xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 8be96e101f2691b80ff9562b72f874da82e735aa)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <sys/kdb.h>
131 
132 #include <dev/ofw/openfirm.h>
133 
134 #include <vm/vm.h>
135 #include <vm/vm_param.h>
136 #include <vm/vm_kern.h>
137 #include <vm/vm_page.h>
138 #include <vm/vm_map.h>
139 #include <vm/vm_object.h>
140 #include <vm/vm_extern.h>
141 #include <vm/vm_pageout.h>
142 #include <vm/vm_pager.h>
143 #include <vm/uma.h>
144 
145 #include <machine/_inttypes.h>
146 #include <machine/cpu.h>
147 #include <machine/platform.h>
148 #include <machine/frame.h>
149 #include <machine/md_var.h>
150 #include <machine/psl.h>
151 #include <machine/bat.h>
152 #include <machine/hid.h>
153 #include <machine/pte.h>
154 #include <machine/sr.h>
155 #include <machine/trap.h>
156 #include <machine/mmuvar.h>
157 
158 #include "mmu_if.h"
159 
160 #define	MOEA_DEBUG
161 
162 #define TODO	panic("%s: not implemented", __func__);
163 void moea64_release_vsid(uint64_t vsid);
164 uintptr_t moea64_get_unique_vsid(void);
165 
166 static __inline register_t
167 cntlzd(volatile register_t a) {
168 	register_t b;
169 	__asm ("cntlzd %0, %1" : "=r"(b) : "r"(a));
170 	return b;
171 }
172 
173 #define	PTESYNC()	__asm __volatile("ptesync");
174 #define	TLBSYNC()	__asm __volatile("tlbsync; ptesync");
175 #define	SYNC()		__asm __volatile("sync");
176 #define	EIEIO()		__asm __volatile("eieio");
177 
178 /*
179  * The tlbie instruction must be executed in 64-bit mode
180  * so we have to twiddle MSR[SF] around every invocation.
181  * Just to add to the fun, exceptions must be off as well
182  * so that we can't trap in 64-bit mode. What a pain.
183  */
184 struct mtx	tlbie_mutex;
185 
186 static __inline void
187 TLBIE(uint64_t vpn) {
188 #ifndef __powerpc64__
189 	register_t vpn_hi, vpn_lo;
190 	register_t msr;
191 	register_t scratch;
192 #endif
193 
194 	vpn <<= ADDR_PIDX_SHFT;
195 	vpn &= ~(0xffffULL << 48);
196 
197 	mtx_lock_spin(&tlbie_mutex);
198 #ifdef __powerpc64__
199 	__asm __volatile("\
200 	    ptesync; \
201 	    tlbie %0; \
202 	    eieio; \
203 	    tlbsync; \
204 	    ptesync;"
205 	:: "r"(vpn) : "memory");
206 #else
207 	vpn_hi = (uint32_t)(vpn >> 32);
208 	vpn_lo = (uint32_t)vpn;
209 
210 	__asm __volatile("\
211 	    mfmsr %0; \
212 	    mr %1, %0; \
213 	    insrdi %1,%5,1,0; \
214 	    mtmsrd %1; \
215 	    ptesync; \
216 	    \
217 	    sld %1,%2,%4; \
218 	    or %1,%1,%3; \
219 	    tlbie %1; \
220 	    \
221 	    mtmsrd %0; \
222 	    eieio; \
223 	    tlbsync; \
224 	    ptesync;"
225 	: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
226 	    : "memory");
227 #endif
228 	mtx_unlock_spin(&tlbie_mutex);
229 }
230 
231 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
232 #define ENABLE_TRANS(msr)	mtmsr(msr); isync()
233 
234 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
235 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
236 #define	VSID_HASH_MASK		0x0000007fffffffffULL
237 
238 #define	PVO_PTEGIDX_MASK	0x007UL		/* which PTEG slot */
239 #define	PVO_PTEGIDX_VALID	0x008UL		/* slot is valid */
240 #define	PVO_WIRED		0x010UL		/* PVO entry is wired */
241 #define	PVO_MANAGED		0x020UL		/* PVO entry is managed */
242 #define	PVO_BOOTSTRAP		0x080UL		/* PVO entry allocated during
243 						   bootstrap */
244 #define PVO_FAKE		0x100UL		/* fictitious phys page */
245 #define PVO_LARGE		0x200UL		/* large page */
246 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
247 #define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
248 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
249 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
250 #define	PVO_PTEGIDX_CLR(pvo)	\
251 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
252 #define	PVO_PTEGIDX_SET(pvo, i)	\
253 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
254 #define	PVO_VSID(pvo)		((pvo)->pvo_vpn >> 16)
255 
256 #define	MOEA_PVO_CHECK(pvo)
257 
258 #define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
259 #define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
260 #define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
261 
262 struct ofw_map {
263 	cell_t	om_va;
264 	cell_t	om_len;
265 	cell_t	om_pa_hi;
266 	cell_t	om_pa_lo;
267 	cell_t	om_mode;
268 };
269 
270 /*
271  * Map of physical memory regions.
272  */
273 static struct	mem_region *regions;
274 static struct	mem_region *pregions;
275 static u_int	phys_avail_count;
276 static int	regions_sz, pregions_sz;
277 extern int	ofw_real_mode;
278 
279 extern struct pmap ofw_pmap;
280 
281 extern void bs_remap_earlyboot(void);
282 
283 
284 /*
285  * Lock for the pteg and pvo tables.
286  */
287 struct mtx	moea64_table_mutex;
288 
289 /*
290  * PTEG data.
291  */
292 static struct	lpteg *moea64_pteg_table;
293 u_int		moea64_pteg_count;
294 u_int		moea64_pteg_mask;
295 
296 /*
297  * PVO data.
298  */
299 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
300 /* lists of unmanaged pages */
301 struct	pvo_head moea64_pvo_kunmanaged =
302     LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
303 struct	pvo_head moea64_pvo_unmanaged =
304     LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
305 
306 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
307 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
308 
309 #define	BPVO_POOL_SIZE	327680
310 static struct	pvo_entry *moea64_bpvo_pool;
311 static int	moea64_bpvo_pool_index = 0;
312 
313 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
314 #ifdef __powerpc64__
315 #define	NVSIDS		(NPMAPS * 16)
316 #define VSID_HASHMASK	0xffffffffUL
317 #else
318 #define NVSIDS		NPMAPS
319 #define VSID_HASHMASK	0xfffffUL
320 #endif
321 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
322 
323 static boolean_t moea64_initialized = FALSE;
324 
325 /*
326  * Statistics.
327  */
328 u_int	moea64_pte_valid = 0;
329 u_int	moea64_pte_overflow = 0;
330 u_int	moea64_pvo_entries = 0;
331 u_int	moea64_pvo_enter_calls = 0;
332 u_int	moea64_pvo_remove_calls = 0;
333 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
334     &moea64_pte_valid, 0, "");
335 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
336     &moea64_pte_overflow, 0, "");
337 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
338     &moea64_pvo_entries, 0, "");
339 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
340     &moea64_pvo_enter_calls, 0, "");
341 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
342     &moea64_pvo_remove_calls, 0, "");
343 
344 vm_offset_t	moea64_scratchpage_va[2];
345 uint64_t	moea64_scratchpage_vpn[2];
346 struct	lpte 	*moea64_scratchpage_pte[2];
347 struct	mtx	moea64_scratchpage_mtx;
348 
349 uint64_t 	moea64_large_page_mask = 0;
350 int		moea64_large_page_size = 0;
351 int		moea64_large_page_shift = 0;
352 
353 /*
354  * Allocate physical memory for use in moea64_bootstrap.
355  */
356 static vm_offset_t	moea64_bootstrap_alloc(vm_size_t, u_int);
357 
358 /*
359  * PTE calls.
360  */
361 static int		moea64_pte_insert(u_int, struct lpte *);
362 
363 /*
364  * PVO calls.
365  */
366 static int	moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
367 		    vm_offset_t, vm_offset_t, uint64_t, int);
368 static void	moea64_pvo_remove(struct pvo_entry *);
369 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
370 static struct	lpte *moea64_pvo_to_pte(const struct pvo_entry *);
371 
372 /*
373  * Utility routines.
374  */
375 static void		moea64_bootstrap(mmu_t mmup,
376 			    vm_offset_t kernelstart, vm_offset_t kernelend);
377 static void		moea64_cpu_bootstrap(mmu_t, int ap);
378 static void		moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
379 			    vm_prot_t, boolean_t);
380 static boolean_t	moea64_query_bit(vm_page_t, u_int64_t);
381 static u_int		moea64_clear_bit(vm_page_t, u_int64_t);
382 static void		moea64_kremove(mmu_t, vm_offset_t);
383 static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
384 			    vm_offset_t pa, vm_size_t sz);
385 static void		tlbia(void);
386 #ifdef __powerpc64__
387 static void		slbia(void);
388 #endif
389 
390 /*
391  * Kernel MMU interface
392  */
393 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
394 void moea64_clear_modify(mmu_t, vm_page_t);
395 void moea64_clear_reference(mmu_t, vm_page_t);
396 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
397 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
398 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
399     vm_prot_t);
400 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
401 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
402 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
403 void moea64_init(mmu_t);
404 boolean_t moea64_is_modified(mmu_t, vm_page_t);
405 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
406 boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
407 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
408 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
409 int moea64_page_wired_mappings(mmu_t, vm_page_t);
410 void moea64_pinit(mmu_t, pmap_t);
411 void moea64_pinit0(mmu_t, pmap_t);
412 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
413 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
414 void moea64_qremove(mmu_t, vm_offset_t, int);
415 void moea64_release(mmu_t, pmap_t);
416 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
417 void moea64_remove_all(mmu_t, vm_page_t);
418 void moea64_remove_write(mmu_t, vm_page_t);
419 void moea64_zero_page(mmu_t, vm_page_t);
420 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
421 void moea64_zero_page_idle(mmu_t, vm_page_t);
422 void moea64_activate(mmu_t, struct thread *);
423 void moea64_deactivate(mmu_t, struct thread *);
424 void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
425 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
426 vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
427 void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
428 boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
429 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
430 
431 static mmu_method_t moea64_methods[] = {
432 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
433 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
434 	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
435 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
436 	MMUMETHOD(mmu_enter,		moea64_enter),
437 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
438 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
439 	MMUMETHOD(mmu_extract,		moea64_extract),
440 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
441 	MMUMETHOD(mmu_init,		moea64_init),
442 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
443 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
444 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
445 	MMUMETHOD(mmu_map,     		moea64_map),
446 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
447 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
448 	MMUMETHOD(mmu_pinit,		moea64_pinit),
449 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
450 	MMUMETHOD(mmu_protect,		moea64_protect),
451 	MMUMETHOD(mmu_qenter,		moea64_qenter),
452 	MMUMETHOD(mmu_qremove,		moea64_qremove),
453 	MMUMETHOD(mmu_release,		moea64_release),
454 	MMUMETHOD(mmu_remove,		moea64_remove),
455 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
456 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
457 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
458 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
459 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
460 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
461 	MMUMETHOD(mmu_activate,		moea64_activate),
462 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
463 
464 	/* Internal interfaces */
465 	MMUMETHOD(mmu_bootstrap,       	moea64_bootstrap),
466 	MMUMETHOD(mmu_cpu_bootstrap,   	moea64_cpu_bootstrap),
467 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
468 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
469 	MMUMETHOD(mmu_kextract,		moea64_kextract),
470 	MMUMETHOD(mmu_kenter,		moea64_kenter),
471 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
472 
473 	{ 0, 0 }
474 };
475 
476 static mmu_def_t oea64_mmu = {
477 	MMU_TYPE_G5,
478 	moea64_methods,
479 	0
480 };
481 MMU_DEF(oea64_mmu);
482 
483 static __inline u_int
484 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
485 {
486 	uint64_t hash;
487 	int shift;
488 
489 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
490 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
491 	    shift);
492 	return (hash & moea64_pteg_mask);
493 }
494 
495 static __inline struct pvo_head *
496 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
497 {
498 	struct	vm_page *pg;
499 
500 	pg = PHYS_TO_VM_PAGE(pa);
501 
502 	if (pg_p != NULL)
503 		*pg_p = pg;
504 
505 	if (pg == NULL)
506 		return (&moea64_pvo_unmanaged);
507 
508 	return (&pg->md.mdpg_pvoh);
509 }
510 
511 static __inline struct pvo_head *
512 vm_page_to_pvoh(vm_page_t m)
513 {
514 
515 	return (&m->md.mdpg_pvoh);
516 }
517 
518 static __inline void
519 moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
520 {
521 
522 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
523 	m->md.mdpg_attrs &= ~ptebit;
524 }
525 
526 static __inline u_int64_t
527 moea64_attr_fetch(vm_page_t m)
528 {
529 
530 	return (m->md.mdpg_attrs);
531 }
532 
533 static __inline void
534 moea64_attr_save(vm_page_t m, u_int64_t ptebit)
535 {
536 
537 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
538 	m->md.mdpg_attrs |= ptebit;
539 }
540 
541 static __inline void
542 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
543     uint64_t pte_lo, int flags)
544 {
545 
546 	ASSERT_TABLE_LOCK();
547 
548 	/*
549 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
550 	 * set when the real pte is set in memory.
551 	 *
552 	 * Note: Don't set the valid bit for correct operation of tlb update.
553 	 */
554 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
555 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
556 
557 	if (flags & PVO_LARGE)
558 		pt->pte_hi |= LPTE_BIG;
559 
560 	pt->pte_lo = pte_lo;
561 }
562 
563 static __inline void
564 moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
565 {
566 
567 	ASSERT_TABLE_LOCK();
568 
569 	pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
570 }
571 
572 static __inline void
573 moea64_pte_clear(struct lpte *pt, uint64_t vpn, u_int64_t ptebit)
574 {
575 	ASSERT_TABLE_LOCK();
576 
577 	/*
578 	 * As shown in Section 7.6.3.2.3
579 	 */
580 	pt->pte_lo &= ~ptebit;
581 	TLBIE(vpn);
582 }
583 
584 static __inline void
585 moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
586 {
587 
588 	ASSERT_TABLE_LOCK();
589 	pvo_pt->pte_hi |= LPTE_VALID;
590 
591 	/*
592 	 * Update the PTE as defined in section 7.6.3.1.
593 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
594 	 * been saved so this routine can restore them (if desired).
595 	 */
596 	pt->pte_lo = pvo_pt->pte_lo;
597 	EIEIO();
598 	pt->pte_hi = pvo_pt->pte_hi;
599 	PTESYNC();
600 	moea64_pte_valid++;
601 }
602 
603 static __inline void
604 moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
605 {
606 	ASSERT_TABLE_LOCK();
607 	pvo_pt->pte_hi &= ~LPTE_VALID;
608 
609 	/*
610 	 * Force the reg & chg bits back into the PTEs.
611 	 */
612 	SYNC();
613 
614 	/*
615 	 * Invalidate the pte.
616 	 */
617 	pt->pte_hi &= ~LPTE_VALID;
618 	TLBIE(vpn);
619 
620 	/*
621 	 * Save the reg & chg bits.
622 	 */
623 	moea64_pte_synch(pt, pvo_pt);
624 	moea64_pte_valid--;
625 }
626 
627 static __inline void
628 moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
629 {
630 
631 	/*
632 	 * Invalidate the PTE
633 	 */
634 	moea64_pte_unset(pt, pvo_pt, vpn);
635 	moea64_pte_set(pt, pvo_pt);
636 }
637 
638 static __inline uint64_t
639 moea64_calc_wimg(vm_offset_t pa)
640 {
641 	uint64_t pte_lo;
642 	int i;
643 
644 	/*
645 	 * Assume the page is cache inhibited and access is guarded unless
646 	 * it's in our available memory array.
647 	 */
648 	pte_lo = LPTE_I | LPTE_G;
649 	for (i = 0; i < pregions_sz; i++) {
650 		if ((pa >= pregions[i].mr_start) &&
651 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
652 			pte_lo &= ~(LPTE_I | LPTE_G);
653 			pte_lo |= LPTE_M;
654 			break;
655 		}
656 	}
657 
658 	return pte_lo;
659 }
660 
661 /*
662  * Quick sort callout for comparing memory regions.
663  */
664 static int	mr_cmp(const void *a, const void *b);
665 static int	om_cmp(const void *a, const void *b);
666 
667 static int
668 mr_cmp(const void *a, const void *b)
669 {
670 	const struct	mem_region *regiona;
671 	const struct	mem_region *regionb;
672 
673 	regiona = a;
674 	regionb = b;
675 	if (regiona->mr_start < regionb->mr_start)
676 		return (-1);
677 	else if (regiona->mr_start > regionb->mr_start)
678 		return (1);
679 	else
680 		return (0);
681 }
682 
683 static int
684 om_cmp(const void *a, const void *b)
685 {
686 	const struct	ofw_map *mapa;
687 	const struct	ofw_map *mapb;
688 
689 	mapa = a;
690 	mapb = b;
691 	if (mapa->om_pa_hi < mapb->om_pa_hi)
692 		return (-1);
693 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
694 		return (1);
695 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
696 		return (-1);
697 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
698 		return (1);
699 	else
700 		return (0);
701 }
702 
703 static void
704 moea64_cpu_bootstrap(mmu_t mmup, int ap)
705 {
706 	int i = 0;
707 	#ifdef __powerpc64__
708 	struct slb *slb = PCPU_GET(slb);
709 	#endif
710 
711 	/*
712 	 * Initialize segment registers and MMU
713 	 */
714 
715 	mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
716 
717 	/*
718 	 * Install kernel SLB entries
719 	 */
720 
721 	#ifdef __powerpc64__
722 		slbia();
723 
724 		for (i = 0; i < 64; i++) {
725 			if (!(slb[i].slbe & SLBE_VALID))
726 				continue;
727 
728 			__asm __volatile ("slbmte %0, %1" ::
729 			    "r"(slb[i].slbv), "r"(slb[i].slbe));
730 		}
731 	#else
732 		for (i = 0; i < 16; i++)
733 			mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
734 	#endif
735 
736 	/*
737 	 * Install page table
738 	 */
739 
740 	__asm __volatile ("ptesync; mtsdr1 %0; isync"
741 	    :: "r"((uintptr_t)moea64_pteg_table
742 		     | (64 - cntlzd(moea64_pteg_mask >> 11))));
743 	tlbia();
744 }
745 
746 static void
747 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
748 {
749 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
750 	register_t	msr;
751 	vm_offset_t	off;
752 	vm_paddr_t	pa_base;
753 	int		i, ofw_mappings;
754 
755 	bzero(translations, sz);
756 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
757 		panic("moea64_bootstrap: can't get ofw translations");
758 
759 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
760 	sz /= sizeof(*translations);
761 	qsort(translations, sz, sizeof (*translations), om_cmp);
762 
763 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
764 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
765 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
766 		    translations[i].om_len);
767 
768 		if (translations[i].om_pa_lo % PAGE_SIZE)
769 			panic("OFW translation not page-aligned!");
770 
771 		pa_base = translations[i].om_pa_lo;
772 
773 	      #ifdef __powerpc64__
774 		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
775 	      #else
776 		if (translations[i].om_pa_hi)
777 			panic("OFW translations above 32-bit boundary!");
778 	      #endif
779 
780 		/* Now enter the pages for this mapping */
781 
782 		DISABLE_TRANS(msr);
783 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
784 			if (moea64_pvo_find_va(kernel_pmap,
785 			    translations[i].om_va + off) != NULL)
786 				continue;
787 
788 			moea64_kenter(mmup, translations[i].om_va + off,
789 			    pa_base + off);
790 
791 			ofw_mappings++;
792 		}
793 		ENABLE_TRANS(msr);
794 	}
795 }
796 
797 #ifdef __powerpc64__
798 static void
799 moea64_probe_large_page(void)
800 {
801 	uint16_t pvr = mfpvr() >> 16;
802 
803 	switch (pvr) {
804 	case IBM970:
805 	case IBM970FX:
806 	case IBM970MP:
807 		powerpc_sync(); isync();
808 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
809 		powerpc_sync(); isync();
810 
811 		/* FALLTHROUGH */
812 	case IBMCELLBE:
813 		moea64_large_page_size = 0x1000000; /* 16 MB */
814 		moea64_large_page_shift = 24;
815 		break;
816 	default:
817 		moea64_large_page_size = 0;
818 	}
819 
820 	moea64_large_page_mask = moea64_large_page_size - 1;
821 }
822 
823 static void
824 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
825 {
826 	struct slb *cache;
827 	struct slb entry;
828 	uint64_t esid, slbe;
829 	uint64_t i;
830 
831 	cache = PCPU_GET(slb);
832 	esid = va >> ADDR_SR_SHFT;
833 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
834 
835 	for (i = 0; i < 64; i++) {
836 		if (cache[i].slbe == (slbe | i))
837 			return;
838 	}
839 
840 	entry.slbe = slbe;
841 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
842 	if (large)
843 		entry.slbv |= SLBV_L;
844 
845 	slb_insert(kernel_pmap, cache, &entry);
846 }
847 #endif
848 
849 static void
850 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
851     vm_offset_t kernelend)
852 {
853 	register_t msr;
854 	vm_paddr_t pa;
855 	vm_offset_t size, off;
856 	uint64_t pte_lo;
857 	int i;
858 
859 	if (moea64_large_page_size == 0)
860 		hw_direct_map = 0;
861 
862 	DISABLE_TRANS(msr);
863 	if (hw_direct_map) {
864 		PMAP_LOCK(kernel_pmap);
865 		for (i = 0; i < pregions_sz; i++) {
866 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
867 		     pregions[i].mr_size; pa += moea64_large_page_size) {
868 			pte_lo = LPTE_M;
869 
870 			/*
871 			 * Set memory access as guarded if prefetch within
872 			 * the page could exit the available physmem area.
873 			 */
874 			if (pa & moea64_large_page_mask) {
875 				pa &= moea64_large_page_mask;
876 				pte_lo |= LPTE_G;
877 			}
878 			if (pa + moea64_large_page_size >
879 			    pregions[i].mr_start + pregions[i].mr_size)
880 				pte_lo |= LPTE_G;
881 
882 			moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
883 				    &moea64_pvo_kunmanaged, pa, pa,
884 				    pte_lo, PVO_WIRED | PVO_LARGE |
885 				    VM_PROT_EXECUTE);
886 		  }
887 		}
888 		PMAP_UNLOCK(kernel_pmap);
889 	} else {
890 		size = moea64_pteg_count * sizeof(struct lpteg);
891 		off = (vm_offset_t)(moea64_pteg_table);
892 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
893 			moea64_kenter(mmup, pa, pa);
894 		size = sizeof(struct pvo_head) * moea64_pteg_count;
895 		off = (vm_offset_t)(moea64_pvo_table);
896 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
897 			moea64_kenter(mmup, pa, pa);
898 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
899 		off = (vm_offset_t)(moea64_bpvo_pool);
900 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
901 		moea64_kenter(mmup, pa, pa);
902 
903 		/*
904 		 * Map certain important things, like ourselves.
905 		 *
906 		 * NOTE: We do not map the exception vector space. That code is
907 		 * used only in real mode, and leaving it unmapped allows us to
908 		 * catch NULL pointer deferences, instead of making NULL a valid
909 		 * address.
910 		 */
911 
912 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
913 		    pa += PAGE_SIZE)
914 			moea64_kenter(mmup, pa, pa);
915 	}
916 	ENABLE_TRANS(msr);
917 }
918 
919 static void
920 moea64_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
921 {
922 	ihandle_t	mmui;
923 	phandle_t	chosen;
924 	phandle_t	mmu;
925 	size_t		sz;
926 	int		i, j;
927 	vm_size_t	size, physsz, hwphyssz;
928 	vm_offset_t	pa, va;
929 	register_t	msr;
930 	void		*dpcpu;
931 
932 #ifndef __powerpc64__
933 	/* We don't have a direct map since there is no BAT */
934 	hw_direct_map = 0;
935 
936 	/* Make sure battable is zero, since we have no BAT */
937 	for (i = 0; i < 16; i++) {
938 		battable[i].batu = 0;
939 		battable[i].batl = 0;
940 	}
941 #else
942 	moea64_probe_large_page();
943 
944 	/* Use a direct map if we have large page support */
945 	if (moea64_large_page_size > 0)
946 		hw_direct_map = 1;
947 	else
948 		hw_direct_map = 0;
949 #endif
950 
951 	/* Get physical memory regions from firmware */
952 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
953 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
954 
955 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
956 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
957 		panic("moea64_bootstrap: phys_avail too small");
958 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
959 	phys_avail_count = 0;
960 	physsz = 0;
961 	hwphyssz = 0;
962 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
963 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
964 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
965 		    regions[i].mr_start + regions[i].mr_size,
966 		    regions[i].mr_size);
967 		if (hwphyssz != 0 &&
968 		    (physsz + regions[i].mr_size) >= hwphyssz) {
969 			if (physsz < hwphyssz) {
970 				phys_avail[j] = regions[i].mr_start;
971 				phys_avail[j + 1] = regions[i].mr_start +
972 				    hwphyssz - physsz;
973 				physsz = hwphyssz;
974 				phys_avail_count++;
975 			}
976 			break;
977 		}
978 		phys_avail[j] = regions[i].mr_start;
979 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
980 		phys_avail_count++;
981 		physsz += regions[i].mr_size;
982 	}
983 
984 	/* Check for overlap with the kernel and exception vectors */
985 	for (j = 0; j < 2*phys_avail_count; j+=2) {
986 		if (phys_avail[j] < EXC_LAST)
987 			phys_avail[j] += EXC_LAST;
988 
989 		if (kernelstart >= phys_avail[j] &&
990 		    kernelstart < phys_avail[j+1]) {
991 			if (kernelend < phys_avail[j+1]) {
992 				phys_avail[2*phys_avail_count] =
993 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
994 				phys_avail[2*phys_avail_count + 1] =
995 				    phys_avail[j+1];
996 				phys_avail_count++;
997 			}
998 
999 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
1000 		}
1001 
1002 		if (kernelend >= phys_avail[j] &&
1003 		    kernelend < phys_avail[j+1]) {
1004 			if (kernelstart > phys_avail[j]) {
1005 				phys_avail[2*phys_avail_count] = phys_avail[j];
1006 				phys_avail[2*phys_avail_count + 1] =
1007 				    kernelstart & ~PAGE_MASK;
1008 				phys_avail_count++;
1009 			}
1010 
1011 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
1012 		}
1013 	}
1014 
1015 	physmem = btoc(physsz);
1016 
1017 	/*
1018 	 * Allocate PTEG table.
1019 	 */
1020 #ifdef PTEGCOUNT
1021 	moea64_pteg_count = PTEGCOUNT;
1022 #else
1023 	moea64_pteg_count = 0x1000;
1024 
1025 	while (moea64_pteg_count < physmem)
1026 		moea64_pteg_count <<= 1;
1027 
1028 	moea64_pteg_count >>= 1;
1029 #endif /* PTEGCOUNT */
1030 
1031 	size = moea64_pteg_count * sizeof(struct lpteg);
1032 	CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
1033 	    moea64_pteg_count, size);
1034 
1035 	/*
1036 	 * We now need to allocate memory. This memory, to be allocated,
1037 	 * has to reside in a page table. The page table we are about to
1038 	 * allocate. We don't have BAT. So drop to data real mode for a minute
1039 	 * as a measure of last resort. We do this a couple times.
1040 	 */
1041 
1042 	moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
1043 	DISABLE_TRANS(msr);
1044 	bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
1045 	ENABLE_TRANS(msr);
1046 
1047 	moea64_pteg_mask = moea64_pteg_count - 1;
1048 
1049 	CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
1050 
1051 	/*
1052 	 * Allocate pv/overflow lists.
1053 	 */
1054 	size = sizeof(struct pvo_head) * moea64_pteg_count;
1055 
1056 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
1057 	    PAGE_SIZE);
1058 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
1059 
1060 	DISABLE_TRANS(msr);
1061 	for (i = 0; i < moea64_pteg_count; i++)
1062 		LIST_INIT(&moea64_pvo_table[i]);
1063 	ENABLE_TRANS(msr);
1064 
1065 	/*
1066 	 * Initialize the lock that synchronizes access to the pteg and pvo
1067 	 * tables.
1068 	 */
1069 	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
1070 	    MTX_RECURSE);
1071 
1072 	/*
1073 	 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
1074 	 */
1075 	mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
1076 
1077 	/*
1078 	 * Initialise the unmanaged pvo pool.
1079 	 */
1080 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1081 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
1082 	moea64_bpvo_pool_index = 0;
1083 
1084 	/*
1085 	 * Make sure kernel vsid is allocated as well as VSID 0.
1086 	 */
1087 	#ifndef __powerpc64__
1088 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1089 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1090 	moea64_vsid_bitmap[0] |= 1;
1091 	#endif
1092 
1093 	/*
1094 	 * Initialize the kernel pmap (which is statically allocated).
1095 	 */
1096 	#ifdef __powerpc64__
1097 	for (i = 0; i < 64; i++) {
1098 		pcpup->pc_slb[i].slbv = 0;
1099 		pcpup->pc_slb[i].slbe = 0;
1100 	}
1101 	#else
1102 	for (i = 0; i < 16; i++)
1103 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1104 	#endif
1105 
1106 	kernel_pmap->pmap_phys = kernel_pmap;
1107 	kernel_pmap->pm_active = ~0;
1108 
1109 	PMAP_LOCK_INIT(kernel_pmap);
1110 
1111 	/*
1112 	 * Now map in all the other buffers we allocated earlier
1113 	 */
1114 
1115 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
1116 
1117 	/*
1118 	 * Set up the Open Firmware pmap and add its mappings if not in real
1119 	 * mode.
1120 	 */
1121 
1122 	if (!ofw_real_mode) {
1123 	    #ifndef __powerpc64__
1124 	    moea64_pinit(mmup, &ofw_pmap);
1125 
1126 	    for (i = 0; i < 16; i++)
1127 		ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
1128 	    #endif
1129 
1130 	    if ((chosen = OF_finddevice("/chosen")) == -1)
1131 		panic("moea64_bootstrap: can't find /chosen");
1132 	    OF_getprop(chosen, "mmu", &mmui, 4);
1133 
1134 	    if ((mmu = OF_instance_to_package(mmui)) == -1)
1135 		panic("moea64_bootstrap: can't get mmu package");
1136 	    if ((sz = OF_getproplen(mmu, "translations")) == -1)
1137 		panic("moea64_bootstrap: can't get ofw translation count");
1138 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1139 		panic("moea64_bootstrap: too many ofw translations");
1140 
1141 	    moea64_add_ofw_mappings(mmup, mmu, sz);
1142 	}
1143 
1144 #ifdef SMP
1145 	TLBSYNC();
1146 #endif
1147 
1148 	/*
1149 	 * Calculate the last available physical address.
1150 	 */
1151 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1152 		;
1153 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1154 
1155 	/*
1156 	 * Initialize MMU and remap early physical mappings
1157 	 */
1158 	moea64_cpu_bootstrap(mmup,0);
1159 	mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
1160 	pmap_bootstrapped++;
1161 	bs_remap_earlyboot();
1162 
1163 	/*
1164 	 * Set the start and end of kva.
1165 	 */
1166 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1167 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1168 
1169 	/*
1170 	 * Map the entire KVA range into the SLB. We must not fault there.
1171 	 */
1172 	#ifdef __powerpc64__
1173 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1174 		moea64_bootstrap_slb_prefault(va, 0);
1175 	#endif
1176 
1177 	/*
1178 	 * Figure out how far we can extend virtual_end into segment 16
1179 	 * without running into existing mappings. Segment 16 is guaranteed
1180 	 * to contain neither RAM nor devices (at least on Apple hardware),
1181 	 * but will generally contain some OFW mappings we should not
1182 	 * step on.
1183 	 */
1184 
1185 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1186 	PMAP_LOCK(kernel_pmap);
1187 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1188 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1189 		virtual_end += PAGE_SIZE;
1190 	PMAP_UNLOCK(kernel_pmap);
1191 	#endif
1192 
1193 	/*
1194 	 * Allocate some things for page zeroing. We put this directly
1195 	 * in the page table, marked with LPTE_LOCKED, to avoid any
1196 	 * of the PVO book-keeping or other parts of the VM system
1197 	 * from even knowing that this hack exists.
1198 	 */
1199 
1200 	if (!hw_direct_map) {
1201 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1202 		    MTX_DEF);
1203 		for (i = 0; i < 2; i++) {
1204 			struct lpte pt;
1205 			uint64_t vsid;
1206 			int pteidx, ptegidx;
1207 
1208 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1209 			virtual_end -= PAGE_SIZE;
1210 
1211 			LOCK_TABLE();
1212 
1213 			vsid = va_to_vsid(kernel_pmap,
1214 			    moea64_scratchpage_va[i]);
1215 			moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
1216 			    LPTE_NOEXEC, 0);
1217 			pt.pte_hi |= LPTE_LOCKED;
1218 
1219 			moea64_scratchpage_vpn[i] = (vsid << 16) |
1220 			    ((moea64_scratchpage_va[i] & ADDR_PIDX) >>
1221 			    ADDR_PIDX_SHFT);
1222 			ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i], 0);
1223 			pteidx = moea64_pte_insert(ptegidx, &pt);
1224 			if (pt.pte_hi & LPTE_HID)
1225 				ptegidx ^= moea64_pteg_mask;
1226 
1227 			moea64_scratchpage_pte[i] =
1228 			    &moea64_pteg_table[ptegidx].pt[pteidx];
1229 
1230 			UNLOCK_TABLE();
1231 		}
1232 	}
1233 
1234 	/*
1235 	 * Allocate a kernel stack with a guard page for thread0 and map it
1236 	 * into the kernel page map.
1237 	 */
1238 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1239 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1240 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1241 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1242 	thread0.td_kstack = va;
1243 	thread0.td_kstack_pages = KSTACK_PAGES;
1244 	for (i = 0; i < KSTACK_PAGES; i++) {
1245 		moea64_kenter(mmup, va, pa);
1246 		pa += PAGE_SIZE;
1247 		va += PAGE_SIZE;
1248 	}
1249 
1250 	/*
1251 	 * Allocate virtual address space for the message buffer.
1252 	 */
1253 	pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1254 	msgbufp = (struct msgbuf *)virtual_avail;
1255 	va = virtual_avail;
1256 	virtual_avail += round_page(MSGBUF_SIZE);
1257 	while (va < virtual_avail) {
1258 		moea64_kenter(mmup, va, pa);
1259 		pa += PAGE_SIZE;
1260 		va += PAGE_SIZE;
1261 	}
1262 
1263 	/*
1264 	 * Allocate virtual address space for the dynamic percpu area.
1265 	 */
1266 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1267 	dpcpu = (void *)virtual_avail;
1268 	va = virtual_avail;
1269 	virtual_avail += DPCPU_SIZE;
1270 	while (va < virtual_avail) {
1271 		moea64_kenter(mmup, va, pa);
1272 		pa += PAGE_SIZE;
1273 		va += PAGE_SIZE;
1274 	}
1275 	dpcpu_init(dpcpu, 0);
1276 }
1277 
1278 /*
1279  * Activate a user pmap.  The pmap must be activated before its address
1280  * space can be accessed in any way.
1281  */
1282 void
1283 moea64_activate(mmu_t mmu, struct thread *td)
1284 {
1285 	pmap_t	pm;
1286 
1287 	pm = &td->td_proc->p_vmspace->vm_pmap;
1288 	pm->pm_active |= PCPU_GET(cpumask);
1289 
1290 	#ifdef __powerpc64__
1291 	PCPU_SET(userslb, pm->pm_slb);
1292 	#else
1293 	PCPU_SET(curpmap, pm->pmap_phys);
1294 	#endif
1295 }
1296 
1297 void
1298 moea64_deactivate(mmu_t mmu, struct thread *td)
1299 {
1300 	pmap_t	pm;
1301 
1302 	pm = &td->td_proc->p_vmspace->vm_pmap;
1303 	pm->pm_active &= ~(PCPU_GET(cpumask));
1304 	#ifdef __powerpc64__
1305 	PCPU_SET(userslb, NULL);
1306 	#else
1307 	PCPU_SET(curpmap, NULL);
1308 	#endif
1309 }
1310 
1311 void
1312 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1313 {
1314 	struct	pvo_entry *pvo;
1315 	struct	lpte *pt;
1316 	uint64_t vsid;
1317 	int	i, ptegidx;
1318 
1319 	PMAP_LOCK(pm);
1320 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1321 
1322 	if (pvo != NULL) {
1323 		LOCK_TABLE();
1324 		pt = moea64_pvo_to_pte(pvo);
1325 
1326 		if (wired) {
1327 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1328 				pm->pm_stats.wired_count++;
1329 			pvo->pvo_vaddr |= PVO_WIRED;
1330 			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1331 		} else {
1332 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1333 				pm->pm_stats.wired_count--;
1334 			pvo->pvo_vaddr &= ~PVO_WIRED;
1335 			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1336 		}
1337 
1338 		if (pt != NULL) {
1339 			/* Update wiring flag in page table. */
1340 			moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1341 			    pvo->pvo_vpn);
1342 		} else if (wired) {
1343 			/*
1344 			 * If we are wiring the page, and it wasn't in the
1345 			 * page table before, add it.
1346 			 */
1347 			vsid = PVO_VSID(pvo);
1348 			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1349 			    pvo->pvo_vaddr & PVO_LARGE);
1350 
1351 			i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
1352 			if (i >= 0) {
1353 				PVO_PTEGIDX_CLR(pvo);
1354 				PVO_PTEGIDX_SET(pvo, i);
1355 			}
1356 		}
1357 
1358 		UNLOCK_TABLE();
1359 	}
1360 	PMAP_UNLOCK(pm);
1361 }
1362 
1363 /*
1364  * This goes through and sets the physical address of our
1365  * special scratch PTE to the PA we want to zero or copy. Because
1366  * of locking issues (this can get called in pvo_enter() by
1367  * the UMA allocator), we can't use most other utility functions here
1368  */
1369 
1370 static __inline
1371 void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1372 
1373 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1374 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1375 
1376 	moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1377 	TLBIE(moea64_scratchpage_vpn[which]);
1378 
1379 	moea64_scratchpage_pte[which]->pte_lo &=
1380 	    ~(LPTE_WIMG | LPTE_RPGN);
1381 	moea64_scratchpage_pte[which]->pte_lo |=
1382 	    moea64_calc_wimg(pa) | (uint64_t)pa;
1383 	EIEIO();
1384 
1385 	moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1386 	PTESYNC(); isync();
1387 }
1388 
1389 void
1390 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1391 {
1392 	vm_offset_t	dst;
1393 	vm_offset_t	src;
1394 
1395 	dst = VM_PAGE_TO_PHYS(mdst);
1396 	src = VM_PAGE_TO_PHYS(msrc);
1397 
1398 	if (hw_direct_map) {
1399 		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1400 	} else {
1401 		mtx_lock(&moea64_scratchpage_mtx);
1402 
1403 		moea64_set_scratchpage_pa(0,src);
1404 		moea64_set_scratchpage_pa(1,dst);
1405 
1406 		kcopy((void *)moea64_scratchpage_va[0],
1407 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1408 
1409 		mtx_unlock(&moea64_scratchpage_mtx);
1410 	}
1411 }
1412 
1413 void
1414 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1415 {
1416 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1417 
1418 	if (!moea64_initialized)
1419 		panic("moea64_zero_page: can't zero pa %#" PRIxPTR, pa);
1420 	if (size + off > PAGE_SIZE)
1421 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1422 
1423 	if (hw_direct_map) {
1424 		bzero((caddr_t)pa + off, size);
1425 	} else {
1426 		mtx_lock(&moea64_scratchpage_mtx);
1427 		moea64_set_scratchpage_pa(0,pa);
1428 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1429 		mtx_unlock(&moea64_scratchpage_mtx);
1430 	}
1431 }
1432 
1433 /*
1434  * Zero a page of physical memory by temporarily mapping it
1435  */
1436 void
1437 moea64_zero_page(mmu_t mmu, vm_page_t m)
1438 {
1439 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1440 	vm_offset_t va, off;
1441 
1442 	if (!moea64_initialized)
1443 		panic("moea64_zero_page: can't zero pa %#zx", pa);
1444 
1445 	if (!hw_direct_map) {
1446 		mtx_lock(&moea64_scratchpage_mtx);
1447 
1448 		moea64_set_scratchpage_pa(0,pa);
1449 		va = moea64_scratchpage_va[0];
1450 	} else {
1451 		va = pa;
1452 	}
1453 
1454 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1455 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1456 
1457 	if (!hw_direct_map)
1458 		mtx_unlock(&moea64_scratchpage_mtx);
1459 }
1460 
1461 void
1462 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1463 {
1464 
1465 	moea64_zero_page(mmu, m);
1466 }
1467 
1468 /*
1469  * Map the given physical page at the specified virtual address in the
1470  * target pmap with the protection requested.  If specified the page
1471  * will be wired down.
1472  */
1473 void
1474 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1475     vm_prot_t prot, boolean_t wired)
1476 {
1477 
1478 	vm_page_lock_queues();
1479 	PMAP_LOCK(pmap);
1480 	moea64_enter_locked(pmap, va, m, prot, wired);
1481 	vm_page_unlock_queues();
1482 	PMAP_UNLOCK(pmap);
1483 }
1484 
1485 /*
1486  * Map the given physical page at the specified virtual address in the
1487  * target pmap with the protection requested.  If specified the page
1488  * will be wired down.
1489  *
1490  * The page queues and pmap must be locked.
1491  */
1492 
1493 static void
1494 moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1495     boolean_t wired)
1496 {
1497 	struct		pvo_head *pvo_head;
1498 	uma_zone_t	zone;
1499 	vm_page_t	pg;
1500 	uint64_t	pte_lo;
1501 	u_int		pvo_flags;
1502 	int		error;
1503 
1504 	if (!moea64_initialized) {
1505 		pvo_head = &moea64_pvo_kunmanaged;
1506 		pg = NULL;
1507 		zone = moea64_upvo_zone;
1508 		pvo_flags = 0;
1509 	} else {
1510 		pvo_head = vm_page_to_pvoh(m);
1511 		pg = m;
1512 		zone = moea64_mpvo_zone;
1513 		pvo_flags = PVO_MANAGED;
1514 	}
1515 
1516 	if (pmap_bootstrapped)
1517 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1518 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1519 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1520 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1521 	    ("moea64_enter_locked: page %p is not busy", m));
1522 
1523 	/* XXX change the pvo head for fake pages */
1524 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1525 		pvo_flags &= ~PVO_MANAGED;
1526 		pvo_head = &moea64_pvo_kunmanaged;
1527 		zone = moea64_upvo_zone;
1528 	}
1529 
1530 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
1531 
1532 	if (prot & VM_PROT_WRITE) {
1533 		pte_lo |= LPTE_BW;
1534 		if (pmap_bootstrapped &&
1535 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1536 			vm_page_flag_set(m, PG_WRITEABLE);
1537 	} else
1538 		pte_lo |= LPTE_BR;
1539 
1540 	if (prot & VM_PROT_EXECUTE)
1541 		pvo_flags |= VM_PROT_EXECUTE;
1542 
1543 	if (wired)
1544 		pvo_flags |= PVO_WIRED;
1545 
1546 	if ((m->flags & PG_FICTITIOUS) != 0)
1547 		pvo_flags |= PVO_FAKE;
1548 
1549 	error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1550 	    pte_lo, pvo_flags);
1551 
1552 	/*
1553 	 * Flush the page from the instruction cache if this page is
1554 	 * mapped executable and cacheable.
1555 	 */
1556 	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1557 		moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1558 	}
1559 }
1560 
1561 static void
1562 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1563 {
1564 
1565 	/*
1566 	 * This is much trickier than on older systems because
1567 	 * we can't sync the icache on physical addresses directly
1568 	 * without a direct map. Instead we check a couple of cases
1569 	 * where the memory is already mapped in and, failing that,
1570 	 * use the same trick we use for page zeroing to create
1571 	 * a temporary mapping for this physical address.
1572 	 */
1573 
1574 	if (!pmap_bootstrapped) {
1575 		/*
1576 		 * If PMAP is not bootstrapped, we are likely to be
1577 		 * in real mode.
1578 		 */
1579 		__syncicache((void *)pa, sz);
1580 	} else if (pmap == kernel_pmap) {
1581 		__syncicache((void *)va, sz);
1582 	} else if (hw_direct_map) {
1583 		__syncicache((void *)pa, sz);
1584 	} else {
1585 		/* Use the scratch page to set up a temp mapping */
1586 
1587 		mtx_lock(&moea64_scratchpage_mtx);
1588 
1589 		moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1590 		__syncicache((void *)(moea64_scratchpage_va[1] +
1591 		    (va & ADDR_POFF)), sz);
1592 
1593 		mtx_unlock(&moea64_scratchpage_mtx);
1594 	}
1595 }
1596 
1597 /*
1598  * Maps a sequence of resident pages belonging to the same object.
1599  * The sequence begins with the given page m_start.  This page is
1600  * mapped at the given virtual address start.  Each subsequent page is
1601  * mapped at a virtual address that is offset from start by the same
1602  * amount as the page is offset from m_start within the object.  The
1603  * last page in the sequence is the page with the largest offset from
1604  * m_start that can be mapped at a virtual address less than the given
1605  * virtual address end.  Not every virtual page between start and end
1606  * is mapped; only those for which a resident page exists with the
1607  * corresponding offset from m_start are mapped.
1608  */
1609 void
1610 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1611     vm_page_t m_start, vm_prot_t prot)
1612 {
1613 	vm_page_t m;
1614 	vm_pindex_t diff, psize;
1615 
1616 	psize = atop(end - start);
1617 	m = m_start;
1618 	vm_page_lock_queues();
1619 	PMAP_LOCK(pm);
1620 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1621 		moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1622 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1623 		m = TAILQ_NEXT(m, listq);
1624 	}
1625 	vm_page_unlock_queues();
1626 	PMAP_UNLOCK(pm);
1627 }
1628 
1629 void
1630 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1631     vm_prot_t prot)
1632 {
1633 
1634 	vm_page_lock_queues();
1635 	PMAP_LOCK(pm);
1636 	moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1637 	    FALSE);
1638 	vm_page_unlock_queues();
1639 	PMAP_UNLOCK(pm);
1640 }
1641 
1642 vm_paddr_t
1643 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1644 {
1645 	struct	pvo_entry *pvo;
1646 	vm_paddr_t pa;
1647 
1648 	PMAP_LOCK(pm);
1649 	pvo = moea64_pvo_find_va(pm, va);
1650 	if (pvo == NULL)
1651 		pa = 0;
1652 	else
1653 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1654 		    (va - PVO_VADDR(pvo));
1655 	PMAP_UNLOCK(pm);
1656 	return (pa);
1657 }
1658 
1659 /*
1660  * Atomically extract and hold the physical page with the given
1661  * pmap and virtual address pair if that mapping permits the given
1662  * protection.
1663  */
1664 vm_page_t
1665 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1666 {
1667 	struct	pvo_entry *pvo;
1668 	vm_page_t m;
1669         vm_paddr_t pa;
1670 
1671 	m = NULL;
1672 	pa = 0;
1673 	PMAP_LOCK(pmap);
1674 retry:
1675 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1676 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1677 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1678 	     (prot & VM_PROT_WRITE) == 0)) {
1679 		if (vm_page_pa_tryrelock(pmap,
1680 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1681 			goto retry;
1682 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1683 		vm_page_hold(m);
1684 	}
1685 	PA_UNLOCK_COND(pa);
1686 	PMAP_UNLOCK(pmap);
1687 	return (m);
1688 }
1689 
1690 static void *
1691 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1692 {
1693 	/*
1694 	 * This entire routine is a horrible hack to avoid bothering kmem
1695 	 * for new KVA addresses. Because this can get called from inside
1696 	 * kmem allocation routines, calling kmem for a new address here
1697 	 * can lead to multiply locking non-recursive mutexes.
1698 	 */
1699 	static vm_pindex_t color;
1700         vm_offset_t va;
1701 
1702         vm_page_t m;
1703         int pflags, needed_lock;
1704 
1705 	*flags = UMA_SLAB_PRIV;
1706 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1707 
1708 	if (needed_lock)
1709 		PMAP_LOCK(kernel_pmap);
1710 
1711         if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1712                 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1713         else
1714                 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1715         if (wait & M_ZERO)
1716                 pflags |= VM_ALLOC_ZERO;
1717 
1718         for (;;) {
1719                 m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1720                 if (m == NULL) {
1721                         if (wait & M_NOWAIT)
1722                                 return (NULL);
1723                         VM_WAIT;
1724                 } else
1725                         break;
1726         }
1727 
1728 	va = VM_PAGE_TO_PHYS(m);
1729 
1730 	moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1731 	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1732 	    PVO_WIRED | PVO_BOOTSTRAP);
1733 
1734 	if (needed_lock)
1735 		PMAP_UNLOCK(kernel_pmap);
1736 
1737 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1738                 bzero((void *)va, PAGE_SIZE);
1739 
1740 	return (void *)va;
1741 }
1742 
1743 void
1744 moea64_init(mmu_t mmu)
1745 {
1746 
1747 	CTR0(KTR_PMAP, "moea64_init");
1748 
1749 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1750 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1751 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1752 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1753 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1754 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1755 
1756 	if (!hw_direct_map) {
1757 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1758 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1759 	}
1760 
1761 	moea64_initialized = TRUE;
1762 }
1763 
1764 boolean_t
1765 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1766 {
1767 
1768 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1769 	    ("moea64_is_referenced: page %p is not managed", m));
1770 	return (moea64_query_bit(m, PTE_REF));
1771 }
1772 
1773 boolean_t
1774 moea64_is_modified(mmu_t mmu, vm_page_t m)
1775 {
1776 
1777 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1778 	    ("moea64_is_modified: page %p is not managed", m));
1779 
1780 	/*
1781 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1782 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1783 	 * is clear, no PTEs can have LPTE_CHG set.
1784 	 */
1785 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1786 	if ((m->oflags & VPO_BUSY) == 0 &&
1787 	    (m->flags & PG_WRITEABLE) == 0)
1788 		return (FALSE);
1789 	return (moea64_query_bit(m, LPTE_CHG));
1790 }
1791 
1792 void
1793 moea64_clear_reference(mmu_t mmu, vm_page_t m)
1794 {
1795 
1796 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1797 	    ("moea64_clear_reference: page %p is not managed", m));
1798 	moea64_clear_bit(m, LPTE_REF);
1799 }
1800 
1801 void
1802 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1803 {
1804 
1805 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1806 	    ("moea64_clear_modify: page %p is not managed", m));
1807 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1808 	KASSERT((m->oflags & VPO_BUSY) == 0,
1809 	    ("moea64_clear_modify: page %p is busy", m));
1810 
1811 	/*
1812 	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1813 	 * set.  If the object containing the page is locked and the page is
1814 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1815 	 */
1816 	if ((m->flags & PG_WRITEABLE) == 0)
1817 		return;
1818 	moea64_clear_bit(m, LPTE_CHG);
1819 }
1820 
1821 /*
1822  * Clear the write and modified bits in each of the given page's mappings.
1823  */
1824 void
1825 moea64_remove_write(mmu_t mmu, vm_page_t m)
1826 {
1827 	struct	pvo_entry *pvo;
1828 	struct	lpte *pt;
1829 	pmap_t	pmap;
1830 	uint64_t lo;
1831 
1832 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1833 	    ("moea64_remove_write: page %p is not managed", m));
1834 
1835 	/*
1836 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1837 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1838 	 * is clear, no page table entries need updating.
1839 	 */
1840 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1841 	if ((m->oflags & VPO_BUSY) == 0 &&
1842 	    (m->flags & PG_WRITEABLE) == 0)
1843 		return;
1844 	vm_page_lock_queues();
1845 	lo = moea64_attr_fetch(m);
1846 	SYNC();
1847 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1848 		pmap = pvo->pvo_pmap;
1849 		PMAP_LOCK(pmap);
1850 		LOCK_TABLE();
1851 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1852 			pt = moea64_pvo_to_pte(pvo);
1853 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1854 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1855 			if (pt != NULL) {
1856 				moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1857 				lo |= pvo->pvo_pte.lpte.pte_lo;
1858 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1859 				moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1860 				    pvo->pvo_vpn);
1861 				if (pvo->pvo_pmap == kernel_pmap)
1862 					isync();
1863 			}
1864 		}
1865 		UNLOCK_TABLE();
1866 		PMAP_UNLOCK(pmap);
1867 	}
1868 	if ((lo & LPTE_CHG) != 0) {
1869 		moea64_attr_clear(m, LPTE_CHG);
1870 		vm_page_dirty(m);
1871 	}
1872 	vm_page_flag_clear(m, PG_WRITEABLE);
1873 	vm_page_unlock_queues();
1874 }
1875 
1876 /*
1877  *	moea64_ts_referenced:
1878  *
1879  *	Return a count of reference bits for a page, clearing those bits.
1880  *	It is not necessary for every reference bit to be cleared, but it
1881  *	is necessary that 0 only be returned when there are truly no
1882  *	reference bits set.
1883  *
1884  *	XXX: The exact number of bits to check and clear is a matter that
1885  *	should be tested and standardized at some point in the future for
1886  *	optimal aging of shared pages.
1887  */
1888 boolean_t
1889 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1890 {
1891 
1892 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1893 	    ("moea64_ts_referenced: page %p is not managed", m));
1894 	return (moea64_clear_bit(m, LPTE_REF));
1895 }
1896 
1897 /*
1898  * Map a wired page into kernel virtual address space.
1899  */
1900 void
1901 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1902 {
1903 	uint64_t	pte_lo;
1904 	int		error;
1905 
1906 #if 0
1907 	if (!pmap_bootstrapped) {
1908 		if (va >= VM_MIN_KERNEL_ADDRESS && va < virtual_end)
1909 			panic("Trying to enter an address in KVA -- %#"
1910 			    PRIxPTR "!\n",pa);
1911 	}
1912 #endif
1913 
1914 	pte_lo = moea64_calc_wimg(pa);
1915 
1916 	PMAP_LOCK(kernel_pmap);
1917 	error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1918 	    &moea64_pvo_kunmanaged, va, pa, pte_lo,
1919 	    PVO_WIRED | VM_PROT_EXECUTE);
1920 
1921 	if (error != 0 && error != ENOENT)
1922 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1923 		    pa, error);
1924 
1925 	/*
1926 	 * Flush the memory from the instruction cache.
1927 	 */
1928 	if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1929 		__syncicache((void *)va, PAGE_SIZE);
1930 	}
1931 	PMAP_UNLOCK(kernel_pmap);
1932 }
1933 
1934 /*
1935  * Extract the physical page address associated with the given kernel virtual
1936  * address.
1937  */
1938 vm_offset_t
1939 moea64_kextract(mmu_t mmu, vm_offset_t va)
1940 {
1941 	struct		pvo_entry *pvo;
1942 	vm_paddr_t pa;
1943 
1944 	/*
1945 	 * Shortcut the direct-mapped case when applicable.  We never put
1946 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1947 	 */
1948 	if (va < VM_MIN_KERNEL_ADDRESS)
1949 		return (va);
1950 
1951 	PMAP_LOCK(kernel_pmap);
1952 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1953 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1954 	    va));
1955 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
1956 	PMAP_UNLOCK(kernel_pmap);
1957 	return (pa);
1958 }
1959 
1960 /*
1961  * Remove a wired page from kernel virtual address space.
1962  */
1963 void
1964 moea64_kremove(mmu_t mmu, vm_offset_t va)
1965 {
1966 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1967 }
1968 
1969 /*
1970  * Map a range of physical addresses into kernel virtual address space.
1971  *
1972  * The value passed in *virt is a suggested virtual address for the mapping.
1973  * Architectures which can support a direct-mapped physical to virtual region
1974  * can return the appropriate address within that region, leaving '*virt'
1975  * unchanged.  We cannot and therefore do not; *virt is updated with the
1976  * first usable address after the mapped region.
1977  */
1978 vm_offset_t
1979 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1980     vm_offset_t pa_end, int prot)
1981 {
1982 	vm_offset_t	sva, va;
1983 
1984 	sva = *virt;
1985 	va = sva;
1986 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1987 		moea64_kenter(mmu, va, pa_start);
1988 	*virt = va;
1989 
1990 	return (sva);
1991 }
1992 
1993 /*
1994  * Returns true if the pmap's pv is one of the first
1995  * 16 pvs linked to from this page.  This count may
1996  * be changed upwards or downwards in the future; it
1997  * is only necessary that true be returned for a small
1998  * subset of pmaps for proper page aging.
1999  */
2000 boolean_t
2001 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2002 {
2003         int loops;
2004 	struct pvo_entry *pvo;
2005 	boolean_t rv;
2006 
2007 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2008 	    ("moea64_page_exists_quick: page %p is not managed", m));
2009 	loops = 0;
2010 	rv = FALSE;
2011 	vm_page_lock_queues();
2012 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2013 		if (pvo->pvo_pmap == pmap) {
2014 			rv = TRUE;
2015 			break;
2016 		}
2017 		if (++loops >= 16)
2018 			break;
2019 	}
2020 	vm_page_unlock_queues();
2021 	return (rv);
2022 }
2023 
2024 /*
2025  * Return the number of managed mappings to the given physical page
2026  * that are wired.
2027  */
2028 int
2029 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2030 {
2031 	struct pvo_entry *pvo;
2032 	int count;
2033 
2034 	count = 0;
2035 	if ((m->flags & PG_FICTITIOUS) != 0)
2036 		return (count);
2037 	vm_page_lock_queues();
2038 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2039 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
2040 			count++;
2041 	vm_page_unlock_queues();
2042 	return (count);
2043 }
2044 
2045 static uintptr_t	moea64_vsidcontext;
2046 
2047 uintptr_t
2048 moea64_get_unique_vsid(void) {
2049 	u_int entropy;
2050 	register_t hash;
2051 	uint32_t mask;
2052 	int i;
2053 
2054 	entropy = 0;
2055 	__asm __volatile("mftb %0" : "=r"(entropy));
2056 
2057 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2058 		u_int	n;
2059 
2060 		/*
2061 		 * Create a new value by mutiplying by a prime and adding in
2062 		 * entropy from the timebase register.  This is to make the
2063 		 * VSID more random so that the PT hash function collides
2064 		 * less often.  (Note that the prime casues gcc to do shifts
2065 		 * instead of a multiply.)
2066 		 */
2067 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2068 		hash = moea64_vsidcontext & (NVSIDS - 1);
2069 		if (hash == 0)		/* 0 is special, avoid it */
2070 			continue;
2071 		n = hash >> 5;
2072 		mask = 1 << (hash & (VSID_NBPW - 1));
2073 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2074 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2075 			/* anything free in this bucket? */
2076 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2077 				entropy = (moea64_vsidcontext >> 20);
2078 				continue;
2079 			}
2080 			i = ffs(~moea64_vsid_bitmap[i]) - 1;
2081 			mask = 1 << i;
2082 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
2083 			hash |= i;
2084 		}
2085 		moea64_vsid_bitmap[n] |= mask;
2086 		return (hash);
2087 	}
2088 
2089 	panic("%s: out of segments",__func__);
2090 }
2091 
2092 #ifdef __powerpc64__
2093 void
2094 moea64_pinit(mmu_t mmu, pmap_t pmap)
2095 {
2096 	PMAP_LOCK_INIT(pmap);
2097 
2098 	SPLAY_INIT(&pmap->pm_slbtree);
2099 	pmap->pm_slb = slb_alloc_user_cache();
2100 }
2101 #else
2102 void
2103 moea64_pinit(mmu_t mmu, pmap_t pmap)
2104 {
2105 	int	i;
2106 	register_t hash;
2107 
2108 	PMAP_LOCK_INIT(pmap);
2109 
2110 	if (pmap_bootstrapped)
2111 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2112 		    (vm_offset_t)pmap);
2113 	else
2114 		pmap->pmap_phys = pmap;
2115 
2116 	/*
2117 	 * Allocate some segment registers for this pmap.
2118 	 */
2119 	hash = moea64_get_unique_vsid();
2120 
2121 	for (i = 0; i < 16; i++)
2122 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2123 }
2124 #endif
2125 
2126 /*
2127  * Initialize the pmap associated with process 0.
2128  */
2129 void
2130 moea64_pinit0(mmu_t mmu, pmap_t pm)
2131 {
2132 	moea64_pinit(mmu, pm);
2133 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2134 }
2135 
2136 /*
2137  * Set the physical protection on the specified range of this map as requested.
2138  */
2139 void
2140 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2141     vm_prot_t prot)
2142 {
2143 	struct	pvo_entry *pvo;
2144 	struct	lpte *pt;
2145 
2146 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
2147 	    eva, prot);
2148 
2149 
2150 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2151 	    ("moea64_protect: non current pmap"));
2152 
2153 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2154 		moea64_remove(mmu, pm, sva, eva);
2155 		return;
2156 	}
2157 
2158 	vm_page_lock_queues();
2159 	PMAP_LOCK(pm);
2160 	for (; sva < eva; sva += PAGE_SIZE) {
2161 		pvo = moea64_pvo_find_va(pm, sva);
2162 		if (pvo == NULL)
2163 			continue;
2164 
2165 		/*
2166 		 * Grab the PTE pointer before we diddle with the cached PTE
2167 		 * copy.
2168 		 */
2169 		LOCK_TABLE();
2170 		pt = moea64_pvo_to_pte(pvo);
2171 
2172 		/*
2173 		 * Change the protection of the page.
2174 		 */
2175 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
2176 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
2177 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
2178 		if ((prot & VM_PROT_EXECUTE) == 0)
2179 			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
2180 
2181 		/*
2182 		 * If the PVO is in the page table, update that pte as well.
2183 		 */
2184 		if (pt != NULL) {
2185 			moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2186 			if ((pvo->pvo_pte.lpte.pte_lo &
2187 			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2188 				moea64_syncicache(pm, sva,
2189 				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
2190 				    PAGE_SIZE);
2191 			}
2192 		}
2193 		UNLOCK_TABLE();
2194 	}
2195 	vm_page_unlock_queues();
2196 	PMAP_UNLOCK(pm);
2197 }
2198 
2199 /*
2200  * Map a list of wired pages into kernel virtual address space.  This is
2201  * intended for temporary mappings which do not need page modification or
2202  * references recorded.  Existing mappings in the region are overwritten.
2203  */
2204 void
2205 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2206 {
2207 	while (count-- > 0) {
2208 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2209 		va += PAGE_SIZE;
2210 		m++;
2211 	}
2212 }
2213 
2214 /*
2215  * Remove page mappings from kernel virtual address space.  Intended for
2216  * temporary mappings entered by moea64_qenter.
2217  */
2218 void
2219 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2220 {
2221 	while (count-- > 0) {
2222 		moea64_kremove(mmu, va);
2223 		va += PAGE_SIZE;
2224 	}
2225 }
2226 
2227 void
2228 moea64_release_vsid(uint64_t vsid)
2229 {
2230         int idx, mask;
2231 
2232         idx = vsid & (NVSIDS-1);
2233         mask = 1 << (idx % VSID_NBPW);
2234         idx /= VSID_NBPW;
2235         moea64_vsid_bitmap[idx] &= ~mask;
2236 }
2237 
2238 
2239 void
2240 moea64_release(mmu_t mmu, pmap_t pmap)
2241 {
2242 
2243 	/*
2244 	 * Free segment registers' VSIDs
2245 	 */
2246     #ifdef __powerpc64__
2247 	free_vsids(pmap);
2248 	slb_free_user_cache(pmap->pm_slb);
2249     #else
2250         if (pmap->pm_sr[0] == 0)
2251                 panic("moea64_release");
2252 
2253 	moea64_release_vsid(pmap->pm_sr[0]);
2254     #endif
2255 
2256 	PMAP_LOCK_DESTROY(pmap);
2257 }
2258 
2259 /*
2260  * Remove the given range of addresses from the specified map.
2261  */
2262 void
2263 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2264 {
2265 	struct	pvo_entry *pvo;
2266 
2267 	vm_page_lock_queues();
2268 	PMAP_LOCK(pm);
2269 	for (; sva < eva; sva += PAGE_SIZE) {
2270 		pvo = moea64_pvo_find_va(pm, sva);
2271 		if (pvo != NULL)
2272 			moea64_pvo_remove(pvo);
2273 	}
2274 	vm_page_unlock_queues();
2275 	PMAP_UNLOCK(pm);
2276 }
2277 
2278 /*
2279  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2280  * will reflect changes in pte's back to the vm_page.
2281  */
2282 void
2283 moea64_remove_all(mmu_t mmu, vm_page_t m)
2284 {
2285 	struct  pvo_head *pvo_head;
2286 	struct	pvo_entry *pvo, *next_pvo;
2287 	pmap_t	pmap;
2288 
2289 	vm_page_lock_queues();
2290 	pvo_head = vm_page_to_pvoh(m);
2291 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2292 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2293 
2294 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2295 		pmap = pvo->pvo_pmap;
2296 		PMAP_LOCK(pmap);
2297 		moea64_pvo_remove(pvo);
2298 		PMAP_UNLOCK(pmap);
2299 	}
2300 	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2301 		moea64_attr_clear(m, LPTE_CHG);
2302 		vm_page_dirty(m);
2303 	}
2304 	vm_page_flag_clear(m, PG_WRITEABLE);
2305 	vm_page_unlock_queues();
2306 }
2307 
2308 /*
2309  * Allocate a physical page of memory directly from the phys_avail map.
2310  * Can only be called from moea64_bootstrap before avail start and end are
2311  * calculated.
2312  */
2313 static vm_offset_t
2314 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2315 {
2316 	vm_offset_t	s, e;
2317 	int		i, j;
2318 
2319 	size = round_page(size);
2320 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2321 		if (align != 0)
2322 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2323 		else
2324 			s = phys_avail[i];
2325 		e = s + size;
2326 
2327 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2328 			continue;
2329 
2330 		if (s == phys_avail[i]) {
2331 			phys_avail[i] += size;
2332 		} else if (e == phys_avail[i + 1]) {
2333 			phys_avail[i + 1] -= size;
2334 		} else {
2335 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2336 				phys_avail[j] = phys_avail[j - 2];
2337 				phys_avail[j + 1] = phys_avail[j - 1];
2338 			}
2339 
2340 			phys_avail[i + 3] = phys_avail[i + 1];
2341 			phys_avail[i + 1] = s;
2342 			phys_avail[i + 2] = e;
2343 			phys_avail_count++;
2344 		}
2345 
2346 		return (s);
2347 	}
2348 	panic("moea64_bootstrap_alloc: could not allocate memory");
2349 }
2350 
2351 static void
2352 tlbia(void)
2353 {
2354 	vm_offset_t i;
2355 	#ifndef __powerpc64__
2356 	register_t msr, scratch;
2357 	#endif
2358 
2359 	TLBSYNC();
2360 
2361 	for (i = 0; i < 0xFF000; i += 0x00001000) {
2362 		#ifdef __powerpc64__
2363 		__asm __volatile("tlbiel %0" :: "r"(i));
2364 		#else
2365 		__asm __volatile("\
2366 		    mfmsr %0; \
2367 		    mr %1, %0; \
2368 		    insrdi %1,%3,1,0; \
2369 		    mtmsrd %1; \
2370 		    isync; \
2371 		    \
2372 		    tlbiel %2; \
2373 		    \
2374 		    mtmsrd %0; \
2375 		    isync;"
2376 		: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2377 		#endif
2378 	}
2379 
2380 	EIEIO();
2381 	TLBSYNC();
2382 }
2383 
2384 #ifdef __powerpc64__
2385 static void
2386 slbia(void)
2387 {
2388 	register_t seg0;
2389 
2390 	__asm __volatile ("slbia");
2391 	__asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0));
2392 }
2393 #endif
2394 
2395 static int
2396 moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2397     vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2398 {
2399 	struct	 pvo_entry *pvo;
2400 	uint64_t vsid;
2401 	int	 first;
2402 	u_int	 ptegidx;
2403 	int	 i;
2404 	int      bootstrap;
2405 
2406 	/*
2407 	 * One nasty thing that can happen here is that the UMA calls to
2408 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2409 	 * which calls UMA...
2410 	 *
2411 	 * We break the loop by detecting recursion and allocating out of
2412 	 * the bootstrap pool.
2413 	 */
2414 
2415 	moea64_pvo_enter_calls++;
2416 	first = 0;
2417 	bootstrap = (flags & PVO_BOOTSTRAP);
2418 
2419 	if (!moea64_initialized)
2420 		bootstrap = 1;
2421 
2422 	/*
2423 	 * Compute the PTE Group index.
2424 	 */
2425 	va &= ~ADDR_POFF;
2426 	vsid = va_to_vsid(pm, va);
2427 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2428 
2429 	/*
2430 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2431 	 * there is a mapping.
2432 	 */
2433 	LOCK_TABLE();
2434 
2435 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2436 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2437 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2438 			    (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2439 			    (pte_lo & LPTE_PP)) {
2440 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2441 					/* Re-insert if spilled */
2442 					i = moea64_pte_insert(ptegidx,
2443 					    &pvo->pvo_pte.lpte);
2444 					if (i >= 0)
2445 						PVO_PTEGIDX_SET(pvo, i);
2446 					moea64_pte_overflow--;
2447 				}
2448 				UNLOCK_TABLE();
2449 				return (0);
2450 			}
2451 			moea64_pvo_remove(pvo);
2452 			break;
2453 		}
2454 	}
2455 
2456 	/*
2457 	 * If we aren't overwriting a mapping, try to allocate.
2458 	 */
2459 	if (bootstrap) {
2460 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2461 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2462 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2463 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2464 		}
2465 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2466 		moea64_bpvo_pool_index++;
2467 		bootstrap = 1;
2468 	} else {
2469 		/*
2470 		 * Note: drop the table lock around the UMA allocation in
2471 		 * case the UMA allocator needs to manipulate the page
2472 		 * table. The mapping we are working with is already
2473 		 * protected by the PMAP lock.
2474 		 */
2475 		UNLOCK_TABLE();
2476 		pvo = uma_zalloc(zone, M_NOWAIT);
2477 		LOCK_TABLE();
2478 	}
2479 
2480 	if (pvo == NULL) {
2481 		UNLOCK_TABLE();
2482 		return (ENOMEM);
2483 	}
2484 
2485 	moea64_pvo_entries++;
2486 	pvo->pvo_vaddr = va;
2487 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2488 	    | (vsid << 16);
2489 	pvo->pvo_pmap = pm;
2490 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2491 	pvo->pvo_vaddr &= ~ADDR_POFF;
2492 
2493 	if (!(flags & VM_PROT_EXECUTE))
2494 		pte_lo |= LPTE_NOEXEC;
2495 	if (flags & PVO_WIRED)
2496 		pvo->pvo_vaddr |= PVO_WIRED;
2497 	if (pvo_head != &moea64_pvo_kunmanaged)
2498 		pvo->pvo_vaddr |= PVO_MANAGED;
2499 	if (bootstrap)
2500 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2501 	if (flags & PVO_FAKE)
2502 		pvo->pvo_vaddr |= PVO_FAKE;
2503 	if (flags & PVO_LARGE)
2504 		pvo->pvo_vaddr |= PVO_LARGE;
2505 
2506 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2507 	    (uint64_t)(pa) | pte_lo, flags);
2508 
2509 	/*
2510 	 * Remember if the list was empty and therefore will be the first
2511 	 * item.
2512 	 */
2513 	if (LIST_FIRST(pvo_head) == NULL)
2514 		first = 1;
2515 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2516 
2517 	if (pvo->pvo_vaddr & PVO_WIRED) {
2518 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2519 		pm->pm_stats.wired_count++;
2520 	}
2521 	pm->pm_stats.resident_count++;
2522 
2523 	/*
2524 	 * We hope this succeeds but it isn't required.
2525 	 */
2526 	i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2527 	if (i >= 0) {
2528 		PVO_PTEGIDX_SET(pvo, i);
2529 	} else {
2530 		panic("moea64_pvo_enter: overflow");
2531 		moea64_pte_overflow++;
2532 	}
2533 
2534 	if (pm == kernel_pmap)
2535 		isync();
2536 
2537 	UNLOCK_TABLE();
2538 
2539 #ifdef __powerpc64__
2540 	/*
2541 	 * Make sure all our bootstrap mappings are in the SLB as soon
2542 	 * as virtual memory is switched on.
2543 	 */
2544 	if (!pmap_bootstrapped)
2545 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2546 #endif
2547 
2548 	return (first ? ENOENT : 0);
2549 }
2550 
2551 static void
2552 moea64_pvo_remove(struct pvo_entry *pvo)
2553 {
2554 	struct	lpte *pt;
2555 
2556 	/*
2557 	 * If there is an active pte entry, we need to deactivate it (and
2558 	 * save the ref & cfg bits).
2559 	 */
2560 	LOCK_TABLE();
2561 	pt = moea64_pvo_to_pte(pvo);
2562 	if (pt != NULL) {
2563 		moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2564 		PVO_PTEGIDX_CLR(pvo);
2565 	} else {
2566 		moea64_pte_overflow--;
2567 	}
2568 
2569 	/*
2570 	 * Update our statistics.
2571 	 */
2572 	pvo->pvo_pmap->pm_stats.resident_count--;
2573 	if (pvo->pvo_vaddr & PVO_WIRED)
2574 		pvo->pvo_pmap->pm_stats.wired_count--;
2575 
2576 	/*
2577 	 * Save the REF/CHG bits into their cache if the page is managed.
2578 	 */
2579 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2580 		struct	vm_page *pg;
2581 
2582 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2583 		if (pg != NULL) {
2584 			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2585 			    (LPTE_REF | LPTE_CHG));
2586 		}
2587 	}
2588 
2589 	/*
2590 	 * Remove this PVO from the PV list.
2591 	 */
2592 	LIST_REMOVE(pvo, pvo_vlink);
2593 
2594 	/*
2595 	 * Remove this from the overflow list and return it to the pool
2596 	 * if we aren't going to reuse it.
2597 	 */
2598 	LIST_REMOVE(pvo, pvo_olink);
2599 	UNLOCK_TABLE();
2600 
2601 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2602 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2603 		    moea64_upvo_zone, pvo);
2604 
2605 	moea64_pvo_entries--;
2606 	moea64_pvo_remove_calls++;
2607 }
2608 
2609 static struct pvo_entry *
2610 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2611 {
2612 	struct		pvo_entry *pvo;
2613 	int		ptegidx;
2614 	uint64_t	vsid;
2615 	#ifdef __powerpc64__
2616 	struct slb	slb;
2617 
2618 	/* The page is not mapped if the segment isn't */
2619 	if (va_to_slb_entry(pm, va, &slb) != 0)
2620 		return NULL;
2621 
2622 	vsid = (slb.slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2623 	if (slb.slbv & SLBV_L)
2624 		va &= ~moea64_large_page_mask;
2625 	else
2626 		va &= ~ADDR_POFF;
2627 	ptegidx = va_to_pteg(vsid, va, slb.slbv & SLBV_L);
2628 	#else
2629 	va &= ~ADDR_POFF;
2630 	vsid = va_to_vsid(pm, va);
2631 	ptegidx = va_to_pteg(vsid, va, 0);
2632 	#endif
2633 
2634 	LOCK_TABLE();
2635 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2636 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2637 			break;
2638 	}
2639 	UNLOCK_TABLE();
2640 
2641 	return (pvo);
2642 }
2643 
2644 static struct lpte *
2645 moea64_pvo_to_pte(const struct pvo_entry *pvo)
2646 {
2647 	struct lpte 	*pt;
2648 	int		pteidx, ptegidx;
2649 	uint64_t	vsid;
2650 
2651 	ASSERT_TABLE_LOCK();
2652 
2653 	/* If the PTEG index is not set, then there is no page table entry */
2654 	if (!PVO_PTEGIDX_ISSET(pvo))
2655 		return (NULL);
2656 
2657 	/*
2658 	 * Calculate the ptegidx
2659 	 */
2660 	vsid = PVO_VSID(pvo);
2661 	ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
2662 	    pvo->pvo_vaddr & PVO_LARGE);
2663 
2664 	/*
2665 	 * We can find the actual pte entry without searching by grabbing
2666 	 * the PTEG index from 3 unused bits in pvo_vaddr and by
2667 	 * noticing the HID bit.
2668 	 */
2669 	if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2670 		ptegidx ^= moea64_pteg_mask;
2671 
2672 	pteidx = (ptegidx << 3) | PVO_PTEGIDX_GET(pvo);
2673 
2674 	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2675 	    !PVO_PTEGIDX_ISSET(pvo)) {
2676 		panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2677 		    "valid pte index", pvo);
2678 	}
2679 
2680 	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2681 	    PVO_PTEGIDX_ISSET(pvo)) {
2682 		panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2683 		    "pvo but no valid pte", pvo);
2684 	}
2685 
2686 	pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2687 	if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2688 	    LPTE_VALID) {
2689 		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2690 			panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2691 			    "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2692 		}
2693 
2694 		if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2695 		    ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2696 			panic("moea64_pvo_to_pte: pvo %p pte does not match "
2697 			    "pte %p in moea64_pteg_table difference is %#x",
2698 			    pvo, pt,
2699 			    (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2700 		}
2701 
2702 		return (pt);
2703 	}
2704 
2705 	if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2706 		panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2707 		    "moea64_pteg_table but valid in pvo", pvo, pt);
2708 	}
2709 
2710 	return (NULL);
2711 }
2712 
2713 static __inline int
2714 moea64_pte_spillable_ident(u_int ptegidx)
2715 {
2716 	struct	lpte *pt;
2717 	int	i, j, k;
2718 
2719 	/* Start at a random slot */
2720 	i = mftb() % 8;
2721 	k = -1;
2722 	for (j = 0; j < 8; j++) {
2723 		pt = &moea64_pteg_table[ptegidx].pt[(i + j) % 8];
2724 		if (pt->pte_hi & (LPTE_LOCKED | LPTE_WIRED))
2725 			continue;
2726 
2727 		/* This is a candidate, so remember it */
2728 		k = (i + j) % 8;
2729 
2730 		/* Try to get a page that has not been used lately */
2731 		if (!(pt->pte_lo & LPTE_REF))
2732 			return (k);
2733 	}
2734 
2735 	return (k);
2736 }
2737 
2738 static int
2739 moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2740 {
2741 	struct	lpte *pt;
2742 	struct	pvo_entry *pvo;
2743 	u_int	pteg_bktidx;
2744 	int	i;
2745 
2746 	ASSERT_TABLE_LOCK();
2747 
2748 	/*
2749 	 * First try primary hash.
2750 	 */
2751 	pteg_bktidx = ptegidx;
2752 	for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2753 		if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2754 			pvo_pt->pte_hi &= ~LPTE_HID;
2755 			moea64_pte_set(pt, pvo_pt);
2756 			return (i);
2757 		}
2758 	}
2759 
2760 	/*
2761 	 * Now try secondary hash.
2762 	 */
2763 	pteg_bktidx ^= moea64_pteg_mask;
2764 	for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2765 		if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2766 			pvo_pt->pte_hi |= LPTE_HID;
2767 			moea64_pte_set(pt, pvo_pt);
2768 			return (i);
2769 		}
2770 	}
2771 
2772 	/*
2773 	 * Out of luck. Find a PTE to sacrifice.
2774 	 */
2775 	pteg_bktidx = ptegidx;
2776 	i = moea64_pte_spillable_ident(pteg_bktidx);
2777 	if (i < 0) {
2778 		pteg_bktidx ^= moea64_pteg_mask;
2779 		i = moea64_pte_spillable_ident(pteg_bktidx);
2780 	}
2781 
2782 	if (i < 0) {
2783 		/* No freeable slots in either PTEG? We're hosed. */
2784 		panic("moea64_pte_insert: overflow");
2785 		return (-1);
2786 	}
2787 
2788 	if (pteg_bktidx == ptegidx)
2789 		pvo_pt->pte_hi &= ~LPTE_HID;
2790 	else
2791 		pvo_pt->pte_hi |= LPTE_HID;
2792 
2793 	/*
2794 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2795 	 * invalid. The PVO will be reused when/if the VM system comes
2796 	 * here after a fault.
2797 	 */
2798 	pt = &moea64_pteg_table[pteg_bktidx].pt[i];
2799 
2800 	if (pt->pte_hi & LPTE_HID)
2801 		pteg_bktidx ^= moea64_pteg_mask; /* PTEs indexed by primary */
2802 
2803 	LIST_FOREACH(pvo, &moea64_pvo_table[pteg_bktidx], pvo_olink) {
2804 		if (pvo->pvo_pte.lpte.pte_hi == pt->pte_hi) {
2805 			KASSERT(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID,
2806 			    ("Invalid PVO for valid PTE!"));
2807 			moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2808 			PVO_PTEGIDX_CLR(pvo);
2809 			moea64_pte_overflow++;
2810 			break;
2811 		}
2812 	}
2813 
2814 	KASSERT(pvo->pvo_pte.lpte.pte_hi == pt->pte_hi,
2815 	   ("Unable to find PVO for spilled PTE"));
2816 
2817 	/*
2818 	 * Set the new PTE.
2819 	 */
2820 	moea64_pte_set(pt, pvo_pt);
2821 
2822 	return (i);
2823 }
2824 
2825 static boolean_t
2826 moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2827 {
2828 	struct	pvo_entry *pvo;
2829 	struct	lpte *pt;
2830 
2831 	if (moea64_attr_fetch(m) & ptebit)
2832 		return (TRUE);
2833 
2834 	vm_page_lock_queues();
2835 
2836 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2837 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2838 
2839 		/*
2840 		 * See if we saved the bit off.  If so, cache it and return
2841 		 * success.
2842 		 */
2843 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2844 			moea64_attr_save(m, ptebit);
2845 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2846 			vm_page_unlock_queues();
2847 			return (TRUE);
2848 		}
2849 	}
2850 
2851 	/*
2852 	 * No luck, now go through the hard part of looking at the PTEs
2853 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2854 	 * the PTEs.
2855 	 */
2856 	SYNC();
2857 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2858 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2859 
2860 		/*
2861 		 * See if this pvo has a valid PTE.  if so, fetch the
2862 		 * REF/CHG bits from the valid PTE.  If the appropriate
2863 		 * ptebit is set, cache it and return success.
2864 		 */
2865 		LOCK_TABLE();
2866 		pt = moea64_pvo_to_pte(pvo);
2867 		if (pt != NULL) {
2868 			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2869 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2870 				UNLOCK_TABLE();
2871 
2872 				moea64_attr_save(m, ptebit);
2873 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2874 				vm_page_unlock_queues();
2875 				return (TRUE);
2876 			}
2877 		}
2878 		UNLOCK_TABLE();
2879 	}
2880 
2881 	vm_page_unlock_queues();
2882 	return (FALSE);
2883 }
2884 
2885 static u_int
2886 moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
2887 {
2888 	u_int	count;
2889 	struct	pvo_entry *pvo;
2890 	struct	lpte *pt;
2891 
2892 	vm_page_lock_queues();
2893 
2894 	/*
2895 	 * Clear the cached value.
2896 	 */
2897 	moea64_attr_clear(m, ptebit);
2898 
2899 	/*
2900 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2901 	 * we can reset the right ones).  note that since the pvo entries and
2902 	 * list heads are accessed via BAT0 and are never placed in the page
2903 	 * table, we don't have to worry about further accesses setting the
2904 	 * REF/CHG bits.
2905 	 */
2906 	SYNC();
2907 
2908 	/*
2909 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2910 	 * valid pte clear the ptebit from the valid pte.
2911 	 */
2912 	count = 0;
2913 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2914 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2915 
2916 		LOCK_TABLE();
2917 		pt = moea64_pvo_to_pte(pvo);
2918 		if (pt != NULL) {
2919 			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2920 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2921 				count++;
2922 				moea64_pte_clear(pt, pvo->pvo_vpn, ptebit);
2923 			}
2924 		}
2925 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2926 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2927 		UNLOCK_TABLE();
2928 	}
2929 
2930 	vm_page_unlock_queues();
2931 	return (count);
2932 }
2933 
2934 boolean_t
2935 moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2936 {
2937 	struct pvo_entry *pvo;
2938 	vm_offset_t ppa;
2939 	int error = 0;
2940 
2941 	PMAP_LOCK(kernel_pmap);
2942 	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2943 		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2944 		if (pvo == NULL ||
2945 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2946 			error = EFAULT;
2947 			break;
2948 		}
2949 	}
2950 	PMAP_UNLOCK(kernel_pmap);
2951 
2952 	return (error);
2953 }
2954 
2955 /*
2956  * Map a set of physical memory pages into the kernel virtual
2957  * address space. Return a pointer to where it is mapped. This
2958  * routine is intended to be used for mapping device memory,
2959  * NOT real memory.
2960  */
2961 void *
2962 moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2963 {
2964 	vm_offset_t va, tmpva, ppa, offset;
2965 
2966 	ppa = trunc_page(pa);
2967 	offset = pa & PAGE_MASK;
2968 	size = roundup(offset + size, PAGE_SIZE);
2969 
2970 	va = kmem_alloc_nofault(kernel_map, size);
2971 
2972 	if (!va)
2973 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2974 
2975 	for (tmpva = va; size > 0;) {
2976 		moea64_kenter(mmu, tmpva, ppa);
2977 		size -= PAGE_SIZE;
2978 		tmpva += PAGE_SIZE;
2979 		ppa += PAGE_SIZE;
2980 	}
2981 
2982 	return ((void *)(va + offset));
2983 }
2984 
2985 void
2986 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2987 {
2988 	vm_offset_t base, offset;
2989 
2990 	base = trunc_page(va);
2991 	offset = va & PAGE_MASK;
2992 	size = roundup(offset + size, PAGE_SIZE);
2993 
2994 	kmem_free(kernel_map, base, size);
2995 }
2996 
2997 static void
2998 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2999 {
3000 	struct pvo_entry *pvo;
3001 	vm_offset_t lim;
3002 	vm_paddr_t pa;
3003 	vm_size_t len;
3004 
3005 	PMAP_LOCK(pm);
3006 	while (sz > 0) {
3007 		lim = round_page(va);
3008 		len = MIN(lim - va, sz);
3009 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3010 		if (pvo != NULL) {
3011 			pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
3012 			    (va & ADDR_POFF);
3013 			moea64_syncicache(pm, va, pa, len);
3014 		}
3015 		va += len;
3016 		sz -= len;
3017 	}
3018 	PMAP_UNLOCK(pm);
3019 }
3020