xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 8b238f4126d32df3e70056bc32536b7248ebffa0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/rwlock.h>
63 #include <sys/sched.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/vmmeter.h>
67 #include <sys/smp.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_phys.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/uma.h>
83 
84 #include <machine/_inttypes.h>
85 #include <machine/cpu.h>
86 #include <machine/platform.h>
87 #include <machine/frame.h>
88 #include <machine/md_var.h>
89 #include <machine/psl.h>
90 #include <machine/bat.h>
91 #include <machine/hid.h>
92 #include <machine/pte.h>
93 #include <machine/sr.h>
94 #include <machine/trap.h>
95 #include <machine/mmuvar.h>
96 
97 #include "mmu_oea64.h"
98 #include "mmu_if.h"
99 #include "moea64_if.h"
100 
101 void moea64_release_vsid(uint64_t vsid);
102 uintptr_t moea64_get_unique_vsid(void);
103 
104 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
105 #define ENABLE_TRANS(msr)	mtmsr(msr)
106 
107 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
108 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
109 #define	VSID_HASH_MASK		0x0000007fffffffffULL
110 
111 /*
112  * Locking semantics:
113  *
114  * There are two locks of interest: the page locks and the pmap locks, which
115  * protect their individual PVO lists and are locked in that order. The contents
116  * of all PVO entries are protected by the locks of their respective pmaps.
117  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
118  * into any list.
119  *
120  */
121 
122 #define PV_LOCK_PER_DOM	(PA_LOCK_COUNT * 3)
123 #define PV_LOCK_COUNT	(PV_LOCK_PER_DOM * MAXMEMDOM)
124 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
125 
126 /*
127  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
128  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
129  * index at (N << 45).
130  */
131 #ifdef __powerpc64__
132 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_PER_DOM + \
133 			(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
134 #else
135 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
136 #endif
137 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
138 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
139 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
140 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
141 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
142 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
143 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
144 
145 struct ofw_map {
146 	cell_t	om_va;
147 	cell_t	om_len;
148 	uint64_t om_pa;
149 	cell_t	om_mode;
150 };
151 
152 extern unsigned char _etext[];
153 extern unsigned char _end[];
154 
155 extern void *slbtrap, *slbtrapend;
156 
157 /*
158  * Map of physical memory regions.
159  */
160 static struct	mem_region *regions;
161 static struct	mem_region *pregions;
162 static struct	numa_mem_region *numa_pregions;
163 static u_int	phys_avail_count;
164 static int	regions_sz, pregions_sz, numapregions_sz;
165 
166 extern void bs_remap_earlyboot(void);
167 
168 /*
169  * Lock for the SLB tables.
170  */
171 struct mtx	moea64_slb_mutex;
172 
173 /*
174  * PTEG data.
175  */
176 u_long		moea64_pteg_count;
177 u_long		moea64_pteg_mask;
178 
179 /*
180  * PVO data.
181  */
182 
183 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
184 
185 static struct	pvo_entry *moea64_bpvo_pool;
186 static int	moea64_bpvo_pool_index = 0;
187 static int	moea64_bpvo_pool_size = 327680;
188 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
189 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
190     &moea64_bpvo_pool_index, 0, "");
191 
192 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
193 #ifdef __powerpc64__
194 #define	NVSIDS		(NPMAPS * 16)
195 #define VSID_HASHMASK	0xffffffffUL
196 #else
197 #define NVSIDS		NPMAPS
198 #define VSID_HASHMASK	0xfffffUL
199 #endif
200 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
201 
202 static boolean_t moea64_initialized = FALSE;
203 
204 #ifdef MOEA64_STATS
205 /*
206  * Statistics.
207  */
208 u_int	moea64_pte_valid = 0;
209 u_int	moea64_pte_overflow = 0;
210 u_int	moea64_pvo_entries = 0;
211 u_int	moea64_pvo_enter_calls = 0;
212 u_int	moea64_pvo_remove_calls = 0;
213 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
214     &moea64_pte_valid, 0, "");
215 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
216     &moea64_pte_overflow, 0, "");
217 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
218     &moea64_pvo_entries, 0, "");
219 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
220     &moea64_pvo_enter_calls, 0, "");
221 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
222     &moea64_pvo_remove_calls, 0, "");
223 #endif
224 
225 vm_offset_t	moea64_scratchpage_va[2];
226 struct pvo_entry *moea64_scratchpage_pvo[2];
227 struct	mtx	moea64_scratchpage_mtx;
228 
229 uint64_t 	moea64_large_page_mask = 0;
230 uint64_t	moea64_large_page_size = 0;
231 int		moea64_large_page_shift = 0;
232 
233 /*
234  * PVO calls.
235  */
236 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
237 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
238 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
239 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
240 static void	moea64_pvo_remove_from_page_locked(mmu_t mmu,
241 		    struct pvo_entry *pvo, vm_page_t m);
242 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
243 
244 /*
245  * Utility routines.
246  */
247 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
248 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
249 static void		moea64_kremove(mmu_t, vm_offset_t);
250 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
251 			    vm_paddr_t pa, vm_size_t sz);
252 static void		moea64_pmap_init_qpages(void);
253 
254 /*
255  * Kernel MMU interface
256  */
257 void moea64_clear_modify(mmu_t, vm_page_t);
258 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
259 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
260     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
261 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
262     u_int flags, int8_t psind);
263 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
264     vm_prot_t);
265 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
266 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
267 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
268 void moea64_init(mmu_t);
269 boolean_t moea64_is_modified(mmu_t, vm_page_t);
270 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
271 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
272 int moea64_ts_referenced(mmu_t, vm_page_t);
273 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
274 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
275 void moea64_page_init(mmu_t, vm_page_t);
276 int moea64_page_wired_mappings(mmu_t, vm_page_t);
277 void moea64_pinit(mmu_t, pmap_t);
278 void moea64_pinit0(mmu_t, pmap_t);
279 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
280 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
281 void moea64_qremove(mmu_t, vm_offset_t, int);
282 void moea64_release(mmu_t, pmap_t);
283 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
284 void moea64_remove_pages(mmu_t, pmap_t);
285 void moea64_remove_all(mmu_t, vm_page_t);
286 void moea64_remove_write(mmu_t, vm_page_t);
287 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
288 void moea64_zero_page(mmu_t, vm_page_t);
289 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
290 void moea64_activate(mmu_t, struct thread *);
291 void moea64_deactivate(mmu_t, struct thread *);
292 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
293 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
294 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
295 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
296 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
297 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
298 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
299 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
300 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
301 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
302     void **va);
303 void moea64_scan_init(mmu_t mmu);
304 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
305 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
306 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
307     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
308 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
309     int *is_user, vm_offset_t *decoded_addr);
310 static size_t moea64_scan_pmap(mmu_t mmu);
311 static void *moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs);
312 #ifdef __powerpc64__
313 static void moea64_page_array_startup(mmu_t, long);
314 #endif
315 
316 
317 static mmu_method_t moea64_methods[] = {
318 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
319 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
320 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
321 	MMUMETHOD(mmu_enter,		moea64_enter),
322 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
323 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
324 	MMUMETHOD(mmu_extract,		moea64_extract),
325 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
326 	MMUMETHOD(mmu_init,		moea64_init),
327 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
328 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
329 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
330 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
331 	MMUMETHOD(mmu_map,     		moea64_map),
332 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
333 	MMUMETHOD(mmu_page_init,	moea64_page_init),
334 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
335 	MMUMETHOD(mmu_pinit,		moea64_pinit),
336 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
337 	MMUMETHOD(mmu_protect,		moea64_protect),
338 	MMUMETHOD(mmu_qenter,		moea64_qenter),
339 	MMUMETHOD(mmu_qremove,		moea64_qremove),
340 	MMUMETHOD(mmu_release,		moea64_release),
341 	MMUMETHOD(mmu_remove,		moea64_remove),
342 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
343 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
344 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
345 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
346 	MMUMETHOD(mmu_unwire,		moea64_unwire),
347 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
348 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
349 	MMUMETHOD(mmu_activate,		moea64_activate),
350 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
351 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
352 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
353 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
354 #ifdef __powerpc64__
355 	MMUMETHOD(mmu_page_array_startup,	moea64_page_array_startup),
356 #endif
357 
358 	/* Internal interfaces */
359 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
360 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
361 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
362 	MMUMETHOD(mmu_kextract,		moea64_kextract),
363 	MMUMETHOD(mmu_kenter,		moea64_kenter),
364 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
365 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
366 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
367 	MMUMETHOD(mmu_scan_pmap,	moea64_scan_pmap),
368 	MMUMETHOD(mmu_dump_pmap_init,   moea64_dump_pmap_init),
369 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
370 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
371 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
372 
373 	{ 0, 0 }
374 };
375 
376 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
377 
378 static struct pvo_head *
379 vm_page_to_pvoh(vm_page_t m)
380 {
381 
382 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
383 	return (&m->md.mdpg_pvoh);
384 }
385 
386 static struct pvo_entry *
387 alloc_pvo_entry(int bootstrap)
388 {
389 	struct pvo_entry *pvo;
390 
391 	if (!moea64_initialized || bootstrap) {
392 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
393 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
394 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
395 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
396 		}
397 		pvo = &moea64_bpvo_pool[
398 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
399 		bzero(pvo, sizeof(*pvo));
400 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
401 	} else
402 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
403 
404 	return (pvo);
405 }
406 
407 
408 static void
409 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
410 {
411 	uint64_t vsid;
412 	uint64_t hash;
413 	int shift;
414 
415 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
416 
417 	pvo->pvo_pmap = pmap;
418 	va &= ~ADDR_POFF;
419 	pvo->pvo_vaddr |= va;
420 	vsid = va_to_vsid(pmap, va);
421 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
422 	    | (vsid << 16);
423 
424 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
425 	    ADDR_PIDX_SHFT;
426 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
427 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
428 }
429 
430 static void
431 free_pvo_entry(struct pvo_entry *pvo)
432 {
433 
434 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
435 		uma_zfree(moea64_pvo_zone, pvo);
436 }
437 
438 void
439 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
440 {
441 
442 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
443 	lpte->pte_hi |= LPTE_VALID;
444 
445 	if (pvo->pvo_vaddr & PVO_LARGE)
446 		lpte->pte_hi |= LPTE_BIG;
447 	if (pvo->pvo_vaddr & PVO_WIRED)
448 		lpte->pte_hi |= LPTE_WIRED;
449 	if (pvo->pvo_vaddr & PVO_HID)
450 		lpte->pte_hi |= LPTE_HID;
451 
452 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
453 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
454 		lpte->pte_lo |= LPTE_BW;
455 	else
456 		lpte->pte_lo |= LPTE_BR;
457 
458 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
459 		lpte->pte_lo |= LPTE_NOEXEC;
460 }
461 
462 static __inline uint64_t
463 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
464 {
465 	uint64_t pte_lo;
466 	int i;
467 
468 	if (ma != VM_MEMATTR_DEFAULT) {
469 		switch (ma) {
470 		case VM_MEMATTR_UNCACHEABLE:
471 			return (LPTE_I | LPTE_G);
472 		case VM_MEMATTR_CACHEABLE:
473 			return (LPTE_M);
474 		case VM_MEMATTR_WRITE_COMBINING:
475 		case VM_MEMATTR_WRITE_BACK:
476 		case VM_MEMATTR_PREFETCHABLE:
477 			return (LPTE_I);
478 		case VM_MEMATTR_WRITE_THROUGH:
479 			return (LPTE_W | LPTE_M);
480 		}
481 	}
482 
483 	/*
484 	 * Assume the page is cache inhibited and access is guarded unless
485 	 * it's in our available memory array.
486 	 */
487 	pte_lo = LPTE_I | LPTE_G;
488 	for (i = 0; i < pregions_sz; i++) {
489 		if ((pa >= pregions[i].mr_start) &&
490 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
491 			pte_lo &= ~(LPTE_I | LPTE_G);
492 			pte_lo |= LPTE_M;
493 			break;
494 		}
495 	}
496 
497 	return pte_lo;
498 }
499 
500 /*
501  * Quick sort callout for comparing memory regions.
502  */
503 static int	om_cmp(const void *a, const void *b);
504 
505 static int
506 om_cmp(const void *a, const void *b)
507 {
508 	const struct	ofw_map *mapa;
509 	const struct	ofw_map *mapb;
510 
511 	mapa = a;
512 	mapb = b;
513 	if (mapa->om_pa < mapb->om_pa)
514 		return (-1);
515 	else if (mapa->om_pa > mapb->om_pa)
516 		return (1);
517 	else
518 		return (0);
519 }
520 
521 static void
522 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
523 {
524 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
525 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
526 	struct pvo_entry *pvo;
527 	register_t	msr;
528 	vm_offset_t	off;
529 	vm_paddr_t	pa_base;
530 	int		i, j;
531 
532 	bzero(translations, sz);
533 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
534 	    sizeof(acells));
535 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
536 		panic("moea64_bootstrap: can't get ofw translations");
537 
538 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
539 	sz /= sizeof(cell_t);
540 	for (i = 0, j = 0; i < sz; j++) {
541 		translations[j].om_va = trans_cells[i++];
542 		translations[j].om_len = trans_cells[i++];
543 		translations[j].om_pa = trans_cells[i++];
544 		if (acells == 2) {
545 			translations[j].om_pa <<= 32;
546 			translations[j].om_pa |= trans_cells[i++];
547 		}
548 		translations[j].om_mode = trans_cells[i++];
549 	}
550 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
551 	    i, sz));
552 
553 	sz = j;
554 	qsort(translations, sz, sizeof (*translations), om_cmp);
555 
556 	for (i = 0; i < sz; i++) {
557 		pa_base = translations[i].om_pa;
558 	      #ifndef __powerpc64__
559 		if ((translations[i].om_pa >> 32) != 0)
560 			panic("OFW translations above 32-bit boundary!");
561 	      #endif
562 
563 		if (pa_base % PAGE_SIZE)
564 			panic("OFW translation not page-aligned (phys)!");
565 		if (translations[i].om_va % PAGE_SIZE)
566 			panic("OFW translation not page-aligned (virt)!");
567 
568 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
569 		    pa_base, translations[i].om_va, translations[i].om_len);
570 
571 		/* Now enter the pages for this mapping */
572 
573 		DISABLE_TRANS(msr);
574 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
575 			/* If this address is direct-mapped, skip remapping */
576 			if (hw_direct_map &&
577 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
578 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
579  			    == LPTE_M)
580 				continue;
581 
582 			PMAP_LOCK(kernel_pmap);
583 			pvo = moea64_pvo_find_va(kernel_pmap,
584 			    translations[i].om_va + off);
585 			PMAP_UNLOCK(kernel_pmap);
586 			if (pvo != NULL)
587 				continue;
588 
589 			moea64_kenter(mmup, translations[i].om_va + off,
590 			    pa_base + off);
591 		}
592 		ENABLE_TRANS(msr);
593 	}
594 }
595 
596 #ifdef __powerpc64__
597 static void
598 moea64_probe_large_page(void)
599 {
600 	uint16_t pvr = mfpvr() >> 16;
601 
602 	switch (pvr) {
603 	case IBM970:
604 	case IBM970FX:
605 	case IBM970MP:
606 		powerpc_sync(); isync();
607 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
608 		powerpc_sync(); isync();
609 
610 		/* FALLTHROUGH */
611 	default:
612 		if (moea64_large_page_size == 0) {
613 			moea64_large_page_size = 0x1000000; /* 16 MB */
614 			moea64_large_page_shift = 24;
615 		}
616 	}
617 
618 	moea64_large_page_mask = moea64_large_page_size - 1;
619 }
620 
621 static void
622 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
623 {
624 	struct slb *cache;
625 	struct slb entry;
626 	uint64_t esid, slbe;
627 	uint64_t i;
628 
629 	cache = PCPU_GET(aim.slb);
630 	esid = va >> ADDR_SR_SHFT;
631 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
632 
633 	for (i = 0; i < 64; i++) {
634 		if (cache[i].slbe == (slbe | i))
635 			return;
636 	}
637 
638 	entry.slbe = slbe;
639 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
640 	if (large)
641 		entry.slbv |= SLBV_L;
642 
643 	slb_insert_kernel(entry.slbe, entry.slbv);
644 }
645 #endif
646 
647 static int
648 moea64_kenter_large(mmu_t mmup, vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
649 {
650 	struct pvo_entry *pvo;
651 	uint64_t pte_lo;
652 	int error;
653 
654 	pte_lo = LPTE_M;
655 	pte_lo |= attr;
656 
657 	pvo = alloc_pvo_entry(bootstrap);
658 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
659 	init_pvo_entry(pvo, kernel_pmap, va);
660 
661 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
662 	    VM_PROT_EXECUTE;
663 	pvo->pvo_pte.pa = pa | pte_lo;
664 	error = moea64_pvo_enter(mmup, pvo, NULL, NULL);
665 	if (error != 0)
666 		panic("Error %d inserting large page\n", error);
667 	return (0);
668 }
669 
670 static void
671 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
672     vm_offset_t kernelend)
673 {
674 	register_t msr;
675 	vm_paddr_t pa, pkernelstart, pkernelend;
676 	vm_offset_t size, off;
677 	uint64_t pte_lo;
678 	int i;
679 
680 	if (moea64_large_page_size == 0)
681 		hw_direct_map = 0;
682 
683 	DISABLE_TRANS(msr);
684 	if (hw_direct_map) {
685 		PMAP_LOCK(kernel_pmap);
686 		for (i = 0; i < pregions_sz; i++) {
687 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
688 		     pregions[i].mr_size; pa += moea64_large_page_size) {
689 			pte_lo = LPTE_M;
690 			if (pa & moea64_large_page_mask) {
691 				pa &= moea64_large_page_mask;
692 				pte_lo |= LPTE_G;
693 			}
694 			if (pa + moea64_large_page_size >
695 			    pregions[i].mr_start + pregions[i].mr_size)
696 				pte_lo |= LPTE_G;
697 
698 			moea64_kenter_large(mmup, PHYS_TO_DMAP(pa), pa, pte_lo, 1);
699 		  }
700 		}
701 		PMAP_UNLOCK(kernel_pmap);
702 	}
703 
704 	/*
705 	 * Make sure the kernel and BPVO pool stay mapped on systems either
706 	 * without a direct map or on which the kernel is not already executing
707 	 * out of the direct-mapped region.
708 	 */
709 	if (kernelstart < DMAP_BASE_ADDRESS) {
710 		/*
711 		 * For pre-dmap execution, we need to use identity mapping
712 		 * because we will be operating with the mmu on but in the
713 		 * wrong address configuration until we __restartkernel().
714 		 */
715 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
716 		    pa += PAGE_SIZE)
717 			moea64_kenter(mmup, pa, pa);
718 	} else if (!hw_direct_map) {
719 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
720 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
721 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
722 		    pa += PAGE_SIZE)
723 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
724 	}
725 
726 	if (!hw_direct_map) {
727 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
728 		off = (vm_offset_t)(moea64_bpvo_pool);
729 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
730 			moea64_kenter(mmup, pa, pa);
731 
732 		/* Map exception vectors */
733 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
734 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
735 	}
736 	ENABLE_TRANS(msr);
737 
738 	/*
739 	 * Allow user to override unmapped_buf_allowed for testing.
740 	 * XXXKIB Only direct map implementation was tested.
741 	 */
742 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
743 	    &unmapped_buf_allowed))
744 		unmapped_buf_allowed = hw_direct_map;
745 }
746 
747 /* Quick sort callout for comparing physical addresses. */
748 static int
749 pa_cmp(const void *a, const void *b)
750 {
751 	const vm_paddr_t *pa = a, *pb = b;
752 
753 	if (*pa < *pb)
754 		return (-1);
755 	else if (*pa > *pb)
756 		return (1);
757 	else
758 		return (0);
759 }
760 
761 void
762 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
763 {
764 	int		i, j;
765 	vm_size_t	physsz, hwphyssz;
766 	vm_paddr_t	kernelphysstart, kernelphysend;
767 	int		rm_pavail;
768 
769 #ifndef __powerpc64__
770 	/* We don't have a direct map since there is no BAT */
771 	hw_direct_map = 0;
772 
773 	/* Make sure battable is zero, since we have no BAT */
774 	for (i = 0; i < 16; i++) {
775 		battable[i].batu = 0;
776 		battable[i].batl = 0;
777 	}
778 #else
779 	moea64_probe_large_page();
780 
781 	/* Use a direct map if we have large page support */
782 	if (moea64_large_page_size > 0)
783 		hw_direct_map = 1;
784 	else
785 		hw_direct_map = 0;
786 
787 	/* Install trap handlers for SLBs */
788 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
789 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
790 	__syncicache((void *)EXC_DSE, 0x80);
791 	__syncicache((void *)EXC_ISE, 0x80);
792 #endif
793 
794 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
795 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
796 
797 	/* Get physical memory regions from firmware */
798 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
799 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
800 
801 	if (PHYS_AVAIL_ENTRIES < regions_sz)
802 		panic("moea64_bootstrap: phys_avail too small");
803 
804 	phys_avail_count = 0;
805 	physsz = 0;
806 	hwphyssz = 0;
807 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
808 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
809 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
810 		    regions[i].mr_start, regions[i].mr_start +
811 		    regions[i].mr_size, regions[i].mr_size);
812 		if (hwphyssz != 0 &&
813 		    (physsz + regions[i].mr_size) >= hwphyssz) {
814 			if (physsz < hwphyssz) {
815 				phys_avail[j] = regions[i].mr_start;
816 				phys_avail[j + 1] = regions[i].mr_start +
817 				    hwphyssz - physsz;
818 				physsz = hwphyssz;
819 				phys_avail_count++;
820 				dump_avail[j] = phys_avail[j];
821 				dump_avail[j + 1] = phys_avail[j + 1];
822 			}
823 			break;
824 		}
825 		phys_avail[j] = regions[i].mr_start;
826 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
827 		phys_avail_count++;
828 		physsz += regions[i].mr_size;
829 		dump_avail[j] = phys_avail[j];
830 		dump_avail[j + 1] = phys_avail[j + 1];
831 	}
832 
833 	/* Check for overlap with the kernel and exception vectors */
834 	rm_pavail = 0;
835 	for (j = 0; j < 2*phys_avail_count; j+=2) {
836 		if (phys_avail[j] < EXC_LAST)
837 			phys_avail[j] += EXC_LAST;
838 
839 		if (phys_avail[j] >= kernelphysstart &&
840 		    phys_avail[j+1] <= kernelphysend) {
841 			phys_avail[j] = phys_avail[j+1] = ~0;
842 			rm_pavail++;
843 			continue;
844 		}
845 
846 		if (kernelphysstart >= phys_avail[j] &&
847 		    kernelphysstart < phys_avail[j+1]) {
848 			if (kernelphysend < phys_avail[j+1]) {
849 				phys_avail[2*phys_avail_count] =
850 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
851 				phys_avail[2*phys_avail_count + 1] =
852 				    phys_avail[j+1];
853 				phys_avail_count++;
854 			}
855 
856 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
857 		}
858 
859 		if (kernelphysend >= phys_avail[j] &&
860 		    kernelphysend < phys_avail[j+1]) {
861 			if (kernelphysstart > phys_avail[j]) {
862 				phys_avail[2*phys_avail_count] = phys_avail[j];
863 				phys_avail[2*phys_avail_count + 1] =
864 				    kernelphysstart & ~PAGE_MASK;
865 				phys_avail_count++;
866 			}
867 
868 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
869 			    PAGE_SIZE;
870 		}
871 	}
872 
873 	/* Remove physical available regions marked for removal (~0) */
874 	if (rm_pavail) {
875 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
876 			pa_cmp);
877 		phys_avail_count -= rm_pavail;
878 		for (i = 2*phys_avail_count;
879 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
880 			phys_avail[i] = phys_avail[i+1] = 0;
881 	}
882 
883 	physmem = btoc(physsz);
884 
885 #ifdef PTEGCOUNT
886 	moea64_pteg_count = PTEGCOUNT;
887 #else
888 	moea64_pteg_count = 0x1000;
889 
890 	while (moea64_pteg_count < physmem)
891 		moea64_pteg_count <<= 1;
892 
893 	moea64_pteg_count >>= 1;
894 #endif /* PTEGCOUNT */
895 }
896 
897 void
898 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
899 {
900 	int		i;
901 
902 	/*
903 	 * Set PTEG mask
904 	 */
905 	moea64_pteg_mask = moea64_pteg_count - 1;
906 
907 	/*
908 	 * Initialize SLB table lock and page locks
909 	 */
910 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
911 	for (i = 0; i < PV_LOCK_COUNT; i++)
912 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
913 
914 	/*
915 	 * Initialise the bootstrap pvo pool.
916 	 */
917 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
918 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
919 	moea64_bpvo_pool_index = 0;
920 
921 	/* Place at address usable through the direct map */
922 	if (hw_direct_map)
923 		moea64_bpvo_pool = (struct pvo_entry *)
924 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
925 
926 	/*
927 	 * Make sure kernel vsid is allocated as well as VSID 0.
928 	 */
929 	#ifndef __powerpc64__
930 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
931 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
932 	moea64_vsid_bitmap[0] |= 1;
933 	#endif
934 
935 	/*
936 	 * Initialize the kernel pmap (which is statically allocated).
937 	 */
938 	#ifdef __powerpc64__
939 	for (i = 0; i < 64; i++) {
940 		pcpup->pc_aim.slb[i].slbv = 0;
941 		pcpup->pc_aim.slb[i].slbe = 0;
942 	}
943 	#else
944 	for (i = 0; i < 16; i++)
945 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
946 	#endif
947 
948 	kernel_pmap->pmap_phys = kernel_pmap;
949 	CPU_FILL(&kernel_pmap->pm_active);
950 	RB_INIT(&kernel_pmap->pmap_pvo);
951 
952 	PMAP_LOCK_INIT(kernel_pmap);
953 
954 	/*
955 	 * Now map in all the other buffers we allocated earlier
956 	 */
957 
958 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
959 }
960 
961 void
962 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
963 {
964 	ihandle_t	mmui;
965 	phandle_t	chosen;
966 	phandle_t	mmu;
967 	ssize_t		sz;
968 	int		i;
969 	vm_offset_t	pa, va;
970 	void		*dpcpu;
971 
972 	/*
973 	 * Set up the Open Firmware pmap and add its mappings if not in real
974 	 * mode.
975 	 */
976 
977 	chosen = OF_finddevice("/chosen");
978 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
979 		mmu = OF_instance_to_package(mmui);
980 		if (mmu == -1 ||
981 		    (sz = OF_getproplen(mmu, "translations")) == -1)
982 			sz = 0;
983 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
984 			panic("moea64_bootstrap: too many ofw translations");
985 
986 		if (sz > 0)
987 			moea64_add_ofw_mappings(mmup, mmu, sz);
988 	}
989 
990 	/*
991 	 * Calculate the last available physical address.
992 	 */
993 	Maxmem = 0;
994 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
995 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
996 
997 	/*
998 	 * Initialize MMU.
999 	 */
1000 	MMU_CPU_BOOTSTRAP(mmup,0);
1001 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1002 	pmap_bootstrapped++;
1003 
1004 	/*
1005 	 * Set the start and end of kva.
1006 	 */
1007 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1008 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1009 
1010 	/*
1011 	 * Map the entire KVA range into the SLB. We must not fault there.
1012 	 */
1013 	#ifdef __powerpc64__
1014 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1015 		moea64_bootstrap_slb_prefault(va, 0);
1016 	#endif
1017 
1018 	/*
1019 	 * Remap any early IO mappings (console framebuffer, etc.)
1020 	 */
1021 	bs_remap_earlyboot();
1022 
1023 	/*
1024 	 * Figure out how far we can extend virtual_end into segment 16
1025 	 * without running into existing mappings. Segment 16 is guaranteed
1026 	 * to contain neither RAM nor devices (at least on Apple hardware),
1027 	 * but will generally contain some OFW mappings we should not
1028 	 * step on.
1029 	 */
1030 
1031 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1032 	PMAP_LOCK(kernel_pmap);
1033 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1034 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1035 		virtual_end += PAGE_SIZE;
1036 	PMAP_UNLOCK(kernel_pmap);
1037 	#endif
1038 
1039 	/*
1040 	 * Allocate a kernel stack with a guard page for thread0 and map it
1041 	 * into the kernel page map.
1042 	 */
1043 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1044 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1045 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1046 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1047 	thread0.td_kstack = va;
1048 	thread0.td_kstack_pages = kstack_pages;
1049 	for (i = 0; i < kstack_pages; i++) {
1050 		moea64_kenter(mmup, va, pa);
1051 		pa += PAGE_SIZE;
1052 		va += PAGE_SIZE;
1053 	}
1054 
1055 	/*
1056 	 * Allocate virtual address space for the message buffer.
1057 	 */
1058 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1059 	msgbufp = (struct msgbuf *)virtual_avail;
1060 	va = virtual_avail;
1061 	virtual_avail += round_page(msgbufsize);
1062 	while (va < virtual_avail) {
1063 		moea64_kenter(mmup, va, pa);
1064 		pa += PAGE_SIZE;
1065 		va += PAGE_SIZE;
1066 	}
1067 
1068 	/*
1069 	 * Allocate virtual address space for the dynamic percpu area.
1070 	 */
1071 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1072 	dpcpu = (void *)virtual_avail;
1073 	va = virtual_avail;
1074 	virtual_avail += DPCPU_SIZE;
1075 	while (va < virtual_avail) {
1076 		moea64_kenter(mmup, va, pa);
1077 		pa += PAGE_SIZE;
1078 		va += PAGE_SIZE;
1079 	}
1080 	dpcpu_init(dpcpu, curcpu);
1081 
1082 	crashdumpmap = (caddr_t)virtual_avail;
1083 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1084 
1085 	/*
1086 	 * Allocate some things for page zeroing. We put this directly
1087 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1088 	 * of the PVO book-keeping or other parts of the VM system
1089 	 * from even knowing that this hack exists.
1090 	 */
1091 
1092 	if (!hw_direct_map) {
1093 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1094 		    MTX_DEF);
1095 		for (i = 0; i < 2; i++) {
1096 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1097 			virtual_end -= PAGE_SIZE;
1098 
1099 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
1100 
1101 			PMAP_LOCK(kernel_pmap);
1102 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1103 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1104 			PMAP_UNLOCK(kernel_pmap);
1105 		}
1106 	}
1107 
1108 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1109 }
1110 
1111 static void
1112 moea64_pmap_init_qpages(void)
1113 {
1114 	struct pcpu *pc;
1115 	int i;
1116 
1117 	if (hw_direct_map)
1118 		return;
1119 
1120 	CPU_FOREACH(i) {
1121 		pc = pcpu_find(i);
1122 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1123 		if (pc->pc_qmap_addr == 0)
1124 			panic("pmap_init_qpages: unable to allocate KVA");
1125 		PMAP_LOCK(kernel_pmap);
1126 		pc->pc_aim.qmap_pvo =
1127 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1128 		PMAP_UNLOCK(kernel_pmap);
1129 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1130 	}
1131 }
1132 
1133 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1134 
1135 /*
1136  * Activate a user pmap.  This mostly involves setting some non-CPU
1137  * state.
1138  */
1139 void
1140 moea64_activate(mmu_t mmu, struct thread *td)
1141 {
1142 	pmap_t	pm;
1143 
1144 	pm = &td->td_proc->p_vmspace->vm_pmap;
1145 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1146 
1147 	#ifdef __powerpc64__
1148 	PCPU_SET(aim.userslb, pm->pm_slb);
1149 	__asm __volatile("slbmte %0, %1; isync" ::
1150 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1151 	#else
1152 	PCPU_SET(curpmap, pm->pmap_phys);
1153 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1154 	#endif
1155 }
1156 
1157 void
1158 moea64_deactivate(mmu_t mmu, struct thread *td)
1159 {
1160 	pmap_t	pm;
1161 
1162 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1163 
1164 	pm = &td->td_proc->p_vmspace->vm_pmap;
1165 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1166 	#ifdef __powerpc64__
1167 	PCPU_SET(aim.userslb, NULL);
1168 	#else
1169 	PCPU_SET(curpmap, NULL);
1170 	#endif
1171 }
1172 
1173 void
1174 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1175 {
1176 	struct	pvo_entry key, *pvo;
1177 	vm_page_t m;
1178 	int64_t	refchg;
1179 
1180 	key.pvo_vaddr = sva;
1181 	PMAP_LOCK(pm);
1182 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1183 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1184 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1185 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1186 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1187 			    pvo);
1188 		pvo->pvo_vaddr &= ~PVO_WIRED;
1189 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1190 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1191 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1192 			if (refchg < 0)
1193 				refchg = LPTE_CHG;
1194 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1195 
1196 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1197 			if (refchg & LPTE_CHG)
1198 				vm_page_dirty(m);
1199 			if (refchg & LPTE_REF)
1200 				vm_page_aflag_set(m, PGA_REFERENCED);
1201 		}
1202 		pm->pm_stats.wired_count--;
1203 	}
1204 	PMAP_UNLOCK(pm);
1205 }
1206 
1207 /*
1208  * This goes through and sets the physical address of our
1209  * special scratch PTE to the PA we want to zero or copy. Because
1210  * of locking issues (this can get called in pvo_enter() by
1211  * the UMA allocator), we can't use most other utility functions here
1212  */
1213 
1214 static __inline
1215 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
1216 {
1217 	struct pvo_entry *pvo;
1218 
1219 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1220 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1221 
1222 	pvo = moea64_scratchpage_pvo[which];
1223 	PMAP_LOCK(pvo->pvo_pmap);
1224 	pvo->pvo_pte.pa =
1225 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1226 	MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
1227 	PMAP_UNLOCK(pvo->pvo_pmap);
1228 	isync();
1229 }
1230 
1231 void
1232 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1233 {
1234 	vm_offset_t	dst;
1235 	vm_offset_t	src;
1236 
1237 	dst = VM_PAGE_TO_PHYS(mdst);
1238 	src = VM_PAGE_TO_PHYS(msrc);
1239 
1240 	if (hw_direct_map) {
1241 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1242 		    PAGE_SIZE);
1243 	} else {
1244 		mtx_lock(&moea64_scratchpage_mtx);
1245 
1246 		moea64_set_scratchpage_pa(mmu, 0, src);
1247 		moea64_set_scratchpage_pa(mmu, 1, dst);
1248 
1249 		bcopy((void *)moea64_scratchpage_va[0],
1250 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1251 
1252 		mtx_unlock(&moea64_scratchpage_mtx);
1253 	}
1254 }
1255 
1256 static inline void
1257 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1258     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1259 {
1260 	void *a_cp, *b_cp;
1261 	vm_offset_t a_pg_offset, b_pg_offset;
1262 	int cnt;
1263 
1264 	while (xfersize > 0) {
1265 		a_pg_offset = a_offset & PAGE_MASK;
1266 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1267 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1268 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1269 		    a_pg_offset;
1270 		b_pg_offset = b_offset & PAGE_MASK;
1271 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1272 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1273 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1274 		    b_pg_offset;
1275 		bcopy(a_cp, b_cp, cnt);
1276 		a_offset += cnt;
1277 		b_offset += cnt;
1278 		xfersize -= cnt;
1279 	}
1280 }
1281 
1282 static inline void
1283 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1284     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1285 {
1286 	void *a_cp, *b_cp;
1287 	vm_offset_t a_pg_offset, b_pg_offset;
1288 	int cnt;
1289 
1290 	mtx_lock(&moea64_scratchpage_mtx);
1291 	while (xfersize > 0) {
1292 		a_pg_offset = a_offset & PAGE_MASK;
1293 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1294 		moea64_set_scratchpage_pa(mmu, 0,
1295 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1296 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1297 		b_pg_offset = b_offset & PAGE_MASK;
1298 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1299 		moea64_set_scratchpage_pa(mmu, 1,
1300 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1301 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1302 		bcopy(a_cp, b_cp, cnt);
1303 		a_offset += cnt;
1304 		b_offset += cnt;
1305 		xfersize -= cnt;
1306 	}
1307 	mtx_unlock(&moea64_scratchpage_mtx);
1308 }
1309 
1310 void
1311 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1312     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1313 {
1314 
1315 	if (hw_direct_map) {
1316 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1317 		    xfersize);
1318 	} else {
1319 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1320 		    xfersize);
1321 	}
1322 }
1323 
1324 void
1325 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1326 {
1327 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1328 
1329 	if (size + off > PAGE_SIZE)
1330 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1331 
1332 	if (hw_direct_map) {
1333 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1334 	} else {
1335 		mtx_lock(&moea64_scratchpage_mtx);
1336 		moea64_set_scratchpage_pa(mmu, 0, pa);
1337 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1338 		mtx_unlock(&moea64_scratchpage_mtx);
1339 	}
1340 }
1341 
1342 /*
1343  * Zero a page of physical memory by temporarily mapping it
1344  */
1345 void
1346 moea64_zero_page(mmu_t mmu, vm_page_t m)
1347 {
1348 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1349 	vm_offset_t va, off;
1350 
1351 	if (!hw_direct_map) {
1352 		mtx_lock(&moea64_scratchpage_mtx);
1353 
1354 		moea64_set_scratchpage_pa(mmu, 0, pa);
1355 		va = moea64_scratchpage_va[0];
1356 	} else {
1357 		va = PHYS_TO_DMAP(pa);
1358 	}
1359 
1360 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1361 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1362 
1363 	if (!hw_direct_map)
1364 		mtx_unlock(&moea64_scratchpage_mtx);
1365 }
1366 
1367 vm_offset_t
1368 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1369 {
1370 	struct pvo_entry *pvo;
1371 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1372 
1373 	if (hw_direct_map)
1374 		return (PHYS_TO_DMAP(pa));
1375 
1376 	/*
1377  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1378 	 * a critical section and access the PCPU data like on i386.
1379 	 * Instead, pin the thread and grab the PCPU lock to prevent
1380 	 * a preempting thread from using the same PCPU data.
1381 	 */
1382 	sched_pin();
1383 
1384 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1385 	pvo = PCPU_GET(aim.qmap_pvo);
1386 
1387 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1388 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1389 	    (uint64_t)pa;
1390 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1391 	isync();
1392 
1393 	return (PCPU_GET(qmap_addr));
1394 }
1395 
1396 void
1397 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1398 {
1399 	if (hw_direct_map)
1400 		return;
1401 
1402 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1403 	KASSERT(PCPU_GET(qmap_addr) == addr,
1404 	    ("moea64_quick_remove_page: invalid address"));
1405 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1406 	sched_unpin();
1407 }
1408 
1409 /*
1410  * Map the given physical page at the specified virtual address in the
1411  * target pmap with the protection requested.  If specified the page
1412  * will be wired down.
1413  */
1414 
1415 int
1416 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1417     vm_prot_t prot, u_int flags, int8_t psind)
1418 {
1419 	struct		pvo_entry *pvo, *oldpvo;
1420 	struct		pvo_head *pvo_head;
1421 	uint64_t	pte_lo;
1422 	int		error;
1423 
1424 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1425 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1426 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1427 		else
1428 			VM_OBJECT_ASSERT_LOCKED(m->object);
1429 	}
1430 
1431 	pvo = alloc_pvo_entry(0);
1432 	if (pvo == NULL)
1433 		return (KERN_RESOURCE_SHORTAGE);
1434 	pvo->pvo_pmap = NULL; /* to be filled in later */
1435 	pvo->pvo_pte.prot = prot;
1436 
1437 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1438 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1439 
1440 	if ((flags & PMAP_ENTER_WIRED) != 0)
1441 		pvo->pvo_vaddr |= PVO_WIRED;
1442 
1443 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1444 		pvo_head = NULL;
1445 	} else {
1446 		pvo_head = &m->md.mdpg_pvoh;
1447 		pvo->pvo_vaddr |= PVO_MANAGED;
1448 	}
1449 
1450 	PV_PAGE_LOCK(m);
1451 	PMAP_LOCK(pmap);
1452 	if (pvo->pvo_pmap == NULL)
1453 		init_pvo_entry(pvo, pmap, va);
1454 	if (prot & VM_PROT_WRITE)
1455 		if (pmap_bootstrapped &&
1456 		    (m->oflags & VPO_UNMANAGED) == 0)
1457 			vm_page_aflag_set(m, PGA_WRITEABLE);
1458 
1459 	error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
1460 	if (error == EEXIST) {
1461 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1462 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1463 		    oldpvo->pvo_pte.prot == prot) {
1464 			/* Identical mapping already exists */
1465 			error = 0;
1466 
1467 			/* If not in page table, reinsert it */
1468 			if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1469 				STAT_MOEA64(moea64_pte_overflow--);
1470 				MOEA64_PTE_INSERT(mmu, oldpvo);
1471 			}
1472 
1473 			/* Then just clean up and go home */
1474 			PV_PAGE_UNLOCK(m);
1475 			PMAP_UNLOCK(pmap);
1476 			free_pvo_entry(pvo);
1477 			goto out;
1478 		} else {
1479 			/* Otherwise, need to kill it first */
1480 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1481 			    "mapping does not match new mapping"));
1482 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1483 			moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
1484 		}
1485 	}
1486 	PMAP_UNLOCK(pmap);
1487 	PV_PAGE_UNLOCK(m);
1488 
1489 	/* Free any dead pages */
1490 	if (error == EEXIST) {
1491 		moea64_pvo_remove_from_page(mmu, oldpvo);
1492 		free_pvo_entry(oldpvo);
1493 	}
1494 
1495 out:
1496 	/*
1497 	 * Flush the page from the instruction cache if this page is
1498 	 * mapped executable and cacheable.
1499 	 */
1500 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1501 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1502 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1503 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1504 	}
1505 	return (KERN_SUCCESS);
1506 }
1507 
1508 static void
1509 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1510     vm_size_t sz)
1511 {
1512 
1513 	/*
1514 	 * This is much trickier than on older systems because
1515 	 * we can't sync the icache on physical addresses directly
1516 	 * without a direct map. Instead we check a couple of cases
1517 	 * where the memory is already mapped in and, failing that,
1518 	 * use the same trick we use for page zeroing to create
1519 	 * a temporary mapping for this physical address.
1520 	 */
1521 
1522 	if (!pmap_bootstrapped) {
1523 		/*
1524 		 * If PMAP is not bootstrapped, we are likely to be
1525 		 * in real mode.
1526 		 */
1527 		__syncicache((void *)(uintptr_t)pa, sz);
1528 	} else if (pmap == kernel_pmap) {
1529 		__syncicache((void *)va, sz);
1530 	} else if (hw_direct_map) {
1531 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1532 	} else {
1533 		/* Use the scratch page to set up a temp mapping */
1534 
1535 		mtx_lock(&moea64_scratchpage_mtx);
1536 
1537 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1538 		__syncicache((void *)(moea64_scratchpage_va[1] +
1539 		    (va & ADDR_POFF)), sz);
1540 
1541 		mtx_unlock(&moea64_scratchpage_mtx);
1542 	}
1543 }
1544 
1545 /*
1546  * Maps a sequence of resident pages belonging to the same object.
1547  * The sequence begins with the given page m_start.  This page is
1548  * mapped at the given virtual address start.  Each subsequent page is
1549  * mapped at a virtual address that is offset from start by the same
1550  * amount as the page is offset from m_start within the object.  The
1551  * last page in the sequence is the page with the largest offset from
1552  * m_start that can be mapped at a virtual address less than the given
1553  * virtual address end.  Not every virtual page between start and end
1554  * is mapped; only those for which a resident page exists with the
1555  * corresponding offset from m_start are mapped.
1556  */
1557 void
1558 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1559     vm_page_t m_start, vm_prot_t prot)
1560 {
1561 	vm_page_t m;
1562 	vm_pindex_t diff, psize;
1563 
1564 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1565 
1566 	psize = atop(end - start);
1567 	m = m_start;
1568 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1569 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1570 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1571 		    PMAP_ENTER_QUICK_LOCKED, 0);
1572 		m = TAILQ_NEXT(m, listq);
1573 	}
1574 }
1575 
1576 void
1577 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1578     vm_prot_t prot)
1579 {
1580 
1581 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1582 	    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1583 }
1584 
1585 vm_paddr_t
1586 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1587 {
1588 	struct	pvo_entry *pvo;
1589 	vm_paddr_t pa;
1590 
1591 	PMAP_LOCK(pm);
1592 	pvo = moea64_pvo_find_va(pm, va);
1593 	if (pvo == NULL)
1594 		pa = 0;
1595 	else
1596 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1597 	PMAP_UNLOCK(pm);
1598 
1599 	return (pa);
1600 }
1601 
1602 /*
1603  * Atomically extract and hold the physical page with the given
1604  * pmap and virtual address pair if that mapping permits the given
1605  * protection.
1606  */
1607 vm_page_t
1608 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1609 {
1610 	struct	pvo_entry *pvo;
1611 	vm_page_t m;
1612 
1613 	m = NULL;
1614 	PMAP_LOCK(pmap);
1615 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1616 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1617 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1618 		if (!vm_page_wire_mapped(m))
1619 			m = NULL;
1620 	}
1621 	PMAP_UNLOCK(pmap);
1622 	return (m);
1623 }
1624 
1625 static mmu_t installed_mmu;
1626 
1627 static void *
1628 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1629     uint8_t *flags, int wait)
1630 {
1631 	struct pvo_entry *pvo;
1632         vm_offset_t va;
1633         vm_page_t m;
1634         int needed_lock;
1635 
1636 	/*
1637 	 * This entire routine is a horrible hack to avoid bothering kmem
1638 	 * for new KVA addresses. Because this can get called from inside
1639 	 * kmem allocation routines, calling kmem for a new address here
1640 	 * can lead to multiply locking non-recursive mutexes.
1641 	 */
1642 
1643 	*flags = UMA_SLAB_PRIV;
1644 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1645 
1646 	m = vm_page_alloc_domain(NULL, 0, domain,
1647 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1648 	if (m == NULL)
1649 		return (NULL);
1650 
1651 	va = VM_PAGE_TO_PHYS(m);
1652 
1653 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1654 
1655 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1656 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1657 
1658 	if (needed_lock)
1659 		PMAP_LOCK(kernel_pmap);
1660 
1661 	init_pvo_entry(pvo, kernel_pmap, va);
1662 	pvo->pvo_vaddr |= PVO_WIRED;
1663 
1664 	moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
1665 
1666 	if (needed_lock)
1667 		PMAP_UNLOCK(kernel_pmap);
1668 
1669 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1670                 bzero((void *)va, PAGE_SIZE);
1671 
1672 	return (void *)va;
1673 }
1674 
1675 extern int elf32_nxstack;
1676 
1677 void
1678 moea64_init(mmu_t mmu)
1679 {
1680 
1681 	CTR0(KTR_PMAP, "moea64_init");
1682 
1683 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1684 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1685 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1686 
1687 	if (!hw_direct_map) {
1688 		installed_mmu = mmu;
1689 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1690 	}
1691 
1692 #ifdef COMPAT_FREEBSD32
1693 	elf32_nxstack = 1;
1694 #endif
1695 
1696 	moea64_initialized = TRUE;
1697 }
1698 
1699 boolean_t
1700 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1701 {
1702 
1703 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1704 	    ("moea64_is_referenced: page %p is not managed", m));
1705 
1706 	return (moea64_query_bit(mmu, m, LPTE_REF));
1707 }
1708 
1709 boolean_t
1710 moea64_is_modified(mmu_t mmu, vm_page_t m)
1711 {
1712 
1713 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1714 	    ("moea64_is_modified: page %p is not managed", m));
1715 
1716 	/*
1717 	 * If the page is not busied then this check is racy.
1718 	 */
1719 	if (!pmap_page_is_write_mapped(m))
1720 		return (FALSE);
1721 
1722 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1723 }
1724 
1725 boolean_t
1726 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1727 {
1728 	struct pvo_entry *pvo;
1729 	boolean_t rv = TRUE;
1730 
1731 	PMAP_LOCK(pmap);
1732 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1733 	if (pvo != NULL)
1734 		rv = FALSE;
1735 	PMAP_UNLOCK(pmap);
1736 	return (rv);
1737 }
1738 
1739 void
1740 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1741 {
1742 
1743 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1744 	    ("moea64_clear_modify: page %p is not managed", m));
1745 	vm_page_assert_busied(m);
1746 
1747 	if (!pmap_page_is_write_mapped(m))
1748 		return;
1749 	moea64_clear_bit(mmu, m, LPTE_CHG);
1750 }
1751 
1752 /*
1753  * Clear the write and modified bits in each of the given page's mappings.
1754  */
1755 void
1756 moea64_remove_write(mmu_t mmu, vm_page_t m)
1757 {
1758 	struct	pvo_entry *pvo;
1759 	int64_t	refchg, ret;
1760 	pmap_t	pmap;
1761 
1762 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1763 	    ("moea64_remove_write: page %p is not managed", m));
1764 	vm_page_assert_busied(m);
1765 
1766 	if (!pmap_page_is_write_mapped(m))
1767 		return
1768 
1769 	powerpc_sync();
1770 	PV_PAGE_LOCK(m);
1771 	refchg = 0;
1772 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1773 		pmap = pvo->pvo_pmap;
1774 		PMAP_LOCK(pmap);
1775 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1776 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1777 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1778 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1779 			    MOEA64_PTE_PROT_UPDATE);
1780 			if (ret < 0)
1781 				ret = LPTE_CHG;
1782 			refchg |= ret;
1783 			if (pvo->pvo_pmap == kernel_pmap)
1784 				isync();
1785 		}
1786 		PMAP_UNLOCK(pmap);
1787 	}
1788 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1789 		vm_page_dirty(m);
1790 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1791 	PV_PAGE_UNLOCK(m);
1792 }
1793 
1794 /*
1795  *	moea64_ts_referenced:
1796  *
1797  *	Return a count of reference bits for a page, clearing those bits.
1798  *	It is not necessary for every reference bit to be cleared, but it
1799  *	is necessary that 0 only be returned when there are truly no
1800  *	reference bits set.
1801  *
1802  *	XXX: The exact number of bits to check and clear is a matter that
1803  *	should be tested and standardized at some point in the future for
1804  *	optimal aging of shared pages.
1805  */
1806 int
1807 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1808 {
1809 
1810 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1811 	    ("moea64_ts_referenced: page %p is not managed", m));
1812 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1813 }
1814 
1815 /*
1816  * Modify the WIMG settings of all mappings for a page.
1817  */
1818 void
1819 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1820 {
1821 	struct	pvo_entry *pvo;
1822 	int64_t	refchg;
1823 	pmap_t	pmap;
1824 	uint64_t lo;
1825 
1826 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1827 		m->md.mdpg_cache_attrs = ma;
1828 		return;
1829 	}
1830 
1831 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1832 
1833 	PV_PAGE_LOCK(m);
1834 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1835 		pmap = pvo->pvo_pmap;
1836 		PMAP_LOCK(pmap);
1837 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1838 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1839 			pvo->pvo_pte.pa |= lo;
1840 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1841 			    MOEA64_PTE_INVALIDATE);
1842 			if (refchg < 0)
1843 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1844 				    LPTE_CHG : 0;
1845 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1846 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1847 				refchg |=
1848 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1849 				if (refchg & LPTE_CHG)
1850 					vm_page_dirty(m);
1851 				if (refchg & LPTE_REF)
1852 					vm_page_aflag_set(m, PGA_REFERENCED);
1853 			}
1854 			if (pvo->pvo_pmap == kernel_pmap)
1855 				isync();
1856 		}
1857 		PMAP_UNLOCK(pmap);
1858 	}
1859 	m->md.mdpg_cache_attrs = ma;
1860 	PV_PAGE_UNLOCK(m);
1861 }
1862 
1863 /*
1864  * Map a wired page into kernel virtual address space.
1865  */
1866 void
1867 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1868 {
1869 	int		error;
1870 	struct pvo_entry *pvo, *oldpvo;
1871 
1872 	do {
1873 		pvo = alloc_pvo_entry(0);
1874 		if (pvo == NULL)
1875 			vm_wait(NULL);
1876 	} while (pvo == NULL);
1877 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1878 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1879 	pvo->pvo_vaddr |= PVO_WIRED;
1880 
1881 	PMAP_LOCK(kernel_pmap);
1882 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1883 	if (oldpvo != NULL)
1884 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1885 	init_pvo_entry(pvo, kernel_pmap, va);
1886 	error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
1887 	PMAP_UNLOCK(kernel_pmap);
1888 
1889 	/* Free any dead pages */
1890 	if (oldpvo != NULL) {
1891 		moea64_pvo_remove_from_page(mmu, oldpvo);
1892 		free_pvo_entry(oldpvo);
1893 	}
1894 
1895 	if (error != 0)
1896 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1897 		    (uintmax_t)pa, error);
1898 }
1899 
1900 void
1901 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1902 {
1903 
1904 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1905 }
1906 
1907 /*
1908  * Extract the physical page address associated with the given kernel virtual
1909  * address.
1910  */
1911 vm_paddr_t
1912 moea64_kextract(mmu_t mmu, vm_offset_t va)
1913 {
1914 	struct		pvo_entry *pvo;
1915 	vm_paddr_t pa;
1916 
1917 	/*
1918 	 * Shortcut the direct-mapped case when applicable.  We never put
1919 	 * anything but 1:1 (or 62-bit aliased) mappings below
1920 	 * VM_MIN_KERNEL_ADDRESS.
1921 	 */
1922 	if (va < VM_MIN_KERNEL_ADDRESS)
1923 		return (va & ~DMAP_BASE_ADDRESS);
1924 
1925 	PMAP_LOCK(kernel_pmap);
1926 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1927 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1928 	    va));
1929 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1930 	PMAP_UNLOCK(kernel_pmap);
1931 	return (pa);
1932 }
1933 
1934 /*
1935  * Remove a wired page from kernel virtual address space.
1936  */
1937 void
1938 moea64_kremove(mmu_t mmu, vm_offset_t va)
1939 {
1940 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1941 }
1942 
1943 /*
1944  * Provide a kernel pointer corresponding to a given userland pointer.
1945  * The returned pointer is valid until the next time this function is
1946  * called in this thread. This is used internally in copyin/copyout.
1947  */
1948 static int
1949 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1950     void **kaddr, size_t ulen, size_t *klen)
1951 {
1952 	size_t l;
1953 #ifdef __powerpc64__
1954 	struct slb *slb;
1955 #endif
1956 	register_t slbv;
1957 
1958 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1959 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1960 	if (l > ulen)
1961 		l = ulen;
1962 	if (klen)
1963 		*klen = l;
1964 	else if (l != ulen)
1965 		return (EFAULT);
1966 
1967 #ifdef __powerpc64__
1968 	/* Try lockless look-up first */
1969 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1970 
1971 	if (slb == NULL) {
1972 		/* If it isn't there, we need to pre-fault the VSID */
1973 		PMAP_LOCK(pm);
1974 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1975 		PMAP_UNLOCK(pm);
1976 	} else {
1977 		slbv = slb->slbv;
1978 	}
1979 
1980 	/* Mark segment no-execute */
1981 	slbv |= SLBV_N;
1982 #else
1983 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1984 
1985 	/* Mark segment no-execute */
1986 	slbv |= SR_N;
1987 #endif
1988 
1989 	/* If we have already set this VSID, we can just return */
1990 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1991 		return (0);
1992 
1993 	__asm __volatile("isync");
1994 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1995 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1996 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1997 #ifdef __powerpc64__
1998 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1999 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2000 #else
2001 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2002 #endif
2003 
2004 	return (0);
2005 }
2006 
2007 /*
2008  * Figure out where a given kernel pointer (usually in a fault) points
2009  * to from the VM's perspective, potentially remapping into userland's
2010  * address space.
2011  */
2012 static int
2013 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2014     vm_offset_t *decoded_addr)
2015 {
2016 	vm_offset_t user_sr;
2017 
2018 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2019 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2020 		addr &= ADDR_PIDX | ADDR_POFF;
2021 		addr |= user_sr << ADDR_SR_SHFT;
2022 		*decoded_addr = addr;
2023 		*is_user = 1;
2024 	} else {
2025 		*decoded_addr = addr;
2026 		*is_user = 0;
2027 	}
2028 
2029 	return (0);
2030 }
2031 
2032 /*
2033  * Map a range of physical addresses into kernel virtual address space.
2034  *
2035  * The value passed in *virt is a suggested virtual address for the mapping.
2036  * Architectures which can support a direct-mapped physical to virtual region
2037  * can return the appropriate address within that region, leaving '*virt'
2038  * unchanged.  Other architectures should map the pages starting at '*virt' and
2039  * update '*virt' with the first usable address after the mapped region.
2040  */
2041 vm_offset_t
2042 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2043     vm_paddr_t pa_end, int prot)
2044 {
2045 	vm_offset_t	sva, va;
2046 
2047 	if (hw_direct_map) {
2048 		/*
2049 		 * Check if every page in the region is covered by the direct
2050 		 * map. The direct map covers all of physical memory. Use
2051 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2052 		 * physical memory as a way to see if the direct map covers it.
2053 		 */
2054 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2055 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2056 				break;
2057 		if (va == pa_end)
2058 			return (PHYS_TO_DMAP(pa_start));
2059 	}
2060 	sva = *virt;
2061 	va = sva;
2062 	/* XXX respect prot argument */
2063 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2064 		moea64_kenter(mmu, va, pa_start);
2065 	*virt = va;
2066 
2067 	return (sva);
2068 }
2069 
2070 /*
2071  * Returns true if the pmap's pv is one of the first
2072  * 16 pvs linked to from this page.  This count may
2073  * be changed upwards or downwards in the future; it
2074  * is only necessary that true be returned for a small
2075  * subset of pmaps for proper page aging.
2076  */
2077 boolean_t
2078 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2079 {
2080         int loops;
2081 	struct pvo_entry *pvo;
2082 	boolean_t rv;
2083 
2084 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2085 	    ("moea64_page_exists_quick: page %p is not managed", m));
2086 	loops = 0;
2087 	rv = FALSE;
2088 	PV_PAGE_LOCK(m);
2089 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2090 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2091 			rv = TRUE;
2092 			break;
2093 		}
2094 		if (++loops >= 16)
2095 			break;
2096 	}
2097 	PV_PAGE_UNLOCK(m);
2098 	return (rv);
2099 }
2100 
2101 void
2102 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2103 {
2104 
2105 	m->md.mdpg_attrs = 0;
2106 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2107 	LIST_INIT(&m->md.mdpg_pvoh);
2108 }
2109 
2110 /*
2111  * Return the number of managed mappings to the given physical page
2112  * that are wired.
2113  */
2114 int
2115 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2116 {
2117 	struct pvo_entry *pvo;
2118 	int count;
2119 
2120 	count = 0;
2121 	if ((m->oflags & VPO_UNMANAGED) != 0)
2122 		return (count);
2123 	PV_PAGE_LOCK(m);
2124 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2125 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2126 			count++;
2127 	PV_PAGE_UNLOCK(m);
2128 	return (count);
2129 }
2130 
2131 static uintptr_t	moea64_vsidcontext;
2132 
2133 uintptr_t
2134 moea64_get_unique_vsid(void) {
2135 	u_int entropy;
2136 	register_t hash;
2137 	uint32_t mask;
2138 	int i;
2139 
2140 	entropy = 0;
2141 	__asm __volatile("mftb %0" : "=r"(entropy));
2142 
2143 	mtx_lock(&moea64_slb_mutex);
2144 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2145 		u_int	n;
2146 
2147 		/*
2148 		 * Create a new value by mutiplying by a prime and adding in
2149 		 * entropy from the timebase register.  This is to make the
2150 		 * VSID more random so that the PT hash function collides
2151 		 * less often.  (Note that the prime casues gcc to do shifts
2152 		 * instead of a multiply.)
2153 		 */
2154 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2155 		hash = moea64_vsidcontext & (NVSIDS - 1);
2156 		if (hash == 0)		/* 0 is special, avoid it */
2157 			continue;
2158 		n = hash >> 5;
2159 		mask = 1 << (hash & (VSID_NBPW - 1));
2160 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2161 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2162 			/* anything free in this bucket? */
2163 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2164 				entropy = (moea64_vsidcontext >> 20);
2165 				continue;
2166 			}
2167 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2168 			mask = 1 << i;
2169 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2170 			hash |= i;
2171 		}
2172 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2173 			continue;
2174 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2175 		    ("Allocating in-use VSID %#zx\n", hash));
2176 		moea64_vsid_bitmap[n] |= mask;
2177 		mtx_unlock(&moea64_slb_mutex);
2178 		return (hash);
2179 	}
2180 
2181 	mtx_unlock(&moea64_slb_mutex);
2182 	panic("%s: out of segments",__func__);
2183 }
2184 
2185 #ifdef __powerpc64__
2186 void
2187 moea64_pinit(mmu_t mmu, pmap_t pmap)
2188 {
2189 
2190 	RB_INIT(&pmap->pmap_pvo);
2191 
2192 	pmap->pm_slb_tree_root = slb_alloc_tree();
2193 	pmap->pm_slb = slb_alloc_user_cache();
2194 	pmap->pm_slb_len = 0;
2195 }
2196 #else
2197 void
2198 moea64_pinit(mmu_t mmu, pmap_t pmap)
2199 {
2200 	int	i;
2201 	uint32_t hash;
2202 
2203 	RB_INIT(&pmap->pmap_pvo);
2204 
2205 	if (pmap_bootstrapped)
2206 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2207 		    (vm_offset_t)pmap);
2208 	else
2209 		pmap->pmap_phys = pmap;
2210 
2211 	/*
2212 	 * Allocate some segment registers for this pmap.
2213 	 */
2214 	hash = moea64_get_unique_vsid();
2215 
2216 	for (i = 0; i < 16; i++)
2217 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2218 
2219 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2220 }
2221 #endif
2222 
2223 /*
2224  * Initialize the pmap associated with process 0.
2225  */
2226 void
2227 moea64_pinit0(mmu_t mmu, pmap_t pm)
2228 {
2229 
2230 	PMAP_LOCK_INIT(pm);
2231 	moea64_pinit(mmu, pm);
2232 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2233 }
2234 
2235 /*
2236  * Set the physical protection on the specified range of this map as requested.
2237  */
2238 static void
2239 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2240 {
2241 	struct vm_page *pg;
2242 	vm_prot_t oldprot;
2243 	int32_t refchg;
2244 
2245 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2246 
2247 	/*
2248 	 * Change the protection of the page.
2249 	 */
2250 	oldprot = pvo->pvo_pte.prot;
2251 	pvo->pvo_pte.prot = prot;
2252 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2253 
2254 	/*
2255 	 * If the PVO is in the page table, update mapping
2256 	 */
2257 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2258 	if (refchg < 0)
2259 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2260 
2261 	if (pm != kernel_pmap && pg != NULL &&
2262 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2263 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2264 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2265 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2266 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2267 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2268 	}
2269 
2270 	/*
2271 	 * Update vm about the REF/CHG bits if the page is managed and we have
2272 	 * removed write access.
2273 	 */
2274 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2275 	    (oldprot & VM_PROT_WRITE)) {
2276 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2277 		if (refchg & LPTE_CHG)
2278 			vm_page_dirty(pg);
2279 		if (refchg & LPTE_REF)
2280 			vm_page_aflag_set(pg, PGA_REFERENCED);
2281 	}
2282 }
2283 
2284 void
2285 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2286     vm_prot_t prot)
2287 {
2288 	struct	pvo_entry *pvo, *tpvo, key;
2289 
2290 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2291 	    sva, eva, prot);
2292 
2293 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2294 	    ("moea64_protect: non current pmap"));
2295 
2296 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2297 		moea64_remove(mmu, pm, sva, eva);
2298 		return;
2299 	}
2300 
2301 	PMAP_LOCK(pm);
2302 	key.pvo_vaddr = sva;
2303 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2304 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2305 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2306 		moea64_pvo_protect(mmu, pm, pvo, prot);
2307 	}
2308 	PMAP_UNLOCK(pm);
2309 }
2310 
2311 /*
2312  * Map a list of wired pages into kernel virtual address space.  This is
2313  * intended for temporary mappings which do not need page modification or
2314  * references recorded.  Existing mappings in the region are overwritten.
2315  */
2316 void
2317 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2318 {
2319 	while (count-- > 0) {
2320 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2321 		va += PAGE_SIZE;
2322 		m++;
2323 	}
2324 }
2325 
2326 /*
2327  * Remove page mappings from kernel virtual address space.  Intended for
2328  * temporary mappings entered by moea64_qenter.
2329  */
2330 void
2331 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2332 {
2333 	while (count-- > 0) {
2334 		moea64_kremove(mmu, va);
2335 		va += PAGE_SIZE;
2336 	}
2337 }
2338 
2339 void
2340 moea64_release_vsid(uint64_t vsid)
2341 {
2342 	int idx, mask;
2343 
2344 	mtx_lock(&moea64_slb_mutex);
2345 	idx = vsid & (NVSIDS-1);
2346 	mask = 1 << (idx % VSID_NBPW);
2347 	idx /= VSID_NBPW;
2348 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2349 	    ("Freeing unallocated VSID %#jx", vsid));
2350 	moea64_vsid_bitmap[idx] &= ~mask;
2351 	mtx_unlock(&moea64_slb_mutex);
2352 }
2353 
2354 
2355 void
2356 moea64_release(mmu_t mmu, pmap_t pmap)
2357 {
2358 
2359 	/*
2360 	 * Free segment registers' VSIDs
2361 	 */
2362     #ifdef __powerpc64__
2363 	slb_free_tree(pmap);
2364 	slb_free_user_cache(pmap->pm_slb);
2365     #else
2366 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2367 
2368 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2369     #endif
2370 }
2371 
2372 /*
2373  * Remove all pages mapped by the specified pmap
2374  */
2375 void
2376 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2377 {
2378 	struct pvo_entry *pvo, *tpvo;
2379 	struct pvo_dlist tofree;
2380 
2381 	SLIST_INIT(&tofree);
2382 
2383 	PMAP_LOCK(pm);
2384 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2385 		if (pvo->pvo_vaddr & PVO_WIRED)
2386 			continue;
2387 
2388 		/*
2389 		 * For locking reasons, remove this from the page table and
2390 		 * pmap, but save delinking from the vm_page for a second
2391 		 * pass
2392 		 */
2393 		moea64_pvo_remove_from_pmap(mmu, pvo);
2394 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2395 	}
2396 	PMAP_UNLOCK(pm);
2397 
2398 	while (!SLIST_EMPTY(&tofree)) {
2399 		pvo = SLIST_FIRST(&tofree);
2400 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2401 		moea64_pvo_remove_from_page(mmu, pvo);
2402 		free_pvo_entry(pvo);
2403 	}
2404 }
2405 
2406 /*
2407  * Remove the given range of addresses from the specified map.
2408  */
2409 void
2410 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2411 {
2412 	struct  pvo_entry *pvo, *tpvo, key;
2413 	struct pvo_dlist tofree;
2414 
2415 	/*
2416 	 * Perform an unsynchronized read.  This is, however, safe.
2417 	 */
2418 	if (pm->pm_stats.resident_count == 0)
2419 		return;
2420 
2421 	key.pvo_vaddr = sva;
2422 
2423 	SLIST_INIT(&tofree);
2424 
2425 	PMAP_LOCK(pm);
2426 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2427 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2428 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2429 
2430 		/*
2431 		 * For locking reasons, remove this from the page table and
2432 		 * pmap, but save delinking from the vm_page for a second
2433 		 * pass
2434 		 */
2435 		moea64_pvo_remove_from_pmap(mmu, pvo);
2436 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2437 	}
2438 	PMAP_UNLOCK(pm);
2439 
2440 	while (!SLIST_EMPTY(&tofree)) {
2441 		pvo = SLIST_FIRST(&tofree);
2442 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2443 		moea64_pvo_remove_from_page(mmu, pvo);
2444 		free_pvo_entry(pvo);
2445 	}
2446 }
2447 
2448 /*
2449  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2450  * will reflect changes in pte's back to the vm_page.
2451  */
2452 void
2453 moea64_remove_all(mmu_t mmu, vm_page_t m)
2454 {
2455 	struct	pvo_entry *pvo, *next_pvo;
2456 	struct	pvo_head freequeue;
2457 	int	wasdead;
2458 	pmap_t	pmap;
2459 
2460 	LIST_INIT(&freequeue);
2461 
2462 	PV_PAGE_LOCK(m);
2463 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2464 		pmap = pvo->pvo_pmap;
2465 		PMAP_LOCK(pmap);
2466 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2467 		if (!wasdead)
2468 			moea64_pvo_remove_from_pmap(mmu, pvo);
2469 		moea64_pvo_remove_from_page_locked(mmu, pvo, m);
2470 		if (!wasdead)
2471 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2472 		PMAP_UNLOCK(pmap);
2473 
2474 	}
2475 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2476 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2477 	PV_PAGE_UNLOCK(m);
2478 
2479 	/* Clean up UMA allocations */
2480 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2481 		free_pvo_entry(pvo);
2482 }
2483 
2484 /*
2485  * Allocate a physical page of memory directly from the phys_avail map.
2486  * Can only be called from moea64_bootstrap before avail start and end are
2487  * calculated.
2488  */
2489 vm_offset_t
2490 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2491 {
2492 	vm_offset_t	s, e;
2493 	int		i, j;
2494 
2495 	size = round_page(size);
2496 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2497 		if (align != 0)
2498 			s = roundup2(phys_avail[i], align);
2499 		else
2500 			s = phys_avail[i];
2501 		e = s + size;
2502 
2503 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2504 			continue;
2505 
2506 		if (s + size > platform_real_maxaddr())
2507 			continue;
2508 
2509 		if (s == phys_avail[i]) {
2510 			phys_avail[i] += size;
2511 		} else if (e == phys_avail[i + 1]) {
2512 			phys_avail[i + 1] -= size;
2513 		} else {
2514 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2515 				phys_avail[j] = phys_avail[j - 2];
2516 				phys_avail[j + 1] = phys_avail[j - 1];
2517 			}
2518 
2519 			phys_avail[i + 3] = phys_avail[i + 1];
2520 			phys_avail[i + 1] = s;
2521 			phys_avail[i + 2] = e;
2522 			phys_avail_count++;
2523 		}
2524 
2525 		return (s);
2526 	}
2527 	panic("moea64_bootstrap_alloc: could not allocate memory");
2528 }
2529 
2530 static int
2531 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
2532     struct pvo_entry **oldpvop)
2533 {
2534 	struct pvo_entry *old_pvo;
2535 	int err;
2536 
2537 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2538 
2539 	STAT_MOEA64(moea64_pvo_enter_calls++);
2540 
2541 	/*
2542 	 * Add to pmap list
2543 	 */
2544 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2545 
2546 	if (old_pvo != NULL) {
2547 		if (oldpvop != NULL)
2548 			*oldpvop = old_pvo;
2549 		return (EEXIST);
2550 	}
2551 
2552 	if (pvo_head != NULL) {
2553 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2554 	}
2555 
2556 	if (pvo->pvo_vaddr & PVO_WIRED)
2557 		pvo->pvo_pmap->pm_stats.wired_count++;
2558 	pvo->pvo_pmap->pm_stats.resident_count++;
2559 
2560 	/*
2561 	 * Insert it into the hardware page table
2562 	 */
2563 	err = MOEA64_PTE_INSERT(mmu, pvo);
2564 	if (err != 0) {
2565 		panic("moea64_pvo_enter: overflow");
2566 	}
2567 
2568 	STAT_MOEA64(moea64_pvo_entries++);
2569 
2570 	if (pvo->pvo_pmap == kernel_pmap)
2571 		isync();
2572 
2573 #ifdef __powerpc64__
2574 	/*
2575 	 * Make sure all our bootstrap mappings are in the SLB as soon
2576 	 * as virtual memory is switched on.
2577 	 */
2578 	if (!pmap_bootstrapped)
2579 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2580 		    pvo->pvo_vaddr & PVO_LARGE);
2581 #endif
2582 
2583 	return (0);
2584 }
2585 
2586 static void
2587 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2588 {
2589 	struct	vm_page *pg;
2590 	int32_t refchg;
2591 
2592 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2593 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2594 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2595 
2596 	/*
2597 	 * If there is an active pte entry, we need to deactivate it
2598 	 */
2599 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2600 	if (refchg < 0) {
2601 		/*
2602 		 * If it was evicted from the page table, be pessimistic and
2603 		 * dirty the page.
2604 		 */
2605 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2606 			refchg = LPTE_CHG;
2607 		else
2608 			refchg = 0;
2609 	}
2610 
2611 	/*
2612 	 * Update our statistics.
2613 	 */
2614 	pvo->pvo_pmap->pm_stats.resident_count--;
2615 	if (pvo->pvo_vaddr & PVO_WIRED)
2616 		pvo->pvo_pmap->pm_stats.wired_count--;
2617 
2618 	/*
2619 	 * Remove this PVO from the pmap list.
2620 	 */
2621 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2622 
2623 	/*
2624 	 * Mark this for the next sweep
2625 	 */
2626 	pvo->pvo_vaddr |= PVO_DEAD;
2627 
2628 	/* Send RC bits to VM */
2629 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2630 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2631 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2632 		if (pg != NULL) {
2633 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2634 			if (refchg & LPTE_CHG)
2635 				vm_page_dirty(pg);
2636 			if (refchg & LPTE_REF)
2637 				vm_page_aflag_set(pg, PGA_REFERENCED);
2638 		}
2639 	}
2640 }
2641 
2642 static inline void
2643 moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
2644     vm_page_t m)
2645 {
2646 
2647 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2648 
2649 	/* Use NULL pmaps as a sentinel for races in page deletion */
2650 	if (pvo->pvo_pmap == NULL)
2651 		return;
2652 	pvo->pvo_pmap = NULL;
2653 
2654 	/*
2655 	 * Update vm about page writeability/executability if managed
2656 	 */
2657 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2658 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2659 		if (m != NULL) {
2660 			LIST_REMOVE(pvo, pvo_vlink);
2661 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
2662 				vm_page_aflag_clear(m,
2663 				    PGA_WRITEABLE | PGA_EXECUTABLE);
2664 		}
2665 	}
2666 
2667 	STAT_MOEA64(moea64_pvo_entries--);
2668 	STAT_MOEA64(moea64_pvo_remove_calls++);
2669 }
2670 
2671 static void
2672 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2673 {
2674 	vm_page_t pg = NULL;
2675 
2676 	if (pvo->pvo_vaddr & PVO_MANAGED)
2677 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2678 
2679 	PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2680 	moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
2681 	PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2682 }
2683 
2684 static struct pvo_entry *
2685 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2686 {
2687 	struct pvo_entry key;
2688 
2689 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2690 
2691 	key.pvo_vaddr = va & ~ADDR_POFF;
2692 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2693 }
2694 
2695 static boolean_t
2696 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2697 {
2698 	struct	pvo_entry *pvo;
2699 	int64_t ret;
2700 	boolean_t rv;
2701 
2702 	/*
2703 	 * See if this bit is stored in the page already.
2704 	 */
2705 	if (m->md.mdpg_attrs & ptebit)
2706 		return (TRUE);
2707 
2708 	/*
2709 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2710 	 * flushed to the PTEs.
2711 	 */
2712 	rv = FALSE;
2713 	powerpc_sync();
2714 	PV_PAGE_LOCK(m);
2715 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2716 		ret = 0;
2717 
2718 		/*
2719 		 * See if this pvo has a valid PTE.  if so, fetch the
2720 		 * REF/CHG bits from the valid PTE.  If the appropriate
2721 		 * ptebit is set, return success.
2722 		 */
2723 		PMAP_LOCK(pvo->pvo_pmap);
2724 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2725 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2726 		PMAP_UNLOCK(pvo->pvo_pmap);
2727 
2728 		if (ret > 0) {
2729 			atomic_set_32(&m->md.mdpg_attrs,
2730 			    ret & (LPTE_CHG | LPTE_REF));
2731 			if (ret & ptebit) {
2732 				rv = TRUE;
2733 				break;
2734 			}
2735 		}
2736 	}
2737 	PV_PAGE_UNLOCK(m);
2738 
2739 	return (rv);
2740 }
2741 
2742 static u_int
2743 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2744 {
2745 	u_int	count;
2746 	struct	pvo_entry *pvo;
2747 	int64_t ret;
2748 
2749 	/*
2750 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2751 	 * we can reset the right ones).
2752 	 */
2753 	powerpc_sync();
2754 
2755 	/*
2756 	 * For each pvo entry, clear the pte's ptebit.
2757 	 */
2758 	count = 0;
2759 	PV_PAGE_LOCK(m);
2760 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2761 		ret = 0;
2762 
2763 		PMAP_LOCK(pvo->pvo_pmap);
2764 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2765 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2766 		PMAP_UNLOCK(pvo->pvo_pmap);
2767 
2768 		if (ret > 0 && (ret & ptebit))
2769 			count++;
2770 	}
2771 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2772 	PV_PAGE_UNLOCK(m);
2773 
2774 	return (count);
2775 }
2776 
2777 boolean_t
2778 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2779 {
2780 	struct pvo_entry *pvo, key;
2781 	vm_offset_t ppa;
2782 	int error = 0;
2783 
2784 	if (hw_direct_map && mem_valid(pa, size) == 0)
2785 		return (0);
2786 
2787 	PMAP_LOCK(kernel_pmap);
2788 	ppa = pa & ~ADDR_POFF;
2789 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
2790 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2791 	    ppa < pa + size; ppa += PAGE_SIZE,
2792 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2793 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2794 			error = EFAULT;
2795 			break;
2796 		}
2797 	}
2798 	PMAP_UNLOCK(kernel_pmap);
2799 
2800 	return (error);
2801 }
2802 
2803 /*
2804  * Map a set of physical memory pages into the kernel virtual
2805  * address space. Return a pointer to where it is mapped. This
2806  * routine is intended to be used for mapping device memory,
2807  * NOT real memory.
2808  */
2809 void *
2810 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2811 {
2812 	vm_offset_t va, tmpva, ppa, offset;
2813 
2814 	ppa = trunc_page(pa);
2815 	offset = pa & PAGE_MASK;
2816 	size = roundup2(offset + size, PAGE_SIZE);
2817 
2818 	va = kva_alloc(size);
2819 
2820 	if (!va)
2821 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2822 
2823 	for (tmpva = va; size > 0;) {
2824 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2825 		size -= PAGE_SIZE;
2826 		tmpva += PAGE_SIZE;
2827 		ppa += PAGE_SIZE;
2828 	}
2829 
2830 	return ((void *)(va + offset));
2831 }
2832 
2833 void *
2834 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2835 {
2836 
2837 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2838 }
2839 
2840 void
2841 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2842 {
2843 	vm_offset_t base, offset;
2844 
2845 	base = trunc_page(va);
2846 	offset = va & PAGE_MASK;
2847 	size = roundup2(offset + size, PAGE_SIZE);
2848 
2849 	kva_free(base, size);
2850 }
2851 
2852 void
2853 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2854 {
2855 	struct pvo_entry *pvo;
2856 	vm_offset_t lim;
2857 	vm_paddr_t pa;
2858 	vm_size_t len;
2859 
2860 	if (__predict_false(pm == NULL))
2861 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
2862 
2863 	PMAP_LOCK(pm);
2864 	while (sz > 0) {
2865 		lim = round_page(va+1);
2866 		len = MIN(lim - va, sz);
2867 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2868 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2869 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2870 			moea64_syncicache(mmu, pm, va, pa, len);
2871 		}
2872 		va += len;
2873 		sz -= len;
2874 	}
2875 	PMAP_UNLOCK(pm);
2876 }
2877 
2878 void
2879 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2880 {
2881 
2882 	*va = (void *)(uintptr_t)pa;
2883 }
2884 
2885 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2886 
2887 void
2888 moea64_scan_init(mmu_t mmu)
2889 {
2890 	struct pvo_entry *pvo;
2891 	vm_offset_t va;
2892 	int i;
2893 
2894 	if (!do_minidump) {
2895 		/* Initialize phys. segments for dumpsys(). */
2896 		memset(&dump_map, 0, sizeof(dump_map));
2897 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2898 		for (i = 0; i < pregions_sz; i++) {
2899 			dump_map[i].pa_start = pregions[i].mr_start;
2900 			dump_map[i].pa_size = pregions[i].mr_size;
2901 		}
2902 		return;
2903 	}
2904 
2905 	/* Virtual segments for minidumps: */
2906 	memset(&dump_map, 0, sizeof(dump_map));
2907 
2908 	/* 1st: kernel .data and .bss. */
2909 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2910 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2911 	    dump_map[0].pa_start;
2912 
2913 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2914 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2915 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2916 
2917 	/* 3rd: kernel VM. */
2918 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2919 	/* Find start of next chunk (from va). */
2920 	while (va < virtual_end) {
2921 		/* Don't dump the buffer cache. */
2922 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2923 			va = kmi.buffer_eva;
2924 			continue;
2925 		}
2926 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2927 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2928 			break;
2929 		va += PAGE_SIZE;
2930 	}
2931 	if (va < virtual_end) {
2932 		dump_map[2].pa_start = va;
2933 		va += PAGE_SIZE;
2934 		/* Find last page in chunk. */
2935 		while (va < virtual_end) {
2936 			/* Don't run into the buffer cache. */
2937 			if (va == kmi.buffer_sva)
2938 				break;
2939 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2940 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
2941 				break;
2942 			va += PAGE_SIZE;
2943 		}
2944 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2945 	}
2946 }
2947 
2948 #ifdef __powerpc64__
2949 
2950 static size_t
2951 moea64_scan_pmap(mmu_t mmu)
2952 {
2953 	struct pvo_entry *pvo;
2954 	vm_paddr_t pa, pa_end;
2955 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
2956 	uint64_t lpsize;
2957 
2958 	lpsize = moea64_large_page_size;
2959 	kstart = trunc_page((vm_offset_t)_etext);
2960 	kend = round_page((vm_offset_t)_end);
2961 	kstart_lp = kstart & ~moea64_large_page_mask;
2962 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
2963 
2964 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
2965 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
2966 	    kstart, kend, kstart_lp, kend_lp);
2967 
2968 	PMAP_LOCK(kernel_pmap);
2969 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
2970 		va = pvo->pvo_vaddr;
2971 
2972 		if (va & PVO_DEAD)
2973 			continue;
2974 
2975 		/* Skip DMAP (except kernel area) */
2976 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
2977 			if (va & PVO_LARGE) {
2978 				pgva = va & ~moea64_large_page_mask;
2979 				if (pgva < kstart_lp || pgva >= kend_lp)
2980 					continue;
2981 			} else {
2982 				pgva = trunc_page(va);
2983 				if (pgva < kstart || pgva >= kend)
2984 					continue;
2985 			}
2986 		}
2987 
2988 		pa = pvo->pvo_pte.pa & LPTE_RPGN;
2989 
2990 		if (va & PVO_LARGE) {
2991 			pa_end = pa + lpsize;
2992 			for (; pa < pa_end; pa += PAGE_SIZE) {
2993 				if (is_dumpable(pa))
2994 					dump_add_page(pa);
2995 			}
2996 		} else {
2997 			if (is_dumpable(pa))
2998 				dump_add_page(pa);
2999 		}
3000 	}
3001 	PMAP_UNLOCK(kernel_pmap);
3002 
3003 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3004 }
3005 
3006 static struct dump_context dump_ctx;
3007 
3008 static void *
3009 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3010 {
3011 	dump_ctx.ptex = 0;
3012 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3013 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3014 	return (&dump_ctx);
3015 }
3016 
3017 #else
3018 
3019 static size_t
3020 moea64_scan_pmap(mmu_t mmu)
3021 {
3022 	return (0);
3023 }
3024 
3025 static void *
3026 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3027 {
3028 	return (NULL);
3029 }
3030 
3031 #endif
3032 
3033 #ifdef __powerpc64__
3034 static void
3035 moea64_map_range(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3036 {
3037 
3038 	for (; npages > 0; --npages) {
3039 		if (moea64_large_page_size != 0 &&
3040 		    (pa & moea64_large_page_mask) == 0 &&
3041 		    (va & moea64_large_page_mask) == 0 &&
3042 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3043 			PMAP_LOCK(kernel_pmap);
3044 			moea64_kenter_large(mmu, va, pa, 0, 0);
3045 			PMAP_UNLOCK(kernel_pmap);
3046 			pa += moea64_large_page_size;
3047 			va += moea64_large_page_size;
3048 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3049 		} else {
3050 			moea64_kenter(mmu, va, pa);
3051 			pa += PAGE_SIZE;
3052 			va += PAGE_SIZE;
3053 		}
3054 	}
3055 }
3056 
3057 static void
3058 moea64_page_array_startup(mmu_t mmu, long pages)
3059 {
3060 	long dom_pages[MAXMEMDOM];
3061 	vm_paddr_t pa;
3062 	vm_offset_t va, vm_page_base;
3063 	vm_size_t needed, size;
3064 	long page;
3065 	int domain;
3066 	int i;
3067 
3068 	vm_page_base = 0xd000000000000000ULL;
3069 
3070 	/* Short-circuit single-domain systems. */
3071 	if (vm_ndomains == 1) {
3072 		size = round_page(pages * sizeof(struct vm_page));
3073 		pa = vm_phys_early_alloc(0, size);
3074 		vm_page_base = moea64_map(mmu, &vm_page_base,
3075 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3076 		vm_page_array_size = pages;
3077 		vm_page_array = (vm_page_t)vm_page_base;
3078 		return;
3079 	}
3080 
3081 	page = 0;
3082 	for (i = 0; i < MAXMEMDOM; i++)
3083 		dom_pages[i] = 0;
3084 
3085 	/* Now get the number of pages required per domain. */
3086 	for (i = 0; i < vm_phys_nsegs; i++) {
3087 		domain = vm_phys_segs[i].domain;
3088 		KASSERT(domain < MAXMEMDOM,
3089 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3090 		/* Get size of vm_page_array needed for this segment. */
3091 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3092 		dom_pages[domain] += size;
3093 	}
3094 
3095 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3096 		domain = _vm_phys_domain(phys_avail[i]);
3097 		KASSERT(domain < MAXMEMDOM,
3098 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3099 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3100 		dom_pages[domain] += size;
3101 	}
3102 
3103 	/*
3104 	 * Map in chunks that can get us all 16MB pages.  There will be some
3105 	 * overlap between domains, but that's acceptable for now.
3106 	 */
3107 	vm_page_array_size = 0;
3108 	va = vm_page_base;
3109 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3110 		if (dom_pages[i] == 0)
3111 			continue;
3112 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3113 		size = round_page(size * sizeof(struct vm_page));
3114 		needed = size;
3115 		size = roundup2(size, moea64_large_page_size);
3116 		pa = vm_phys_early_alloc(i, size);
3117 		vm_page_array_size += size / sizeof(struct vm_page);
3118 		moea64_map_range(mmu, va, pa, size >> PAGE_SHIFT);
3119 		/* Scoot up domain 0, to reduce the domain page overlap. */
3120 		if (i == 0)
3121 			vm_page_base += size - needed;
3122 		va += size;
3123 	}
3124 	vm_page_array = (vm_page_t)vm_page_base;
3125 	vm_page_array_size = pages;
3126 }
3127 #endif
3128