xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <sys/kdb.h>
131 
132 #include <dev/ofw/openfirm.h>
133 
134 #include <vm/vm.h>
135 #include <vm/vm_param.h>
136 #include <vm/vm_kern.h>
137 #include <vm/vm_page.h>
138 #include <vm/vm_map.h>
139 #include <vm/vm_object.h>
140 #include <vm/vm_extern.h>
141 #include <vm/vm_pageout.h>
142 #include <vm/vm_pager.h>
143 #include <vm/uma.h>
144 
145 #include <machine/cpu.h>
146 #include <machine/platform.h>
147 #include <machine/frame.h>
148 #include <machine/md_var.h>
149 #include <machine/psl.h>
150 #include <machine/bat.h>
151 #include <machine/pte.h>
152 #include <machine/sr.h>
153 #include <machine/trap.h>
154 #include <machine/mmuvar.h>
155 
156 #include "mmu_if.h"
157 
158 #define	MOEA_DEBUG
159 
160 #define TODO	panic("%s: not implemented", __func__);
161 
162 static __inline u_int32_t
163 cntlzw(volatile u_int32_t a) {
164 	u_int32_t b;
165 	__asm ("cntlzw %0, %1" : "=r"(b) : "r"(a));
166 	return b;
167 }
168 
169 static __inline uint64_t
170 va_to_vsid(pmap_t pm, vm_offset_t va)
171 {
172 	return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK);
173 }
174 
175 #define	PTESYNC()	__asm __volatile("ptesync");
176 #define	TLBSYNC()	__asm __volatile("tlbsync; ptesync");
177 #define	SYNC()		__asm __volatile("sync");
178 #define	EIEIO()		__asm __volatile("eieio");
179 
180 /*
181  * The tlbie instruction must be executed in 64-bit mode
182  * so we have to twiddle MSR[SF] around every invocation.
183  * Just to add to the fun, exceptions must be off as well
184  * so that we can't trap in 64-bit mode. What a pain.
185  */
186 struct mtx	tlbie_mutex;
187 
188 static __inline void
189 TLBIE(pmap_t pmap, vm_offset_t va) {
190 	uint64_t vpn;
191 	register_t vpn_hi, vpn_lo;
192 	register_t msr;
193 	register_t scratch;
194 
195 	vpn = (uint64_t)(va & ADDR_PIDX);
196 	if (pmap != NULL)
197 		vpn |= (va_to_vsid(pmap,va) << 28);
198 	vpn &= ~(0xffffULL << 48);
199 
200 	vpn_hi = (uint32_t)(vpn >> 32);
201 	vpn_lo = (uint32_t)vpn;
202 
203 	mtx_lock_spin(&tlbie_mutex);
204 	__asm __volatile("\
205 	    mfmsr %0; \
206 	    mr %1, %0; \
207 	    insrdi %1,%5,1,0; \
208 	    mtmsrd %1; \
209 	    ptesync; \
210 	    \
211 	    sld %1,%2,%4; \
212 	    or %1,%1,%3; \
213 	    tlbie %1; \
214 	    \
215 	    mtmsrd %0; \
216 	    eieio; \
217 	    tlbsync; \
218 	    ptesync;"
219 	: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
220 	    : "memory");
221 	mtx_unlock_spin(&tlbie_mutex);
222 }
223 
224 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
225 #define ENABLE_TRANS(msr)	mtmsr(msr); isync()
226 
227 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
228 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
229 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
230 #define	VSID_HASH_MASK		0x0000007fffffffffULL
231 
232 #define	PVO_PTEGIDX_MASK	0x007UL		/* which PTEG slot */
233 #define	PVO_PTEGIDX_VALID	0x008UL		/* slot is valid */
234 #define	PVO_WIRED		0x010UL		/* PVO entry is wired */
235 #define	PVO_MANAGED		0x020UL		/* PVO entry is managed */
236 #define	PVO_BOOTSTRAP		0x080UL		/* PVO entry allocated during
237 						   bootstrap */
238 #define PVO_FAKE		0x100UL		/* fictitious phys page */
239 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
240 #define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
241 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
242 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
243 #define	PVO_PTEGIDX_CLR(pvo)	\
244 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
245 #define	PVO_PTEGIDX_SET(pvo, i)	\
246 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
247 
248 #define	MOEA_PVO_CHECK(pvo)
249 
250 #define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
251 #define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
252 #define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
253 
254 struct ofw_map {
255 	vm_offset_t	om_va;
256 	vm_size_t	om_len;
257 	vm_offset_t	om_pa_hi;
258 	vm_offset_t	om_pa_lo;
259 	u_int		om_mode;
260 };
261 
262 /*
263  * Map of physical memory regions.
264  */
265 static struct	mem_region *regions;
266 static struct	mem_region *pregions;
267 extern u_int	phys_avail_count;
268 extern int	regions_sz, pregions_sz;
269 extern int	ofw_real_mode;
270 
271 extern struct pmap ofw_pmap;
272 
273 extern void bs_remap_earlyboot(void);
274 
275 
276 /*
277  * Lock for the pteg and pvo tables.
278  */
279 struct mtx	moea64_table_mutex;
280 
281 /*
282  * PTEG data.
283  */
284 static struct	lpteg *moea64_pteg_table;
285 u_int		moea64_pteg_count;
286 u_int		moea64_pteg_mask;
287 
288 /*
289  * PVO data.
290  */
291 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
292 /* lists of unmanaged pages */
293 struct	pvo_head moea64_pvo_kunmanaged =
294     LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
295 struct	pvo_head moea64_pvo_unmanaged =
296     LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
297 
298 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
299 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
300 
301 #define	BPVO_POOL_SIZE	327680
302 static struct	pvo_entry *moea64_bpvo_pool;
303 static int	moea64_bpvo_pool_index = 0;
304 
305 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
306 static u_int	moea64_vsid_bitmap[NPMAPS / VSID_NBPW];
307 
308 static boolean_t moea64_initialized = FALSE;
309 
310 /*
311  * Statistics.
312  */
313 u_int	moea64_pte_valid = 0;
314 u_int	moea64_pte_overflow = 0;
315 u_int	moea64_pvo_entries = 0;
316 u_int	moea64_pvo_enter_calls = 0;
317 u_int	moea64_pvo_remove_calls = 0;
318 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
319     &moea64_pte_valid, 0, "");
320 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
321     &moea64_pte_overflow, 0, "");
322 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
323     &moea64_pvo_entries, 0, "");
324 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
325     &moea64_pvo_enter_calls, 0, "");
326 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
327     &moea64_pvo_remove_calls, 0, "");
328 
329 vm_offset_t	moea64_scratchpage_va[2];
330 struct	lpte 	*moea64_scratchpage_pte[2];
331 struct	mtx	moea64_scratchpage_mtx;
332 
333 /*
334  * Allocate physical memory for use in moea64_bootstrap.
335  */
336 static vm_offset_t	moea64_bootstrap_alloc(vm_size_t, u_int);
337 
338 /*
339  * PTE calls.
340  */
341 static int		moea64_pte_insert(u_int, struct lpte *);
342 
343 /*
344  * PVO calls.
345  */
346 static int	moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
347 		    vm_offset_t, vm_offset_t, uint64_t, int);
348 static void	moea64_pvo_remove(struct pvo_entry *, int);
349 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t, int *);
350 static struct	lpte *moea64_pvo_to_pte(const struct pvo_entry *, int);
351 
352 /*
353  * Utility routines.
354  */
355 static void		moea64_bridge_bootstrap(mmu_t mmup,
356 			    vm_offset_t kernelstart, vm_offset_t kernelend);
357 static void		moea64_bridge_cpu_bootstrap(mmu_t, int ap);
358 static void		moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
359 			    vm_prot_t, boolean_t);
360 static boolean_t	moea64_query_bit(vm_page_t, u_int64_t);
361 static u_int		moea64_clear_bit(vm_page_t, u_int64_t, u_int64_t *);
362 static void		moea64_kremove(mmu_t, vm_offset_t);
363 static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
364 			    vm_offset_t pa, vm_size_t sz);
365 static void		tlbia(void);
366 
367 /*
368  * Kernel MMU interface
369  */
370 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
371 void moea64_clear_modify(mmu_t, vm_page_t);
372 void moea64_clear_reference(mmu_t, vm_page_t);
373 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
374 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
375 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
376     vm_prot_t);
377 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
378 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
379 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
380 void moea64_init(mmu_t);
381 boolean_t moea64_is_modified(mmu_t, vm_page_t);
382 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
383 boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
384 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
385 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
386 int moea64_page_wired_mappings(mmu_t, vm_page_t);
387 void moea64_pinit(mmu_t, pmap_t);
388 void moea64_pinit0(mmu_t, pmap_t);
389 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
390 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
391 void moea64_qremove(mmu_t, vm_offset_t, int);
392 void moea64_release(mmu_t, pmap_t);
393 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
394 void moea64_remove_all(mmu_t, vm_page_t);
395 void moea64_remove_write(mmu_t, vm_page_t);
396 void moea64_zero_page(mmu_t, vm_page_t);
397 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
398 void moea64_zero_page_idle(mmu_t, vm_page_t);
399 void moea64_activate(mmu_t, struct thread *);
400 void moea64_deactivate(mmu_t, struct thread *);
401 void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
402 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
403 vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
404 void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
405 boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
406 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
407 
408 static mmu_method_t moea64_bridge_methods[] = {
409 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
410 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
411 	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
412 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
413 	MMUMETHOD(mmu_enter,		moea64_enter),
414 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
415 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
416 	MMUMETHOD(mmu_extract,		moea64_extract),
417 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
418 	MMUMETHOD(mmu_init,		moea64_init),
419 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
420 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
421 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
422 	MMUMETHOD(mmu_map,     		moea64_map),
423 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
424 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
425 	MMUMETHOD(mmu_pinit,		moea64_pinit),
426 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
427 	MMUMETHOD(mmu_protect,		moea64_protect),
428 	MMUMETHOD(mmu_qenter,		moea64_qenter),
429 	MMUMETHOD(mmu_qremove,		moea64_qremove),
430 	MMUMETHOD(mmu_release,		moea64_release),
431 	MMUMETHOD(mmu_remove,		moea64_remove),
432 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
433 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
434 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
435 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
436 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
437 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
438 	MMUMETHOD(mmu_activate,		moea64_activate),
439 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
440 
441 	/* Internal interfaces */
442 	MMUMETHOD(mmu_bootstrap,       	moea64_bridge_bootstrap),
443 	MMUMETHOD(mmu_cpu_bootstrap,   	moea64_bridge_cpu_bootstrap),
444 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
445 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
446 	MMUMETHOD(mmu_kextract,		moea64_kextract),
447 	MMUMETHOD(mmu_kenter,		moea64_kenter),
448 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
449 
450 	{ 0, 0 }
451 };
452 
453 static mmu_def_t oea64_bridge_mmu = {
454 	MMU_TYPE_G5,
455 	moea64_bridge_methods,
456 	0
457 };
458 MMU_DEF(oea64_bridge_mmu);
459 
460 static __inline u_int
461 va_to_pteg(uint64_t vsid, vm_offset_t addr)
462 {
463 	uint64_t hash;
464 
465 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
466 	    ADDR_PIDX_SHFT);
467 	return (hash & moea64_pteg_mask);
468 }
469 
470 static __inline struct pvo_head *
471 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
472 {
473 	struct	vm_page *pg;
474 
475 	pg = PHYS_TO_VM_PAGE(pa);
476 
477 	if (pg_p != NULL)
478 		*pg_p = pg;
479 
480 	if (pg == NULL)
481 		return (&moea64_pvo_unmanaged);
482 
483 	return (&pg->md.mdpg_pvoh);
484 }
485 
486 static __inline struct pvo_head *
487 vm_page_to_pvoh(vm_page_t m)
488 {
489 
490 	return (&m->md.mdpg_pvoh);
491 }
492 
493 static __inline void
494 moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
495 {
496 
497 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
498 	m->md.mdpg_attrs &= ~ptebit;
499 }
500 
501 static __inline u_int64_t
502 moea64_attr_fetch(vm_page_t m)
503 {
504 
505 	return (m->md.mdpg_attrs);
506 }
507 
508 static __inline void
509 moea64_attr_save(vm_page_t m, u_int64_t ptebit)
510 {
511 
512 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
513 	m->md.mdpg_attrs |= ptebit;
514 }
515 
516 static __inline void
517 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
518     uint64_t pte_lo)
519 {
520 	ASSERT_TABLE_LOCK();
521 
522 	/*
523 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
524 	 * set when the real pte is set in memory.
525 	 *
526 	 * Note: Don't set the valid bit for correct operation of tlb update.
527 	 */
528 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
529 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
530 
531 	pt->pte_lo = pte_lo;
532 }
533 
534 static __inline void
535 moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
536 {
537 
538 	ASSERT_TABLE_LOCK();
539 
540 	pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
541 }
542 
543 static __inline void
544 moea64_pte_clear(struct lpte *pt, pmap_t pmap, vm_offset_t va, u_int64_t ptebit)
545 {
546 	ASSERT_TABLE_LOCK();
547 
548 	/*
549 	 * As shown in Section 7.6.3.2.3
550 	 */
551 	pt->pte_lo &= ~ptebit;
552 	TLBIE(pmap,va);
553 }
554 
555 static __inline void
556 moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
557 {
558 
559 	ASSERT_TABLE_LOCK();
560 	pvo_pt->pte_hi |= LPTE_VALID;
561 
562 	/*
563 	 * Update the PTE as defined in section 7.6.3.1.
564 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
565 	 * been saved so this routine can restore them (if desired).
566 	 */
567 	pt->pte_lo = pvo_pt->pte_lo;
568 	EIEIO();
569 	pt->pte_hi = pvo_pt->pte_hi;
570 	PTESYNC();
571 	moea64_pte_valid++;
572 }
573 
574 static __inline void
575 moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
576 {
577 	ASSERT_TABLE_LOCK();
578 	pvo_pt->pte_hi &= ~LPTE_VALID;
579 
580 	/*
581 	 * Force the reg & chg bits back into the PTEs.
582 	 */
583 	SYNC();
584 
585 	/*
586 	 * Invalidate the pte.
587 	 */
588 	pt->pte_hi &= ~LPTE_VALID;
589 	TLBIE(pmap,va);
590 
591 	/*
592 	 * Save the reg & chg bits.
593 	 */
594 	moea64_pte_synch(pt, pvo_pt);
595 	moea64_pte_valid--;
596 }
597 
598 static __inline void
599 moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
600 {
601 
602 	/*
603 	 * Invalidate the PTE
604 	 */
605 	moea64_pte_unset(pt, pvo_pt, pmap, va);
606 	moea64_pte_set(pt, pvo_pt);
607 	if (pmap == kernel_pmap)
608 		isync();
609 }
610 
611 static __inline uint64_t
612 moea64_calc_wimg(vm_offset_t pa)
613 {
614 	uint64_t pte_lo;
615 	int i;
616 
617 	/*
618 	 * Assume the page is cache inhibited and access is guarded unless
619 	 * it's in our available memory array.
620 	 */
621 	pte_lo = LPTE_I | LPTE_G;
622 	for (i = 0; i < pregions_sz; i++) {
623 		if ((pa >= pregions[i].mr_start) &&
624 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
625 			pte_lo &= ~(LPTE_I | LPTE_G);
626 			pte_lo |= LPTE_M;
627 			break;
628 		}
629 	}
630 
631 	return pte_lo;
632 }
633 
634 /*
635  * Quick sort callout for comparing memory regions.
636  */
637 static int	mr_cmp(const void *a, const void *b);
638 static int	om_cmp(const void *a, const void *b);
639 
640 static int
641 mr_cmp(const void *a, const void *b)
642 {
643 	const struct	mem_region *regiona;
644 	const struct	mem_region *regionb;
645 
646 	regiona = a;
647 	regionb = b;
648 	if (regiona->mr_start < regionb->mr_start)
649 		return (-1);
650 	else if (regiona->mr_start > regionb->mr_start)
651 		return (1);
652 	else
653 		return (0);
654 }
655 
656 static int
657 om_cmp(const void *a, const void *b)
658 {
659 	const struct	ofw_map *mapa;
660 	const struct	ofw_map *mapb;
661 
662 	mapa = a;
663 	mapb = b;
664 	if (mapa->om_pa_hi < mapb->om_pa_hi)
665 		return (-1);
666 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
667 		return (1);
668 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
669 		return (-1);
670 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
671 		return (1);
672 	else
673 		return (0);
674 }
675 
676 static void
677 moea64_bridge_cpu_bootstrap(mmu_t mmup, int ap)
678 {
679 	int i = 0;
680 
681 	/*
682 	 * Initialize segment registers and MMU
683 	 */
684 
685 	mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
686 	for (i = 0; i < 16; i++) {
687 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
688 	}
689 	__asm __volatile ("ptesync; mtsdr1 %0; isync"
690 	    :: "r"((u_int)moea64_pteg_table
691 		     | (32 - cntlzw(moea64_pteg_mask >> 11))));
692 	tlbia();
693 }
694 
695 static void
696 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
697 {
698 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
699 	register_t	msr;
700 	vm_offset_t	off;
701 	vm_paddr_t	pa_base;
702 	int		i, ofw_mappings;
703 
704 	bzero(translations, sz);
705 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
706 		panic("moea64_bootstrap: can't get ofw translations");
707 
708 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
709 	sz /= sizeof(*translations);
710 	qsort(translations, sz, sizeof (*translations), om_cmp);
711 
712 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
713 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
714 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
715 		    translations[i].om_len);
716 
717 		if (translations[i].om_pa_lo % PAGE_SIZE)
718 			panic("OFW translation not page-aligned!");
719 
720 		if (translations[i].om_pa_hi)
721 			panic("OFW translations above 32-bit boundary!");
722 
723 		pa_base = translations[i].om_pa_lo;
724 
725 		/* Now enter the pages for this mapping */
726 
727 		DISABLE_TRANS(msr);
728 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
729 			moea64_kenter(mmup, translations[i].om_va + off,
730 			    pa_base + off);
731 
732 			ofw_mappings++;
733 		}
734 		ENABLE_TRANS(msr);
735 	}
736 }
737 
738 static void
739 moea64_bridge_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
740 {
741 	ihandle_t	mmui;
742 	phandle_t	chosen;
743 	phandle_t	mmu;
744 	size_t		sz;
745 	int		i, j;
746 	vm_size_t	size, physsz, hwphyssz;
747 	vm_offset_t	pa, va, off;
748 	register_t	msr;
749 	void		*dpcpu;
750 
751 	/* We don't have a direct map since there is no BAT */
752 	hw_direct_map = 0;
753 
754 	/* Make sure battable is zero, since we have no BAT */
755 	for (i = 0; i < 16; i++) {
756 		battable[i].batu = 0;
757 		battable[i].batl = 0;
758 	}
759 
760 	/* Get physical memory regions from firmware */
761 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
762 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
763 
764 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
765 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
766 		panic("moea64_bootstrap: phys_avail too small");
767 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
768 	phys_avail_count = 0;
769 	physsz = 0;
770 	hwphyssz = 0;
771 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
772 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
773 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
774 		    regions[i].mr_start + regions[i].mr_size,
775 		    regions[i].mr_size);
776 		if (hwphyssz != 0 &&
777 		    (physsz + regions[i].mr_size) >= hwphyssz) {
778 			if (physsz < hwphyssz) {
779 				phys_avail[j] = regions[i].mr_start;
780 				phys_avail[j + 1] = regions[i].mr_start +
781 				    hwphyssz - physsz;
782 				physsz = hwphyssz;
783 				phys_avail_count++;
784 			}
785 			break;
786 		}
787 		phys_avail[j] = regions[i].mr_start;
788 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
789 		phys_avail_count++;
790 		physsz += regions[i].mr_size;
791 	}
792 	physmem = btoc(physsz);
793 
794 	/*
795 	 * Allocate PTEG table.
796 	 */
797 #ifdef PTEGCOUNT
798 	moea64_pteg_count = PTEGCOUNT;
799 #else
800 	moea64_pteg_count = 0x1000;
801 
802 	while (moea64_pteg_count < physmem)
803 		moea64_pteg_count <<= 1;
804 #endif /* PTEGCOUNT */
805 
806 	size = moea64_pteg_count * sizeof(struct lpteg);
807 	CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
808 	    moea64_pteg_count, size);
809 
810 	/*
811 	 * We now need to allocate memory. This memory, to be allocated,
812 	 * has to reside in a page table. The page table we are about to
813 	 * allocate. We don't have BAT. So drop to data real mode for a minute
814 	 * as a measure of last resort. We do this a couple times.
815 	 */
816 
817 	moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
818 	DISABLE_TRANS(msr);
819 	bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
820 	ENABLE_TRANS(msr);
821 
822 	moea64_pteg_mask = moea64_pteg_count - 1;
823 
824 	CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
825 
826 	/*
827 	 * Allocate pv/overflow lists.
828 	 */
829 	size = sizeof(struct pvo_head) * moea64_pteg_count;
830 
831 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
832 	    PAGE_SIZE);
833 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
834 
835 	DISABLE_TRANS(msr);
836 	for (i = 0; i < moea64_pteg_count; i++)
837 		LIST_INIT(&moea64_pvo_table[i]);
838 	ENABLE_TRANS(msr);
839 
840 	/*
841 	 * Initialize the lock that synchronizes access to the pteg and pvo
842 	 * tables.
843 	 */
844 	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
845 	    MTX_RECURSE);
846 
847 	/*
848 	 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
849 	 */
850 	mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
851 
852 	/*
853 	 * Initialise the unmanaged pvo pool.
854 	 */
855 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
856 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
857 	moea64_bpvo_pool_index = 0;
858 
859 	/*
860 	 * Make sure kernel vsid is allocated as well as VSID 0.
861 	 */
862 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
863 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
864 	moea64_vsid_bitmap[0] |= 1;
865 
866 	/*
867 	 * Initialize the kernel pmap (which is statically allocated).
868 	 */
869 	for (i = 0; i < 16; i++)
870 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
871 
872 	kernel_pmap->pmap_phys = kernel_pmap;
873 	kernel_pmap->pm_active = ~0;
874 
875 	PMAP_LOCK_INIT(kernel_pmap);
876 
877 	/*
878 	 * Now map in all the other buffers we allocated earlier
879 	 */
880 
881 	DISABLE_TRANS(msr);
882 	size = moea64_pteg_count * sizeof(struct lpteg);
883 	off = (vm_offset_t)(moea64_pteg_table);
884 	for (pa = off; pa < off + size; pa += PAGE_SIZE)
885 		moea64_kenter(mmup, pa, pa);
886 	size = sizeof(struct pvo_head) * moea64_pteg_count;
887 	off = (vm_offset_t)(moea64_pvo_table);
888 	for (pa = off; pa < off + size; pa += PAGE_SIZE)
889 		moea64_kenter(mmup, pa, pa);
890 	size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
891 	off = (vm_offset_t)(moea64_bpvo_pool);
892 	for (pa = off; pa < off + size; pa += PAGE_SIZE)
893 		moea64_kenter(mmup, pa, pa);
894 
895 	/*
896 	 * Map certain important things, like ourselves.
897 	 *
898 	 * NOTE: We do not map the exception vector space. That code is
899 	 * used only in real mode, and leaving it unmapped allows us to
900 	 * catch NULL pointer deferences, instead of making NULL a valid
901 	 * address.
902 	 */
903 
904 	for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE)
905 		moea64_kenter(mmup, pa, pa);
906 	ENABLE_TRANS(msr);
907 
908 	if (!ofw_real_mode) {
909 	    /*
910 	     * Set up the Open Firmware pmap and add its mappings.
911 	     */
912 
913 	    moea64_pinit(mmup, &ofw_pmap);
914 	    for (i = 0; i < 16; i++)
915 		ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
916 
917 	    if ((chosen = OF_finddevice("/chosen")) == -1)
918 		panic("moea64_bootstrap: can't find /chosen");
919 	    OF_getprop(chosen, "mmu", &mmui, 4);
920 	    if ((mmu = OF_instance_to_package(mmui)) == -1)
921 		panic("moea64_bootstrap: can't get mmu package");
922 	    if ((sz = OF_getproplen(mmu, "translations")) == -1)
923 		panic("moea64_bootstrap: can't get ofw translation count");
924 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
925 		panic("moea64_bootstrap: too many ofw translations");
926 
927 	    moea64_add_ofw_mappings(mmup, mmu, sz);
928 	}
929 
930 #ifdef SMP
931 	TLBSYNC();
932 #endif
933 
934 	/*
935 	 * Calculate the last available physical address.
936 	 */
937 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
938 		;
939 	Maxmem = powerpc_btop(phys_avail[i + 1]);
940 
941 	/*
942 	 * Initialize MMU and remap early physical mappings
943 	 */
944 	moea64_bridge_cpu_bootstrap(mmup,0);
945 	mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
946 	pmap_bootstrapped++;
947 	bs_remap_earlyboot();
948 
949 	/*
950 	 * Set the start and end of kva.
951 	 */
952 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
953 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
954 
955 	/*
956 	 * Figure out how far we can extend virtual_end into segment 16
957 	 * without running into existing mappings. Segment 16 is guaranteed
958 	 * to contain neither RAM nor devices (at least on Apple hardware),
959 	 * but will generally contain some OFW mappings we should not
960 	 * step on.
961 	 */
962 
963 	PMAP_LOCK(kernel_pmap);
964 	while (moea64_pvo_find_va(kernel_pmap, virtual_end+1, NULL) == NULL)
965 		virtual_end += PAGE_SIZE;
966 	PMAP_UNLOCK(kernel_pmap);
967 
968 	/*
969 	 * Allocate some things for page zeroing. We put this directly
970 	 * in the page table, marked with LPTE_LOCKED, to avoid any
971 	 * of the PVO book-keeping or other parts of the VM system
972 	 * from even knowing that this hack exists.
973 	 */
974 
975 	mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF);
976 	for (i = 0; i < 2; i++) {
977 		struct lpte pt;
978 		uint64_t vsid;
979 		int pteidx, ptegidx;
980 
981 		moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
982 		virtual_end -= PAGE_SIZE;
983 
984 		LOCK_TABLE();
985 
986 		vsid = va_to_vsid(kernel_pmap, moea64_scratchpage_va[i]);
987 		moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
988 		    LPTE_NOEXEC);
989 		pt.pte_hi |= LPTE_LOCKED;
990 
991 		ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i]);
992 		pteidx = moea64_pte_insert(ptegidx, &pt);
993 		if (pt.pte_hi & LPTE_HID)
994 			ptegidx ^= moea64_pteg_mask;
995 
996 		moea64_scratchpage_pte[i] =
997 		    &moea64_pteg_table[ptegidx].pt[pteidx];
998 
999 		UNLOCK_TABLE();
1000 	}
1001 
1002 	/*
1003 	 * Allocate a kernel stack with a guard page for thread0 and map it
1004 	 * into the kernel page map.
1005 	 */
1006 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1007 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1008 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1009 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1010 	thread0.td_kstack = va;
1011 	thread0.td_kstack_pages = KSTACK_PAGES;
1012 	for (i = 0; i < KSTACK_PAGES; i++) {
1013 		moea64_kenter(mmup, va, pa);
1014 		pa += PAGE_SIZE;
1015 		va += PAGE_SIZE;
1016 	}
1017 
1018 	/*
1019 	 * Allocate virtual address space for the message buffer.
1020 	 */
1021 	pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1022 	msgbufp = (struct msgbuf *)virtual_avail;
1023 	va = virtual_avail;
1024 	virtual_avail += round_page(MSGBUF_SIZE);
1025 	while (va < virtual_avail) {
1026 		moea64_kenter(mmup, va, pa);
1027 		pa += PAGE_SIZE;
1028 		va += PAGE_SIZE;
1029 	}
1030 
1031 	/*
1032 	 * Allocate virtual address space for the dynamic percpu area.
1033 	 */
1034 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1035 	dpcpu = (void *)virtual_avail;
1036 	virtual_avail += DPCPU_SIZE;
1037 	while (va < virtual_avail) {
1038 		moea64_kenter(mmup, va, pa);
1039 		pa += PAGE_SIZE;
1040 		va += PAGE_SIZE;
1041 	}
1042 	dpcpu_init(dpcpu, 0);
1043 }
1044 
1045 /*
1046  * Activate a user pmap.  The pmap must be activated before it's address
1047  * space can be accessed in any way.
1048  */
1049 void
1050 moea64_activate(mmu_t mmu, struct thread *td)
1051 {
1052 	pmap_t	pm, pmr;
1053 
1054 	/*
1055 	 * Load all the data we need up front to encourage the compiler to
1056 	 * not issue any loads while we have interrupts disabled below.
1057 	 */
1058 	pm = &td->td_proc->p_vmspace->vm_pmap;
1059 	pmr = pm->pmap_phys;
1060 
1061 	pm->pm_active |= PCPU_GET(cpumask);
1062 	PCPU_SET(curpmap, pmr);
1063 }
1064 
1065 void
1066 moea64_deactivate(mmu_t mmu, struct thread *td)
1067 {
1068 	pmap_t	pm;
1069 
1070 	pm = &td->td_proc->p_vmspace->vm_pmap;
1071 	pm->pm_active &= ~(PCPU_GET(cpumask));
1072 	PCPU_SET(curpmap, NULL);
1073 }
1074 
1075 void
1076 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1077 {
1078 	struct	pvo_entry *pvo;
1079 
1080 	PMAP_LOCK(pm);
1081 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1082 
1083 	if (pvo != NULL) {
1084 		if (wired) {
1085 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1086 				pm->pm_stats.wired_count++;
1087 			pvo->pvo_vaddr |= PVO_WIRED;
1088 		} else {
1089 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1090 				pm->pm_stats.wired_count--;
1091 			pvo->pvo_vaddr &= ~PVO_WIRED;
1092 		}
1093 	}
1094 	PMAP_UNLOCK(pm);
1095 }
1096 
1097 /*
1098  * This goes through and sets the physical address of our
1099  * special scratch PTE to the PA we want to zero or copy. Because
1100  * of locking issues (this can get called in pvo_enter() by
1101  * the UMA allocator), we can't use most other utility functions here
1102  */
1103 
1104 static __inline
1105 void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1106 
1107 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1108 
1109 	moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1110 	TLBIE(kernel_pmap, moea64_scratchpage_va[which]);
1111 
1112 	moea64_scratchpage_pte[which]->pte_lo &=
1113 	    ~(LPTE_WIMG | LPTE_RPGN);
1114 	moea64_scratchpage_pte[which]->pte_lo |=
1115 	    moea64_calc_wimg(pa) | (uint64_t)pa;
1116 	EIEIO();
1117 
1118 	moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1119 	PTESYNC(); isync();
1120 }
1121 
1122 void
1123 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1124 {
1125 	vm_offset_t	dst;
1126 	vm_offset_t	src;
1127 
1128 	dst = VM_PAGE_TO_PHYS(mdst);
1129 	src = VM_PAGE_TO_PHYS(msrc);
1130 
1131 	mtx_lock(&moea64_scratchpage_mtx);
1132 
1133 	moea64_set_scratchpage_pa(0,src);
1134 	moea64_set_scratchpage_pa(1,dst);
1135 
1136 	kcopy((void *)moea64_scratchpage_va[0],
1137 	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1138 
1139 	mtx_unlock(&moea64_scratchpage_mtx);
1140 }
1141 
1142 void
1143 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1144 {
1145 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1146 
1147 	if (!moea64_initialized)
1148 		panic("moea64_zero_page: can't zero pa %#x", pa);
1149 	if (size + off > PAGE_SIZE)
1150 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1151 
1152 	mtx_lock(&moea64_scratchpage_mtx);
1153 
1154 	moea64_set_scratchpage_pa(0,pa);
1155 	bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1156 	mtx_unlock(&moea64_scratchpage_mtx);
1157 }
1158 
1159 /*
1160  * Zero a page of physical memory by temporarily mapping it
1161  */
1162 void
1163 moea64_zero_page(mmu_t mmu, vm_page_t m)
1164 {
1165 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1166 	vm_offset_t off;
1167 
1168 	if (!moea64_initialized)
1169 		panic("moea64_zero_page: can't zero pa %#x", pa);
1170 
1171 	mtx_lock(&moea64_scratchpage_mtx);
1172 
1173 	moea64_set_scratchpage_pa(0,pa);
1174 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1175 		__asm __volatile("dcbz 0,%0" ::
1176 		    "r"(moea64_scratchpage_va[0] + off));
1177 	mtx_unlock(&moea64_scratchpage_mtx);
1178 }
1179 
1180 void
1181 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1182 {
1183 
1184 	moea64_zero_page(mmu, m);
1185 }
1186 
1187 /*
1188  * Map the given physical page at the specified virtual address in the
1189  * target pmap with the protection requested.  If specified the page
1190  * will be wired down.
1191  */
1192 void
1193 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1194     vm_prot_t prot, boolean_t wired)
1195 {
1196 
1197 	vm_page_lock_queues();
1198 	PMAP_LOCK(pmap);
1199 	moea64_enter_locked(pmap, va, m, prot, wired);
1200 	vm_page_unlock_queues();
1201 	PMAP_UNLOCK(pmap);
1202 }
1203 
1204 /*
1205  * Map the given physical page at the specified virtual address in the
1206  * target pmap with the protection requested.  If specified the page
1207  * will be wired down.
1208  *
1209  * The page queues and pmap must be locked.
1210  */
1211 
1212 static void
1213 moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1214     boolean_t wired)
1215 {
1216 	struct		pvo_head *pvo_head;
1217 	uma_zone_t	zone;
1218 	vm_page_t	pg;
1219 	uint64_t	pte_lo;
1220 	u_int		pvo_flags;
1221 	int		error;
1222 
1223 	if (!moea64_initialized) {
1224 		pvo_head = &moea64_pvo_kunmanaged;
1225 		pg = NULL;
1226 		zone = moea64_upvo_zone;
1227 		pvo_flags = 0;
1228 	} else {
1229 		pvo_head = vm_page_to_pvoh(m);
1230 		pg = m;
1231 		zone = moea64_mpvo_zone;
1232 		pvo_flags = PVO_MANAGED;
1233 	}
1234 
1235 	if (pmap_bootstrapped)
1236 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1237 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1238 	KASSERT((m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1239 	    ("moea64_enter_locked: page %p is not busy", m));
1240 
1241 	/* XXX change the pvo head for fake pages */
1242 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1243 		pvo_flags &= ~PVO_MANAGED;
1244 		pvo_head = &moea64_pvo_kunmanaged;
1245 		zone = moea64_upvo_zone;
1246 	}
1247 
1248 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
1249 
1250 	if (prot & VM_PROT_WRITE) {
1251 		pte_lo |= LPTE_BW;
1252 		if (pmap_bootstrapped &&
1253 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1254 			vm_page_flag_set(m, PG_WRITEABLE);
1255 	} else
1256 		pte_lo |= LPTE_BR;
1257 
1258 	if (prot & VM_PROT_EXECUTE)
1259 		pvo_flags |= VM_PROT_EXECUTE;
1260 
1261 	if (wired)
1262 		pvo_flags |= PVO_WIRED;
1263 
1264 	if ((m->flags & PG_FICTITIOUS) != 0)
1265 		pvo_flags |= PVO_FAKE;
1266 
1267 	error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1268 	    pte_lo, pvo_flags);
1269 
1270 	/*
1271 	 * Flush the page from the instruction cache if this page is
1272 	 * mapped executable and cacheable.
1273 	 */
1274 	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1275 		moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1276 	}
1277 }
1278 
1279 static void
1280 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1281 {
1282 
1283 	/*
1284 	 * This is much trickier than on older systems because
1285 	 * we can't sync the icache on physical addresses directly
1286 	 * without a direct map. Instead we check a couple of cases
1287 	 * where the memory is already mapped in and, failing that,
1288 	 * use the same trick we use for page zeroing to create
1289 	 * a temporary mapping for this physical address.
1290 	 */
1291 
1292 	if (!pmap_bootstrapped) {
1293 		/*
1294 		 * If PMAP is not bootstrapped, we are likely to be
1295 		 * in real mode.
1296 		 */
1297 		__syncicache((void *)pa, sz);
1298 	} else if (pmap == kernel_pmap) {
1299 		__syncicache((void *)va, sz);
1300 	} else {
1301 		/* Use the scratch page to set up a temp mapping */
1302 
1303 		mtx_lock(&moea64_scratchpage_mtx);
1304 
1305 		moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1306 		__syncicache((void *)(moea64_scratchpage_va[1] +
1307 		    (va & ADDR_POFF)), sz);
1308 
1309 		mtx_unlock(&moea64_scratchpage_mtx);
1310 	}
1311 }
1312 
1313 /*
1314  * Maps a sequence of resident pages belonging to the same object.
1315  * The sequence begins with the given page m_start.  This page is
1316  * mapped at the given virtual address start.  Each subsequent page is
1317  * mapped at a virtual address that is offset from start by the same
1318  * amount as the page is offset from m_start within the object.  The
1319  * last page in the sequence is the page with the largest offset from
1320  * m_start that can be mapped at a virtual address less than the given
1321  * virtual address end.  Not every virtual page between start and end
1322  * is mapped; only those for which a resident page exists with the
1323  * corresponding offset from m_start are mapped.
1324  */
1325 void
1326 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1327     vm_page_t m_start, vm_prot_t prot)
1328 {
1329 	vm_page_t m;
1330 	vm_pindex_t diff, psize;
1331 
1332 	psize = atop(end - start);
1333 	m = m_start;
1334 	vm_page_lock_queues();
1335 	PMAP_LOCK(pm);
1336 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1337 		moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1338 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1339 		m = TAILQ_NEXT(m, listq);
1340 	}
1341 	vm_page_unlock_queues();
1342 	PMAP_UNLOCK(pm);
1343 }
1344 
1345 void
1346 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1347     vm_prot_t prot)
1348 {
1349 
1350 	vm_page_lock_queues();
1351 	PMAP_LOCK(pm);
1352 	moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1353 	    FALSE);
1354 	vm_page_unlock_queues();
1355 	PMAP_UNLOCK(pm);
1356 }
1357 
1358 vm_paddr_t
1359 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1360 {
1361 	struct	pvo_entry *pvo;
1362 	vm_paddr_t pa;
1363 
1364 	PMAP_LOCK(pm);
1365 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1366 	if (pvo == NULL)
1367 		pa = 0;
1368 	else
1369 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
1370 	PMAP_UNLOCK(pm);
1371 	return (pa);
1372 }
1373 
1374 /*
1375  * Atomically extract and hold the physical page with the given
1376  * pmap and virtual address pair if that mapping permits the given
1377  * protection.
1378  */
1379 vm_page_t
1380 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1381 {
1382 	struct	pvo_entry *pvo;
1383 	vm_page_t m;
1384         vm_paddr_t pa;
1385 
1386 	m = NULL;
1387 	pa = 0;
1388 	PMAP_LOCK(pmap);
1389 retry:
1390 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1391 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1392 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1393 	     (prot & VM_PROT_WRITE) == 0)) {
1394 		if (vm_page_pa_tryrelock(pmap,
1395 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1396 			goto retry;
1397 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1398 		vm_page_hold(m);
1399 	}
1400 	PA_UNLOCK_COND(pa);
1401 	PMAP_UNLOCK(pmap);
1402 	return (m);
1403 }
1404 
1405 static void *
1406 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1407 {
1408 	/*
1409 	 * This entire routine is a horrible hack to avoid bothering kmem
1410 	 * for new KVA addresses. Because this can get called from inside
1411 	 * kmem allocation routines, calling kmem for a new address here
1412 	 * can lead to multiply locking non-recursive mutexes.
1413 	 */
1414 	static vm_pindex_t color;
1415         vm_offset_t va;
1416 
1417         vm_page_t m;
1418         int pflags, needed_lock;
1419 
1420 	*flags = UMA_SLAB_PRIV;
1421 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1422 
1423 	if (needed_lock)
1424 		PMAP_LOCK(kernel_pmap);
1425 
1426         if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1427                 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1428         else
1429                 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1430         if (wait & M_ZERO)
1431                 pflags |= VM_ALLOC_ZERO;
1432 
1433         for (;;) {
1434                 m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1435                 if (m == NULL) {
1436                         if (wait & M_NOWAIT)
1437                                 return (NULL);
1438                         VM_WAIT;
1439                 } else
1440                         break;
1441         }
1442 
1443 	va = VM_PAGE_TO_PHYS(m);
1444 
1445 	moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1446 	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1447 	    PVO_WIRED | PVO_BOOTSTRAP);
1448 
1449 	if (needed_lock)
1450 		PMAP_UNLOCK(kernel_pmap);
1451 
1452 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1453                 bzero((void *)va, PAGE_SIZE);
1454 
1455 	return (void *)va;
1456 }
1457 
1458 void
1459 moea64_init(mmu_t mmu)
1460 {
1461 
1462 	CTR0(KTR_PMAP, "moea64_init");
1463 
1464 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1465 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1466 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1467 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1468 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1469 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1470 
1471 	if (!hw_direct_map) {
1472 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1473 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1474 	}
1475 
1476 	moea64_initialized = TRUE;
1477 }
1478 
1479 boolean_t
1480 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1481 {
1482 
1483 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1484 	    ("moea64_is_referenced: page %p is not managed", m));
1485 	return (moea64_query_bit(m, PTE_REF));
1486 }
1487 
1488 boolean_t
1489 moea64_is_modified(mmu_t mmu, vm_page_t m)
1490 {
1491 
1492 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1493 	    ("moea64_is_modified: page %p is not managed", m));
1494 
1495 	/*
1496 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1497 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1498 	 * is clear, no PTEs can have LPTE_CHG set.
1499 	 */
1500 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1501 	if ((m->oflags & VPO_BUSY) == 0 &&
1502 	    (m->flags & PG_WRITEABLE) == 0)
1503 		return (FALSE);
1504 	return (moea64_query_bit(m, LPTE_CHG));
1505 }
1506 
1507 void
1508 moea64_clear_reference(mmu_t mmu, vm_page_t m)
1509 {
1510 
1511 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1512 	    ("moea64_clear_reference: page %p is not managed", m));
1513 	vm_page_lock_queues();
1514 	moea64_clear_bit(m, LPTE_REF, NULL);
1515 	vm_page_unlock_queues();
1516 }
1517 
1518 void
1519 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1520 {
1521 
1522 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1523 	    ("moea64_clear_modify: page %p is not managed", m));
1524 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1525 	KASSERT((m->oflags & VPO_BUSY) == 0,
1526 	    ("moea64_clear_modify: page %p is busy", m));
1527 
1528 	/*
1529 	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1530 	 * set.  If the object containing the page is locked and the page is
1531 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1532 	 */
1533 	if ((m->flags & PG_WRITEABLE) == 0)
1534 		return;
1535 	vm_page_lock_queues();
1536 	moea64_clear_bit(m, LPTE_CHG, NULL);
1537 	vm_page_unlock_queues();
1538 }
1539 
1540 /*
1541  * Clear the write and modified bits in each of the given page's mappings.
1542  */
1543 void
1544 moea64_remove_write(mmu_t mmu, vm_page_t m)
1545 {
1546 	struct	pvo_entry *pvo;
1547 	struct	lpte *pt;
1548 	pmap_t	pmap;
1549 	uint64_t lo;
1550 
1551 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1552 	    ("moea64_remove_write: page %p is not managed", m));
1553 
1554 	/*
1555 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1556 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1557 	 * is clear, no page table entries need updating.
1558 	 */
1559 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1560 	if ((m->oflags & VPO_BUSY) == 0 &&
1561 	    (m->flags & PG_WRITEABLE) == 0)
1562 		return;
1563 	vm_page_lock_queues();
1564 	lo = moea64_attr_fetch(m);
1565 	SYNC();
1566 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1567 		pmap = pvo->pvo_pmap;
1568 		PMAP_LOCK(pmap);
1569 		LOCK_TABLE();
1570 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1571 			pt = moea64_pvo_to_pte(pvo, -1);
1572 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1573 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1574 			if (pt != NULL) {
1575 				moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1576 				lo |= pvo->pvo_pte.lpte.pte_lo;
1577 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1578 				moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1579 				    pvo->pvo_pmap, PVO_VADDR(pvo));
1580 			}
1581 		}
1582 		UNLOCK_TABLE();
1583 		PMAP_UNLOCK(pmap);
1584 	}
1585 	if ((lo & LPTE_CHG) != 0) {
1586 		moea64_attr_clear(m, LPTE_CHG);
1587 		vm_page_dirty(m);
1588 	}
1589 	vm_page_flag_clear(m, PG_WRITEABLE);
1590 	vm_page_unlock_queues();
1591 }
1592 
1593 /*
1594  *	moea64_ts_referenced:
1595  *
1596  *	Return a count of reference bits for a page, clearing those bits.
1597  *	It is not necessary for every reference bit to be cleared, but it
1598  *	is necessary that 0 only be returned when there are truly no
1599  *	reference bits set.
1600  *
1601  *	XXX: The exact number of bits to check and clear is a matter that
1602  *	should be tested and standardized at some point in the future for
1603  *	optimal aging of shared pages.
1604  */
1605 boolean_t
1606 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1607 {
1608 	int count;
1609 
1610 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1611 		return (0);
1612 
1613 	count = moea64_clear_bit(m, LPTE_REF, NULL);
1614 
1615 	return (count);
1616 }
1617 
1618 /*
1619  * Map a wired page into kernel virtual address space.
1620  */
1621 void
1622 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1623 {
1624 	uint64_t	pte_lo;
1625 	int		error;
1626 
1627 #if 0
1628 	if (!pmap_bootstrapped) {
1629 		if (va >= VM_MIN_KERNEL_ADDRESS && va < virtual_end)
1630 			panic("Trying to enter an address in KVA -- %#x!\n",pa);
1631 	}
1632 #endif
1633 
1634 	pte_lo = moea64_calc_wimg(pa);
1635 
1636 	PMAP_LOCK(kernel_pmap);
1637 	error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1638 	    &moea64_pvo_kunmanaged, va, pa, pte_lo,
1639 	    PVO_WIRED | VM_PROT_EXECUTE);
1640 
1641 	if (error != 0 && error != ENOENT)
1642 		panic("moea64_kenter: failed to enter va %#x pa %#x: %d", va,
1643 		    pa, error);
1644 
1645 	/*
1646 	 * Flush the memory from the instruction cache.
1647 	 */
1648 	if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1649 		__syncicache((void *)va, PAGE_SIZE);
1650 	}
1651 	PMAP_UNLOCK(kernel_pmap);
1652 }
1653 
1654 /*
1655  * Extract the physical page address associated with the given kernel virtual
1656  * address.
1657  */
1658 vm_offset_t
1659 moea64_kextract(mmu_t mmu, vm_offset_t va)
1660 {
1661 	struct		pvo_entry *pvo;
1662 	vm_paddr_t pa;
1663 
1664 	/*
1665 	 * Shortcut the direct-mapped case when applicable.  We never put
1666 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1667 	 */
1668 	if (va < VM_MIN_KERNEL_ADDRESS)
1669 		return (va);
1670 
1671 	PMAP_LOCK(kernel_pmap);
1672 	pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1673 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found"));
1674 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
1675 	PMAP_UNLOCK(kernel_pmap);
1676 	return (pa);
1677 }
1678 
1679 /*
1680  * Remove a wired page from kernel virtual address space.
1681  */
1682 void
1683 moea64_kremove(mmu_t mmu, vm_offset_t va)
1684 {
1685 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1686 }
1687 
1688 /*
1689  * Map a range of physical addresses into kernel virtual address space.
1690  *
1691  * The value passed in *virt is a suggested virtual address for the mapping.
1692  * Architectures which can support a direct-mapped physical to virtual region
1693  * can return the appropriate address within that region, leaving '*virt'
1694  * unchanged.  We cannot and therefore do not; *virt is updated with the
1695  * first usable address after the mapped region.
1696  */
1697 vm_offset_t
1698 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1699     vm_offset_t pa_end, int prot)
1700 {
1701 	vm_offset_t	sva, va;
1702 
1703 	sva = *virt;
1704 	va = sva;
1705 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1706 		moea64_kenter(mmu, va, pa_start);
1707 	*virt = va;
1708 
1709 	return (sva);
1710 }
1711 
1712 /*
1713  * Returns true if the pmap's pv is one of the first
1714  * 16 pvs linked to from this page.  This count may
1715  * be changed upwards or downwards in the future; it
1716  * is only necessary that true be returned for a small
1717  * subset of pmaps for proper page aging.
1718  */
1719 boolean_t
1720 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1721 {
1722         int loops;
1723 	struct pvo_entry *pvo;
1724 
1725         if (!moea64_initialized || (m->flags & PG_FICTITIOUS))
1726                 return FALSE;
1727 
1728 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1729 
1730 	loops = 0;
1731 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1732 		if (pvo->pvo_pmap == pmap)
1733 			return (TRUE);
1734 		if (++loops >= 16)
1735 			break;
1736 	}
1737 
1738 	return (FALSE);
1739 }
1740 
1741 /*
1742  * Return the number of managed mappings to the given physical page
1743  * that are wired.
1744  */
1745 int
1746 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1747 {
1748 	struct pvo_entry *pvo;
1749 	int count;
1750 
1751 	count = 0;
1752 	if (!moea64_initialized || (m->flags & PG_FICTITIOUS) != 0)
1753 		return (count);
1754 	vm_page_lock_queues();
1755 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1756 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1757 			count++;
1758 	vm_page_unlock_queues();
1759 	return (count);
1760 }
1761 
1762 static u_int	moea64_vsidcontext;
1763 
1764 void
1765 moea64_pinit(mmu_t mmu, pmap_t pmap)
1766 {
1767 	int	i, mask;
1768 	u_int	entropy;
1769 
1770 	PMAP_LOCK_INIT(pmap);
1771 
1772 	entropy = 0;
1773 	__asm __volatile("mftb %0" : "=r"(entropy));
1774 
1775 	if (pmap_bootstrapped)
1776 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap);
1777 	else
1778 		pmap->pmap_phys = pmap;
1779 
1780 	/*
1781 	 * Allocate some segment registers for this pmap.
1782 	 */
1783 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1784 		u_int	hash, n;
1785 
1786 		/*
1787 		 * Create a new value by mutiplying by a prime and adding in
1788 		 * entropy from the timebase register.  This is to make the
1789 		 * VSID more random so that the PT hash function collides
1790 		 * less often.  (Note that the prime casues gcc to do shifts
1791 		 * instead of a multiply.)
1792 		 */
1793 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1794 		hash = moea64_vsidcontext & (NPMAPS - 1);
1795 		if (hash == 0)		/* 0 is special, avoid it */
1796 			continue;
1797 		n = hash >> 5;
1798 		mask = 1 << (hash & (VSID_NBPW - 1));
1799 		hash = (moea64_vsidcontext & 0xfffff);
1800 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1801 			/* anything free in this bucket? */
1802 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1803 				entropy = (moea64_vsidcontext >> 20);
1804 				continue;
1805 			}
1806 			i = ffs(~moea64_vsid_bitmap[i]) - 1;
1807 			mask = 1 << i;
1808 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1809 			hash |= i;
1810 		}
1811 		moea64_vsid_bitmap[n] |= mask;
1812 		for (i = 0; i < 16; i++) {
1813 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1814 		}
1815 		return;
1816 	}
1817 
1818 	panic("moea64_pinit: out of segments");
1819 }
1820 
1821 /*
1822  * Initialize the pmap associated with process 0.
1823  */
1824 void
1825 moea64_pinit0(mmu_t mmu, pmap_t pm)
1826 {
1827 	moea64_pinit(mmu, pm);
1828 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1829 }
1830 
1831 /*
1832  * Set the physical protection on the specified range of this map as requested.
1833  */
1834 void
1835 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1836     vm_prot_t prot)
1837 {
1838 	struct	pvo_entry *pvo;
1839 	struct	lpte *pt;
1840 	int	pteidx;
1841 
1842 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1843 	    eva, prot);
1844 
1845 
1846 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1847 	    ("moea64_protect: non current pmap"));
1848 
1849 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1850 		moea64_remove(mmu, pm, sva, eva);
1851 		return;
1852 	}
1853 
1854 	vm_page_lock_queues();
1855 	PMAP_LOCK(pm);
1856 	for (; sva < eva; sva += PAGE_SIZE) {
1857 		pvo = moea64_pvo_find_va(pm, sva, &pteidx);
1858 		if (pvo == NULL)
1859 			continue;
1860 
1861 		/*
1862 		 * Grab the PTE pointer before we diddle with the cached PTE
1863 		 * copy.
1864 		 */
1865 		LOCK_TABLE();
1866 		pt = moea64_pvo_to_pte(pvo, pteidx);
1867 
1868 		/*
1869 		 * Change the protection of the page.
1870 		 */
1871 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1872 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1873 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1874 		if ((prot & VM_PROT_EXECUTE) == 0)
1875 			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1876 
1877 		/*
1878 		 * If the PVO is in the page table, update that pte as well.
1879 		 */
1880 		if (pt != NULL) {
1881 			moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1882 			    pvo->pvo_pmap, PVO_VADDR(pvo));
1883 			if ((pvo->pvo_pte.lpte.pte_lo &
1884 			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1885 				moea64_syncicache(pm, sva,
1886 				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1887 				    PAGE_SIZE);
1888 			}
1889 		}
1890 		UNLOCK_TABLE();
1891 	}
1892 	vm_page_unlock_queues();
1893 	PMAP_UNLOCK(pm);
1894 }
1895 
1896 /*
1897  * Map a list of wired pages into kernel virtual address space.  This is
1898  * intended for temporary mappings which do not need page modification or
1899  * references recorded.  Existing mappings in the region are overwritten.
1900  */
1901 void
1902 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1903 {
1904 	while (count-- > 0) {
1905 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1906 		va += PAGE_SIZE;
1907 		m++;
1908 	}
1909 }
1910 
1911 /*
1912  * Remove page mappings from kernel virtual address space.  Intended for
1913  * temporary mappings entered by moea64_qenter.
1914  */
1915 void
1916 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1917 {
1918 	while (count-- > 0) {
1919 		moea64_kremove(mmu, va);
1920 		va += PAGE_SIZE;
1921 	}
1922 }
1923 
1924 void
1925 moea64_release(mmu_t mmu, pmap_t pmap)
1926 {
1927         int idx, mask;
1928 
1929 	/*
1930 	 * Free segment register's VSID
1931 	 */
1932         if (pmap->pm_sr[0] == 0)
1933                 panic("moea64_release");
1934 
1935         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1936         mask = 1 << (idx % VSID_NBPW);
1937         idx /= VSID_NBPW;
1938         moea64_vsid_bitmap[idx] &= ~mask;
1939 	PMAP_LOCK_DESTROY(pmap);
1940 }
1941 
1942 /*
1943  * Remove the given range of addresses from the specified map.
1944  */
1945 void
1946 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1947 {
1948 	struct	pvo_entry *pvo;
1949 	int	pteidx;
1950 
1951 	vm_page_lock_queues();
1952 	PMAP_LOCK(pm);
1953 	for (; sva < eva; sva += PAGE_SIZE) {
1954 		pvo = moea64_pvo_find_va(pm, sva, &pteidx);
1955 		if (pvo != NULL) {
1956 			moea64_pvo_remove(pvo, pteidx);
1957 		}
1958 	}
1959 	vm_page_unlock_queues();
1960 	PMAP_UNLOCK(pm);
1961 }
1962 
1963 /*
1964  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
1965  * will reflect changes in pte's back to the vm_page.
1966  */
1967 void
1968 moea64_remove_all(mmu_t mmu, vm_page_t m)
1969 {
1970 	struct  pvo_head *pvo_head;
1971 	struct	pvo_entry *pvo, *next_pvo;
1972 	pmap_t	pmap;
1973 
1974 	vm_page_lock_queues();
1975 	pvo_head = vm_page_to_pvoh(m);
1976 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1977 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1978 
1979 		MOEA_PVO_CHECK(pvo);	/* sanity check */
1980 		pmap = pvo->pvo_pmap;
1981 		PMAP_LOCK(pmap);
1982 		moea64_pvo_remove(pvo, -1);
1983 		PMAP_UNLOCK(pmap);
1984 	}
1985 	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
1986 		moea64_attr_clear(m, LPTE_CHG);
1987 		vm_page_dirty(m);
1988 	}
1989 	vm_page_flag_clear(m, PG_WRITEABLE);
1990 	vm_page_unlock_queues();
1991 }
1992 
1993 /*
1994  * Allocate a physical page of memory directly from the phys_avail map.
1995  * Can only be called from moea64_bootstrap before avail start and end are
1996  * calculated.
1997  */
1998 static vm_offset_t
1999 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2000 {
2001 	vm_offset_t	s, e;
2002 	int		i, j;
2003 
2004 	size = round_page(size);
2005 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2006 		if (align != 0)
2007 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2008 		else
2009 			s = phys_avail[i];
2010 		e = s + size;
2011 
2012 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2013 			continue;
2014 
2015 		if (s == phys_avail[i]) {
2016 			phys_avail[i] += size;
2017 		} else if (e == phys_avail[i + 1]) {
2018 			phys_avail[i + 1] -= size;
2019 		} else {
2020 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2021 				phys_avail[j] = phys_avail[j - 2];
2022 				phys_avail[j + 1] = phys_avail[j - 1];
2023 			}
2024 
2025 			phys_avail[i + 3] = phys_avail[i + 1];
2026 			phys_avail[i + 1] = s;
2027 			phys_avail[i + 2] = e;
2028 			phys_avail_count++;
2029 		}
2030 
2031 		return (s);
2032 	}
2033 	panic("moea64_bootstrap_alloc: could not allocate memory");
2034 }
2035 
2036 static void
2037 tlbia(void)
2038 {
2039 	vm_offset_t i;
2040 	register_t msr, scratch;
2041 
2042 	for (i = 0; i < 0xFF000; i += 0x00001000) {
2043 		__asm __volatile("\
2044 		    mfmsr %0; \
2045 		    mr %1, %0; \
2046 		    insrdi %1,%3,1,0; \
2047 		    mtmsrd %1; \
2048 		    ptesync; \
2049 		    \
2050 		    tlbiel %2; \
2051 		    \
2052 		    mtmsrd %0; \
2053 		    eieio; \
2054 		    tlbsync; \
2055 		    ptesync;"
2056 		: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2057 	}
2058 }
2059 
2060 static int
2061 moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2062     vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2063 {
2064 	struct	 pvo_entry *pvo;
2065 	uint64_t vsid;
2066 	int	 first;
2067 	u_int	 ptegidx;
2068 	int	 i;
2069 	int      bootstrap;
2070 
2071 	/*
2072 	 * One nasty thing that can happen here is that the UMA calls to
2073 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2074 	 * which calls UMA...
2075 	 *
2076 	 * We break the loop by detecting recursion and allocating out of
2077 	 * the bootstrap pool.
2078 	 */
2079 
2080 	moea64_pvo_enter_calls++;
2081 	first = 0;
2082 	bootstrap = (flags & PVO_BOOTSTRAP);
2083 
2084 	if (!moea64_initialized)
2085 		bootstrap = 1;
2086 
2087 	/*
2088 	 * Compute the PTE Group index.
2089 	 */
2090 	va &= ~ADDR_POFF;
2091 	vsid = va_to_vsid(pm, va);
2092 	ptegidx = va_to_pteg(vsid, va);
2093 
2094 	/*
2095 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2096 	 * there is a mapping.
2097 	 */
2098 	LOCK_TABLE();
2099 
2100 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2101 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2102 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2103 			    (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2104 			    (pte_lo & LPTE_PP)) {
2105 				UNLOCK_TABLE();
2106 				return (0);
2107 			}
2108 			moea64_pvo_remove(pvo, -1);
2109 			break;
2110 		}
2111 	}
2112 
2113 	/*
2114 	 * If we aren't overwriting a mapping, try to allocate.
2115 	 */
2116 	if (bootstrap) {
2117 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2118 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %d",
2119 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2120 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2121 		}
2122 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2123 		moea64_bpvo_pool_index++;
2124 		bootstrap = 1;
2125 	} else {
2126 		/*
2127 		 * Note: drop the table lock around the UMA allocation in
2128 		 * case the UMA allocator needs to manipulate the page
2129 		 * table. The mapping we are working with is already
2130 		 * protected by the PMAP lock.
2131 		 */
2132 		UNLOCK_TABLE();
2133 		pvo = uma_zalloc(zone, M_NOWAIT);
2134 		LOCK_TABLE();
2135 	}
2136 
2137 	if (pvo == NULL) {
2138 		UNLOCK_TABLE();
2139 		return (ENOMEM);
2140 	}
2141 
2142 	moea64_pvo_entries++;
2143 	pvo->pvo_vaddr = va;
2144 	pvo->pvo_pmap = pm;
2145 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2146 	pvo->pvo_vaddr &= ~ADDR_POFF;
2147 
2148 	if (!(flags & VM_PROT_EXECUTE))
2149 		pte_lo |= LPTE_NOEXEC;
2150 	if (flags & PVO_WIRED)
2151 		pvo->pvo_vaddr |= PVO_WIRED;
2152 	if (pvo_head != &moea64_pvo_kunmanaged)
2153 		pvo->pvo_vaddr |= PVO_MANAGED;
2154 	if (bootstrap)
2155 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2156 	if (flags & PVO_FAKE)
2157 		pvo->pvo_vaddr |= PVO_FAKE;
2158 
2159 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2160 	    (uint64_t)(pa) | pte_lo);
2161 
2162 	/*
2163 	 * Remember if the list was empty and therefore will be the first
2164 	 * item.
2165 	 */
2166 	if (LIST_FIRST(pvo_head) == NULL)
2167 		first = 1;
2168 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2169 
2170 	if (pvo->pvo_vaddr & PVO_WIRED)
2171 		pm->pm_stats.wired_count++;
2172 	pm->pm_stats.resident_count++;
2173 
2174 	/*
2175 	 * We hope this succeeds but it isn't required.
2176 	 */
2177 	i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2178 	if (i >= 0) {
2179 		PVO_PTEGIDX_SET(pvo, i);
2180 	} else {
2181 		panic("moea64_pvo_enter: overflow");
2182 		moea64_pte_overflow++;
2183 	}
2184 
2185 	if (pm == kernel_pmap)
2186 		isync();
2187 
2188 	UNLOCK_TABLE();
2189 
2190 	return (first ? ENOENT : 0);
2191 }
2192 
2193 static void
2194 moea64_pvo_remove(struct pvo_entry *pvo, int pteidx)
2195 {
2196 	struct	lpte *pt;
2197 
2198 	/*
2199 	 * If there is an active pte entry, we need to deactivate it (and
2200 	 * save the ref & cfg bits).
2201 	 */
2202 	LOCK_TABLE();
2203 	pt = moea64_pvo_to_pte(pvo, pteidx);
2204 	if (pt != NULL) {
2205 		moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap,
2206 		    PVO_VADDR(pvo));
2207 		PVO_PTEGIDX_CLR(pvo);
2208 	} else {
2209 		moea64_pte_overflow--;
2210 	}
2211 
2212 	/*
2213 	 * Update our statistics.
2214 	 */
2215 	pvo->pvo_pmap->pm_stats.resident_count--;
2216 	if (pvo->pvo_vaddr & PVO_WIRED)
2217 		pvo->pvo_pmap->pm_stats.wired_count--;
2218 
2219 	/*
2220 	 * Save the REF/CHG bits into their cache if the page is managed.
2221 	 */
2222 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2223 		struct	vm_page *pg;
2224 
2225 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2226 		if (pg != NULL) {
2227 			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2228 			    (LPTE_REF | LPTE_CHG));
2229 		}
2230 	}
2231 
2232 	/*
2233 	 * Remove this PVO from the PV list.
2234 	 */
2235 	LIST_REMOVE(pvo, pvo_vlink);
2236 
2237 	/*
2238 	 * Remove this from the overflow list and return it to the pool
2239 	 * if we aren't going to reuse it.
2240 	 */
2241 	LIST_REMOVE(pvo, pvo_olink);
2242 	UNLOCK_TABLE();
2243 
2244 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2245 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2246 		    moea64_upvo_zone, pvo);
2247 
2248 	moea64_pvo_entries--;
2249 	moea64_pvo_remove_calls++;
2250 }
2251 
2252 static __inline int
2253 moea64_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2254 {
2255 
2256 	/*
2257 	 * We can find the actual pte entry without searching by grabbing
2258 	 * the PTEG index from 3 unused bits in pvo_vaddr and by
2259 	 * noticing the HID bit.
2260 	 */
2261 	if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2262 		ptegidx ^= moea64_pteg_mask;
2263 
2264 	return ((ptegidx << 3) | PVO_PTEGIDX_GET(pvo));
2265 }
2266 
2267 static struct pvo_entry *
2268 moea64_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2269 {
2270 	struct		pvo_entry *pvo;
2271 	int		ptegidx;
2272 	uint64_t	vsid;
2273 
2274 	va &= ~ADDR_POFF;
2275 	vsid = va_to_vsid(pm, va);
2276 	ptegidx = va_to_pteg(vsid, va);
2277 
2278 	LOCK_TABLE();
2279 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2280 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2281 			if (pteidx_p)
2282 				*pteidx_p = moea64_pvo_pte_index(pvo, ptegidx);
2283 			break;
2284 		}
2285 	}
2286 	UNLOCK_TABLE();
2287 
2288 	return (pvo);
2289 }
2290 
2291 static struct lpte *
2292 moea64_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2293 {
2294 	struct lpte *pt;
2295 
2296 	/*
2297 	 * If we haven't been supplied the ptegidx, calculate it.
2298 	 */
2299 	if (pteidx == -1) {
2300 		int		ptegidx;
2301 		uint64_t	vsid;
2302 
2303 		vsid = va_to_vsid(pvo->pvo_pmap, PVO_VADDR(pvo));
2304 		ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo));
2305 		pteidx = moea64_pvo_pte_index(pvo, ptegidx);
2306 	}
2307 
2308 	pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2309 
2310 	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2311 	    !PVO_PTEGIDX_ISSET(pvo)) {
2312 		panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2313 		    "valid pte index", pvo);
2314 	}
2315 
2316 	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2317 	    PVO_PTEGIDX_ISSET(pvo)) {
2318 		panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2319 		    "pvo but no valid pte", pvo);
2320 	}
2321 
2322 	if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2323 	    LPTE_VALID) {
2324 		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2325 			panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2326 			    "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2327 		}
2328 
2329 		if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2330 		    ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2331 			panic("moea64_pvo_to_pte: pvo %p pte does not match "
2332 			    "pte %p in moea64_pteg_table difference is %#x",
2333 			    pvo, pt,
2334 			    (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2335 		}
2336 
2337 		ASSERT_TABLE_LOCK();
2338 		return (pt);
2339 	}
2340 
2341 	if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2342 		panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2343 		    "moea64_pteg_table but valid in pvo", pvo, pt);
2344 	}
2345 
2346 	return (NULL);
2347 }
2348 
2349 static int
2350 moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2351 {
2352 	struct	lpte *pt;
2353 	int	i;
2354 
2355 	ASSERT_TABLE_LOCK();
2356 
2357 	/*
2358 	 * First try primary hash.
2359 	 */
2360 	for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2361 		if ((pt->pte_hi & LPTE_VALID) == 0 &&
2362 		    (pt->pte_hi & LPTE_LOCKED) == 0) {
2363 			pvo_pt->pte_hi &= ~LPTE_HID;
2364 			moea64_pte_set(pt, pvo_pt);
2365 			return (i);
2366 		}
2367 	}
2368 
2369 	/*
2370 	 * Now try secondary hash.
2371 	 */
2372 	ptegidx ^= moea64_pteg_mask;
2373 
2374 	for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2375 		if ((pt->pte_hi & LPTE_VALID) == 0 &&
2376 		    (pt->pte_hi & LPTE_LOCKED) == 0) {
2377 			pvo_pt->pte_hi |= LPTE_HID;
2378 			moea64_pte_set(pt, pvo_pt);
2379 			return (i);
2380 		}
2381 	}
2382 
2383 	panic("moea64_pte_insert: overflow");
2384 	return (-1);
2385 }
2386 
2387 static boolean_t
2388 moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2389 {
2390 	struct	pvo_entry *pvo;
2391 	struct	lpte *pt;
2392 
2393 	if (moea64_attr_fetch(m) & ptebit)
2394 		return (TRUE);
2395 
2396 	vm_page_lock_queues();
2397 
2398 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2399 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2400 
2401 		/*
2402 		 * See if we saved the bit off.  If so, cache it and return
2403 		 * success.
2404 		 */
2405 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2406 			moea64_attr_save(m, ptebit);
2407 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2408 			vm_page_unlock_queues();
2409 			return (TRUE);
2410 		}
2411 	}
2412 
2413 	/*
2414 	 * No luck, now go through the hard part of looking at the PTEs
2415 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2416 	 * the PTEs.
2417 	 */
2418 	SYNC();
2419 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2420 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2421 
2422 		/*
2423 		 * See if this pvo has a valid PTE.  if so, fetch the
2424 		 * REF/CHG bits from the valid PTE.  If the appropriate
2425 		 * ptebit is set, cache it and return success.
2426 		 */
2427 		LOCK_TABLE();
2428 		pt = moea64_pvo_to_pte(pvo, -1);
2429 		if (pt != NULL) {
2430 			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2431 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2432 				UNLOCK_TABLE();
2433 
2434 				moea64_attr_save(m, ptebit);
2435 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2436 				vm_page_unlock_queues();
2437 				return (TRUE);
2438 			}
2439 		}
2440 		UNLOCK_TABLE();
2441 	}
2442 
2443 	vm_page_unlock_queues();
2444 	return (FALSE);
2445 }
2446 
2447 static u_int
2448 moea64_clear_bit(vm_page_t m, u_int64_t ptebit, u_int64_t *origbit)
2449 {
2450 	u_int	count;
2451 	struct	pvo_entry *pvo;
2452 	struct	lpte *pt;
2453 	uint64_t rv;
2454 
2455 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2456 
2457 	/*
2458 	 * Clear the cached value.
2459 	 */
2460 	rv = moea64_attr_fetch(m);
2461 	moea64_attr_clear(m, ptebit);
2462 
2463 	/*
2464 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2465 	 * we can reset the right ones).  note that since the pvo entries and
2466 	 * list heads are accessed via BAT0 and are never placed in the page
2467 	 * table, we don't have to worry about further accesses setting the
2468 	 * REF/CHG bits.
2469 	 */
2470 	SYNC();
2471 
2472 	/*
2473 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2474 	 * valid pte clear the ptebit from the valid pte.
2475 	 */
2476 	count = 0;
2477 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2478 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2479 
2480 		LOCK_TABLE();
2481 		pt = moea64_pvo_to_pte(pvo, -1);
2482 		if (pt != NULL) {
2483 			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2484 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2485 				count++;
2486 				moea64_pte_clear(pt, pvo->pvo_pmap, PVO_VADDR(pvo), ptebit);
2487 			}
2488 		}
2489 		rv |= pvo->pvo_pte.lpte.pte_lo;
2490 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2491 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2492 		UNLOCK_TABLE();
2493 	}
2494 
2495 	if (origbit != NULL) {
2496 		*origbit = rv;
2497 	}
2498 
2499 	return (count);
2500 }
2501 
2502 boolean_t
2503 moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2504 {
2505 	struct pvo_entry *pvo;
2506 	vm_offset_t ppa;
2507 	int error = 0;
2508 
2509 	PMAP_LOCK(kernel_pmap);
2510 	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2511 		pvo = moea64_pvo_find_va(kernel_pmap, ppa, NULL);
2512 		if (pvo == NULL ||
2513 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2514 			error = EFAULT;
2515 			break;
2516 		}
2517 	}
2518 	PMAP_UNLOCK(kernel_pmap);
2519 
2520 	return (error);
2521 }
2522 
2523 /*
2524  * Map a set of physical memory pages into the kernel virtual
2525  * address space. Return a pointer to where it is mapped. This
2526  * routine is intended to be used for mapping device memory,
2527  * NOT real memory.
2528  */
2529 void *
2530 moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2531 {
2532 	vm_offset_t va, tmpva, ppa, offset;
2533 
2534 	ppa = trunc_page(pa);
2535 	offset = pa & PAGE_MASK;
2536 	size = roundup(offset + size, PAGE_SIZE);
2537 
2538 	va = kmem_alloc_nofault(kernel_map, size);
2539 
2540 	if (!va)
2541 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2542 
2543 	for (tmpva = va; size > 0;) {
2544 		moea64_kenter(mmu, tmpva, ppa);
2545 		size -= PAGE_SIZE;
2546 		tmpva += PAGE_SIZE;
2547 		ppa += PAGE_SIZE;
2548 	}
2549 
2550 	return ((void *)(va + offset));
2551 }
2552 
2553 void
2554 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2555 {
2556 	vm_offset_t base, offset;
2557 
2558 	base = trunc_page(va);
2559 	offset = va & PAGE_MASK;
2560 	size = roundup(offset + size, PAGE_SIZE);
2561 
2562 	kmem_free(kernel_map, base, size);
2563 }
2564 
2565 static void
2566 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2567 {
2568 	struct pvo_entry *pvo;
2569 	vm_offset_t lim;
2570 	vm_paddr_t pa;
2571 	vm_size_t len;
2572 
2573 	PMAP_LOCK(pm);
2574 	while (sz > 0) {
2575 		lim = round_page(va);
2576 		len = MIN(lim - va, sz);
2577 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2578 		if (pvo != NULL) {
2579 			pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
2580 			    (va & ADDR_POFF);
2581 			moea64_syncicache(pm, va, pa, len);
2582 		}
2583 		va += len;
2584 		sz -= len;
2585 	}
2586 	PMAP_UNLOCK(pm);
2587 }
2588