xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision b37f6c9805edb4b89f0a8c2b78f78a3dcfc0647b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_compat.h"
49 #include "opt_kstack_pages.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/conf.h>
54 #include <sys/queue.h>
55 #include <sys/cpuset.h>
56 #include <sys/kerneldump.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/msgbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/proc.h>
63 #include <sys/rwlock.h>
64 #include <sys/sched.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/vmmeter.h>
68 #include <sys/smp.h>
69 
70 #include <sys/kdb.h>
71 
72 #include <dev/ofw/openfirm.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/uma.h>
83 
84 #include <machine/_inttypes.h>
85 #include <machine/cpu.h>
86 #include <machine/platform.h>
87 #include <machine/frame.h>
88 #include <machine/md_var.h>
89 #include <machine/psl.h>
90 #include <machine/bat.h>
91 #include <machine/hid.h>
92 #include <machine/pte.h>
93 #include <machine/sr.h>
94 #include <machine/trap.h>
95 #include <machine/mmuvar.h>
96 
97 #include "mmu_oea64.h"
98 #include "mmu_if.h"
99 #include "moea64_if.h"
100 
101 void moea64_release_vsid(uint64_t vsid);
102 uintptr_t moea64_get_unique_vsid(void);
103 
104 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
105 #define ENABLE_TRANS(msr)	mtmsr(msr)
106 
107 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
108 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
109 #define	VSID_HASH_MASK		0x0000007fffffffffULL
110 
111 /*
112  * Locking semantics:
113  *
114  * There are two locks of interest: the page locks and the pmap locks, which
115  * protect their individual PVO lists and are locked in that order. The contents
116  * of all PVO entries are protected by the locks of their respective pmaps.
117  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
118  * into any list.
119  *
120  */
121 
122 #define PV_LOCK_COUNT	PA_LOCK_COUNT*3
123 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
124 
125 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
126 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
127 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
128 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
129 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
130 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
131 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
132 
133 struct ofw_map {
134 	cell_t	om_va;
135 	cell_t	om_len;
136 	uint64_t om_pa;
137 	cell_t	om_mode;
138 };
139 
140 extern unsigned char _etext[];
141 extern unsigned char _end[];
142 
143 extern void *slbtrap, *slbtrapend;
144 
145 /*
146  * Map of physical memory regions.
147  */
148 static struct	mem_region *regions;
149 static struct	mem_region *pregions;
150 static u_int	phys_avail_count;
151 static int	regions_sz, pregions_sz;
152 
153 extern void bs_remap_earlyboot(void);
154 
155 /*
156  * Lock for the SLB tables.
157  */
158 struct mtx	moea64_slb_mutex;
159 
160 /*
161  * PTEG data.
162  */
163 u_int		moea64_pteg_count;
164 u_int		moea64_pteg_mask;
165 
166 /*
167  * PVO data.
168  */
169 
170 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
171 
172 static struct	pvo_entry *moea64_bpvo_pool;
173 static int	moea64_bpvo_pool_index = 0;
174 static int	moea64_bpvo_pool_size = 327680;
175 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
176 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
177     &moea64_bpvo_pool_index, 0, "");
178 
179 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
180 #ifdef __powerpc64__
181 #define	NVSIDS		(NPMAPS * 16)
182 #define VSID_HASHMASK	0xffffffffUL
183 #else
184 #define NVSIDS		NPMAPS
185 #define VSID_HASHMASK	0xfffffUL
186 #endif
187 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
188 
189 static boolean_t moea64_initialized = FALSE;
190 
191 /*
192  * Statistics.
193  */
194 u_int	moea64_pte_valid = 0;
195 u_int	moea64_pte_overflow = 0;
196 u_int	moea64_pvo_entries = 0;
197 u_int	moea64_pvo_enter_calls = 0;
198 u_int	moea64_pvo_remove_calls = 0;
199 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
200     &moea64_pte_valid, 0, "");
201 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
202     &moea64_pte_overflow, 0, "");
203 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
204     &moea64_pvo_entries, 0, "");
205 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
206     &moea64_pvo_enter_calls, 0, "");
207 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
208     &moea64_pvo_remove_calls, 0, "");
209 
210 vm_offset_t	moea64_scratchpage_va[2];
211 struct pvo_entry *moea64_scratchpage_pvo[2];
212 struct	mtx	moea64_scratchpage_mtx;
213 
214 uint64_t 	moea64_large_page_mask = 0;
215 uint64_t	moea64_large_page_size = 0;
216 int		moea64_large_page_shift = 0;
217 
218 /*
219  * PVO calls.
220  */
221 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
222 		    struct pvo_head *pvo_head);
223 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
224 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
225 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
226 
227 /*
228  * Utility routines.
229  */
230 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
231 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
232 static void		moea64_kremove(mmu_t, vm_offset_t);
233 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
234 			    vm_paddr_t pa, vm_size_t sz);
235 static void		moea64_pmap_init_qpages(void);
236 
237 /*
238  * Kernel MMU interface
239  */
240 void moea64_clear_modify(mmu_t, vm_page_t);
241 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
242 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
243     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
244 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
245     u_int flags, int8_t psind);
246 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
247     vm_prot_t);
248 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
249 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
250 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
251 void moea64_init(mmu_t);
252 boolean_t moea64_is_modified(mmu_t, vm_page_t);
253 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
254 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
255 int moea64_ts_referenced(mmu_t, vm_page_t);
256 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
257 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
258 void moea64_page_init(mmu_t, vm_page_t);
259 int moea64_page_wired_mappings(mmu_t, vm_page_t);
260 void moea64_pinit(mmu_t, pmap_t);
261 void moea64_pinit0(mmu_t, pmap_t);
262 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
263 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
264 void moea64_qremove(mmu_t, vm_offset_t, int);
265 void moea64_release(mmu_t, pmap_t);
266 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
267 void moea64_remove_pages(mmu_t, pmap_t);
268 void moea64_remove_all(mmu_t, vm_page_t);
269 void moea64_remove_write(mmu_t, vm_page_t);
270 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
271 void moea64_zero_page(mmu_t, vm_page_t);
272 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
273 void moea64_activate(mmu_t, struct thread *);
274 void moea64_deactivate(mmu_t, struct thread *);
275 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
276 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
277 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
278 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
279 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
280 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
281 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
282 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
283 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
284 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
285     void **va);
286 void moea64_scan_init(mmu_t mmu);
287 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
288 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
289 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
290     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
291 
292 
293 static mmu_method_t moea64_methods[] = {
294 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
295 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
296 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
297 	MMUMETHOD(mmu_enter,		moea64_enter),
298 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
299 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
300 	MMUMETHOD(mmu_extract,		moea64_extract),
301 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
302 	MMUMETHOD(mmu_init,		moea64_init),
303 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
304 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
305 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
306 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
307 	MMUMETHOD(mmu_map,     		moea64_map),
308 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
309 	MMUMETHOD(mmu_page_init,	moea64_page_init),
310 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
311 	MMUMETHOD(mmu_pinit,		moea64_pinit),
312 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
313 	MMUMETHOD(mmu_protect,		moea64_protect),
314 	MMUMETHOD(mmu_qenter,		moea64_qenter),
315 	MMUMETHOD(mmu_qremove,		moea64_qremove),
316 	MMUMETHOD(mmu_release,		moea64_release),
317 	MMUMETHOD(mmu_remove,		moea64_remove),
318 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
319 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
320 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
321 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
322 	MMUMETHOD(mmu_unwire,		moea64_unwire),
323 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
324 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
325 	MMUMETHOD(mmu_activate,		moea64_activate),
326 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
327 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
328 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
329 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
330 
331 	/* Internal interfaces */
332 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
333 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
334 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
335 	MMUMETHOD(mmu_kextract,		moea64_kextract),
336 	MMUMETHOD(mmu_kenter,		moea64_kenter),
337 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
338 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
339 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
340 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
341 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
342 
343 	{ 0, 0 }
344 };
345 
346 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
347 
348 static struct pvo_head *
349 vm_page_to_pvoh(vm_page_t m)
350 {
351 
352 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
353 	return (&m->md.mdpg_pvoh);
354 }
355 
356 static struct pvo_entry *
357 alloc_pvo_entry(int bootstrap)
358 {
359 	struct pvo_entry *pvo;
360 
361 	if (!moea64_initialized || bootstrap) {
362 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
363 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
364 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
365 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
366 		}
367 		pvo = &moea64_bpvo_pool[
368 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
369 		bzero(pvo, sizeof(*pvo));
370 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
371 	} else {
372 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
373 		bzero(pvo, sizeof(*pvo));
374 	}
375 
376 	return (pvo);
377 }
378 
379 
380 static void
381 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
382 {
383 	uint64_t vsid;
384 	uint64_t hash;
385 	int shift;
386 
387 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
388 
389 	pvo->pvo_pmap = pmap;
390 	va &= ~ADDR_POFF;
391 	pvo->pvo_vaddr |= va;
392 	vsid = va_to_vsid(pmap, va);
393 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
394 	    | (vsid << 16);
395 
396 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
397 	    ADDR_PIDX_SHFT;
398 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
399 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
400 }
401 
402 static void
403 free_pvo_entry(struct pvo_entry *pvo)
404 {
405 
406 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
407 		uma_zfree(moea64_pvo_zone, pvo);
408 }
409 
410 void
411 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
412 {
413 
414 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
415 	    LPTE_AVPN_MASK;
416 	lpte->pte_hi |= LPTE_VALID;
417 
418 	if (pvo->pvo_vaddr & PVO_LARGE)
419 		lpte->pte_hi |= LPTE_BIG;
420 	if (pvo->pvo_vaddr & PVO_WIRED)
421 		lpte->pte_hi |= LPTE_WIRED;
422 	if (pvo->pvo_vaddr & PVO_HID)
423 		lpte->pte_hi |= LPTE_HID;
424 
425 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
426 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
427 		lpte->pte_lo |= LPTE_BW;
428 	else
429 		lpte->pte_lo |= LPTE_BR;
430 
431 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
432 		lpte->pte_lo |= LPTE_NOEXEC;
433 }
434 
435 static __inline uint64_t
436 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
437 {
438 	uint64_t pte_lo;
439 	int i;
440 
441 	if (ma != VM_MEMATTR_DEFAULT) {
442 		switch (ma) {
443 		case VM_MEMATTR_UNCACHEABLE:
444 			return (LPTE_I | LPTE_G);
445 		case VM_MEMATTR_CACHEABLE:
446 			return (LPTE_M);
447 		case VM_MEMATTR_WRITE_COMBINING:
448 		case VM_MEMATTR_WRITE_BACK:
449 		case VM_MEMATTR_PREFETCHABLE:
450 			return (LPTE_I);
451 		case VM_MEMATTR_WRITE_THROUGH:
452 			return (LPTE_W | LPTE_M);
453 		}
454 	}
455 
456 	/*
457 	 * Assume the page is cache inhibited and access is guarded unless
458 	 * it's in our available memory array.
459 	 */
460 	pte_lo = LPTE_I | LPTE_G;
461 	for (i = 0; i < pregions_sz; i++) {
462 		if ((pa >= pregions[i].mr_start) &&
463 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
464 			pte_lo &= ~(LPTE_I | LPTE_G);
465 			pte_lo |= LPTE_M;
466 			break;
467 		}
468 	}
469 
470 	return pte_lo;
471 }
472 
473 /*
474  * Quick sort callout for comparing memory regions.
475  */
476 static int	om_cmp(const void *a, const void *b);
477 
478 static int
479 om_cmp(const void *a, const void *b)
480 {
481 	const struct	ofw_map *mapa;
482 	const struct	ofw_map *mapb;
483 
484 	mapa = a;
485 	mapb = b;
486 	if (mapa->om_pa < mapb->om_pa)
487 		return (-1);
488 	else if (mapa->om_pa > mapb->om_pa)
489 		return (1);
490 	else
491 		return (0);
492 }
493 
494 static void
495 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
496 {
497 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
498 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
499 	struct pvo_entry *pvo;
500 	register_t	msr;
501 	vm_offset_t	off;
502 	vm_paddr_t	pa_base;
503 	int		i, j;
504 
505 	bzero(translations, sz);
506 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
507 	    sizeof(acells));
508 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
509 		panic("moea64_bootstrap: can't get ofw translations");
510 
511 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
512 	sz /= sizeof(cell_t);
513 	for (i = 0, j = 0; i < sz; j++) {
514 		translations[j].om_va = trans_cells[i++];
515 		translations[j].om_len = trans_cells[i++];
516 		translations[j].om_pa = trans_cells[i++];
517 		if (acells == 2) {
518 			translations[j].om_pa <<= 32;
519 			translations[j].om_pa |= trans_cells[i++];
520 		}
521 		translations[j].om_mode = trans_cells[i++];
522 	}
523 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
524 	    i, sz));
525 
526 	sz = j;
527 	qsort(translations, sz, sizeof (*translations), om_cmp);
528 
529 	for (i = 0; i < sz; i++) {
530 		pa_base = translations[i].om_pa;
531 	      #ifndef __powerpc64__
532 		if ((translations[i].om_pa >> 32) != 0)
533 			panic("OFW translations above 32-bit boundary!");
534 	      #endif
535 
536 		if (pa_base % PAGE_SIZE)
537 			panic("OFW translation not page-aligned (phys)!");
538 		if (translations[i].om_va % PAGE_SIZE)
539 			panic("OFW translation not page-aligned (virt)!");
540 
541 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
542 		    pa_base, translations[i].om_va, translations[i].om_len);
543 
544 		/* Now enter the pages for this mapping */
545 
546 		DISABLE_TRANS(msr);
547 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
548 			/* If this address is direct-mapped, skip remapping */
549 			if (hw_direct_map &&
550 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
551 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
552 				continue;
553 
554 			PMAP_LOCK(kernel_pmap);
555 			pvo = moea64_pvo_find_va(kernel_pmap,
556 			    translations[i].om_va + off);
557 			PMAP_UNLOCK(kernel_pmap);
558 			if (pvo != NULL)
559 				continue;
560 
561 			moea64_kenter(mmup, translations[i].om_va + off,
562 			    pa_base + off);
563 		}
564 		ENABLE_TRANS(msr);
565 	}
566 }
567 
568 #ifdef __powerpc64__
569 static void
570 moea64_probe_large_page(void)
571 {
572 	uint16_t pvr = mfpvr() >> 16;
573 
574 	switch (pvr) {
575 	case IBM970:
576 	case IBM970FX:
577 	case IBM970MP:
578 		powerpc_sync(); isync();
579 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
580 		powerpc_sync(); isync();
581 
582 		/* FALLTHROUGH */
583 	default:
584 		if (moea64_large_page_size == 0) {
585 			moea64_large_page_size = 0x1000000; /* 16 MB */
586 			moea64_large_page_shift = 24;
587 		}
588 	}
589 
590 	moea64_large_page_mask = moea64_large_page_size - 1;
591 }
592 
593 static void
594 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
595 {
596 	struct slb *cache;
597 	struct slb entry;
598 	uint64_t esid, slbe;
599 	uint64_t i;
600 
601 	cache = PCPU_GET(slb);
602 	esid = va >> ADDR_SR_SHFT;
603 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
604 
605 	for (i = 0; i < 64; i++) {
606 		if (cache[i].slbe == (slbe | i))
607 			return;
608 	}
609 
610 	entry.slbe = slbe;
611 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
612 	if (large)
613 		entry.slbv |= SLBV_L;
614 
615 	slb_insert_kernel(entry.slbe, entry.slbv);
616 }
617 #endif
618 
619 static void
620 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
621     vm_offset_t kernelend)
622 {
623 	struct pvo_entry *pvo;
624 	register_t msr;
625 	vm_paddr_t pa;
626 	vm_offset_t size, off;
627 	uint64_t pte_lo;
628 	int i;
629 
630 	if (moea64_large_page_size == 0)
631 		hw_direct_map = 0;
632 
633 	DISABLE_TRANS(msr);
634 	if (hw_direct_map) {
635 		PMAP_LOCK(kernel_pmap);
636 		for (i = 0; i < pregions_sz; i++) {
637 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
638 		     pregions[i].mr_size; pa += moea64_large_page_size) {
639 			pte_lo = LPTE_M;
640 
641 			pvo = alloc_pvo_entry(1 /* bootstrap */);
642 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
643 			init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa));
644 
645 			/*
646 			 * Set memory access as guarded if prefetch within
647 			 * the page could exit the available physmem area.
648 			 */
649 			if (pa & moea64_large_page_mask) {
650 				pa &= moea64_large_page_mask;
651 				pte_lo |= LPTE_G;
652 			}
653 			if (pa + moea64_large_page_size >
654 			    pregions[i].mr_start + pregions[i].mr_size)
655 				pte_lo |= LPTE_G;
656 
657 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
658 			    VM_PROT_EXECUTE;
659 			pvo->pvo_pte.pa = pa | pte_lo;
660 			moea64_pvo_enter(mmup, pvo, NULL);
661 		  }
662 		}
663 		PMAP_UNLOCK(kernel_pmap);
664 	} else {
665 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
666 		off = (vm_offset_t)(moea64_bpvo_pool);
667 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
668 		moea64_kenter(mmup, pa, pa);
669 
670 		/*
671 		 * Map certain important things, like ourselves.
672 		 *
673 		 * NOTE: We do not map the exception vector space. That code is
674 		 * used only in real mode, and leaving it unmapped allows us to
675 		 * catch NULL pointer deferences, instead of making NULL a valid
676 		 * address.
677 		 */
678 
679 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
680 		    pa += PAGE_SIZE)
681 			moea64_kenter(mmup, pa, pa);
682 	}
683 	ENABLE_TRANS(msr);
684 
685 	/*
686 	 * Allow user to override unmapped_buf_allowed for testing.
687 	 * XXXKIB Only direct map implementation was tested.
688 	 */
689 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
690 	    &unmapped_buf_allowed))
691 		unmapped_buf_allowed = hw_direct_map;
692 }
693 
694 void
695 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
696 {
697 	int		i, j;
698 	vm_size_t	physsz, hwphyssz;
699 
700 #ifndef __powerpc64__
701 	/* We don't have a direct map since there is no BAT */
702 	hw_direct_map = 0;
703 
704 	/* Make sure battable is zero, since we have no BAT */
705 	for (i = 0; i < 16; i++) {
706 		battable[i].batu = 0;
707 		battable[i].batl = 0;
708 	}
709 #else
710 	moea64_probe_large_page();
711 
712 	/* Use a direct map if we have large page support */
713 	if (moea64_large_page_size > 0)
714 		hw_direct_map = 1;
715 	else
716 		hw_direct_map = 0;
717 
718 	/* Install trap handlers for SLBs */
719 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
720 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
721 	__syncicache((void *)EXC_DSE, 0x80);
722 	__syncicache((void *)EXC_ISE, 0x80);
723 #endif
724 
725 	/* Get physical memory regions from firmware */
726 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
727 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
728 
729 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
730 		panic("moea64_bootstrap: phys_avail too small");
731 
732 	phys_avail_count = 0;
733 	physsz = 0;
734 	hwphyssz = 0;
735 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
736 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
737 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
738 		    regions[i].mr_start, regions[i].mr_start +
739 		    regions[i].mr_size, regions[i].mr_size);
740 		if (hwphyssz != 0 &&
741 		    (physsz + regions[i].mr_size) >= hwphyssz) {
742 			if (physsz < hwphyssz) {
743 				phys_avail[j] = regions[i].mr_start;
744 				phys_avail[j + 1] = regions[i].mr_start +
745 				    hwphyssz - physsz;
746 				physsz = hwphyssz;
747 				phys_avail_count++;
748 			}
749 			break;
750 		}
751 		phys_avail[j] = regions[i].mr_start;
752 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
753 		phys_avail_count++;
754 		physsz += regions[i].mr_size;
755 	}
756 
757 	/* Check for overlap with the kernel and exception vectors */
758 	for (j = 0; j < 2*phys_avail_count; j+=2) {
759 		if (phys_avail[j] < EXC_LAST)
760 			phys_avail[j] += EXC_LAST;
761 
762 		if (kernelstart >= phys_avail[j] &&
763 		    kernelstart < phys_avail[j+1]) {
764 			if (kernelend < phys_avail[j+1]) {
765 				phys_avail[2*phys_avail_count] =
766 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
767 				phys_avail[2*phys_avail_count + 1] =
768 				    phys_avail[j+1];
769 				phys_avail_count++;
770 			}
771 
772 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
773 		}
774 
775 		if (kernelend >= phys_avail[j] &&
776 		    kernelend < phys_avail[j+1]) {
777 			if (kernelstart > phys_avail[j]) {
778 				phys_avail[2*phys_avail_count] = phys_avail[j];
779 				phys_avail[2*phys_avail_count + 1] =
780 				    kernelstart & ~PAGE_MASK;
781 				phys_avail_count++;
782 			}
783 
784 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
785 		}
786 	}
787 
788 	physmem = btoc(physsz);
789 
790 #ifdef PTEGCOUNT
791 	moea64_pteg_count = PTEGCOUNT;
792 #else
793 	moea64_pteg_count = 0x1000;
794 
795 	while (moea64_pteg_count < physmem)
796 		moea64_pteg_count <<= 1;
797 
798 	moea64_pteg_count >>= 1;
799 #endif /* PTEGCOUNT */
800 }
801 
802 void
803 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
804 {
805 	int		i;
806 
807 	/*
808 	 * Set PTEG mask
809 	 */
810 	moea64_pteg_mask = moea64_pteg_count - 1;
811 
812 	/*
813 	 * Initialize SLB table lock and page locks
814 	 */
815 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
816 	for (i = 0; i < PV_LOCK_COUNT; i++)
817 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
818 
819 	/*
820 	 * Initialise the bootstrap pvo pool.
821 	 */
822 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
823 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
824 	moea64_bpvo_pool_index = 0;
825 
826 	/*
827 	 * Make sure kernel vsid is allocated as well as VSID 0.
828 	 */
829 	#ifndef __powerpc64__
830 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
831 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
832 	moea64_vsid_bitmap[0] |= 1;
833 	#endif
834 
835 	/*
836 	 * Initialize the kernel pmap (which is statically allocated).
837 	 */
838 	#ifdef __powerpc64__
839 	for (i = 0; i < 64; i++) {
840 		pcpup->pc_slb[i].slbv = 0;
841 		pcpup->pc_slb[i].slbe = 0;
842 	}
843 	#else
844 	for (i = 0; i < 16; i++)
845 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
846 	#endif
847 
848 	kernel_pmap->pmap_phys = kernel_pmap;
849 	CPU_FILL(&kernel_pmap->pm_active);
850 	RB_INIT(&kernel_pmap->pmap_pvo);
851 
852 	PMAP_LOCK_INIT(kernel_pmap);
853 
854 	/*
855 	 * Now map in all the other buffers we allocated earlier
856 	 */
857 
858 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
859 }
860 
861 void
862 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
863 {
864 	ihandle_t	mmui;
865 	phandle_t	chosen;
866 	phandle_t	mmu;
867 	ssize_t		sz;
868 	int		i;
869 	vm_offset_t	pa, va;
870 	void		*dpcpu;
871 
872 	/*
873 	 * Set up the Open Firmware pmap and add its mappings if not in real
874 	 * mode.
875 	 */
876 
877 	chosen = OF_finddevice("/chosen");
878 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
879 		mmu = OF_instance_to_package(mmui);
880 		if (mmu == -1 ||
881 		    (sz = OF_getproplen(mmu, "translations")) == -1)
882 			sz = 0;
883 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
884 			panic("moea64_bootstrap: too many ofw translations");
885 
886 		if (sz > 0)
887 			moea64_add_ofw_mappings(mmup, mmu, sz);
888 	}
889 
890 	/*
891 	 * Calculate the last available physical address.
892 	 */
893 	Maxmem = 0;
894 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
895 		Maxmem = max(Maxmem, powerpc_btop(phys_avail[i + 1]));
896 
897 	/*
898 	 * Initialize MMU and remap early physical mappings
899 	 */
900 	MMU_CPU_BOOTSTRAP(mmup,0);
901 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
902 	pmap_bootstrapped++;
903 	bs_remap_earlyboot();
904 
905 	/*
906 	 * Set the start and end of kva.
907 	 */
908 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
909 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
910 
911 	/*
912 	 * Map the entire KVA range into the SLB. We must not fault there.
913 	 */
914 	#ifdef __powerpc64__
915 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
916 		moea64_bootstrap_slb_prefault(va, 0);
917 	#endif
918 
919 	/*
920 	 * Figure out how far we can extend virtual_end into segment 16
921 	 * without running into existing mappings. Segment 16 is guaranteed
922 	 * to contain neither RAM nor devices (at least on Apple hardware),
923 	 * but will generally contain some OFW mappings we should not
924 	 * step on.
925 	 */
926 
927 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
928 	PMAP_LOCK(kernel_pmap);
929 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
930 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
931 		virtual_end += PAGE_SIZE;
932 	PMAP_UNLOCK(kernel_pmap);
933 	#endif
934 
935 	/*
936 	 * Allocate a kernel stack with a guard page for thread0 and map it
937 	 * into the kernel page map.
938 	 */
939 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
940 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
941 	virtual_avail = va + kstack_pages * PAGE_SIZE;
942 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
943 	thread0.td_kstack = va;
944 	thread0.td_kstack_pages = kstack_pages;
945 	for (i = 0; i < kstack_pages; i++) {
946 		moea64_kenter(mmup, va, pa);
947 		pa += PAGE_SIZE;
948 		va += PAGE_SIZE;
949 	}
950 
951 	/*
952 	 * Allocate virtual address space for the message buffer.
953 	 */
954 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
955 	msgbufp = (struct msgbuf *)virtual_avail;
956 	va = virtual_avail;
957 	virtual_avail += round_page(msgbufsize);
958 	while (va < virtual_avail) {
959 		moea64_kenter(mmup, va, pa);
960 		pa += PAGE_SIZE;
961 		va += PAGE_SIZE;
962 	}
963 
964 	/*
965 	 * Allocate virtual address space for the dynamic percpu area.
966 	 */
967 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
968 	dpcpu = (void *)virtual_avail;
969 	va = virtual_avail;
970 	virtual_avail += DPCPU_SIZE;
971 	while (va < virtual_avail) {
972 		moea64_kenter(mmup, va, pa);
973 		pa += PAGE_SIZE;
974 		va += PAGE_SIZE;
975 	}
976 	dpcpu_init(dpcpu, curcpu);
977 
978 	/*
979 	 * Allocate some things for page zeroing. We put this directly
980 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
981 	 * of the PVO book-keeping or other parts of the VM system
982 	 * from even knowing that this hack exists.
983 	 */
984 
985 	if (!hw_direct_map) {
986 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
987 		    MTX_DEF);
988 		for (i = 0; i < 2; i++) {
989 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
990 			virtual_end -= PAGE_SIZE;
991 
992 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
993 
994 			PMAP_LOCK(kernel_pmap);
995 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
996 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
997 			PMAP_UNLOCK(kernel_pmap);
998 		}
999 	}
1000 }
1001 
1002 static void
1003 moea64_pmap_init_qpages(void)
1004 {
1005 	struct pcpu *pc;
1006 	int i;
1007 
1008 	if (hw_direct_map)
1009 		return;
1010 
1011 	CPU_FOREACH(i) {
1012 		pc = pcpu_find(i);
1013 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1014 		if (pc->pc_qmap_addr == 0)
1015 			panic("pmap_init_qpages: unable to allocate KVA");
1016 		PMAP_LOCK(kernel_pmap);
1017 		pc->pc_qmap_pvo = moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1018 		PMAP_UNLOCK(kernel_pmap);
1019 		mtx_init(&pc->pc_qmap_lock, "qmap lock", NULL, MTX_DEF);
1020 	}
1021 }
1022 
1023 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1024 
1025 /*
1026  * Activate a user pmap.  This mostly involves setting some non-CPU
1027  * state.
1028  */
1029 void
1030 moea64_activate(mmu_t mmu, struct thread *td)
1031 {
1032 	pmap_t	pm;
1033 
1034 	pm = &td->td_proc->p_vmspace->vm_pmap;
1035 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1036 
1037 	#ifdef __powerpc64__
1038 	PCPU_SET(userslb, pm->pm_slb);
1039 	__asm __volatile("slbmte %0, %1; isync" ::
1040 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1041 	#else
1042 	PCPU_SET(curpmap, pm->pmap_phys);
1043 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1044 	#endif
1045 }
1046 
1047 void
1048 moea64_deactivate(mmu_t mmu, struct thread *td)
1049 {
1050 	pmap_t	pm;
1051 
1052 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1053 
1054 	pm = &td->td_proc->p_vmspace->vm_pmap;
1055 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1056 	#ifdef __powerpc64__
1057 	PCPU_SET(userslb, NULL);
1058 	#else
1059 	PCPU_SET(curpmap, NULL);
1060 	#endif
1061 }
1062 
1063 void
1064 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1065 {
1066 	struct	pvo_entry key, *pvo;
1067 	vm_page_t m;
1068 	int64_t	refchg;
1069 
1070 	key.pvo_vaddr = sva;
1071 	PMAP_LOCK(pm);
1072 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1073 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1074 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1075 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1076 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1077 			    pvo);
1078 		pvo->pvo_vaddr &= ~PVO_WIRED;
1079 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1080 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1081 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1082 			if (refchg < 0)
1083 				refchg = LPTE_CHG;
1084 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1085 
1086 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1087 			if (refchg & LPTE_CHG)
1088 				vm_page_dirty(m);
1089 			if (refchg & LPTE_REF)
1090 				vm_page_aflag_set(m, PGA_REFERENCED);
1091 		}
1092 		pm->pm_stats.wired_count--;
1093 	}
1094 	PMAP_UNLOCK(pm);
1095 }
1096 
1097 /*
1098  * This goes through and sets the physical address of our
1099  * special scratch PTE to the PA we want to zero or copy. Because
1100  * of locking issues (this can get called in pvo_enter() by
1101  * the UMA allocator), we can't use most other utility functions here
1102  */
1103 
1104 static __inline
1105 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) {
1106 
1107 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1108 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1109 
1110 	moea64_scratchpage_pvo[which]->pvo_pte.pa =
1111 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1112 	MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1113 	    MOEA64_PTE_INVALIDATE);
1114 	isync();
1115 }
1116 
1117 void
1118 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1119 {
1120 	vm_offset_t	dst;
1121 	vm_offset_t	src;
1122 
1123 	dst = VM_PAGE_TO_PHYS(mdst);
1124 	src = VM_PAGE_TO_PHYS(msrc);
1125 
1126 	if (hw_direct_map) {
1127 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1128 		    PAGE_SIZE);
1129 	} else {
1130 		mtx_lock(&moea64_scratchpage_mtx);
1131 
1132 		moea64_set_scratchpage_pa(mmu, 0, src);
1133 		moea64_set_scratchpage_pa(mmu, 1, dst);
1134 
1135 		bcopy((void *)moea64_scratchpage_va[0],
1136 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1137 
1138 		mtx_unlock(&moea64_scratchpage_mtx);
1139 	}
1140 }
1141 
1142 static inline void
1143 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1144     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1145 {
1146 	void *a_cp, *b_cp;
1147 	vm_offset_t a_pg_offset, b_pg_offset;
1148 	int cnt;
1149 
1150 	while (xfersize > 0) {
1151 		a_pg_offset = a_offset & PAGE_MASK;
1152 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1153 		a_cp = (char *)PHYS_TO_DMAP(
1154 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1155 		    a_pg_offset;
1156 		b_pg_offset = b_offset & PAGE_MASK;
1157 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1158 		b_cp = (char *)PHYS_TO_DMAP(
1159 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1160 		    b_pg_offset;
1161 		bcopy(a_cp, b_cp, cnt);
1162 		a_offset += cnt;
1163 		b_offset += cnt;
1164 		xfersize -= cnt;
1165 	}
1166 }
1167 
1168 static inline void
1169 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1170     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1171 {
1172 	void *a_cp, *b_cp;
1173 	vm_offset_t a_pg_offset, b_pg_offset;
1174 	int cnt;
1175 
1176 	mtx_lock(&moea64_scratchpage_mtx);
1177 	while (xfersize > 0) {
1178 		a_pg_offset = a_offset & PAGE_MASK;
1179 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1180 		moea64_set_scratchpage_pa(mmu, 0,
1181 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1182 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1183 		b_pg_offset = b_offset & PAGE_MASK;
1184 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1185 		moea64_set_scratchpage_pa(mmu, 1,
1186 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1187 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1188 		bcopy(a_cp, b_cp, cnt);
1189 		a_offset += cnt;
1190 		b_offset += cnt;
1191 		xfersize -= cnt;
1192 	}
1193 	mtx_unlock(&moea64_scratchpage_mtx);
1194 }
1195 
1196 void
1197 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1198     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1199 {
1200 
1201 	if (hw_direct_map) {
1202 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1203 		    xfersize);
1204 	} else {
1205 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1206 		    xfersize);
1207 	}
1208 }
1209 
1210 void
1211 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1212 {
1213 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1214 
1215 	if (size + off > PAGE_SIZE)
1216 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1217 
1218 	if (hw_direct_map) {
1219 		bzero((caddr_t)PHYS_TO_DMAP(pa) + off, size);
1220 	} else {
1221 		mtx_lock(&moea64_scratchpage_mtx);
1222 		moea64_set_scratchpage_pa(mmu, 0, pa);
1223 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1224 		mtx_unlock(&moea64_scratchpage_mtx);
1225 	}
1226 }
1227 
1228 /*
1229  * Zero a page of physical memory by temporarily mapping it
1230  */
1231 void
1232 moea64_zero_page(mmu_t mmu, vm_page_t m)
1233 {
1234 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1235 	vm_offset_t va, off;
1236 
1237 	if (!hw_direct_map) {
1238 		mtx_lock(&moea64_scratchpage_mtx);
1239 
1240 		moea64_set_scratchpage_pa(mmu, 0, pa);
1241 		va = moea64_scratchpage_va[0];
1242 	} else {
1243 		va = PHYS_TO_DMAP(pa);
1244 	}
1245 
1246 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1247 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1248 
1249 	if (!hw_direct_map)
1250 		mtx_unlock(&moea64_scratchpage_mtx);
1251 }
1252 
1253 vm_offset_t
1254 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1255 {
1256 	struct pvo_entry *pvo;
1257 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1258 
1259 	if (hw_direct_map)
1260 		return (PHYS_TO_DMAP(pa));
1261 
1262 	/*
1263  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1264 	 * a critical section and access the PCPU data like on i386.
1265 	 * Instead, pin the thread and grab the PCPU lock to prevent
1266 	 * a preempting thread from using the same PCPU data.
1267 	 */
1268 	sched_pin();
1269 
1270 	mtx_assert(PCPU_PTR(qmap_lock), MA_NOTOWNED);
1271 	pvo = PCPU_GET(qmap_pvo);
1272 
1273 	mtx_lock(PCPU_PTR(qmap_lock));
1274 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1275 	    (uint64_t)pa;
1276 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1277 	isync();
1278 
1279 	return (PCPU_GET(qmap_addr));
1280 }
1281 
1282 void
1283 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1284 {
1285 	if (hw_direct_map)
1286 		return;
1287 
1288 	mtx_assert(PCPU_PTR(qmap_lock), MA_OWNED);
1289 	KASSERT(PCPU_GET(qmap_addr) == addr,
1290 	    ("moea64_quick_remove_page: invalid address"));
1291 	mtx_unlock(PCPU_PTR(qmap_lock));
1292 	sched_unpin();
1293 }
1294 
1295 /*
1296  * Map the given physical page at the specified virtual address in the
1297  * target pmap with the protection requested.  If specified the page
1298  * will be wired down.
1299  */
1300 
1301 int
1302 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1303     vm_prot_t prot, u_int flags, int8_t psind)
1304 {
1305 	struct		pvo_entry *pvo, *oldpvo;
1306 	struct		pvo_head *pvo_head;
1307 	uint64_t	pte_lo;
1308 	int		error;
1309 
1310 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1311 		VM_OBJECT_ASSERT_LOCKED(m->object);
1312 
1313 	pvo = alloc_pvo_entry(0);
1314 	pvo->pvo_pmap = NULL; /* to be filled in later */
1315 	pvo->pvo_pte.prot = prot;
1316 
1317 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1318 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1319 
1320 	if ((flags & PMAP_ENTER_WIRED) != 0)
1321 		pvo->pvo_vaddr |= PVO_WIRED;
1322 
1323 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1324 		pvo_head = NULL;
1325 	} else {
1326 		pvo_head = &m->md.mdpg_pvoh;
1327 		pvo->pvo_vaddr |= PVO_MANAGED;
1328 	}
1329 
1330 	for (;;) {
1331 		PV_PAGE_LOCK(m);
1332 		PMAP_LOCK(pmap);
1333 		if (pvo->pvo_pmap == NULL)
1334 			init_pvo_entry(pvo, pmap, va);
1335 		if (prot & VM_PROT_WRITE)
1336 			if (pmap_bootstrapped &&
1337 			    (m->oflags & VPO_UNMANAGED) == 0)
1338 				vm_page_aflag_set(m, PGA_WRITEABLE);
1339 
1340 		oldpvo = moea64_pvo_find_va(pmap, va);
1341 		if (oldpvo != NULL) {
1342 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1343 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1344 			    oldpvo->pvo_pte.prot == prot) {
1345 				/* Identical mapping already exists */
1346 				error = 0;
1347 
1348 				/* If not in page table, reinsert it */
1349 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1350 					moea64_pte_overflow--;
1351 					MOEA64_PTE_INSERT(mmu, oldpvo);
1352 				}
1353 
1354 				/* Then just clean up and go home */
1355 				PV_PAGE_UNLOCK(m);
1356 				PMAP_UNLOCK(pmap);
1357 				free_pvo_entry(pvo);
1358 				break;
1359 			}
1360 
1361 			/* Otherwise, need to kill it first */
1362 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1363 			    "mapping does not match new mapping"));
1364 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1365 		}
1366 		error = moea64_pvo_enter(mmu, pvo, pvo_head);
1367 		PV_PAGE_UNLOCK(m);
1368 		PMAP_UNLOCK(pmap);
1369 
1370 		/* Free any dead pages */
1371 		if (oldpvo != NULL) {
1372 			PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1373 			moea64_pvo_remove_from_page(mmu, oldpvo);
1374 			PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1375 			free_pvo_entry(oldpvo);
1376 		}
1377 
1378 		if (error != ENOMEM)
1379 			break;
1380 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1381 			return (KERN_RESOURCE_SHORTAGE);
1382 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1383 		VM_WAIT;
1384 	}
1385 
1386 	/*
1387 	 * Flush the page from the instruction cache if this page is
1388 	 * mapped executable and cacheable.
1389 	 */
1390 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1391 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1392 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1393 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1394 	}
1395 	return (KERN_SUCCESS);
1396 }
1397 
1398 static void
1399 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1400     vm_size_t sz)
1401 {
1402 
1403 	/*
1404 	 * This is much trickier than on older systems because
1405 	 * we can't sync the icache on physical addresses directly
1406 	 * without a direct map. Instead we check a couple of cases
1407 	 * where the memory is already mapped in and, failing that,
1408 	 * use the same trick we use for page zeroing to create
1409 	 * a temporary mapping for this physical address.
1410 	 */
1411 
1412 	if (!pmap_bootstrapped) {
1413 		/*
1414 		 * If PMAP is not bootstrapped, we are likely to be
1415 		 * in real mode.
1416 		 */
1417 		__syncicache((void *)pa, sz);
1418 	} else if (pmap == kernel_pmap) {
1419 		__syncicache((void *)va, sz);
1420 	} else if (hw_direct_map) {
1421 		__syncicache((void *)PHYS_TO_DMAP(pa), sz);
1422 	} else {
1423 		/* Use the scratch page to set up a temp mapping */
1424 
1425 		mtx_lock(&moea64_scratchpage_mtx);
1426 
1427 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1428 		__syncicache((void *)(moea64_scratchpage_va[1] +
1429 		    (va & ADDR_POFF)), sz);
1430 
1431 		mtx_unlock(&moea64_scratchpage_mtx);
1432 	}
1433 }
1434 
1435 /*
1436  * Maps a sequence of resident pages belonging to the same object.
1437  * The sequence begins with the given page m_start.  This page is
1438  * mapped at the given virtual address start.  Each subsequent page is
1439  * mapped at a virtual address that is offset from start by the same
1440  * amount as the page is offset from m_start within the object.  The
1441  * last page in the sequence is the page with the largest offset from
1442  * m_start that can be mapped at a virtual address less than the given
1443  * virtual address end.  Not every virtual page between start and end
1444  * is mapped; only those for which a resident page exists with the
1445  * corresponding offset from m_start are mapped.
1446  */
1447 void
1448 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1449     vm_page_t m_start, vm_prot_t prot)
1450 {
1451 	vm_page_t m;
1452 	vm_pindex_t diff, psize;
1453 
1454 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1455 
1456 	psize = atop(end - start);
1457 	m = m_start;
1458 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1459 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1460 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1461 		m = TAILQ_NEXT(m, listq);
1462 	}
1463 }
1464 
1465 void
1466 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1467     vm_prot_t prot)
1468 {
1469 
1470 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1471 	    PMAP_ENTER_NOSLEEP, 0);
1472 }
1473 
1474 vm_paddr_t
1475 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1476 {
1477 	struct	pvo_entry *pvo;
1478 	vm_paddr_t pa;
1479 
1480 	PMAP_LOCK(pm);
1481 	pvo = moea64_pvo_find_va(pm, va);
1482 	if (pvo == NULL)
1483 		pa = 0;
1484 	else
1485 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1486 	PMAP_UNLOCK(pm);
1487 
1488 	return (pa);
1489 }
1490 
1491 /*
1492  * Atomically extract and hold the physical page with the given
1493  * pmap and virtual address pair if that mapping permits the given
1494  * protection.
1495  */
1496 vm_page_t
1497 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1498 {
1499 	struct	pvo_entry *pvo;
1500 	vm_page_t m;
1501         vm_paddr_t pa;
1502 
1503 	m = NULL;
1504 	pa = 0;
1505 	PMAP_LOCK(pmap);
1506 retry:
1507 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1508 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1509 		if (vm_page_pa_tryrelock(pmap,
1510 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1511 			goto retry;
1512 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1513 		vm_page_hold(m);
1514 	}
1515 	PA_UNLOCK_COND(pa);
1516 	PMAP_UNLOCK(pmap);
1517 	return (m);
1518 }
1519 
1520 static mmu_t installed_mmu;
1521 
1522 static void *
1523 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1524     uint8_t *flags, int wait)
1525 {
1526 	struct pvo_entry *pvo;
1527         vm_offset_t va;
1528         vm_page_t m;
1529         int needed_lock;
1530 
1531 	/*
1532 	 * This entire routine is a horrible hack to avoid bothering kmem
1533 	 * for new KVA addresses. Because this can get called from inside
1534 	 * kmem allocation routines, calling kmem for a new address here
1535 	 * can lead to multiply locking non-recursive mutexes.
1536 	 */
1537 
1538 	*flags = UMA_SLAB_PRIV;
1539 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1540 
1541 	m = vm_page_alloc_domain(NULL, 0, domain,
1542 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1543 	if (m == NULL)
1544 		return (NULL);
1545 
1546 	va = VM_PAGE_TO_PHYS(m);
1547 
1548 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1549 
1550 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1551 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1552 
1553 	if (needed_lock)
1554 		PMAP_LOCK(kernel_pmap);
1555 
1556 	init_pvo_entry(pvo, kernel_pmap, va);
1557 	pvo->pvo_vaddr |= PVO_WIRED;
1558 
1559 	moea64_pvo_enter(installed_mmu, pvo, NULL);
1560 
1561 	if (needed_lock)
1562 		PMAP_UNLOCK(kernel_pmap);
1563 
1564 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1565                 bzero((void *)va, PAGE_SIZE);
1566 
1567 	return (void *)va;
1568 }
1569 
1570 extern int elf32_nxstack;
1571 
1572 void
1573 moea64_init(mmu_t mmu)
1574 {
1575 
1576 	CTR0(KTR_PMAP, "moea64_init");
1577 
1578 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1579 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1580 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1581 
1582 	if (!hw_direct_map) {
1583 		installed_mmu = mmu;
1584 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1585 	}
1586 
1587 #ifdef COMPAT_FREEBSD32
1588 	elf32_nxstack = 1;
1589 #endif
1590 
1591 	moea64_initialized = TRUE;
1592 }
1593 
1594 boolean_t
1595 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1596 {
1597 
1598 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1599 	    ("moea64_is_referenced: page %p is not managed", m));
1600 
1601 	return (moea64_query_bit(mmu, m, LPTE_REF));
1602 }
1603 
1604 boolean_t
1605 moea64_is_modified(mmu_t mmu, vm_page_t m)
1606 {
1607 
1608 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1609 	    ("moea64_is_modified: page %p is not managed", m));
1610 
1611 	/*
1612 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1613 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1614 	 * is clear, no PTEs can have LPTE_CHG set.
1615 	 */
1616 	VM_OBJECT_ASSERT_LOCKED(m->object);
1617 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1618 		return (FALSE);
1619 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1620 }
1621 
1622 boolean_t
1623 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1624 {
1625 	struct pvo_entry *pvo;
1626 	boolean_t rv = TRUE;
1627 
1628 	PMAP_LOCK(pmap);
1629 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1630 	if (pvo != NULL)
1631 		rv = FALSE;
1632 	PMAP_UNLOCK(pmap);
1633 	return (rv);
1634 }
1635 
1636 void
1637 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1638 {
1639 
1640 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1641 	    ("moea64_clear_modify: page %p is not managed", m));
1642 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1643 	KASSERT(!vm_page_xbusied(m),
1644 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1645 
1646 	/*
1647 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1648 	 * set.  If the object containing the page is locked and the page is
1649 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1650 	 */
1651 	if ((m->aflags & PGA_WRITEABLE) == 0)
1652 		return;
1653 	moea64_clear_bit(mmu, m, LPTE_CHG);
1654 }
1655 
1656 /*
1657  * Clear the write and modified bits in each of the given page's mappings.
1658  */
1659 void
1660 moea64_remove_write(mmu_t mmu, vm_page_t m)
1661 {
1662 	struct	pvo_entry *pvo;
1663 	int64_t	refchg, ret;
1664 	pmap_t	pmap;
1665 
1666 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1667 	    ("moea64_remove_write: page %p is not managed", m));
1668 
1669 	/*
1670 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1671 	 * set by another thread while the object is locked.  Thus,
1672 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1673 	 */
1674 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1675 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1676 		return;
1677 	powerpc_sync();
1678 	PV_PAGE_LOCK(m);
1679 	refchg = 0;
1680 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1681 		pmap = pvo->pvo_pmap;
1682 		PMAP_LOCK(pmap);
1683 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1684 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1685 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1686 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1687 			    MOEA64_PTE_PROT_UPDATE);
1688 			if (ret < 0)
1689 				ret = LPTE_CHG;
1690 			refchg |= ret;
1691 			if (pvo->pvo_pmap == kernel_pmap)
1692 				isync();
1693 		}
1694 		PMAP_UNLOCK(pmap);
1695 	}
1696 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1697 		vm_page_dirty(m);
1698 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1699 	PV_PAGE_UNLOCK(m);
1700 }
1701 
1702 /*
1703  *	moea64_ts_referenced:
1704  *
1705  *	Return a count of reference bits for a page, clearing those bits.
1706  *	It is not necessary for every reference bit to be cleared, but it
1707  *	is necessary that 0 only be returned when there are truly no
1708  *	reference bits set.
1709  *
1710  *	XXX: The exact number of bits to check and clear is a matter that
1711  *	should be tested and standardized at some point in the future for
1712  *	optimal aging of shared pages.
1713  */
1714 int
1715 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1716 {
1717 
1718 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1719 	    ("moea64_ts_referenced: page %p is not managed", m));
1720 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1721 }
1722 
1723 /*
1724  * Modify the WIMG settings of all mappings for a page.
1725  */
1726 void
1727 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1728 {
1729 	struct	pvo_entry *pvo;
1730 	int64_t	refchg;
1731 	pmap_t	pmap;
1732 	uint64_t lo;
1733 
1734 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1735 		m->md.mdpg_cache_attrs = ma;
1736 		return;
1737 	}
1738 
1739 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1740 
1741 	PV_PAGE_LOCK(m);
1742 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1743 		pmap = pvo->pvo_pmap;
1744 		PMAP_LOCK(pmap);
1745 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1746 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1747 			pvo->pvo_pte.pa |= lo;
1748 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1749 			    MOEA64_PTE_INVALIDATE);
1750 			if (refchg < 0)
1751 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1752 				    LPTE_CHG : 0;
1753 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1754 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1755 				refchg |=
1756 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1757 				if (refchg & LPTE_CHG)
1758 					vm_page_dirty(m);
1759 				if (refchg & LPTE_REF)
1760 					vm_page_aflag_set(m, PGA_REFERENCED);
1761 			}
1762 			if (pvo->pvo_pmap == kernel_pmap)
1763 				isync();
1764 		}
1765 		PMAP_UNLOCK(pmap);
1766 	}
1767 	m->md.mdpg_cache_attrs = ma;
1768 	PV_PAGE_UNLOCK(m);
1769 }
1770 
1771 /*
1772  * Map a wired page into kernel virtual address space.
1773  */
1774 void
1775 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1776 {
1777 	int		error;
1778 	struct pvo_entry *pvo, *oldpvo;
1779 
1780 	pvo = alloc_pvo_entry(0);
1781 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1782 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1783 	pvo->pvo_vaddr |= PVO_WIRED;
1784 
1785 	PMAP_LOCK(kernel_pmap);
1786 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1787 	if (oldpvo != NULL)
1788 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1789 	init_pvo_entry(pvo, kernel_pmap, va);
1790 	error = moea64_pvo_enter(mmu, pvo, NULL);
1791 	PMAP_UNLOCK(kernel_pmap);
1792 
1793 	/* Free any dead pages */
1794 	if (oldpvo != NULL) {
1795 		PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1796 		moea64_pvo_remove_from_page(mmu, oldpvo);
1797 		PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1798 		free_pvo_entry(oldpvo);
1799 	}
1800 
1801 	if (error != 0 && error != ENOENT)
1802 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1803 		    pa, error);
1804 }
1805 
1806 void
1807 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1808 {
1809 
1810 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1811 }
1812 
1813 /*
1814  * Extract the physical page address associated with the given kernel virtual
1815  * address.
1816  */
1817 vm_paddr_t
1818 moea64_kextract(mmu_t mmu, vm_offset_t va)
1819 {
1820 	struct		pvo_entry *pvo;
1821 	vm_paddr_t pa;
1822 
1823 	/*
1824 	 * Shortcut the direct-mapped case when applicable.  We never put
1825 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1826 	 */
1827 	if (va < VM_MIN_KERNEL_ADDRESS)
1828 		return (va);
1829 
1830 	PMAP_LOCK(kernel_pmap);
1831 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1832 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1833 	    va));
1834 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1835 	PMAP_UNLOCK(kernel_pmap);
1836 	return (pa);
1837 }
1838 
1839 /*
1840  * Remove a wired page from kernel virtual address space.
1841  */
1842 void
1843 moea64_kremove(mmu_t mmu, vm_offset_t va)
1844 {
1845 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1846 }
1847 
1848 /*
1849  * Provide a kernel pointer corresponding to a given userland pointer.
1850  * The returned pointer is valid until the next time this function is
1851  * called in this thread. This is used internally in copyin/copyout.
1852  */
1853 static int
1854 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1855     void **kaddr, size_t ulen, size_t *klen)
1856 {
1857 	size_t l;
1858 #ifdef __powerpc64__
1859 	struct slb *slb;
1860 #endif
1861 	register_t slbv;
1862 
1863 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1864 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1865 	if (l > ulen)
1866 		l = ulen;
1867 	if (klen)
1868 		*klen = l;
1869 	else if (l != ulen)
1870 		return (EFAULT);
1871 
1872 #ifdef __powerpc64__
1873 	/* Try lockless look-up first */
1874 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1875 
1876 	if (slb == NULL) {
1877 		/* If it isn't there, we need to pre-fault the VSID */
1878 		PMAP_LOCK(pm);
1879 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1880 		PMAP_UNLOCK(pm);
1881 	} else {
1882 		slbv = slb->slbv;
1883 	}
1884 
1885 	/* Mark segment no-execute */
1886 	slbv |= SLBV_N;
1887 #else
1888 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1889 
1890 	/* Mark segment no-execute */
1891 	slbv |= SR_N;
1892 #endif
1893 
1894 	/* If we have already set this VSID, we can just return */
1895 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1896 		return (0);
1897 
1898 	__asm __volatile("isync");
1899 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1900 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1901 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1902 #ifdef __powerpc64__
1903 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1904 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
1905 #else
1906 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
1907 #endif
1908 
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Map a range of physical addresses into kernel virtual address space.
1914  *
1915  * The value passed in *virt is a suggested virtual address for the mapping.
1916  * Architectures which can support a direct-mapped physical to virtual region
1917  * can return the appropriate address within that region, leaving '*virt'
1918  * unchanged.  Other architectures should map the pages starting at '*virt' and
1919  * update '*virt' with the first usable address after the mapped region.
1920  */
1921 vm_offset_t
1922 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1923     vm_paddr_t pa_end, int prot)
1924 {
1925 	vm_offset_t	sva, va;
1926 
1927 	if (hw_direct_map) {
1928 		/*
1929 		 * Check if every page in the region is covered by the direct
1930 		 * map. The direct map covers all of physical memory. Use
1931 		 * moea64_calc_wimg() as a shortcut to see if the page is in
1932 		 * physical memory as a way to see if the direct map covers it.
1933 		 */
1934 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1935 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1936 				break;
1937 		if (va == pa_end)
1938 			return (PHYS_TO_DMAP(pa_start));
1939 	}
1940 	sva = *virt;
1941 	va = sva;
1942 	/* XXX respect prot argument */
1943 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1944 		moea64_kenter(mmu, va, pa_start);
1945 	*virt = va;
1946 
1947 	return (sva);
1948 }
1949 
1950 /*
1951  * Returns true if the pmap's pv is one of the first
1952  * 16 pvs linked to from this page.  This count may
1953  * be changed upwards or downwards in the future; it
1954  * is only necessary that true be returned for a small
1955  * subset of pmaps for proper page aging.
1956  */
1957 boolean_t
1958 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1959 {
1960         int loops;
1961 	struct pvo_entry *pvo;
1962 	boolean_t rv;
1963 
1964 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1965 	    ("moea64_page_exists_quick: page %p is not managed", m));
1966 	loops = 0;
1967 	rv = FALSE;
1968 	PV_PAGE_LOCK(m);
1969 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1970 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
1971 			rv = TRUE;
1972 			break;
1973 		}
1974 		if (++loops >= 16)
1975 			break;
1976 	}
1977 	PV_PAGE_UNLOCK(m);
1978 	return (rv);
1979 }
1980 
1981 void
1982 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
1983 {
1984 
1985 	m->md.mdpg_attrs = 0;
1986 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1987 	LIST_INIT(&m->md.mdpg_pvoh);
1988 }
1989 
1990 /*
1991  * Return the number of managed mappings to the given physical page
1992  * that are wired.
1993  */
1994 int
1995 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1996 {
1997 	struct pvo_entry *pvo;
1998 	int count;
1999 
2000 	count = 0;
2001 	if ((m->oflags & VPO_UNMANAGED) != 0)
2002 		return (count);
2003 	PV_PAGE_LOCK(m);
2004 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2005 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2006 			count++;
2007 	PV_PAGE_UNLOCK(m);
2008 	return (count);
2009 }
2010 
2011 static uintptr_t	moea64_vsidcontext;
2012 
2013 uintptr_t
2014 moea64_get_unique_vsid(void) {
2015 	u_int entropy;
2016 	register_t hash;
2017 	uint32_t mask;
2018 	int i;
2019 
2020 	entropy = 0;
2021 	__asm __volatile("mftb %0" : "=r"(entropy));
2022 
2023 	mtx_lock(&moea64_slb_mutex);
2024 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2025 		u_int	n;
2026 
2027 		/*
2028 		 * Create a new value by mutiplying by a prime and adding in
2029 		 * entropy from the timebase register.  This is to make the
2030 		 * VSID more random so that the PT hash function collides
2031 		 * less often.  (Note that the prime casues gcc to do shifts
2032 		 * instead of a multiply.)
2033 		 */
2034 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2035 		hash = moea64_vsidcontext & (NVSIDS - 1);
2036 		if (hash == 0)		/* 0 is special, avoid it */
2037 			continue;
2038 		n = hash >> 5;
2039 		mask = 1 << (hash & (VSID_NBPW - 1));
2040 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2041 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2042 			/* anything free in this bucket? */
2043 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2044 				entropy = (moea64_vsidcontext >> 20);
2045 				continue;
2046 			}
2047 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2048 			mask = 1 << i;
2049 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2050 			hash |= i;
2051 		}
2052 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2053 			continue;
2054 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2055 		    ("Allocating in-use VSID %#zx\n", hash));
2056 		moea64_vsid_bitmap[n] |= mask;
2057 		mtx_unlock(&moea64_slb_mutex);
2058 		return (hash);
2059 	}
2060 
2061 	mtx_unlock(&moea64_slb_mutex);
2062 	panic("%s: out of segments",__func__);
2063 }
2064 
2065 #ifdef __powerpc64__
2066 void
2067 moea64_pinit(mmu_t mmu, pmap_t pmap)
2068 {
2069 
2070 	RB_INIT(&pmap->pmap_pvo);
2071 
2072 	pmap->pm_slb_tree_root = slb_alloc_tree();
2073 	pmap->pm_slb = slb_alloc_user_cache();
2074 	pmap->pm_slb_len = 0;
2075 }
2076 #else
2077 void
2078 moea64_pinit(mmu_t mmu, pmap_t pmap)
2079 {
2080 	int	i;
2081 	uint32_t hash;
2082 
2083 	RB_INIT(&pmap->pmap_pvo);
2084 
2085 	if (pmap_bootstrapped)
2086 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2087 		    (vm_offset_t)pmap);
2088 	else
2089 		pmap->pmap_phys = pmap;
2090 
2091 	/*
2092 	 * Allocate some segment registers for this pmap.
2093 	 */
2094 	hash = moea64_get_unique_vsid();
2095 
2096 	for (i = 0; i < 16; i++)
2097 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2098 
2099 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2100 }
2101 #endif
2102 
2103 /*
2104  * Initialize the pmap associated with process 0.
2105  */
2106 void
2107 moea64_pinit0(mmu_t mmu, pmap_t pm)
2108 {
2109 
2110 	PMAP_LOCK_INIT(pm);
2111 	moea64_pinit(mmu, pm);
2112 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2113 }
2114 
2115 /*
2116  * Set the physical protection on the specified range of this map as requested.
2117  */
2118 static void
2119 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2120 {
2121 	struct vm_page *pg;
2122 	vm_prot_t oldprot;
2123 	int32_t refchg;
2124 
2125 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2126 
2127 	/*
2128 	 * Change the protection of the page.
2129 	 */
2130 	oldprot = pvo->pvo_pte.prot;
2131 	pvo->pvo_pte.prot = prot;
2132 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2133 
2134 	/*
2135 	 * If the PVO is in the page table, update mapping
2136 	 */
2137 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2138 	if (refchg < 0)
2139 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2140 
2141 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2142 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2143 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2144 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2145 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2146 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2147 	}
2148 
2149 	/*
2150 	 * Update vm about the REF/CHG bits if the page is managed and we have
2151 	 * removed write access.
2152 	 */
2153 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2154 	    (oldprot & VM_PROT_WRITE)) {
2155 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2156 		if (refchg & LPTE_CHG)
2157 			vm_page_dirty(pg);
2158 		if (refchg & LPTE_REF)
2159 			vm_page_aflag_set(pg, PGA_REFERENCED);
2160 	}
2161 }
2162 
2163 void
2164 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2165     vm_prot_t prot)
2166 {
2167 	struct	pvo_entry *pvo, *tpvo, key;
2168 
2169 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2170 	    sva, eva, prot);
2171 
2172 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2173 	    ("moea64_protect: non current pmap"));
2174 
2175 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2176 		moea64_remove(mmu, pm, sva, eva);
2177 		return;
2178 	}
2179 
2180 	PMAP_LOCK(pm);
2181 	key.pvo_vaddr = sva;
2182 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2183 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2184 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2185 		moea64_pvo_protect(mmu, pm, pvo, prot);
2186 	}
2187 	PMAP_UNLOCK(pm);
2188 }
2189 
2190 /*
2191  * Map a list of wired pages into kernel virtual address space.  This is
2192  * intended for temporary mappings which do not need page modification or
2193  * references recorded.  Existing mappings in the region are overwritten.
2194  */
2195 void
2196 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2197 {
2198 	while (count-- > 0) {
2199 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2200 		va += PAGE_SIZE;
2201 		m++;
2202 	}
2203 }
2204 
2205 /*
2206  * Remove page mappings from kernel virtual address space.  Intended for
2207  * temporary mappings entered by moea64_qenter.
2208  */
2209 void
2210 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2211 {
2212 	while (count-- > 0) {
2213 		moea64_kremove(mmu, va);
2214 		va += PAGE_SIZE;
2215 	}
2216 }
2217 
2218 void
2219 moea64_release_vsid(uint64_t vsid)
2220 {
2221 	int idx, mask;
2222 
2223 	mtx_lock(&moea64_slb_mutex);
2224 	idx = vsid & (NVSIDS-1);
2225 	mask = 1 << (idx % VSID_NBPW);
2226 	idx /= VSID_NBPW;
2227 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2228 	    ("Freeing unallocated VSID %#jx", vsid));
2229 	moea64_vsid_bitmap[idx] &= ~mask;
2230 	mtx_unlock(&moea64_slb_mutex);
2231 }
2232 
2233 
2234 void
2235 moea64_release(mmu_t mmu, pmap_t pmap)
2236 {
2237 
2238 	/*
2239 	 * Free segment registers' VSIDs
2240 	 */
2241     #ifdef __powerpc64__
2242 	slb_free_tree(pmap);
2243 	slb_free_user_cache(pmap->pm_slb);
2244     #else
2245 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2246 
2247 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2248     #endif
2249 }
2250 
2251 /*
2252  * Remove all pages mapped by the specified pmap
2253  */
2254 void
2255 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2256 {
2257 	struct pvo_entry *pvo, *tpvo;
2258 	struct pvo_tree tofree;
2259 
2260 	RB_INIT(&tofree);
2261 
2262 	PMAP_LOCK(pm);
2263 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2264 		if (pvo->pvo_vaddr & PVO_WIRED)
2265 			continue;
2266 
2267 		/*
2268 		 * For locking reasons, remove this from the page table and
2269 		 * pmap, but save delinking from the vm_page for a second
2270 		 * pass
2271 		 */
2272 		moea64_pvo_remove_from_pmap(mmu, pvo);
2273 		RB_INSERT(pvo_tree, &tofree, pvo);
2274 	}
2275 	PMAP_UNLOCK(pm);
2276 
2277 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2278 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2279 		moea64_pvo_remove_from_page(mmu, pvo);
2280 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2281 		RB_REMOVE(pvo_tree, &tofree, pvo);
2282 		free_pvo_entry(pvo);
2283 	}
2284 }
2285 
2286 /*
2287  * Remove the given range of addresses from the specified map.
2288  */
2289 void
2290 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2291 {
2292 	struct  pvo_entry *pvo, *tpvo, key;
2293 	struct pvo_tree tofree;
2294 
2295 	/*
2296 	 * Perform an unsynchronized read.  This is, however, safe.
2297 	 */
2298 	if (pm->pm_stats.resident_count == 0)
2299 		return;
2300 
2301 	key.pvo_vaddr = sva;
2302 
2303 	RB_INIT(&tofree);
2304 
2305 	PMAP_LOCK(pm);
2306 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2307 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2308 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2309 
2310 		/*
2311 		 * For locking reasons, remove this from the page table and
2312 		 * pmap, but save delinking from the vm_page for a second
2313 		 * pass
2314 		 */
2315 		moea64_pvo_remove_from_pmap(mmu, pvo);
2316 		RB_INSERT(pvo_tree, &tofree, pvo);
2317 	}
2318 	PMAP_UNLOCK(pm);
2319 
2320 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2321 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2322 		moea64_pvo_remove_from_page(mmu, pvo);
2323 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2324 		RB_REMOVE(pvo_tree, &tofree, pvo);
2325 		free_pvo_entry(pvo);
2326 	}
2327 }
2328 
2329 /*
2330  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2331  * will reflect changes in pte's back to the vm_page.
2332  */
2333 void
2334 moea64_remove_all(mmu_t mmu, vm_page_t m)
2335 {
2336 	struct	pvo_entry *pvo, *next_pvo;
2337 	struct	pvo_head freequeue;
2338 	int	wasdead;
2339 	pmap_t	pmap;
2340 
2341 	LIST_INIT(&freequeue);
2342 
2343 	PV_PAGE_LOCK(m);
2344 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2345 		pmap = pvo->pvo_pmap;
2346 		PMAP_LOCK(pmap);
2347 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2348 		if (!wasdead)
2349 			moea64_pvo_remove_from_pmap(mmu, pvo);
2350 		moea64_pvo_remove_from_page(mmu, pvo);
2351 		if (!wasdead)
2352 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2353 		PMAP_UNLOCK(pmap);
2354 
2355 	}
2356 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2357 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2358 	PV_PAGE_UNLOCK(m);
2359 
2360 	/* Clean up UMA allocations */
2361 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2362 		free_pvo_entry(pvo);
2363 }
2364 
2365 /*
2366  * Allocate a physical page of memory directly from the phys_avail map.
2367  * Can only be called from moea64_bootstrap before avail start and end are
2368  * calculated.
2369  */
2370 vm_offset_t
2371 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2372 {
2373 	vm_offset_t	s, e;
2374 	int		i, j;
2375 
2376 	size = round_page(size);
2377 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2378 		if (align != 0)
2379 			s = roundup2(phys_avail[i], align);
2380 		else
2381 			s = phys_avail[i];
2382 		e = s + size;
2383 
2384 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2385 			continue;
2386 
2387 		if (s + size > platform_real_maxaddr())
2388 			continue;
2389 
2390 		if (s == phys_avail[i]) {
2391 			phys_avail[i] += size;
2392 		} else if (e == phys_avail[i + 1]) {
2393 			phys_avail[i + 1] -= size;
2394 		} else {
2395 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2396 				phys_avail[j] = phys_avail[j - 2];
2397 				phys_avail[j + 1] = phys_avail[j - 1];
2398 			}
2399 
2400 			phys_avail[i + 3] = phys_avail[i + 1];
2401 			phys_avail[i + 1] = s;
2402 			phys_avail[i + 2] = e;
2403 			phys_avail_count++;
2404 		}
2405 
2406 		return (s);
2407 	}
2408 	panic("moea64_bootstrap_alloc: could not allocate memory");
2409 }
2410 
2411 static int
2412 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2413 {
2414 	int first, err;
2415 
2416 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2417 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2418 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2419 
2420 	moea64_pvo_enter_calls++;
2421 
2422 	/*
2423 	 * Add to pmap list
2424 	 */
2425 	RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2426 
2427 	/*
2428 	 * Remember if the list was empty and therefore will be the first
2429 	 * item.
2430 	 */
2431 	if (pvo_head != NULL) {
2432 		if (LIST_FIRST(pvo_head) == NULL)
2433 			first = 1;
2434 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2435 	}
2436 
2437 	if (pvo->pvo_vaddr & PVO_WIRED)
2438 		pvo->pvo_pmap->pm_stats.wired_count++;
2439 	pvo->pvo_pmap->pm_stats.resident_count++;
2440 
2441 	/*
2442 	 * Insert it into the hardware page table
2443 	 */
2444 	err = MOEA64_PTE_INSERT(mmu, pvo);
2445 	if (err != 0) {
2446 		panic("moea64_pvo_enter: overflow");
2447 	}
2448 
2449 	moea64_pvo_entries++;
2450 
2451 	if (pvo->pvo_pmap == kernel_pmap)
2452 		isync();
2453 
2454 #ifdef __powerpc64__
2455 	/*
2456 	 * Make sure all our bootstrap mappings are in the SLB as soon
2457 	 * as virtual memory is switched on.
2458 	 */
2459 	if (!pmap_bootstrapped)
2460 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2461 		    pvo->pvo_vaddr & PVO_LARGE);
2462 #endif
2463 
2464 	return (first ? ENOENT : 0);
2465 }
2466 
2467 static void
2468 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2469 {
2470 	struct	vm_page *pg;
2471 	int32_t refchg;
2472 
2473 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2474 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2475 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2476 
2477 	/*
2478 	 * If there is an active pte entry, we need to deactivate it
2479 	 */
2480 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2481 	if (refchg < 0) {
2482 		/*
2483 		 * If it was evicted from the page table, be pessimistic and
2484 		 * dirty the page.
2485 		 */
2486 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2487 			refchg = LPTE_CHG;
2488 		else
2489 			refchg = 0;
2490 	}
2491 
2492 	/*
2493 	 * Update our statistics.
2494 	 */
2495 	pvo->pvo_pmap->pm_stats.resident_count--;
2496 	if (pvo->pvo_vaddr & PVO_WIRED)
2497 		pvo->pvo_pmap->pm_stats.wired_count--;
2498 
2499 	/*
2500 	 * Remove this PVO from the pmap list.
2501 	 */
2502 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2503 
2504 	/*
2505 	 * Mark this for the next sweep
2506 	 */
2507 	pvo->pvo_vaddr |= PVO_DEAD;
2508 
2509 	/* Send RC bits to VM */
2510 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2511 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2512 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2513 		if (pg != NULL) {
2514 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2515 			if (refchg & LPTE_CHG)
2516 				vm_page_dirty(pg);
2517 			if (refchg & LPTE_REF)
2518 				vm_page_aflag_set(pg, PGA_REFERENCED);
2519 		}
2520 	}
2521 }
2522 
2523 static void
2524 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2525 {
2526 	struct	vm_page *pg;
2527 
2528 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2529 
2530 	/* Use NULL pmaps as a sentinel for races in page deletion */
2531 	if (pvo->pvo_pmap == NULL)
2532 		return;
2533 	pvo->pvo_pmap = NULL;
2534 
2535 	/*
2536 	 * Update vm about page writeability/executability if managed
2537 	 */
2538 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2539 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2540 
2541 	if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2542 		LIST_REMOVE(pvo, pvo_vlink);
2543 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2544 			vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2545 	}
2546 
2547 	moea64_pvo_entries--;
2548 	moea64_pvo_remove_calls++;
2549 }
2550 
2551 static struct pvo_entry *
2552 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2553 {
2554 	struct pvo_entry key;
2555 
2556 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2557 
2558 	key.pvo_vaddr = va & ~ADDR_POFF;
2559 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2560 }
2561 
2562 static boolean_t
2563 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2564 {
2565 	struct	pvo_entry *pvo;
2566 	int64_t ret;
2567 	boolean_t rv;
2568 
2569 	/*
2570 	 * See if this bit is stored in the page already.
2571 	 */
2572 	if (m->md.mdpg_attrs & ptebit)
2573 		return (TRUE);
2574 
2575 	/*
2576 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2577 	 * flushed to the PTEs.
2578 	 */
2579 	rv = FALSE;
2580 	powerpc_sync();
2581 	PV_PAGE_LOCK(m);
2582 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2583 		ret = 0;
2584 
2585 		/*
2586 		 * See if this pvo has a valid PTE.  if so, fetch the
2587 		 * REF/CHG bits from the valid PTE.  If the appropriate
2588 		 * ptebit is set, return success.
2589 		 */
2590 		PMAP_LOCK(pvo->pvo_pmap);
2591 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2592 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2593 		PMAP_UNLOCK(pvo->pvo_pmap);
2594 
2595 		if (ret > 0) {
2596 			atomic_set_32(&m->md.mdpg_attrs,
2597 			    ret & (LPTE_CHG | LPTE_REF));
2598 			if (ret & ptebit) {
2599 				rv = TRUE;
2600 				break;
2601 			}
2602 		}
2603 	}
2604 	PV_PAGE_UNLOCK(m);
2605 
2606 	return (rv);
2607 }
2608 
2609 static u_int
2610 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2611 {
2612 	u_int	count;
2613 	struct	pvo_entry *pvo;
2614 	int64_t ret;
2615 
2616 	/*
2617 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2618 	 * we can reset the right ones).
2619 	 */
2620 	powerpc_sync();
2621 
2622 	/*
2623 	 * For each pvo entry, clear the pte's ptebit.
2624 	 */
2625 	count = 0;
2626 	PV_PAGE_LOCK(m);
2627 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2628 		ret = 0;
2629 
2630 		PMAP_LOCK(pvo->pvo_pmap);
2631 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2632 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2633 		PMAP_UNLOCK(pvo->pvo_pmap);
2634 
2635 		if (ret > 0 && (ret & ptebit))
2636 			count++;
2637 	}
2638 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2639 	PV_PAGE_UNLOCK(m);
2640 
2641 	return (count);
2642 }
2643 
2644 boolean_t
2645 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2646 {
2647 	struct pvo_entry *pvo, key;
2648 	vm_offset_t ppa;
2649 	int error = 0;
2650 
2651 	PMAP_LOCK(kernel_pmap);
2652 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2653 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2654 	    ppa < pa + size; ppa += PAGE_SIZE,
2655 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2656 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2657 			error = EFAULT;
2658 			break;
2659 		}
2660 	}
2661 	PMAP_UNLOCK(kernel_pmap);
2662 
2663 	return (error);
2664 }
2665 
2666 /*
2667  * Map a set of physical memory pages into the kernel virtual
2668  * address space. Return a pointer to where it is mapped. This
2669  * routine is intended to be used for mapping device memory,
2670  * NOT real memory.
2671  */
2672 void *
2673 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2674 {
2675 	vm_offset_t va, tmpva, ppa, offset;
2676 
2677 	ppa = trunc_page(pa);
2678 	offset = pa & PAGE_MASK;
2679 	size = roundup2(offset + size, PAGE_SIZE);
2680 
2681 	va = kva_alloc(size);
2682 
2683 	if (!va)
2684 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2685 
2686 	for (tmpva = va; size > 0;) {
2687 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2688 		size -= PAGE_SIZE;
2689 		tmpva += PAGE_SIZE;
2690 		ppa += PAGE_SIZE;
2691 	}
2692 
2693 	return ((void *)(va + offset));
2694 }
2695 
2696 void *
2697 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2698 {
2699 
2700 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2701 }
2702 
2703 void
2704 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2705 {
2706 	vm_offset_t base, offset;
2707 
2708 	base = trunc_page(va);
2709 	offset = va & PAGE_MASK;
2710 	size = roundup2(offset + size, PAGE_SIZE);
2711 
2712 	kva_free(base, size);
2713 }
2714 
2715 void
2716 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2717 {
2718 	struct pvo_entry *pvo;
2719 	vm_offset_t lim;
2720 	vm_paddr_t pa;
2721 	vm_size_t len;
2722 
2723 	PMAP_LOCK(pm);
2724 	while (sz > 0) {
2725 		lim = round_page(va);
2726 		len = MIN(lim - va, sz);
2727 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2728 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2729 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2730 			moea64_syncicache(mmu, pm, va, pa, len);
2731 		}
2732 		va += len;
2733 		sz -= len;
2734 	}
2735 	PMAP_UNLOCK(pm);
2736 }
2737 
2738 void
2739 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2740 {
2741 
2742 	*va = (void *)pa;
2743 }
2744 
2745 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2746 
2747 void
2748 moea64_scan_init(mmu_t mmu)
2749 {
2750 	struct pvo_entry *pvo;
2751 	vm_offset_t va;
2752 	int i;
2753 
2754 	if (!do_minidump) {
2755 		/* Initialize phys. segments for dumpsys(). */
2756 		memset(&dump_map, 0, sizeof(dump_map));
2757 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2758 		for (i = 0; i < pregions_sz; i++) {
2759 			dump_map[i].pa_start = pregions[i].mr_start;
2760 			dump_map[i].pa_size = pregions[i].mr_size;
2761 		}
2762 		return;
2763 	}
2764 
2765 	/* Virtual segments for minidumps: */
2766 	memset(&dump_map, 0, sizeof(dump_map));
2767 
2768 	/* 1st: kernel .data and .bss. */
2769 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2770 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2771 	    dump_map[0].pa_start;
2772 
2773 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2774 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2775 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2776 
2777 	/* 3rd: kernel VM. */
2778 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2779 	/* Find start of next chunk (from va). */
2780 	while (va < virtual_end) {
2781 		/* Don't dump the buffer cache. */
2782 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2783 			va = kmi.buffer_eva;
2784 			continue;
2785 		}
2786 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2787 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2788 			break;
2789 		va += PAGE_SIZE;
2790 	}
2791 	if (va < virtual_end) {
2792 		dump_map[2].pa_start = va;
2793 		va += PAGE_SIZE;
2794 		/* Find last page in chunk. */
2795 		while (va < virtual_end) {
2796 			/* Don't run into the buffer cache. */
2797 			if (va == kmi.buffer_sva)
2798 				break;
2799 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2800 			if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2801 				break;
2802 			va += PAGE_SIZE;
2803 		}
2804 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2805 	}
2806 }
2807 
2808