",__func__);
1811 }
1812 
1813 #ifdef __powerpc64__
1814 void
1815 moea64_pinit(mmu_t mmu, pmap_t pmap)
1816 {
1817 	PMAP_LOCK_INIT(pmap);
1818 	RB_INIT(&pmap->pmap_pvo);
1819 
1820 	pmap->pm_slb_tree_root = slb_alloc_tree();
1821 	pmap->pm_slb = slb_alloc_user_cache();
1822 	pmap->pm_slb_len = 0;
1823 }
1824 #else
1825 void
1826 moea64_pinit(mmu_t mmu, pmap_t pmap)
1827 {
1828 	int	i;
1829 	uint32_t hash;
1830 
1831 	PMAP_LOCK_INIT(pmap);
1832 	RB_INIT(&pmap->pmap_pvo);
1833 
1834 	if (pmap_bootstrapped)
1835 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1836 		    (vm_offset_t)pmap);
1837 	else
1838 		pmap->pmap_phys = pmap;
1839 
1840 	/*
1841 	 * Allocate some segment registers for this pmap.
1842 	 */
1843 	hash = moea64_get_unique_vsid();
1844 
1845 	for (i = 0; i < 16; i++)
1846 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1847 
1848 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1849 }
1850 #endif
1851 
1852 /*
1853  * Initialize the pmap associated with process 0.
1854  */
1855 void
1856 moea64_pinit0(mmu_t mmu, pmap_t pm)
1857 {
1858 	moea64_pinit(mmu, pm);
1859 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1860 }
1861 
1862 /*
1863  * Set the physical protection on the specified range of this map as requested.
1864  */
1865 static void
1866 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1867 {
1868 	uintptr_t pt;
1869 	struct	vm_page *pg;
1870 	uint64_t oldlo;
1871 
1872 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1873 
1874 	/*
1875 	 * Grab the PTE pointer before we diddle with the cached PTE
1876 	 * copy.
1877 	 */
1878 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1879 
1880 	/*
1881 	 * Change the protection of the page.
1882 	 */
1883 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1884 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1885 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1886 	if ((prot & VM_PROT_EXECUTE) == 0)
1887 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1888 	if (prot & VM_PROT_WRITE)
1889 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1890 	else
1891 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1892 
1893 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1894 
1895 	/*
1896 	 * If the PVO is in the page table, update that pte as well.
1897 	 */
1898 	if (pt != -1)
1899 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1900 		    pvo->pvo_vpn);
1901 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1902 	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1903 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1904 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1905 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1906 		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1907 	}
1908 
1909 	/*
1910 	 * Update vm about the REF/CHG bits if the page is managed and we have
1911 	 * removed write access.
1912 	 */
1913 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1914 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot && VM_PROT_WRITE)) {
1915 		if (pg != NULL) {
1916 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1917 				vm_page_dirty(pg);
1918 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1919 				vm_page_aflag_set(pg, PGA_REFERENCED);
1920 		}
1921 	}
1922 }
1923 
1924 void
1925 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1926     vm_prot_t prot)
1927 {
1928 	struct	pvo_entry *pvo, *tpvo, key;
1929 
1930 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1931 	    sva, eva, prot);
1932 
1933 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1934 	    ("moea64_protect: non current pmap"));
1935 
1936 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1937 		moea64_remove(mmu, pm, sva, eva);
1938 		return;
1939 	}
1940 
1941 	LOCK_TABLE_RD();
1942 	PMAP_LOCK(pm);
1943 	key.pvo_vaddr = sva;
1944 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1945 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1946 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1947 		moea64_pvo_protect(mmu, pm, pvo, prot);
1948 	}
1949 	UNLOCK_TABLE_RD();
1950 	PMAP_UNLOCK(pm);
1951 }
1952 
1953 /*
1954  * Map a list of wired pages into kernel virtual address space.  This is
1955  * intended for temporary mappings which do not need page modification or
1956  * references recorded.  Existing mappings in the region are overwritten.
1957  */
1958 void
1959 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1960 {
1961 	while (count-- > 0) {
1962 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1963 		va += PAGE_SIZE;
1964 		m++;
1965 	}
1966 }
1967 
1968 /*
1969  * Remove page mappings from kernel virtual address space.  Intended for
1970  * temporary mappings entered by moea64_qenter.
1971  */
1972 void
1973 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1974 {
1975 	while (count-- > 0) {
1976 		moea64_kremove(mmu, va);
1977 		va += PAGE_SIZE;
1978 	}
1979 }
1980 
1981 void
1982 moea64_release_vsid(uint64_t vsid)
1983 {
1984 	int idx, mask;
1985 
1986 	mtx_lock(&moea64_slb_mutex);
1987 	idx = vsid & (NVSIDS-1);
1988 	mask = 1 << (idx % VSID_NBPW);
1989 	idx /= VSID_NBPW;
1990 	KASSERT(moea64_vsid_bitmap[idx] & mask,
1991 	    ("Freeing unallocated VSID %#jx", vsid));
1992 	moea64_vsid_bitmap[idx] &= ~mask;
1993 	mtx_unlock(&moea64_slb_mutex);
1994 }
1995 
1996 
1997 void
1998 moea64_release(mmu_t mmu, pmap_t pmap)
1999 {
2000 
2001 	/*
2002 	 * Free segment registers' VSIDs
2003 	 */
2004     #ifdef __powerpc64__
2005 	slb_free_tree(pmap);
2006 	slb_free_user_cache(pmap->pm_slb);
2007     #else
2008 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2009 
2010 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2011     #endif
2012 
2013 	PMAP_LOCK_DESTROY(pmap);
2014 }
2015 
2016 /*
2017  * Remove all pages mapped by the specified pmap
2018  */
2019 void
2020 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2021 {
2022 	struct	pvo_entry *pvo, *tpvo;
2023 
2024 	LOCK_TABLE_WR();
2025 	PMAP_LOCK(pm);
2026 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2027 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2028 			moea64_pvo_remove(mmu, pvo);
2029 	}
2030 	UNLOCK_TABLE_WR();
2031 	PMAP_UNLOCK(pm);
2032 }
2033 
2034 /*
2035  * Remove the given range of addresses from the specified map.
2036  */
2037 void
2038 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2039 {
2040 	struct	pvo_entry *pvo, *tpvo, key;
2041 
2042 	/*
2043 	 * Perform an unsynchronized read.  This is, however, safe.
2044 	 */
2045 	if (pm->pm_stats.resident_count == 0)
2046 		return;
2047 
2048 	LOCK_TABLE_WR();
2049 	PMAP_LOCK(pm);
2050 	key.pvo_vaddr = sva;
2051 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2052 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2053 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2054 		moea64_pvo_remove(mmu, pvo);
2055 	}
2056 	UNLOCK_TABLE_WR();
2057 	PMAP_UNLOCK(pm);
2058 }
2059 
2060 /*
2061  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2062  * will reflect changes in pte's back to the vm_page.
2063  */
2064 void
2065 moea64_remove_all(mmu_t mmu, vm_page_t m)
2066 {
2067 	struct	pvo_entry *pvo, *next_pvo;
2068 	pmap_t	pmap;
2069 
2070 	LOCK_TABLE_WR();
2071 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2072 		pmap = pvo->pvo_pmap;
2073 		PMAP_LOCK(pmap);
2074 		moea64_pvo_remove(mmu, pvo);
2075 		PMAP_UNLOCK(pmap);
2076 	}
2077 	UNLOCK_TABLE_WR();
2078 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2079 		vm_page_dirty(m);
2080 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2081 	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2082 }
2083 
2084 /*
2085  * Allocate a physical page of memory directly from the phys_avail map.
2086  * Can only be called from moea64_bootstrap before avail start and end are
2087  * calculated.
2088  */
2089 vm_offset_t
2090 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2091 {
2092 	vm_offset_t	s, e;
2093 	int		i, j;
2094 
2095 	size = round_page(size);
2096 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2097 		if (align != 0)
2098 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2099 		else
2100 			s = phys_avail[i];
2101 		e = s + size;
2102 
2103 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2104 			continue;
2105 
2106 		if (s + size > platform_real_maxaddr())
2107 			continue;
2108 
2109 		if (s == phys_avail[i]) {
2110 			phys_avail[i] += size;
2111 		} else if (e == phys_avail[i + 1]) {
2112 			phys_avail[i + 1] -= size;
2113 		} else {
2114 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2115 				phys_avail[j] = phys_avail[j - 2];
2116 				phys_avail[j + 1] = phys_avail[j - 1];
2117 			}
2118 
2119 			phys_avail[i + 3] = phys_avail[i + 1];
2120 			phys_avail[i + 1] = s;
2121 			phys_avail[i + 2] = e;
2122 			phys_avail_count++;
2123 		}
2124 
2125 		return (s);
2126 	}
2127 	panic("moea64_bootstrap_alloc: could not allocate memory");
2128 }
2129 
2130 static int
2131 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2132     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2133     uint64_t pte_lo, int flags)
2134 {
2135 	struct	 pvo_entry *pvo;
2136 	uint64_t vsid;
2137 	int	 first;
2138 	u_int	 ptegidx;
2139 	int	 i;
2140 	int      bootstrap;
2141 
2142 	/*
2143 	 * One nasty thing that can happen here is that the UMA calls to
2144 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2145 	 * which calls UMA...
2146 	 *
2147 	 * We break the loop by detecting recursion and allocating out of
2148 	 * the bootstrap pool.
2149 	 */
2150 
2151 	first = 0;
2152 	bootstrap = (flags & PVO_BOOTSTRAP);
2153 
2154 	if (!moea64_initialized)
2155 		bootstrap = 1;
2156 
2157 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2158 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2159 
2160 	/*
2161 	 * Compute the PTE Group index.
2162 	 */
2163 	va &= ~ADDR_POFF;
2164 	vsid = va_to_vsid(pm, va);
2165 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2166 
2167 	/*
2168 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2169 	 * there is a mapping.
2170 	 */
2171 	moea64_pvo_enter_calls++;
2172 
2173 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2174 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2175 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2176 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2177 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2178 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2179 					/* Re-insert if spilled */
2180 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2181 					    &pvo->pvo_pte.lpte);
2182 					if (i >= 0)
2183 						PVO_PTEGIDX_SET(pvo, i);
2184 					moea64_pte_overflow--;
2185 				}
2186 				return (0);
2187 			}
2188 			moea64_pvo_remove(mmu, pvo);
2189 			break;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * If we aren't overwriting a mapping, try to allocate.
2195 	 */
2196 	if (bootstrap) {
2197 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2198 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2199 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2200 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2201 		}
2202 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2203 		moea64_bpvo_pool_index++;
2204 		bootstrap = 1;
2205 	} else {
2206 		pvo = uma_zalloc(zone, M_NOWAIT);
2207 	}
2208 
2209 	if (pvo == NULL)
2210 		return (ENOMEM);
2211 
2212 	moea64_pvo_entries++;
2213 	pvo->pvo_vaddr = va;
2214 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2215 	    | (vsid << 16);
2216 	pvo->pvo_pmap = pm;
2217 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2218 	pvo->pvo_vaddr &= ~ADDR_POFF;
2219 
2220 	if (flags & PVO_WIRED)
2221 		pvo->pvo_vaddr |= PVO_WIRED;
2222 	if (pvo_head != NULL)
2223 		pvo->pvo_vaddr |= PVO_MANAGED;
2224 	if (bootstrap)
2225 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2226 	if (flags & PVO_LARGE)
2227 		pvo->pvo_vaddr |= PVO_LARGE;
2228 
2229 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2230 	    (uint64_t)(pa) | pte_lo, flags);
2231 
2232 	/*
2233 	 * Add to pmap list
2234 	 */
2235 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2236 
2237 	/*
2238 	 * Remember if the list was empty and therefore will be the first
2239 	 * item.
2240 	 */
2241 	if (pvo_head != NULL) {
2242 		if (LIST_FIRST(pvo_head) == NULL)
2243 			first = 1;
2244 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2245 	}
2246 
2247 	if (pvo->pvo_vaddr & PVO_WIRED) {
2248 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2249 		pm->pm_stats.wired_count++;
2250 	}
2251 	pm->pm_stats.resident_count++;
2252 
2253 	/*
2254 	 * We hope this succeeds but it isn't required.
2255 	 */
2256 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2257 	if (i >= 0) {
2258 		PVO_PTEGIDX_SET(pvo, i);
2259 	} else {
2260 		panic("moea64_pvo_enter: overflow");
2261 		moea64_pte_overflow++;
2262 	}
2263 
2264 	if (pm == kernel_pmap)
2265 		isync();
2266 
2267 #ifdef __powerpc64__
2268 	/*
2269 	 * Make sure all our bootstrap mappings are in the SLB as soon
2270 	 * as virtual memory is switched on.
2271 	 */
2272 	if (!pmap_bootstrapped)
2273 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2274 #endif
2275 
2276 	return (first ? ENOENT : 0);
2277 }
2278 
2279 static void
2280 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2281 {
2282 	struct	vm_page *pg;
2283 	uintptr_t pt;
2284 
2285 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2286 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2287 
2288 	/*
2289 	 * If there is an active pte entry, we need to deactivate it (and
2290 	 * save the ref & cfg bits).
2291 	 */
2292 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2293 	if (pt != -1) {
2294 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2295 		PVO_PTEGIDX_CLR(pvo);
2296 	} else {
2297 		moea64_pte_overflow--;
2298 	}
2299 
2300 	/*
2301 	 * Update our statistics.
2302 	 */
2303 	pvo->pvo_pmap->pm_stats.resident_count--;
2304 	if (pvo->pvo_vaddr & PVO_WIRED)
2305 		pvo->pvo_pmap->pm_stats.wired_count--;
2306 
2307 	/*
2308 	 * Remove this PVO from the pmap list.
2309 	 */
2310 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2311 
2312 	/*
2313 	 * Remove this from the overflow list and return it to the pool
2314 	 * if we aren't going to reuse it.
2315 	 */
2316 	LIST_REMOVE(pvo, pvo_olink);
2317 
2318 	/*
2319 	 * Update vm about the REF/CHG bits if the page is managed.
2320 	 */
2321 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2322 
2323 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2324 		LIST_REMOVE(pvo, pvo_vlink);
2325 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2326 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2327 				vm_page_dirty(pg);
2328 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2329 				vm_page_aflag_set(pg, PGA_REFERENCED);
2330 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2331 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2332 		}
2333 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2334 			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2335 	}
2336 
2337 	moea64_pvo_entries--;
2338 	moea64_pvo_remove_calls++;
2339 
2340 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2341 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2342 		    moea64_upvo_zone, pvo);
2343 }
2344 
2345 static struct pvo_entry *
2346 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2347 {
2348 	struct pvo_entry key;
2349 
2350 	key.pvo_vaddr = va & ~ADDR_POFF;
2351 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2352 }
2353 
2354 static boolean_t
2355 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2356 {
2357 	struct	pvo_entry *pvo;
2358 	uintptr_t pt;
2359 
2360 	LOCK_TABLE_RD();
2361 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2362 		/*
2363 		 * See if we saved the bit off.  If so, return success.
2364 		 */
2365 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2366 			UNLOCK_TABLE_RD();
2367 			return (TRUE);
2368 		}
2369 	}
2370 
2371 	/*
2372 	 * No luck, now go through the hard part of looking at the PTEs
2373 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2374 	 * the PTEs.
2375 	 */
2376 	powerpc_sync();
2377 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2378 
2379 		/*
2380 		 * See if this pvo has a valid PTE.  if so, fetch the
2381 		 * REF/CHG bits from the valid PTE.  If the appropriate
2382 		 * ptebit is set, return success.
2383 		 */
2384 		PMAP_LOCK(pvo->pvo_pmap);
2385 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2386 		if (pt != -1) {
2387 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2388 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2389 				PMAP_UNLOCK(pvo->pvo_pmap);
2390 				UNLOCK_TABLE_RD();
2391 				return (TRUE);
2392 			}
2393 		}
2394 		PMAP_UNLOCK(pvo->pvo_pmap);
2395 	}
2396 
2397 	UNLOCK_TABLE_RD();
2398 	return (FALSE);
2399 }
2400 
2401 static u_int
2402 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2403 {
2404 	u_int	count;
2405 	struct	pvo_entry *pvo;
2406 	uintptr_t pt;
2407 
2408 	/*
2409 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2410 	 * we can reset the right ones).  note that since the pvo entries and
2411 	 * list heads are accessed via BAT0 and are never placed in the page
2412 	 * table, we don't have to worry about further accesses setting the
2413 	 * REF/CHG bits.
2414 	 */
2415 	powerpc_sync();
2416 
2417 	/*
2418 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2419 	 * valid pte clear the ptebit from the valid pte.
2420 	 */
2421 	count = 0;
2422 	LOCK_TABLE_RD();
2423 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2424 		PMAP_LOCK(pvo->pvo_pmap);
2425 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2426 		if (pt != -1) {
2427 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2428 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2429 				count++;
2430 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2431 				    pvo->pvo_vpn, ptebit);
2432 			}
2433 		}
2434 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2435 		PMAP_UNLOCK(pvo->pvo_pmap);
2436 	}
2437 
2438 	UNLOCK_TABLE_RD();
2439 	return (count);
2440 }
2441 
2442 boolean_t
2443 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2444 {
2445 	struct pvo_entry *pvo, key;
2446 	vm_offset_t ppa;
2447 	int error = 0;
2448 
2449 	PMAP_LOCK(kernel_pmap);
2450 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2451 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2452 	    ppa < pa + size; ppa += PAGE_SIZE,
2453 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2454 		if (pvo == NULL ||
2455 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2456 			error = EFAULT;
2457 			break;
2458 		}
2459 	}
2460 	PMAP_UNLOCK(kernel_pmap);
2461 
2462 	return (error);
2463 }
2464 
2465 /*
2466  * Map a set of physical memory pages into the kernel virtual
2467  * address space. Return a pointer to where it is mapped. This
2468  * routine is intended to be used for mapping device memory,
2469  * NOT real memory.
2470  */
2471 void *
2472 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2473 {
2474 	vm_offset_t va, tmpva, ppa, offset;
2475 
2476 	ppa = trunc_page(pa);
2477 	offset = pa & PAGE_MASK;
2478 	size = roundup2(offset + size, PAGE_SIZE);
2479 
2480 	va = kmem_alloc_nofault(kernel_map, size);
2481 
2482 	if (!va)
2483 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2484 
2485 	for (tmpva = va; size > 0;) {
2486 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2487 		size -= PAGE_SIZE;
2488 		tmpva += PAGE_SIZE;
2489 		ppa += PAGE_SIZE;
2490 	}
2491 
2492 	return ((void *)(va + offset));
2493 }
2494 
2495 void *
2496 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2497 {
2498 
2499 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2500 }
2501 
2502 void
2503 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2504 {
2505 	vm_offset_t base, offset;
2506 
2507 	base = trunc_page(va);
2508 	offset = va & PAGE_MASK;
2509 	size = roundup2(offset + size, PAGE_SIZE);
2510 
2511 	kmem_free(kernel_map, base, size);
2512 }
2513 
2514 void
2515 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2516 {
2517 	struct pvo_entry *pvo;
2518 	vm_offset_t lim;
2519 	vm_paddr_t pa;
2520 	vm_size_t len;
2521 
2522 	PMAP_LOCK(pm);
2523 	while (sz > 0) {
2524 		lim = round_page(va);
2525 		len = MIN(lim - va, sz);
2526 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2527 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2528 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2529 			    (va & ADDR_POFF);
2530 			moea64_syncicache(mmu, pm, va, pa, len);
2531 		}
2532 		va += len;
2533 		sz -= len;
2534 	}
2535 	PMAP_UNLOCK(pm);
2536 }
2537