xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 955c8cbb4960e6cf3602de144b1b9154a5092968)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * Since the information managed by this module is also stored by the
100  * logical address mapping module, this module may throw away valid virtual
101  * to physical mappings at almost any time.  However, invalidations of
102  * mappings must be done as requested.
103  *
104  * In order to cope with hardware architectures which make virtual to
105  * physical map invalidates expensive, this module may delay invalidate
106  * reduced protection operations until such time as they are actually
107  * necessary.  This module is given full information as to which processors
108  * are currently using which maps, and to when physical maps must be made
109  * correct.
110  */
111 
112 #include "opt_compat.h"
113 #include "opt_kstack_pages.h"
114 
115 #include <sys/param.h>
116 #include <sys/kernel.h>
117 #include <sys/queue.h>
118 #include <sys/cpuset.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/msgbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rwlock.h>
126 #include <sys/sched.h>
127 #include <sys/sysctl.h>
128 #include <sys/systm.h>
129 #include <sys/vmmeter.h>
130 
131 #include <sys/kdb.h>
132 
133 #include <dev/ofw/openfirm.h>
134 
135 #include <vm/vm.h>
136 #include <vm/vm_param.h>
137 #include <vm/vm_kern.h>
138 #include <vm/vm_page.h>
139 #include <vm/vm_map.h>
140 #include <vm/vm_object.h>
141 #include <vm/vm_extern.h>
142 #include <vm/vm_pageout.h>
143 #include <vm/vm_pager.h>
144 #include <vm/uma.h>
145 
146 #include <machine/_inttypes.h>
147 #include <machine/cpu.h>
148 #include <machine/platform.h>
149 #include <machine/frame.h>
150 #include <machine/md_var.h>
151 #include <machine/psl.h>
152 #include <machine/bat.h>
153 #include <machine/hid.h>
154 #include <machine/pte.h>
155 #include <machine/sr.h>
156 #include <machine/trap.h>
157 #include <machine/mmuvar.h>
158 
159 #include "mmu_oea64.h"
160 #include "mmu_if.h"
161 #include "moea64_if.h"
162 
163 void moea64_release_vsid(uint64_t vsid);
164 uintptr_t moea64_get_unique_vsid(void);
165 
166 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
167 #define ENABLE_TRANS(msr)	mtmsr(msr)
168 
169 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
170 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
171 #define	VSID_HASH_MASK		0x0000007fffffffffULL
172 
173 /*
174  * Locking semantics:
175  * -- Read lock: if no modifications are being made to either the PVO lists
176  *    or page table or if any modifications being made result in internal
177  *    changes (e.g. wiring, protection) such that the existence of the PVOs
178  *    is unchanged and they remain associated with the same pmap (in which
179  *    case the changes should be protected by the pmap lock)
180  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
181  */
182 
183 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
184 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
185 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
186 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
187 
188 struct ofw_map {
189 	cell_t	om_va;
190 	cell_t	om_len;
191 	cell_t	om_pa_hi;
192 	cell_t	om_pa_lo;
193 	cell_t	om_mode;
194 };
195 
196 /*
197  * Map of physical memory regions.
198  */
199 static struct	mem_region *regions;
200 static struct	mem_region *pregions;
201 static u_int	phys_avail_count;
202 static int	regions_sz, pregions_sz;
203 
204 extern void bs_remap_earlyboot(void);
205 
206 /*
207  * Lock for the pteg and pvo tables.
208  */
209 struct rwlock	moea64_table_lock;
210 struct mtx	moea64_slb_mutex;
211 
212 /*
213  * PTEG data.
214  */
215 u_int		moea64_pteg_count;
216 u_int		moea64_pteg_mask;
217 
218 /*
219  * PVO data.
220  */
221 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
222 
223 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
224 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
225 
226 #define	BPVO_POOL_SIZE	327680
227 static struct	pvo_entry *moea64_bpvo_pool;
228 static int	moea64_bpvo_pool_index = 0;
229 
230 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
231 #ifdef __powerpc64__
232 #define	NVSIDS		(NPMAPS * 16)
233 #define VSID_HASHMASK	0xffffffffUL
234 #else
235 #define NVSIDS		NPMAPS
236 #define VSID_HASHMASK	0xfffffUL
237 #endif
238 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
239 
240 static boolean_t moea64_initialized = FALSE;
241 
242 /*
243  * Statistics.
244  */
245 u_int	moea64_pte_valid = 0;
246 u_int	moea64_pte_overflow = 0;
247 u_int	moea64_pvo_entries = 0;
248 u_int	moea64_pvo_enter_calls = 0;
249 u_int	moea64_pvo_remove_calls = 0;
250 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
251     &moea64_pte_valid, 0, "");
252 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
253     &moea64_pte_overflow, 0, "");
254 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
255     &moea64_pvo_entries, 0, "");
256 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
257     &moea64_pvo_enter_calls, 0, "");
258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
259     &moea64_pvo_remove_calls, 0, "");
260 
261 vm_offset_t	moea64_scratchpage_va[2];
262 struct pvo_entry *moea64_scratchpage_pvo[2];
263 uintptr_t	moea64_scratchpage_pte[2];
264 struct	mtx	moea64_scratchpage_mtx;
265 
266 uint64_t 	moea64_large_page_mask = 0;
267 int		moea64_large_page_size = 0;
268 int		moea64_large_page_shift = 0;
269 
270 /*
271  * PVO calls.
272  */
273 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
274 		    vm_offset_t, vm_offset_t, uint64_t, int);
275 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
276 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
277 
278 /*
279  * Utility routines.
280  */
281 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
282 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
283 static void		moea64_kremove(mmu_t, vm_offset_t);
284 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
285 			    vm_offset_t pa, vm_size_t sz);
286 
287 /*
288  * Kernel MMU interface
289  */
290 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
291 void moea64_clear_modify(mmu_t, vm_page_t);
292 void moea64_clear_reference(mmu_t, vm_page_t);
293 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
294 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
295 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
296     vm_prot_t);
297 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
298 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
299 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
300 void moea64_init(mmu_t);
301 boolean_t moea64_is_modified(mmu_t, vm_page_t);
302 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
303 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
304 int moea64_ts_referenced(mmu_t, vm_page_t);
305 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
306 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
307 int moea64_page_wired_mappings(mmu_t, vm_page_t);
308 void moea64_pinit(mmu_t, pmap_t);
309 void moea64_pinit0(mmu_t, pmap_t);
310 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
311 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
312 void moea64_qremove(mmu_t, vm_offset_t, int);
313 void moea64_release(mmu_t, pmap_t);
314 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
315 void moea64_remove_pages(mmu_t, pmap_t);
316 void moea64_remove_all(mmu_t, vm_page_t);
317 void moea64_remove_write(mmu_t, vm_page_t);
318 void moea64_zero_page(mmu_t, vm_page_t);
319 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
320 void moea64_zero_page_idle(mmu_t, vm_page_t);
321 void moea64_activate(mmu_t, struct thread *);
322 void moea64_deactivate(mmu_t, struct thread *);
323 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
324 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
325 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
326 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
327 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
328 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
329 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
330 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
331 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
332 
333 static mmu_method_t moea64_methods[] = {
334 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
335 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
336 	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
337 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
338 	MMUMETHOD(mmu_enter,		moea64_enter),
339 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
340 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
341 	MMUMETHOD(mmu_extract,		moea64_extract),
342 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
343 	MMUMETHOD(mmu_init,		moea64_init),
344 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
345 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
346 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
347 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
348 	MMUMETHOD(mmu_map,     		moea64_map),
349 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
350 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
351 	MMUMETHOD(mmu_pinit,		moea64_pinit),
352 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
353 	MMUMETHOD(mmu_protect,		moea64_protect),
354 	MMUMETHOD(mmu_qenter,		moea64_qenter),
355 	MMUMETHOD(mmu_qremove,		moea64_qremove),
356 	MMUMETHOD(mmu_release,		moea64_release),
357 	MMUMETHOD(mmu_remove,		moea64_remove),
358 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
359 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
360 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
361 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
362 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
363 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
364 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
365 	MMUMETHOD(mmu_activate,		moea64_activate),
366 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
367 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
368 
369 	/* Internal interfaces */
370 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
371 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
372 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
373 	MMUMETHOD(mmu_kextract,		moea64_kextract),
374 	MMUMETHOD(mmu_kenter,		moea64_kenter),
375 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
376 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
377 
378 	{ 0, 0 }
379 };
380 
381 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
382 
383 static __inline u_int
384 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
385 {
386 	uint64_t hash;
387 	int shift;
388 
389 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
390 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
391 	    shift);
392 	return (hash & moea64_pteg_mask);
393 }
394 
395 static __inline struct pvo_head *
396 vm_page_to_pvoh(vm_page_t m)
397 {
398 
399 	return (&m->md.mdpg_pvoh);
400 }
401 
402 static __inline void
403 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
404     uint64_t pte_lo, int flags)
405 {
406 
407 	/*
408 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
409 	 * set when the real pte is set in memory.
410 	 *
411 	 * Note: Don't set the valid bit for correct operation of tlb update.
412 	 */
413 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
414 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
415 
416 	if (flags & PVO_LARGE)
417 		pt->pte_hi |= LPTE_BIG;
418 
419 	pt->pte_lo = pte_lo;
420 }
421 
422 static __inline uint64_t
423 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
424 {
425 	uint64_t pte_lo;
426 	int i;
427 
428 	if (ma != VM_MEMATTR_DEFAULT) {
429 		switch (ma) {
430 		case VM_MEMATTR_UNCACHEABLE:
431 			return (LPTE_I | LPTE_G);
432 		case VM_MEMATTR_WRITE_COMBINING:
433 		case VM_MEMATTR_WRITE_BACK:
434 		case VM_MEMATTR_PREFETCHABLE:
435 			return (LPTE_I);
436 		case VM_MEMATTR_WRITE_THROUGH:
437 			return (LPTE_W | LPTE_M);
438 		}
439 	}
440 
441 	/*
442 	 * Assume the page is cache inhibited and access is guarded unless
443 	 * it's in our available memory array.
444 	 */
445 	pte_lo = LPTE_I | LPTE_G;
446 	for (i = 0; i < pregions_sz; i++) {
447 		if ((pa >= pregions[i].mr_start) &&
448 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
449 			pte_lo &= ~(LPTE_I | LPTE_G);
450 			pte_lo |= LPTE_M;
451 			break;
452 		}
453 	}
454 
455 	return pte_lo;
456 }
457 
458 /*
459  * Quick sort callout for comparing memory regions.
460  */
461 static int	om_cmp(const void *a, const void *b);
462 
463 static int
464 om_cmp(const void *a, const void *b)
465 {
466 	const struct	ofw_map *mapa;
467 	const struct	ofw_map *mapb;
468 
469 	mapa = a;
470 	mapb = b;
471 	if (mapa->om_pa_hi < mapb->om_pa_hi)
472 		return (-1);
473 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
474 		return (1);
475 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
476 		return (-1);
477 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
478 		return (1);
479 	else
480 		return (0);
481 }
482 
483 static void
484 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
485 {
486 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
487 	register_t	msr;
488 	vm_offset_t	off;
489 	vm_paddr_t	pa_base;
490 	int		i;
491 
492 	bzero(translations, sz);
493 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
494 		panic("moea64_bootstrap: can't get ofw translations");
495 
496 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
497 	sz /= sizeof(*translations);
498 	qsort(translations, sz, sizeof (*translations), om_cmp);
499 
500 	for (i = 0; i < sz; i++) {
501 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
502 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
503 		    translations[i].om_len);
504 
505 		if (translations[i].om_pa_lo % PAGE_SIZE)
506 			panic("OFW translation not page-aligned!");
507 
508 		pa_base = translations[i].om_pa_lo;
509 
510 	      #ifdef __powerpc64__
511 		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
512 	      #else
513 		if (translations[i].om_pa_hi)
514 			panic("OFW translations above 32-bit boundary!");
515 	      #endif
516 
517 		/* Now enter the pages for this mapping */
518 
519 		DISABLE_TRANS(msr);
520 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
521 			if (moea64_pvo_find_va(kernel_pmap,
522 			    translations[i].om_va + off) != NULL)
523 				continue;
524 
525 			moea64_kenter(mmup, translations[i].om_va + off,
526 			    pa_base + off);
527 		}
528 		ENABLE_TRANS(msr);
529 	}
530 }
531 
532 #ifdef __powerpc64__
533 static void
534 moea64_probe_large_page(void)
535 {
536 	uint16_t pvr = mfpvr() >> 16;
537 
538 	switch (pvr) {
539 	case IBM970:
540 	case IBM970FX:
541 	case IBM970MP:
542 		powerpc_sync(); isync();
543 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
544 		powerpc_sync(); isync();
545 
546 		/* FALLTHROUGH */
547 	case IBMCELLBE:
548 		moea64_large_page_size = 0x1000000; /* 16 MB */
549 		moea64_large_page_shift = 24;
550 		break;
551 	default:
552 		moea64_large_page_size = 0;
553 	}
554 
555 	moea64_large_page_mask = moea64_large_page_size - 1;
556 }
557 
558 static void
559 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
560 {
561 	struct slb *cache;
562 	struct slb entry;
563 	uint64_t esid, slbe;
564 	uint64_t i;
565 
566 	cache = PCPU_GET(slb);
567 	esid = va >> ADDR_SR_SHFT;
568 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
569 
570 	for (i = 0; i < 64; i++) {
571 		if (cache[i].slbe == (slbe | i))
572 			return;
573 	}
574 
575 	entry.slbe = slbe;
576 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
577 	if (large)
578 		entry.slbv |= SLBV_L;
579 
580 	slb_insert_kernel(entry.slbe, entry.slbv);
581 }
582 #endif
583 
584 static void
585 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
586     vm_offset_t kernelend)
587 {
588 	register_t msr;
589 	vm_paddr_t pa;
590 	vm_offset_t size, off;
591 	uint64_t pte_lo;
592 	int i;
593 
594 	if (moea64_large_page_size == 0)
595 		hw_direct_map = 0;
596 
597 	DISABLE_TRANS(msr);
598 	if (hw_direct_map) {
599 		LOCK_TABLE_WR();
600 		PMAP_LOCK(kernel_pmap);
601 		for (i = 0; i < pregions_sz; i++) {
602 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
603 		     pregions[i].mr_size; pa += moea64_large_page_size) {
604 			pte_lo = LPTE_M;
605 
606 			/*
607 			 * Set memory access as guarded if prefetch within
608 			 * the page could exit the available physmem area.
609 			 */
610 			if (pa & moea64_large_page_mask) {
611 				pa &= moea64_large_page_mask;
612 				pte_lo |= LPTE_G;
613 			}
614 			if (pa + moea64_large_page_size >
615 			    pregions[i].mr_start + pregions[i].mr_size)
616 				pte_lo |= LPTE_G;
617 
618 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
619 				    NULL, pa, pa, pte_lo,
620 				    PVO_WIRED | PVO_LARGE);
621 		  }
622 		}
623 		PMAP_UNLOCK(kernel_pmap);
624 		UNLOCK_TABLE_WR();
625 	} else {
626 		size = sizeof(struct pvo_head) * moea64_pteg_count;
627 		off = (vm_offset_t)(moea64_pvo_table);
628 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
629 			moea64_kenter(mmup, pa, pa);
630 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
631 		off = (vm_offset_t)(moea64_bpvo_pool);
632 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
633 		moea64_kenter(mmup, pa, pa);
634 
635 		/*
636 		 * Map certain important things, like ourselves.
637 		 *
638 		 * NOTE: We do not map the exception vector space. That code is
639 		 * used only in real mode, and leaving it unmapped allows us to
640 		 * catch NULL pointer deferences, instead of making NULL a valid
641 		 * address.
642 		 */
643 
644 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
645 		    pa += PAGE_SIZE)
646 			moea64_kenter(mmup, pa, pa);
647 	}
648 	ENABLE_TRANS(msr);
649 }
650 
651 void
652 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
653 {
654 	int		i, j;
655 	vm_size_t	physsz, hwphyssz;
656 
657 #ifndef __powerpc64__
658 	/* We don't have a direct map since there is no BAT */
659 	hw_direct_map = 0;
660 
661 	/* Make sure battable is zero, since we have no BAT */
662 	for (i = 0; i < 16; i++) {
663 		battable[i].batu = 0;
664 		battable[i].batl = 0;
665 	}
666 #else
667 	moea64_probe_large_page();
668 
669 	/* Use a direct map if we have large page support */
670 	if (moea64_large_page_size > 0)
671 		hw_direct_map = 1;
672 	else
673 		hw_direct_map = 0;
674 #endif
675 
676 	/* Get physical memory regions from firmware */
677 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
678 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
679 
680 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
681 		panic("moea64_bootstrap: phys_avail too small");
682 
683 	phys_avail_count = 0;
684 	physsz = 0;
685 	hwphyssz = 0;
686 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
687 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
688 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
689 		    regions[i].mr_start + regions[i].mr_size,
690 		    regions[i].mr_size);
691 		if (hwphyssz != 0 &&
692 		    (physsz + regions[i].mr_size) >= hwphyssz) {
693 			if (physsz < hwphyssz) {
694 				phys_avail[j] = regions[i].mr_start;
695 				phys_avail[j + 1] = regions[i].mr_start +
696 				    hwphyssz - physsz;
697 				physsz = hwphyssz;
698 				phys_avail_count++;
699 			}
700 			break;
701 		}
702 		phys_avail[j] = regions[i].mr_start;
703 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
704 		phys_avail_count++;
705 		physsz += regions[i].mr_size;
706 	}
707 
708 	/* Check for overlap with the kernel and exception vectors */
709 	for (j = 0; j < 2*phys_avail_count; j+=2) {
710 		if (phys_avail[j] < EXC_LAST)
711 			phys_avail[j] += EXC_LAST;
712 
713 		if (kernelstart >= phys_avail[j] &&
714 		    kernelstart < phys_avail[j+1]) {
715 			if (kernelend < phys_avail[j+1]) {
716 				phys_avail[2*phys_avail_count] =
717 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
718 				phys_avail[2*phys_avail_count + 1] =
719 				    phys_avail[j+1];
720 				phys_avail_count++;
721 			}
722 
723 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
724 		}
725 
726 		if (kernelend >= phys_avail[j] &&
727 		    kernelend < phys_avail[j+1]) {
728 			if (kernelstart > phys_avail[j]) {
729 				phys_avail[2*phys_avail_count] = phys_avail[j];
730 				phys_avail[2*phys_avail_count + 1] =
731 				    kernelstart & ~PAGE_MASK;
732 				phys_avail_count++;
733 			}
734 
735 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
736 		}
737 	}
738 
739 	physmem = btoc(physsz);
740 
741 #ifdef PTEGCOUNT
742 	moea64_pteg_count = PTEGCOUNT;
743 #else
744 	moea64_pteg_count = 0x1000;
745 
746 	while (moea64_pteg_count < physmem)
747 		moea64_pteg_count <<= 1;
748 
749 	moea64_pteg_count >>= 1;
750 #endif /* PTEGCOUNT */
751 }
752 
753 void
754 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
755 {
756 	vm_size_t	size;
757 	register_t	msr;
758 	int		i;
759 
760 	/*
761 	 * Set PTEG mask
762 	 */
763 	moea64_pteg_mask = moea64_pteg_count - 1;
764 
765 	/*
766 	 * Allocate pv/overflow lists.
767 	 */
768 	size = sizeof(struct pvo_head) * moea64_pteg_count;
769 
770 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
771 	    PAGE_SIZE);
772 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
773 
774 	DISABLE_TRANS(msr);
775 	for (i = 0; i < moea64_pteg_count; i++)
776 		LIST_INIT(&moea64_pvo_table[i]);
777 	ENABLE_TRANS(msr);
778 
779 	/*
780 	 * Initialize the lock that synchronizes access to the pteg and pvo
781 	 * tables.
782 	 */
783 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
784 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
785 
786 	/*
787 	 * Initialise the unmanaged pvo pool.
788 	 */
789 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
790 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
791 	moea64_bpvo_pool_index = 0;
792 
793 	/*
794 	 * Make sure kernel vsid is allocated as well as VSID 0.
795 	 */
796 	#ifndef __powerpc64__
797 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
798 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
799 	moea64_vsid_bitmap[0] |= 1;
800 	#endif
801 
802 	/*
803 	 * Initialize the kernel pmap (which is statically allocated).
804 	 */
805 	#ifdef __powerpc64__
806 	for (i = 0; i < 64; i++) {
807 		pcpup->pc_slb[i].slbv = 0;
808 		pcpup->pc_slb[i].slbe = 0;
809 	}
810 	#else
811 	for (i = 0; i < 16; i++)
812 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
813 	#endif
814 
815 	kernel_pmap->pmap_phys = kernel_pmap;
816 	CPU_FILL(&kernel_pmap->pm_active);
817 	RB_INIT(&kernel_pmap->pmap_pvo);
818 
819 	PMAP_LOCK_INIT(kernel_pmap);
820 
821 	/*
822 	 * Now map in all the other buffers we allocated earlier
823 	 */
824 
825 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
826 }
827 
828 void
829 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
830 {
831 	ihandle_t	mmui;
832 	phandle_t	chosen;
833 	phandle_t	mmu;
834 	size_t		sz;
835 	int		i;
836 	vm_offset_t	pa, va;
837 	void		*dpcpu;
838 
839 	/*
840 	 * Set up the Open Firmware pmap and add its mappings if not in real
841 	 * mode.
842 	 */
843 
844 	chosen = OF_finddevice("/chosen");
845 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
846 	    mmu = OF_instance_to_package(mmui);
847 	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
848 		sz = 0;
849 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
850 		panic("moea64_bootstrap: too many ofw translations");
851 
852 	    if (sz > 0)
853 		moea64_add_ofw_mappings(mmup, mmu, sz);
854 	}
855 
856 	/*
857 	 * Calculate the last available physical address.
858 	 */
859 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
860 		;
861 	Maxmem = powerpc_btop(phys_avail[i + 1]);
862 
863 	/*
864 	 * Initialize MMU and remap early physical mappings
865 	 */
866 	MMU_CPU_BOOTSTRAP(mmup,0);
867 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
868 	pmap_bootstrapped++;
869 	bs_remap_earlyboot();
870 
871 	/*
872 	 * Set the start and end of kva.
873 	 */
874 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
875 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
876 
877 	/*
878 	 * Map the entire KVA range into the SLB. We must not fault there.
879 	 */
880 	#ifdef __powerpc64__
881 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
882 		moea64_bootstrap_slb_prefault(va, 0);
883 	#endif
884 
885 	/*
886 	 * Figure out how far we can extend virtual_end into segment 16
887 	 * without running into existing mappings. Segment 16 is guaranteed
888 	 * to contain neither RAM nor devices (at least on Apple hardware),
889 	 * but will generally contain some OFW mappings we should not
890 	 * step on.
891 	 */
892 
893 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
894 	PMAP_LOCK(kernel_pmap);
895 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
896 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
897 		virtual_end += PAGE_SIZE;
898 	PMAP_UNLOCK(kernel_pmap);
899 	#endif
900 
901 	/*
902 	 * Allocate a kernel stack with a guard page for thread0 and map it
903 	 * into the kernel page map.
904 	 */
905 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
906 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
907 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
908 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
909 	thread0.td_kstack = va;
910 	thread0.td_kstack_pages = KSTACK_PAGES;
911 	for (i = 0; i < KSTACK_PAGES; i++) {
912 		moea64_kenter(mmup, va, pa);
913 		pa += PAGE_SIZE;
914 		va += PAGE_SIZE;
915 	}
916 
917 	/*
918 	 * Allocate virtual address space for the message buffer.
919 	 */
920 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
921 	msgbufp = (struct msgbuf *)virtual_avail;
922 	va = virtual_avail;
923 	virtual_avail += round_page(msgbufsize);
924 	while (va < virtual_avail) {
925 		moea64_kenter(mmup, va, pa);
926 		pa += PAGE_SIZE;
927 		va += PAGE_SIZE;
928 	}
929 
930 	/*
931 	 * Allocate virtual address space for the dynamic percpu area.
932 	 */
933 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
934 	dpcpu = (void *)virtual_avail;
935 	va = virtual_avail;
936 	virtual_avail += DPCPU_SIZE;
937 	while (va < virtual_avail) {
938 		moea64_kenter(mmup, va, pa);
939 		pa += PAGE_SIZE;
940 		va += PAGE_SIZE;
941 	}
942 	dpcpu_init(dpcpu, 0);
943 
944 	/*
945 	 * Allocate some things for page zeroing. We put this directly
946 	 * in the page table, marked with LPTE_LOCKED, to avoid any
947 	 * of the PVO book-keeping or other parts of the VM system
948 	 * from even knowing that this hack exists.
949 	 */
950 
951 	if (!hw_direct_map) {
952 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
953 		    MTX_DEF);
954 		for (i = 0; i < 2; i++) {
955 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
956 			virtual_end -= PAGE_SIZE;
957 
958 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
959 
960 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
961 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
962 			LOCK_TABLE_RD();
963 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
964 			    mmup, moea64_scratchpage_pvo[i]);
965 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
966 			    |= LPTE_LOCKED;
967 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
968 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
969 			    moea64_scratchpage_pvo[i]->pvo_vpn);
970 			UNLOCK_TABLE_RD();
971 		}
972 	}
973 }
974 
975 /*
976  * Activate a user pmap.  The pmap must be activated before its address
977  * space can be accessed in any way.
978  */
979 void
980 moea64_activate(mmu_t mmu, struct thread *td)
981 {
982 	pmap_t	pm;
983 
984 	pm = &td->td_proc->p_vmspace->vm_pmap;
985 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
986 
987 	#ifdef __powerpc64__
988 	PCPU_SET(userslb, pm->pm_slb);
989 	#else
990 	PCPU_SET(curpmap, pm->pmap_phys);
991 	#endif
992 }
993 
994 void
995 moea64_deactivate(mmu_t mmu, struct thread *td)
996 {
997 	pmap_t	pm;
998 
999 	pm = &td->td_proc->p_vmspace->vm_pmap;
1000 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1001 	#ifdef __powerpc64__
1002 	PCPU_SET(userslb, NULL);
1003 	#else
1004 	PCPU_SET(curpmap, NULL);
1005 	#endif
1006 }
1007 
1008 void
1009 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1010 {
1011 	struct	pvo_entry *pvo;
1012 	uintptr_t pt;
1013 	uint64_t vsid;
1014 	int	i, ptegidx;
1015 
1016 	LOCK_TABLE_WR();
1017 	PMAP_LOCK(pm);
1018 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1019 
1020 	if (pvo != NULL) {
1021 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1022 
1023 		if (wired) {
1024 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1025 				pm->pm_stats.wired_count++;
1026 			pvo->pvo_vaddr |= PVO_WIRED;
1027 			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1028 		} else {
1029 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1030 				pm->pm_stats.wired_count--;
1031 			pvo->pvo_vaddr &= ~PVO_WIRED;
1032 			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1033 		}
1034 
1035 		if (pt != -1) {
1036 			/* Update wiring flag in page table. */
1037 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1038 			    pvo->pvo_vpn);
1039 		} else if (wired) {
1040 			/*
1041 			 * If we are wiring the page, and it wasn't in the
1042 			 * page table before, add it.
1043 			 */
1044 			vsid = PVO_VSID(pvo);
1045 			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1046 			    pvo->pvo_vaddr & PVO_LARGE);
1047 
1048 			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1049 
1050 			if (i >= 0) {
1051 				PVO_PTEGIDX_CLR(pvo);
1052 				PVO_PTEGIDX_SET(pvo, i);
1053 			}
1054 		}
1055 
1056 	}
1057 	UNLOCK_TABLE_WR();
1058 	PMAP_UNLOCK(pm);
1059 }
1060 
1061 /*
1062  * This goes through and sets the physical address of our
1063  * special scratch PTE to the PA we want to zero or copy. Because
1064  * of locking issues (this can get called in pvo_enter() by
1065  * the UMA allocator), we can't use most other utility functions here
1066  */
1067 
1068 static __inline
1069 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1070 
1071 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1072 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1073 
1074 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1075 	    ~(LPTE_WIMG | LPTE_RPGN);
1076 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1077 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1078 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1079 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1080 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1081 	isync();
1082 }
1083 
1084 void
1085 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1086 {
1087 	vm_offset_t	dst;
1088 	vm_offset_t	src;
1089 
1090 	dst = VM_PAGE_TO_PHYS(mdst);
1091 	src = VM_PAGE_TO_PHYS(msrc);
1092 
1093 	if (hw_direct_map) {
1094 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1095 	} else {
1096 		mtx_lock(&moea64_scratchpage_mtx);
1097 
1098 		moea64_set_scratchpage_pa(mmu, 0, src);
1099 		moea64_set_scratchpage_pa(mmu, 1, dst);
1100 
1101 		bcopy((void *)moea64_scratchpage_va[0],
1102 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1103 
1104 		mtx_unlock(&moea64_scratchpage_mtx);
1105 	}
1106 }
1107 
1108 void
1109 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1110 {
1111 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1112 
1113 	if (size + off > PAGE_SIZE)
1114 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1115 
1116 	if (hw_direct_map) {
1117 		bzero((caddr_t)pa + off, size);
1118 	} else {
1119 		mtx_lock(&moea64_scratchpage_mtx);
1120 		moea64_set_scratchpage_pa(mmu, 0, pa);
1121 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1122 		mtx_unlock(&moea64_scratchpage_mtx);
1123 	}
1124 }
1125 
1126 /*
1127  * Zero a page of physical memory by temporarily mapping it
1128  */
1129 void
1130 moea64_zero_page(mmu_t mmu, vm_page_t m)
1131 {
1132 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1133 	vm_offset_t va, off;
1134 
1135 	if (!hw_direct_map) {
1136 		mtx_lock(&moea64_scratchpage_mtx);
1137 
1138 		moea64_set_scratchpage_pa(mmu, 0, pa);
1139 		va = moea64_scratchpage_va[0];
1140 	} else {
1141 		va = pa;
1142 	}
1143 
1144 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1145 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1146 
1147 	if (!hw_direct_map)
1148 		mtx_unlock(&moea64_scratchpage_mtx);
1149 }
1150 
1151 void
1152 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1153 {
1154 
1155 	moea64_zero_page(mmu, m);
1156 }
1157 
1158 /*
1159  * Map the given physical page at the specified virtual address in the
1160  * target pmap with the protection requested.  If specified the page
1161  * will be wired down.
1162  */
1163 
1164 void
1165 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1166     vm_prot_t prot, boolean_t wired)
1167 {
1168 	struct		pvo_head *pvo_head;
1169 	uma_zone_t	zone;
1170 	vm_page_t	pg;
1171 	uint64_t	pte_lo;
1172 	u_int		pvo_flags;
1173 	int		error;
1174 
1175 	if (!moea64_initialized) {
1176 		pvo_head = NULL;
1177 		pg = NULL;
1178 		zone = moea64_upvo_zone;
1179 		pvo_flags = 0;
1180 	} else {
1181 		pvo_head = vm_page_to_pvoh(m);
1182 		pg = m;
1183 		zone = moea64_mpvo_zone;
1184 		pvo_flags = PVO_MANAGED;
1185 	}
1186 
1187 	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1188 	    VM_OBJECT_LOCKED(m->object),
1189 	    ("moea64_enter: page %p is not busy", m));
1190 
1191 	/* XXX change the pvo head for fake pages */
1192 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1193 		pvo_flags &= ~PVO_MANAGED;
1194 		pvo_head = NULL;
1195 		zone = moea64_upvo_zone;
1196 	}
1197 
1198 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1199 
1200 	if (prot & VM_PROT_WRITE) {
1201 		pte_lo |= LPTE_BW;
1202 		if (pmap_bootstrapped &&
1203 		    (m->oflags & VPO_UNMANAGED) == 0)
1204 			vm_page_aflag_set(m, PGA_WRITEABLE);
1205 	} else
1206 		pte_lo |= LPTE_BR;
1207 
1208 	if ((prot & VM_PROT_EXECUTE) == 0)
1209 		pte_lo |= LPTE_NOEXEC;
1210 
1211 	if (wired)
1212 		pvo_flags |= PVO_WIRED;
1213 
1214 	LOCK_TABLE_WR();
1215 	PMAP_LOCK(pmap);
1216 	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1217 	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1218 	PMAP_UNLOCK(pmap);
1219 	UNLOCK_TABLE_WR();
1220 
1221 	/*
1222 	 * Flush the page from the instruction cache if this page is
1223 	 * mapped executable and cacheable.
1224 	 */
1225 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1226 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1227 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1228 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1229 	}
1230 }
1231 
1232 static void
1233 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1234     vm_size_t sz)
1235 {
1236 
1237 	/*
1238 	 * This is much trickier than on older systems because
1239 	 * we can't sync the icache on physical addresses directly
1240 	 * without a direct map. Instead we check a couple of cases
1241 	 * where the memory is already mapped in and, failing that,
1242 	 * use the same trick we use for page zeroing to create
1243 	 * a temporary mapping for this physical address.
1244 	 */
1245 
1246 	if (!pmap_bootstrapped) {
1247 		/*
1248 		 * If PMAP is not bootstrapped, we are likely to be
1249 		 * in real mode.
1250 		 */
1251 		__syncicache((void *)pa, sz);
1252 	} else if (pmap == kernel_pmap) {
1253 		__syncicache((void *)va, sz);
1254 	} else if (hw_direct_map) {
1255 		__syncicache((void *)pa, sz);
1256 	} else {
1257 		/* Use the scratch page to set up a temp mapping */
1258 
1259 		mtx_lock(&moea64_scratchpage_mtx);
1260 
1261 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1262 		__syncicache((void *)(moea64_scratchpage_va[1] +
1263 		    (va & ADDR_POFF)), sz);
1264 
1265 		mtx_unlock(&moea64_scratchpage_mtx);
1266 	}
1267 }
1268 
1269 /*
1270  * Maps a sequence of resident pages belonging to the same object.
1271  * The sequence begins with the given page m_start.  This page is
1272  * mapped at the given virtual address start.  Each subsequent page is
1273  * mapped at a virtual address that is offset from start by the same
1274  * amount as the page is offset from m_start within the object.  The
1275  * last page in the sequence is the page with the largest offset from
1276  * m_start that can be mapped at a virtual address less than the given
1277  * virtual address end.  Not every virtual page between start and end
1278  * is mapped; only those for which a resident page exists with the
1279  * corresponding offset from m_start are mapped.
1280  */
1281 void
1282 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1283     vm_page_t m_start, vm_prot_t prot)
1284 {
1285 	vm_page_t m;
1286 	vm_pindex_t diff, psize;
1287 
1288 	psize = atop(end - start);
1289 	m = m_start;
1290 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1291 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1292 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1293 		m = TAILQ_NEXT(m, listq);
1294 	}
1295 }
1296 
1297 void
1298 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1299     vm_prot_t prot)
1300 {
1301 
1302 	moea64_enter(mmu, pm, va, m,
1303 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1304 }
1305 
1306 vm_paddr_t
1307 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1308 {
1309 	struct	pvo_entry *pvo;
1310 	vm_paddr_t pa;
1311 
1312 	PMAP_LOCK(pm);
1313 	pvo = moea64_pvo_find_va(pm, va);
1314 	if (pvo == NULL)
1315 		pa = 0;
1316 	else
1317 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1318 		    (va - PVO_VADDR(pvo));
1319 	PMAP_UNLOCK(pm);
1320 	return (pa);
1321 }
1322 
1323 /*
1324  * Atomically extract and hold the physical page with the given
1325  * pmap and virtual address pair if that mapping permits the given
1326  * protection.
1327  */
1328 vm_page_t
1329 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1330 {
1331 	struct	pvo_entry *pvo;
1332 	vm_page_t m;
1333         vm_paddr_t pa;
1334 
1335 	m = NULL;
1336 	pa = 0;
1337 	PMAP_LOCK(pmap);
1338 retry:
1339 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1340 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1341 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1342 	     (prot & VM_PROT_WRITE) == 0)) {
1343 		if (vm_page_pa_tryrelock(pmap,
1344 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1345 			goto retry;
1346 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1347 		vm_page_hold(m);
1348 	}
1349 	PA_UNLOCK_COND(pa);
1350 	PMAP_UNLOCK(pmap);
1351 	return (m);
1352 }
1353 
1354 static mmu_t installed_mmu;
1355 
1356 static void *
1357 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1358 {
1359 	/*
1360 	 * This entire routine is a horrible hack to avoid bothering kmem
1361 	 * for new KVA addresses. Because this can get called from inside
1362 	 * kmem allocation routines, calling kmem for a new address here
1363 	 * can lead to multiply locking non-recursive mutexes.
1364 	 */
1365         vm_offset_t va;
1366 
1367         vm_page_t m;
1368         int pflags, needed_lock;
1369 
1370 	*flags = UMA_SLAB_PRIV;
1371 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1372 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1373 
1374         for (;;) {
1375                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1376                 if (m == NULL) {
1377                         if (wait & M_NOWAIT)
1378                                 return (NULL);
1379                         VM_WAIT;
1380                 } else
1381                         break;
1382         }
1383 
1384 	va = VM_PAGE_TO_PHYS(m);
1385 
1386 	LOCK_TABLE_WR();
1387 	if (needed_lock)
1388 		PMAP_LOCK(kernel_pmap);
1389 
1390 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1391 	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1392 
1393 	if (needed_lock)
1394 		PMAP_UNLOCK(kernel_pmap);
1395 	UNLOCK_TABLE_WR();
1396 
1397 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1398                 bzero((void *)va, PAGE_SIZE);
1399 
1400 	return (void *)va;
1401 }
1402 
1403 extern int elf32_nxstack;
1404 
1405 void
1406 moea64_init(mmu_t mmu)
1407 {
1408 
1409 	CTR0(KTR_PMAP, "moea64_init");
1410 
1411 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1412 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1413 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1414 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1415 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1416 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1417 
1418 	if (!hw_direct_map) {
1419 		installed_mmu = mmu;
1420 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1421 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1422 	}
1423 
1424 #ifdef COMPAT_FREEBSD32
1425 	elf32_nxstack = 1;
1426 #endif
1427 
1428 	moea64_initialized = TRUE;
1429 }
1430 
1431 boolean_t
1432 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1433 {
1434 
1435 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1436 	    ("moea64_is_referenced: page %p is not managed", m));
1437 	return (moea64_query_bit(mmu, m, PTE_REF));
1438 }
1439 
1440 boolean_t
1441 moea64_is_modified(mmu_t mmu, vm_page_t m)
1442 {
1443 
1444 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1445 	    ("moea64_is_modified: page %p is not managed", m));
1446 
1447 	/*
1448 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1449 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1450 	 * is clear, no PTEs can have LPTE_CHG set.
1451 	 */
1452 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1453 	if ((m->oflags & VPO_BUSY) == 0 &&
1454 	    (m->aflags & PGA_WRITEABLE) == 0)
1455 		return (FALSE);
1456 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1457 }
1458 
1459 boolean_t
1460 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1461 {
1462 	struct pvo_entry *pvo;
1463 	boolean_t rv;
1464 
1465 	PMAP_LOCK(pmap);
1466 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1467 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1468 	PMAP_UNLOCK(pmap);
1469 	return (rv);
1470 }
1471 
1472 void
1473 moea64_clear_reference(mmu_t mmu, vm_page_t m)
1474 {
1475 
1476 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1477 	    ("moea64_clear_reference: page %p is not managed", m));
1478 	moea64_clear_bit(mmu, m, LPTE_REF);
1479 }
1480 
1481 void
1482 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1483 {
1484 
1485 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1486 	    ("moea64_clear_modify: page %p is not managed", m));
1487 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1488 	KASSERT((m->oflags & VPO_BUSY) == 0,
1489 	    ("moea64_clear_modify: page %p is busy", m));
1490 
1491 	/*
1492 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1493 	 * set.  If the object containing the page is locked and the page is
1494 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1495 	 */
1496 	if ((m->aflags & PGA_WRITEABLE) == 0)
1497 		return;
1498 	moea64_clear_bit(mmu, m, LPTE_CHG);
1499 }
1500 
1501 /*
1502  * Clear the write and modified bits in each of the given page's mappings.
1503  */
1504 void
1505 moea64_remove_write(mmu_t mmu, vm_page_t m)
1506 {
1507 	struct	pvo_entry *pvo;
1508 	uintptr_t pt;
1509 	pmap_t	pmap;
1510 	uint64_t lo = 0;
1511 
1512 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1513 	    ("moea64_remove_write: page %p is not managed", m));
1514 
1515 	/*
1516 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1517 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1518 	 * is clear, no page table entries need updating.
1519 	 */
1520 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1521 	if ((m->oflags & VPO_BUSY) == 0 &&
1522 	    (m->aflags & PGA_WRITEABLE) == 0)
1523 		return;
1524 	powerpc_sync();
1525 	LOCK_TABLE_RD();
1526 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1527 		pmap = pvo->pvo_pmap;
1528 		PMAP_LOCK(pmap);
1529 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1530 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1531 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1532 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1533 			if (pt != -1) {
1534 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1535 				lo |= pvo->pvo_pte.lpte.pte_lo;
1536 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1537 				MOEA64_PTE_CHANGE(mmu, pt,
1538 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1539 				if (pvo->pvo_pmap == kernel_pmap)
1540 					isync();
1541 			}
1542 		}
1543 		if ((lo & LPTE_CHG) != 0)
1544 			vm_page_dirty(m);
1545 		PMAP_UNLOCK(pmap);
1546 	}
1547 	UNLOCK_TABLE_RD();
1548 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1549 }
1550 
1551 /*
1552  *	moea64_ts_referenced:
1553  *
1554  *	Return a count of reference bits for a page, clearing those bits.
1555  *	It is not necessary for every reference bit to be cleared, but it
1556  *	is necessary that 0 only be returned when there are truly no
1557  *	reference bits set.
1558  *
1559  *	XXX: The exact number of bits to check and clear is a matter that
1560  *	should be tested and standardized at some point in the future for
1561  *	optimal aging of shared pages.
1562  */
1563 int
1564 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1565 {
1566 
1567 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1568 	    ("moea64_ts_referenced: page %p is not managed", m));
1569 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1570 }
1571 
1572 /*
1573  * Modify the WIMG settings of all mappings for a page.
1574  */
1575 void
1576 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1577 {
1578 	struct	pvo_entry *pvo;
1579 	struct  pvo_head *pvo_head;
1580 	uintptr_t pt;
1581 	pmap_t	pmap;
1582 	uint64_t lo;
1583 
1584 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1585 		m->md.mdpg_cache_attrs = ma;
1586 		return;
1587 	}
1588 
1589 	pvo_head = vm_page_to_pvoh(m);
1590 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1591 	LOCK_TABLE_RD();
1592 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1593 		pmap = pvo->pvo_pmap;
1594 		PMAP_LOCK(pmap);
1595 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1596 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1597 		pvo->pvo_pte.lpte.pte_lo |= lo;
1598 		if (pt != -1) {
1599 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1600 			    pvo->pvo_vpn);
1601 			if (pvo->pvo_pmap == kernel_pmap)
1602 				isync();
1603 		}
1604 		PMAP_UNLOCK(pmap);
1605 	}
1606 	UNLOCK_TABLE_RD();
1607 	m->md.mdpg_cache_attrs = ma;
1608 }
1609 
1610 /*
1611  * Map a wired page into kernel virtual address space.
1612  */
1613 void
1614 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1615 {
1616 	uint64_t	pte_lo;
1617 	int		error;
1618 
1619 	pte_lo = moea64_calc_wimg(pa, ma);
1620 
1621 	LOCK_TABLE_WR();
1622 	PMAP_LOCK(kernel_pmap);
1623 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1624 	    NULL, va, pa, pte_lo, PVO_WIRED);
1625 	PMAP_UNLOCK(kernel_pmap);
1626 	UNLOCK_TABLE_WR();
1627 
1628 	if (error != 0 && error != ENOENT)
1629 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1630 		    pa, error);
1631 }
1632 
1633 void
1634 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1635 {
1636 
1637 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1638 }
1639 
1640 /*
1641  * Extract the physical page address associated with the given kernel virtual
1642  * address.
1643  */
1644 vm_paddr_t
1645 moea64_kextract(mmu_t mmu, vm_offset_t va)
1646 {
1647 	struct		pvo_entry *pvo;
1648 	vm_paddr_t pa;
1649 
1650 	/*
1651 	 * Shortcut the direct-mapped case when applicable.  We never put
1652 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1653 	 */
1654 	if (va < VM_MIN_KERNEL_ADDRESS)
1655 		return (va);
1656 
1657 	PMAP_LOCK(kernel_pmap);
1658 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1659 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1660 	    va));
1661 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1662 	PMAP_UNLOCK(kernel_pmap);
1663 	return (pa);
1664 }
1665 
1666 /*
1667  * Remove a wired page from kernel virtual address space.
1668  */
1669 void
1670 moea64_kremove(mmu_t mmu, vm_offset_t va)
1671 {
1672 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1673 }
1674 
1675 /*
1676  * Map a range of physical addresses into kernel virtual address space.
1677  *
1678  * The value passed in *virt is a suggested virtual address for the mapping.
1679  * Architectures which can support a direct-mapped physical to virtual region
1680  * can return the appropriate address within that region, leaving '*virt'
1681  * unchanged.  We cannot and therefore do not; *virt is updated with the
1682  * first usable address after the mapped region.
1683  */
1684 vm_offset_t
1685 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1686     vm_paddr_t pa_end, int prot)
1687 {
1688 	vm_offset_t	sva, va;
1689 
1690 	sva = *virt;
1691 	va = sva;
1692 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1693 		moea64_kenter(mmu, va, pa_start);
1694 	*virt = va;
1695 
1696 	return (sva);
1697 }
1698 
1699 /*
1700  * Returns true if the pmap's pv is one of the first
1701  * 16 pvs linked to from this page.  This count may
1702  * be changed upwards or downwards in the future; it
1703  * is only necessary that true be returned for a small
1704  * subset of pmaps for proper page aging.
1705  */
1706 boolean_t
1707 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1708 {
1709         int loops;
1710 	struct pvo_entry *pvo;
1711 	boolean_t rv;
1712 
1713 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1714 	    ("moea64_page_exists_quick: page %p is not managed", m));
1715 	loops = 0;
1716 	rv = FALSE;
1717 	LOCK_TABLE_RD();
1718 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1719 		if (pvo->pvo_pmap == pmap) {
1720 			rv = TRUE;
1721 			break;
1722 		}
1723 		if (++loops >= 16)
1724 			break;
1725 	}
1726 	UNLOCK_TABLE_RD();
1727 	return (rv);
1728 }
1729 
1730 /*
1731  * Return the number of managed mappings to the given physical page
1732  * that are wired.
1733  */
1734 int
1735 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1736 {
1737 	struct pvo_entry *pvo;
1738 	int count;
1739 
1740 	count = 0;
1741 	if ((m->oflags & VPO_UNMANAGED) != 0)
1742 		return (count);
1743 	LOCK_TABLE_RD();
1744 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1745 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1746 			count++;
1747 	UNLOCK_TABLE_RD();
1748 	return (count);
1749 }
1750 
1751 static uintptr_t	moea64_vsidcontext;
1752 
1753 uintptr_t
1754 moea64_get_unique_vsid(void) {
1755 	u_int entropy;
1756 	register_t hash;
1757 	uint32_t mask;
1758 	int i;
1759 
1760 	entropy = 0;
1761 	__asm __volatile("mftb %0" : "=r"(entropy));
1762 
1763 	mtx_lock(&moea64_slb_mutex);
1764 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1765 		u_int	n;
1766 
1767 		/*
1768 		 * Create a new value by mutiplying by a prime and adding in
1769 		 * entropy from the timebase register.  This is to make the
1770 		 * VSID more random so that the PT hash function collides
1771 		 * less often.  (Note that the prime casues gcc to do shifts
1772 		 * instead of a multiply.)
1773 		 */
1774 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1775 		hash = moea64_vsidcontext & (NVSIDS - 1);
1776 		if (hash == 0)		/* 0 is special, avoid it */
1777 			continue;
1778 		n = hash >> 5;
1779 		mask = 1 << (hash & (VSID_NBPW - 1));
1780 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1781 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1782 			/* anything free in this bucket? */
1783 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1784 				entropy = (moea64_vsidcontext >> 20);
1785 				continue;
1786 			}
1787 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1788 			mask = 1 << i;
1789 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1790 			hash |= i;
1791 		}
1792 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1793 		    ("Allocating in-use VSID %#zx\n", hash));
1794 		moea64_vsid_bitmap[n] |= mask;
1795 		mtx_unlock(&moea64_slb_mutex);
1796 		return (hash);
1797 	}
1798 
1799 	mtx_unlock(&moea64_slb_mutex);
1800 	panic("%s: out of segments",__func__);
1801 }
1802 
1803 #ifdef __powerpc64__
1804 void
1805 moea64_pinit(mmu_t mmu, pmap_t pmap)
1806 {
1807 	PMAP_LOCK_INIT(pmap);
1808 	RB_INIT(&pmap->pmap_pvo);
1809 
1810 	pmap->pm_slb_tree_root = slb_alloc_tree();
1811 	pmap->pm_slb = slb_alloc_user_cache();
1812 	pmap->pm_slb_len = 0;
1813 }
1814 #else
1815 void
1816 moea64_pinit(mmu_t mmu, pmap_t pmap)
1817 {
1818 	int	i;
1819 	uint32_t hash;
1820 
1821 	PMAP_LOCK_INIT(pmap);
1822 	RB_INIT(&pmap->pmap_pvo);
1823 
1824 	if (pmap_bootstrapped)
1825 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1826 		    (vm_offset_t)pmap);
1827 	else
1828 		pmap->pmap_phys = pmap;
1829 
1830 	/*
1831 	 * Allocate some segment registers for this pmap.
1832 	 */
1833 	hash = moea64_get_unique_vsid();
1834 
1835 	for (i = 0; i < 16; i++)
1836 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1837 
1838 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1839 }
1840 #endif
1841 
1842 /*
1843  * Initialize the pmap associated with process 0.
1844  */
1845 void
1846 moea64_pinit0(mmu_t mmu, pmap_t pm)
1847 {
1848 	moea64_pinit(mmu, pm);
1849 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1850 }
1851 
1852 /*
1853  * Set the physical protection on the specified range of this map as requested.
1854  */
1855 static void
1856 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1857 {
1858 	uintptr_t pt;
1859 	struct	vm_page *pg;
1860 	uint64_t oldlo;
1861 
1862 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1863 
1864 	/*
1865 	 * Grab the PTE pointer before we diddle with the cached PTE
1866 	 * copy.
1867 	 */
1868 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1869 
1870 	/*
1871 	 * Change the protection of the page.
1872 	 */
1873 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1874 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1875 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1876 	if ((prot & VM_PROT_EXECUTE) == 0)
1877 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1878 	if (prot & VM_PROT_WRITE)
1879 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1880 	else
1881 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1882 
1883 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1884 
1885 	/*
1886 	 * If the PVO is in the page table, update that pte as well.
1887 	 */
1888 	if (pt != -1)
1889 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1890 		    pvo->pvo_vpn);
1891 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1892 	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1893 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1894 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1895 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1896 		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1897 	}
1898 
1899 	/*
1900 	 * Update vm about the REF/CHG bits if the page is managed and we have
1901 	 * removed write access.
1902 	 */
1903 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1904 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot && VM_PROT_WRITE)) {
1905 		if (pg != NULL) {
1906 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1907 				vm_page_dirty(pg);
1908 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1909 				vm_page_aflag_set(pg, PGA_REFERENCED);
1910 		}
1911 	}
1912 }
1913 
1914 void
1915 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1916     vm_prot_t prot)
1917 {
1918 	struct	pvo_entry *pvo, *tpvo, key;
1919 
1920 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1921 	    sva, eva, prot);
1922 
1923 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1924 	    ("moea64_protect: non current pmap"));
1925 
1926 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1927 		moea64_remove(mmu, pm, sva, eva);
1928 		return;
1929 	}
1930 
1931 	LOCK_TABLE_RD();
1932 	PMAP_LOCK(pm);
1933 	key.pvo_vaddr = sva;
1934 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1935 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1936 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1937 		moea64_pvo_protect(mmu, pm, pvo, prot);
1938 	}
1939 	UNLOCK_TABLE_RD();
1940 	PMAP_UNLOCK(pm);
1941 }
1942 
1943 /*
1944  * Map a list of wired pages into kernel virtual address space.  This is
1945  * intended for temporary mappings which do not need page modification or
1946  * references recorded.  Existing mappings in the region are overwritten.
1947  */
1948 void
1949 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1950 {
1951 	while (count-- > 0) {
1952 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1953 		va += PAGE_SIZE;
1954 		m++;
1955 	}
1956 }
1957 
1958 /*
1959  * Remove page mappings from kernel virtual address space.  Intended for
1960  * temporary mappings entered by moea64_qenter.
1961  */
1962 void
1963 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1964 {
1965 	while (count-- > 0) {
1966 		moea64_kremove(mmu, va);
1967 		va += PAGE_SIZE;
1968 	}
1969 }
1970 
1971 void
1972 moea64_release_vsid(uint64_t vsid)
1973 {
1974 	int idx, mask;
1975 
1976 	mtx_lock(&moea64_slb_mutex);
1977 	idx = vsid & (NVSIDS-1);
1978 	mask = 1 << (idx % VSID_NBPW);
1979 	idx /= VSID_NBPW;
1980 	KASSERT(moea64_vsid_bitmap[idx] & mask,
1981 	    ("Freeing unallocated VSID %#jx", vsid));
1982 	moea64_vsid_bitmap[idx] &= ~mask;
1983 	mtx_unlock(&moea64_slb_mutex);
1984 }
1985 
1986 
1987 void
1988 moea64_release(mmu_t mmu, pmap_t pmap)
1989 {
1990 
1991 	/*
1992 	 * Free segment registers' VSIDs
1993 	 */
1994     #ifdef __powerpc64__
1995 	slb_free_tree(pmap);
1996 	slb_free_user_cache(pmap->pm_slb);
1997     #else
1998 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
1999 
2000 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2001     #endif
2002 
2003 	PMAP_LOCK_DESTROY(pmap);
2004 }
2005 
2006 /*
2007  * Remove all pages mapped by the specified pmap
2008  */
2009 void
2010 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2011 {
2012 	struct	pvo_entry *pvo, *tpvo;
2013 
2014 	LOCK_TABLE_WR();
2015 	PMAP_LOCK(pm);
2016 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2017 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2018 			moea64_pvo_remove(mmu, pvo);
2019 	}
2020 	UNLOCK_TABLE_WR();
2021 	PMAP_UNLOCK(pm);
2022 }
2023 
2024 /*
2025  * Remove the given range of addresses from the specified map.
2026  */
2027 void
2028 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2029 {
2030 	struct	pvo_entry *pvo, *tpvo, key;
2031 
2032 	/*
2033 	 * Perform an unsynchronized read.  This is, however, safe.
2034 	 */
2035 	if (pm->pm_stats.resident_count == 0)
2036 		return;
2037 
2038 	LOCK_TABLE_WR();
2039 	PMAP_LOCK(pm);
2040 	key.pvo_vaddr = sva;
2041 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2042 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2043 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2044 		moea64_pvo_remove(mmu, pvo);
2045 	}
2046 	UNLOCK_TABLE_WR();
2047 	PMAP_UNLOCK(pm);
2048 }
2049 
2050 /*
2051  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2052  * will reflect changes in pte's back to the vm_page.
2053  */
2054 void
2055 moea64_remove_all(mmu_t mmu, vm_page_t m)
2056 {
2057 	struct	pvo_entry *pvo, *next_pvo;
2058 	pmap_t	pmap;
2059 
2060 	LOCK_TABLE_WR();
2061 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2062 		pmap = pvo->pvo_pmap;
2063 		PMAP_LOCK(pmap);
2064 		moea64_pvo_remove(mmu, pvo);
2065 		PMAP_UNLOCK(pmap);
2066 	}
2067 	UNLOCK_TABLE_WR();
2068 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2069 		vm_page_dirty(m);
2070 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2071 	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2072 }
2073 
2074 /*
2075  * Allocate a physical page of memory directly from the phys_avail map.
2076  * Can only be called from moea64_bootstrap before avail start and end are
2077  * calculated.
2078  */
2079 vm_offset_t
2080 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2081 {
2082 	vm_offset_t	s, e;
2083 	int		i, j;
2084 
2085 	size = round_page(size);
2086 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2087 		if (align != 0)
2088 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2089 		else
2090 			s = phys_avail[i];
2091 		e = s + size;
2092 
2093 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2094 			continue;
2095 
2096 		if (s + size > platform_real_maxaddr())
2097 			continue;
2098 
2099 		if (s == phys_avail[i]) {
2100 			phys_avail[i] += size;
2101 		} else if (e == phys_avail[i + 1]) {
2102 			phys_avail[i + 1] -= size;
2103 		} else {
2104 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2105 				phys_avail[j] = phys_avail[j - 2];
2106 				phys_avail[j + 1] = phys_avail[j - 1];
2107 			}
2108 
2109 			phys_avail[i + 3] = phys_avail[i + 1];
2110 			phys_avail[i + 1] = s;
2111 			phys_avail[i + 2] = e;
2112 			phys_avail_count++;
2113 		}
2114 
2115 		return (s);
2116 	}
2117 	panic("moea64_bootstrap_alloc: could not allocate memory");
2118 }
2119 
2120 static int
2121 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2122     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2123     uint64_t pte_lo, int flags)
2124 {
2125 	struct	 pvo_entry *pvo;
2126 	uint64_t vsid;
2127 	int	 first;
2128 	u_int	 ptegidx;
2129 	int	 i;
2130 	int      bootstrap;
2131 
2132 	/*
2133 	 * One nasty thing that can happen here is that the UMA calls to
2134 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2135 	 * which calls UMA...
2136 	 *
2137 	 * We break the loop by detecting recursion and allocating out of
2138 	 * the bootstrap pool.
2139 	 */
2140 
2141 	first = 0;
2142 	bootstrap = (flags & PVO_BOOTSTRAP);
2143 
2144 	if (!moea64_initialized)
2145 		bootstrap = 1;
2146 
2147 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2148 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2149 
2150 	/*
2151 	 * Compute the PTE Group index.
2152 	 */
2153 	va &= ~ADDR_POFF;
2154 	vsid = va_to_vsid(pm, va);
2155 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2156 
2157 	/*
2158 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2159 	 * there is a mapping.
2160 	 */
2161 	moea64_pvo_enter_calls++;
2162 
2163 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2164 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2165 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2166 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2167 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2168 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2169 					/* Re-insert if spilled */
2170 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2171 					    &pvo->pvo_pte.lpte);
2172 					if (i >= 0)
2173 						PVO_PTEGIDX_SET(pvo, i);
2174 					moea64_pte_overflow--;
2175 				}
2176 				return (0);
2177 			}
2178 			moea64_pvo_remove(mmu, pvo);
2179 			break;
2180 		}
2181 	}
2182 
2183 	/*
2184 	 * If we aren't overwriting a mapping, try to allocate.
2185 	 */
2186 	if (bootstrap) {
2187 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2188 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2189 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2190 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2191 		}
2192 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2193 		moea64_bpvo_pool_index++;
2194 		bootstrap = 1;
2195 	} else {
2196 		pvo = uma_zalloc(zone, M_NOWAIT);
2197 	}
2198 
2199 	if (pvo == NULL)
2200 		return (ENOMEM);
2201 
2202 	moea64_pvo_entries++;
2203 	pvo->pvo_vaddr = va;
2204 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2205 	    | (vsid << 16);
2206 	pvo->pvo_pmap = pm;
2207 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2208 	pvo->pvo_vaddr &= ~ADDR_POFF;
2209 
2210 	if (flags & PVO_WIRED)
2211 		pvo->pvo_vaddr |= PVO_WIRED;
2212 	if (pvo_head != NULL)
2213 		pvo->pvo_vaddr |= PVO_MANAGED;
2214 	if (bootstrap)
2215 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2216 	if (flags & PVO_LARGE)
2217 		pvo->pvo_vaddr |= PVO_LARGE;
2218 
2219 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2220 	    (uint64_t)(pa) | pte_lo, flags);
2221 
2222 	/*
2223 	 * Add to pmap list
2224 	 */
2225 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2226 
2227 	/*
2228 	 * Remember if the list was empty and therefore will be the first
2229 	 * item.
2230 	 */
2231 	if (pvo_head != NULL) {
2232 		if (LIST_FIRST(pvo_head) == NULL)
2233 			first = 1;
2234 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2235 	}
2236 
2237 	if (pvo->pvo_vaddr & PVO_WIRED) {
2238 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2239 		pm->pm_stats.wired_count++;
2240 	}
2241 	pm->pm_stats.resident_count++;
2242 
2243 	/*
2244 	 * We hope this succeeds but it isn't required.
2245 	 */
2246 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2247 	if (i >= 0) {
2248 		PVO_PTEGIDX_SET(pvo, i);
2249 	} else {
2250 		panic("moea64_pvo_enter: overflow");
2251 		moea64_pte_overflow++;
2252 	}
2253 
2254 	if (pm == kernel_pmap)
2255 		isync();
2256 
2257 #ifdef __powerpc64__
2258 	/*
2259 	 * Make sure all our bootstrap mappings are in the SLB as soon
2260 	 * as virtual memory is switched on.
2261 	 */
2262 	if (!pmap_bootstrapped)
2263 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2264 #endif
2265 
2266 	return (first ? ENOENT : 0);
2267 }
2268 
2269 static void
2270 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2271 {
2272 	struct	vm_page *pg;
2273 	uintptr_t pt;
2274 
2275 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2276 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2277 
2278 	/*
2279 	 * If there is an active pte entry, we need to deactivate it (and
2280 	 * save the ref & cfg bits).
2281 	 */
2282 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2283 	if (pt != -1) {
2284 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2285 		PVO_PTEGIDX_CLR(pvo);
2286 	} else {
2287 		moea64_pte_overflow--;
2288 	}
2289 
2290 	/*
2291 	 * Update our statistics.
2292 	 */
2293 	pvo->pvo_pmap->pm_stats.resident_count--;
2294 	if (pvo->pvo_vaddr & PVO_WIRED)
2295 		pvo->pvo_pmap->pm_stats.wired_count--;
2296 
2297 	/*
2298 	 * Remove this PVO from the pmap list.
2299 	 */
2300 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2301 
2302 	/*
2303 	 * Remove this from the overflow list and return it to the pool
2304 	 * if we aren't going to reuse it.
2305 	 */
2306 	LIST_REMOVE(pvo, pvo_olink);
2307 
2308 	/*
2309 	 * Update vm about the REF/CHG bits if the page is managed.
2310 	 */
2311 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2312 
2313 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2314 		LIST_REMOVE(pvo, pvo_vlink);
2315 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2316 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2317 				vm_page_dirty(pg);
2318 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2319 				vm_page_aflag_set(pg, PGA_REFERENCED);
2320 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2321 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2322 		}
2323 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2324 			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2325 	}
2326 
2327 	moea64_pvo_entries--;
2328 	moea64_pvo_remove_calls++;
2329 
2330 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2331 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2332 		    moea64_upvo_zone, pvo);
2333 }
2334 
2335 static struct pvo_entry *
2336 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2337 {
2338 	struct pvo_entry key;
2339 
2340 	key.pvo_vaddr = va & ~ADDR_POFF;
2341 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2342 }
2343 
2344 static boolean_t
2345 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2346 {
2347 	struct	pvo_entry *pvo;
2348 	uintptr_t pt;
2349 
2350 	LOCK_TABLE_RD();
2351 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2352 		/*
2353 		 * See if we saved the bit off.  If so, return success.
2354 		 */
2355 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2356 			UNLOCK_TABLE_RD();
2357 			return (TRUE);
2358 		}
2359 	}
2360 
2361 	/*
2362 	 * No luck, now go through the hard part of looking at the PTEs
2363 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2364 	 * the PTEs.
2365 	 */
2366 	powerpc_sync();
2367 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2368 
2369 		/*
2370 		 * See if this pvo has a valid PTE.  if so, fetch the
2371 		 * REF/CHG bits from the valid PTE.  If the appropriate
2372 		 * ptebit is set, return success.
2373 		 */
2374 		PMAP_LOCK(pvo->pvo_pmap);
2375 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2376 		if (pt != -1) {
2377 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2378 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2379 				PMAP_UNLOCK(pvo->pvo_pmap);
2380 				UNLOCK_TABLE_RD();
2381 				return (TRUE);
2382 			}
2383 		}
2384 		PMAP_UNLOCK(pvo->pvo_pmap);
2385 	}
2386 
2387 	UNLOCK_TABLE_RD();
2388 	return (FALSE);
2389 }
2390 
2391 static u_int
2392 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2393 {
2394 	u_int	count;
2395 	struct	pvo_entry *pvo;
2396 	uintptr_t pt;
2397 
2398 	/*
2399 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2400 	 * we can reset the right ones).  note that since the pvo entries and
2401 	 * list heads are accessed via BAT0 and are never placed in the page
2402 	 * table, we don't have to worry about further accesses setting the
2403 	 * REF/CHG bits.
2404 	 */
2405 	powerpc_sync();
2406 
2407 	/*
2408 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2409 	 * valid pte clear the ptebit from the valid pte.
2410 	 */
2411 	count = 0;
2412 	LOCK_TABLE_RD();
2413 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2414 		PMAP_LOCK(pvo->pvo_pmap);
2415 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2416 		if (pt != -1) {
2417 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2418 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2419 				count++;
2420 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2421 				    pvo->pvo_vpn, ptebit);
2422 			}
2423 		}
2424 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2425 		PMAP_UNLOCK(pvo->pvo_pmap);
2426 	}
2427 
2428 	UNLOCK_TABLE_RD();
2429 	return (count);
2430 }
2431 
2432 boolean_t
2433 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2434 {
2435 	struct pvo_entry *pvo, key;
2436 	vm_offset_t ppa;
2437 	int error = 0;
2438 
2439 	PMAP_LOCK(kernel_pmap);
2440 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2441 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2442 	    ppa < pa + size; ppa += PAGE_SIZE,
2443 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2444 		if (pvo == NULL ||
2445 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2446 			error = EFAULT;
2447 			break;
2448 		}
2449 	}
2450 	PMAP_UNLOCK(kernel_pmap);
2451 
2452 	return (error);
2453 }
2454 
2455 /*
2456  * Map a set of physical memory pages into the kernel virtual
2457  * address space. Return a pointer to where it is mapped. This
2458  * routine is intended to be used for mapping device memory,
2459  * NOT real memory.
2460  */
2461 void *
2462 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2463 {
2464 	vm_offset_t va, tmpva, ppa, offset;
2465 
2466 	ppa = trunc_page(pa);
2467 	offset = pa & PAGE_MASK;
2468 	size = roundup2(offset + size, PAGE_SIZE);
2469 
2470 	va = kmem_alloc_nofault(kernel_map, size);
2471 
2472 	if (!va)
2473 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2474 
2475 	for (tmpva = va; size > 0;) {
2476 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2477 		size -= PAGE_SIZE;
2478 		tmpva += PAGE_SIZE;
2479 		ppa += PAGE_SIZE;
2480 	}
2481 
2482 	return ((void *)(va + offset));
2483 }
2484 
2485 void *
2486 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2487 {
2488 
2489 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2490 }
2491 
2492 void
2493 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2494 {
2495 	vm_offset_t base, offset;
2496 
2497 	base = trunc_page(va);
2498 	offset = va & PAGE_MASK;
2499 	size = roundup2(offset + size, PAGE_SIZE);
2500 
2501 	kmem_free(kernel_map, base, size);
2502 }
2503 
2504 void
2505 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2506 {
2507 	struct pvo_entry *pvo;
2508 	vm_offset_t lim;
2509 	vm_paddr_t pa;
2510 	vm_size_t len;
2511 
2512 	PMAP_LOCK(pm);
2513 	while (sz > 0) {
2514 		lim = round_page(va);
2515 		len = MIN(lim - va, sz);
2516 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2517 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2518 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2519 			    (va & ADDR_POFF);
2520 			moea64_syncicache(mmu, pm, va, pa, len);
2521 		}
2522 		va += len;
2523 		sz -= len;
2524 	}
2525 	PMAP_UNLOCK(pm);
2526 }
2527